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Abstract

Introduction: Hybridization is a common phenomenon in fish and is considered to be a major source of
diversification. Deciphering the remoulding of genomic regions and phenotypes in zones where hybrid specimens
occur is of particular interest to elucidate the emergence of evolutionary novelties. This approach is particularly
challenging because the first step of hybridization seems to be the most important stage in the emergence of
hybrid lineages. However, the signal can be significantly altered after only a few generations.

Results: We studied 41 microsatellites and partial cytochrome b gene sequences in 970 specimens belonging to
two fish species (Chondrostoma nasus and Parachondrostoma toxostoma) in allopatric/parapatric zones, hybrids
between them in a natural sympatric zone: the Ardèche basin. We showed that the genomic architecture in hybrids
presented pattern heterogeneity of selection for the different loci. Indeed, the upstream part of the river (Rosières
and Labeaume) presented an overdominant fitness of heterozygotes (12.20%) corresponding to a genomic
compatibility, and underselection was observed for 4.88%-7.32% of the loci tested indicating a genomic
incompatibility. Moreover the upstream station (Rosières) presented a positive selection of invasive C. nasus
homozygotes (17.07% to 21.95%) indicating that hybridization may increase the fitness of admixed individuals.
We showed that hybrid morphology (body shape based on 21 landmarks) correlated with genomic dilution
indicating a species fingerprint. However, we demonstrated that the hybrid morphology was not a linear
modification between the two parental species but a trade-off between several correlated traits.

Conclusions: Hybrid specimens present a mosaic of genomic combination, showing regions with genomic
compatibility and others with genomic incompatibility between the two species. Positive selection (invasive
advantage ranging from 9.76% to 21.95% of the loci) was evidenced in the upstream part of the Ardèche indicating
that environmental selection makes a substantial contribution. Although the presence of a dam is known to impose
heterogeneous hybrid zones between these two species, we demonstrated in this study that a natural environment
can also generate a hybrid zone with a large number (and diversity) of hybrids. The combination of the two
genomes in the hybrids results in complex ontogenetic trajectories (with different morphological traits evolving at
different rates) that correspond to novel developmental pathways.
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Introduction
One of the most important issues in evolutionary biol-
ogy is the genetic basis of evolutionary novelties [1,2],
and it is now clear that hybridization phenomena could
induce significant contribution [3]. Indeed, hybridization
is a common phenomenon in animals in general [4,5]
and in fish in particular [6-10] but the part played by
such phenomenon in the emergence of new genomic ar-
chitectures and phenotypes in admixed individuals re-
mains unclear [11].
Hybridization between divergent gene pools generates

recombinant individuals. Analysis of such individuals pro-
vides information about genomic architecture associated
with reproductive isolation between populations or species
[12]. Both genetic factors contributing to genomic com-
patibility (endogenous selection) and environmental fac-
tors sorting specimens based on their fitness (exogenous
selection) apply in zones where hybridization occurs nat-
urally (called hybrid zones hereafter). The remoulding of
genomic regions in hybrid zones may serve as a source of
evolutionary novelties and these zones behave as biodiver-
sity reactors generating waves of new genotypes. Selection
may thus act on a vast number of genomic combinations
from parental species to different hybrid genotypes; such
hybrid genotypes may also serve as intermediaries for the
transfer of adaptive genetic variation between parental
populations [13-15]. Moreover, some authors have dem-
onstrated that this phenomenon is possible in the early
stages of the hybridization process [16-19].
Mathematical models are increasingly used to study the

complexity of such biological phenomena. As reviewed in
Payseur [20], most models used to analyse hybrid zones
describe the relationship between allele frequency and
geography. The clines in hybrid zones take a sigmoid
shape to model the transition between species gradients.
Several variables are used in these models (reviewed in
[21]): the migration of the two species along the zone
where clinal variation is observed (i.e. diffusion flattens the
cline over space), the strength of selection (that maintains
the sigmoid form) and the geographical transect of the ob-
served alleles. Nolte et al. [16] pointed out that the ana-
lyses of such phenomenon need diagnostic loci to allow
the two parental populations to be distinguished, and that
the exclusion of loci that are not diagnostic can remove a
part of the species polymorphism from the analysis.
Another approach is to use hybrid ancestries across

the genome to predict introgression at individual loci.
Pritchard et al. [22] developed a model-based clustering
method for using multilocus data to infer population
structure and assign individuals to populations. An alter-
native approach is based on multinomial logistic model-
ling [23,24]. The aim is to estimate the genomic cline as
the genotype frequency at individual loci along a genomic
admixture gradient (hybrid index = h [25]). A statistical
test has been developed to identify markers that deviate
from expectation (neutrality) based on a genome-wide
admixture, and that can handle potential locus-specific
selection [24].
Currently, it is not clear which evolutionary forces con-

strain the genomic architecture generated by hybridization
process such that it “stabilizes” a new lineage. One of the
best known examples in fish is that of the invasive hybrid
lineages of Cottus in Europe. Nolte et al. [16] studied two
hybrid zones involving Cottus perifretum and Cottus
rhenanus using the genomic cline approach. Although the
two species share similar overall genomic compositions,
the observed patterns at individual loci differed substan-
tially between zones indicating differences in external
selection pressures or cryptic genetic differentiation of
distinct parental populations. Recently, Stemshorn et al.
[18] identified three distinct hybrid lineages, which have
emerged out of a situation of secondary contact between
C. rhenanus and C. perifretum. The examination of par-
tially isolated lineages, such as invasive hybrid sculpins,
may allow early adaptive genetic changes to be identified
before they become confounded by differences arising due
to speciation process.
Another particularity in hybrid zones concerns phe-

notypes of recombinant individuals. In the Cottus sp.
complex for example, Nolte and Sheets [26] found a
specific hybrid shape that was intermediate along the axes
separating their parental groups, but that also displayed
additional differentiation. In the Chondrostoma species
complex, convergence of body shape and coefficient con-
dition between the two species have been described for
this model despite heterogeneous genetic patterns (i.e. dif-
ferent hybrid combinations and parental individuals).
Corse et al. [19] reported that the mouths of the F1 hy-
brids display an extreme phenotype resulting from the
lower lip widening slower than in the two parent species.
Phenotypic diversity of F1 specimens is of particular inter-
est, because the phenotypes of these individuals in some
cases exceed the range of phenotypes in the corresponding
parental lineages demonstrating transgressive segregation
for the first time in backcrossed individuals [27,28]. This
new character range constitutes a source of evolutionary
novelties (i.e. transgressive segregation) on which selection
could act. Thus, hybridization may contribute to evolu-
tionary novelties in animal through the emergence of
novel phenotypes due to transgressive segregation [3,26].
It would be valuable to be able to identify adaptive peaks

or sets of pathways that spread in the adaptive landscape,
and to describe the interactions between new genomic ar-
chitectures and observed phenotypes in hybrid zones. To
decipher the complex evolutionary history linking genotype
and phenotypes in hybrid zones, two major conditions need
to be respected. First, the genetic diversity of source popu-
lations has to be estimated as this is an important factor of



Sinama et al. Frontiers in Zoology 2013, 10:22 Page 3 of 16
http://www.frontiersinzoology.com/content/10/1/22
morphological variation among admixed populations [25].
Second, it is important to model phenotypic variability
among admixed individuals; such variability can change
significantly within a few generations in a particularly
dynamic process [29]. The change in variability depends
on the distribution of admixed individuals in the hybrid
zone, the environmental parameters, time and duration of
hybridization, and the level of gene flow [18]. It would
therefore be of interest to evaluate transgressive segrega-
tion in natural systems including in particular a recent hy-
brid zone. Indeed, an ancestral hybrid zone or a lineage of
hybrid origin may be subject to secondary evolutionary
processes that reshape the hybrid morphology and may
have hidden the transgressive traits.
The Chondrostoma species complex appears to be a use-

ful model for investigating how admixture between two
divergent lineages (Chondrostoma species and another
species belonging to a different genus) shapes morpho-
logical variation. Chondrostoma hybrid zones have been
previously described in a fragmented habitat (the Durance
River), assuming that dams favour hybridization between
Parachondrostoma toxostoma and Chondrostoma nasus
[17]. With this model, we can identify source populations
for each species, recent hybrid zones and it is possible to
genotype large numbers of new hybrid specimens from
this habitat.
The aim of this study was to describe genetic-phenotypic

interactions and to assess the transgressive traits in body
shape and thereby to decipher the evolutionary dynamic of
this “natural” Chondrostoma hybrid zone. Recently, inter-
mediate individuals were found in the Ardèche River (a
non-fragmented river) raising questions about the capacity
of such zone to generate large numbers (and diversity) of
hybrids. We report a study of 41 microsatellites, partial
cytochrome b gene sequences and body shape morphology
in 970 specimens from (i) a non-fragmented hybrid zone
and (ii) source populations including allopatry and
parapatry for both species (Parachondrostoma toxostoma
and Chondrostoma nasus). To study interactions between
morphological changes and genetic architecture in hybrid
zones, we combined clustering methods [22] and the gen-
omic cline approach [24] to explain genotype as a function
of hybrid index and test potential effects of selection. The
findings were then used to describe body shape trans-
formation (identified by a morphometric analysis) along
the h-index gradient. Finally, we interpret morphological
variations linked to hybridization, taking into account
ontogenetic effects on shape.

Results
Hardy-Weinberg equilibrium, null allele frequencies and
discriminant power of microsatellites
Most microsatellite markers (allopatry and parapatry)
were in Hardy-Weinberg equilibrium in the reference
populations of C. nasus (88-95%) and P. toxostoma (76-
83%). However, two populations in the Ardèche, more
loci showed a deficit or excess of heterozygosity
(Rosières: 61%; Saint-Just: 85.4%; See Additional file 1:
“Observed and expected heterozygosity for each marker
by population”). This was due to the presence of both
species in samples from the Ardèche. However, the
Labeaume population presented 35 loci in Hardy-
Weinberg equilibrium (85%) indicating panmixia between
specimens of C. nasus, P. toxostoma and hybrids.
Considering the loci which have null allele frequency

higher than 0.05, 16.5% was found in reference popula-
tions (See Additional file 2: “Estimates of the frequency
of null alleles by population”). In P. toxostoma, the dis-
tribution of such loci ranged from 7.31% to 9.76% for
and from 19.51% to 34.15% for C. nasus. In hybrid zone,
14.63% of such loci were found in Labeaume population
(the only panmictic population).
Most of the microsatellites are highly discriminant

(Figure 1a). Comparing the results of the two methods
(STRUCTURE and INTROGRESS), we showed congru-
ence in assignment of individuals (Figure 1b, see Additional
file 3: “Assignment of individuals with INTROGRESS and
estimation of h-index”).

Pattern of the Ardèche hybrid zone versus reference
populations
The LnP(D) and ΔK analyses of the data for the 41
microsatellites to determine the K parameter showed a
significant number of groups with K = 3 (Figure 2, See
Additionnal File 4b: “Admixture with STRUCTURE soft-
ware between populations of P. toxostoma and C. nasus.”).
This led us to differentiate P. toxostoma reference popula-
tions into two groups: Rhône basin populations (Suran
River, Serre-Ponçon Lake), and coastal river populations
(Orbieu River, Berre River). However, there was no differ-
entiation of C. nasus populations.
Bayesian analyses were confirmed by multiple corres-

pondence analysis (MCA), and indicated that P. toxostoma
individuals in the Ardèche were most closely related to
Rhône populations of P. toxostoma (Figure 3). C. nasus in-
dividuals in the Ardèche were more closely related to C.
nasus populations in the Rhône and Allier rivers than that
in Chée. This last result appeared in Bayesian analyses
with K = 5 but was not significant (See Additional file 4:
“Admixture with STRUCTURE software between popula-
tions of P. toxostoma and C. nasus”).

Characterization of admixture in the Ardèche hybrid zone
Based on reference specimens, the ranges of h-values for
C. nasus (resp. P. toxostoma) were [0.00, 0.087] (resp.
[0.940, 1.00]), see material and methods). The “pure”
specimens observed in Ardèche River ranged from 0.00 to
0.04 for C. nasus and from 0.946 to 1.00 for P. toxostoma,
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Figure 1 Power of the 41 microsatellites loci. a) Discrimination score (abscissa) for each of the 41 loci (ordinate). The discrimination score
considered here is the area under the ROC curve which plots the sensitivity (ie probability to detect true positif) in function of the inverse of the
specificity (probability to detect true negatif), after performing a logistic model explaining species status by allele composition. Scores of 0.5
indicate a monomorphic locus (a single, same allele in both species) or a polymorphic locus (the same several alleles in both species); scores of 1 indicate
to a locus at which the two species studied do not share any allele. b) For the three Ardèche stations separately and together: q score (from STRUCTURE
analysis) as a function of the h-index (from INTROGRESS analysis) with 0 corresponding to C. nasus and 1 to P. toxostoma. In green, specimens with C.
nasus mitochondrial DNA, in red specimens with a P. toxostomamitochondrial DNA, in black mitochondrial DNA typing not available.
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Figure 2 Admixture between populations of P. toxostoma and C. nasus (K = 3). Red and orange: P. toxostoma; green: C. nasus.
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with a congruent maternal heritance of mitochondrial
DNA (C. nasus mitochondrial DNA between 0.00 and 0.04;
P. toxostoma mitochondrial DNA between 0.946 and 1.00).
Consequently, hybrids correspond to (i) individuals that are
ranged from 0.04 to 0.946 regardless mitochondrial DNA
and (ii) to individuals for which the microsatellites and
mitochondrial DNA were not congruent (Figure 4).
The percentage of hybrid individuals was higher in

the upstream part of the river (11.20% in Rosières and
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Saint-Just. Introgression of C. nasus mitochondrial
DNA into the individuals with a pure P. toxostoma
nuclear genome was 0.69% (1/144) at Rosières, 0.00%
(0/63) at Labeaume and 6.00% (2/33) at Saint-Just
(Figure 4).
The hybridization in Ardèche was asymmetrical, with

many individuals being the result of backcrosses with P.
toxostoma. Patterns of hybridization were particularly dif-
ferent between the three stations on the Ardèche: a sigmoid
line with numerous pure P. toxostoma individuals and some
hybrids in Rosières; P. toxostoma individuals and more hy-
brids in Labeaume; then pure individuals of C. nasus and P.
toxostoma with fewer hybrids in Saint-Just (Figure 4).
Most hybrid specimens presented a h-index closer to

“pure” P. toxostoma (Figure 4). The distribution of the
41 microsatellite markers in hybrid specimens without
F1 individuals displayed a bimodal distribution between
loci within genome (especially in Rosières and Labeaume
populations) indicating heterogeneity in the genomic
porosity (Figure 4b, c).
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Genomic architecture and admixture: the genome-
environment interaction
Most of the loci studied have evolved under the neutral
model: 51.22% to 56.10% (respectively with F1 individ-
uals and without F1 individuals) for Rosières, 56.10% to
58.54% Labeaume and 85.37% to 78.05% for Saint-Just
(Table 1, see Additional file 5: “Determination of marker
genomic cline for each population of Ardèche and popu-
lations without F1 individuals”). The downstream part of
the river (Saint-Just) appears to be the tail of the hybrid
zone. However, for the upstream part of the river, differ-
ent selective forces apply to hybrid genomes in different
localities. The most important selective force identified
(respectively with F1 individuals and without F1 individ-
uals) differed between the two stations: positive selection
of invasive homozygotes C. nasus was observed for nine
to seven loci (21.95% to 17.07%) in Rosières and four to
six loci (9.76% to 14.63%) in Labeaume. Overdominance
selection of interspecific heterozygotes (without F1) was
detected for five loci (12.20%) in Rosières and Labeaume
for which three are common. The overdominant selection
corresponded to the second most important selective
force in Rosières and Labeaume (Table 1, See Additional
file 5: “Determination of marker genomic cline for each
population of Ardèche and populations without F1
individuals ”).
Based on hybrid specimens, six linkage groups (LG)

were detected and permitted the association of 20 of the
41 loci (Figure 5) using the range 1.5-10; three linkage
groups were identified using the range 2.0-5.0 (LG-1,
LG-2 and LG-6). We describe the linkage groups based
on the most complete pattern (i.e. six linkage groups)
but we base our conclusions only on LG-1, LG-2 and
LG-6. LG-1 includes eight loci, LG-2 four loci and the
Table 1 Number and percentage of loci corresponding to a se
populations without F1

Selection model Ros Ros.wF1

N % N %

neutral 21 51,22 23 56,10

positive selection 7 17,07 5 12,20

overdominance 4 9,76 4 9,76

overdominance/positive selection 0 0,00 0 0,00

overdominance/negative selection 1 2,44 0 0,00

overdominance/epistasis 1 2,44 1 2,44

underdominance 1 2,44 1 2,44

underdominance/positive selection 2 4,88 2 4,88

increase admixture 2 4,88 2 4,88

epistasis 1 2,44 1 2,44

monomorphic 1 2,44 1 2,44

undefined selection 0 0,00 1 2,44

(positive selection is in the invasive homozygote C. nasus direction). Ros, Bau, Jus c
four other LGs contain two loci each. These LGs have
not evolved at the same rate: LG-5 is characterized by
hybrid and P. toxostoma genomes, LG-3 and LG-2 by
the presence of the C. nasus genome, and LG-1 and LG-6
by a hybrid genome (interspecific heterozygote). Indeed,
four overdominant loci (from a total of five) were found in
the first part of LG-1.
Eighteen of the loci have flanking regions homologous

to those in Danio rerio; eight of these 18 are present in
the linkage groups (Figure 5). CypG24, BL2-114 and
CnaD112 belong to the LG-1, but map to different chro-
mosomes in D. rerio (Dr7, Dr17 and Dr1, respectively).
By contrast, BL1-84 and Ca1 belong to LG-2 and are
both present on Dr5; LleC-090 and CnaF-177 defining
LG-6 are linked on Dr8, and CnaB-030 belonging to the
LG-5 is present on Dr 1 (Figure 5).
Multiple trajectories in hybrid body shape
The PCA of body shape in the reference populations indi-
cated that the main component of variability was related to
species. Body shape variation between groups defined by
species and hybrids by station and year was described by
DA analysis (Figure 6). The two first axes were associated
with a substantial morphological differentiation (λ = 0.92
and λ = 0.71). The first axis corresponded to a species dif-
ferentiation while the second axis ordered the populations
according to specimen size (from small specimens to large
specimens) whatever the species considered. Thus, this axis
appears to be related to an ontogenetic modification. This
result was confirmed by comparison of specimen size be-
tween populations/groups (See Additional file 6: “Box-plot
of size for each reference populations and Ardèche popula-
tions by year”).
lection model by populations in Ardeche and

Bau Bau.wF1 Jus Jus.wF1

N % N % N % N %

24 58,54 28 68,29 35 85,37 32 78,05

2 4,88 4 9,76 3 7,32 2 4,88

4 9,76 2 4,88 0 0,00 0 0,00

1 2,44 0 0,00 0 0,00 0 0,00

2 4,88 1 2,44 0 0,00 0 0,00

0 0,00 2 4,88 0 0,00 0 0,00

3 7,32 0 0,00 0 0,00 2 4,88

1 2,44 2 4,88 0 0,00 0 0,00

3 7,32 1 2,44 1 2,44 0 0,00

0 0,00 0 0,00 1 2,44 0 0,00

1 2,44 1 2,44 1 2,44 1 2,44

0 0,00 0 0,00 0 0,00 4 9,76

orresponded to Rosières, Labeaume, Saint-Just stations.



Figure 5 Linkage map of 20 loci showing heterogeneity in allelic distribution of specimens. P. toxostoma in red, C. nasus in green, and
hybrids in blue: a) for the 47 hybrid specimens from the Rosières and Labeaume populations; b) for all individuals from the Rosières population;
c) for all individuals from the Labeaume population.
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The pure specimens from Ardèche correspond to the
ranges of the two reference species on the two DA axes.
The Ardèche hybrids displayed new body shape morph-
ologies that occupied the range between the two species
on the first axis. Co-inertia analysis indicated a significant
linear relationship between shape and microsatellites (See
Additional file 7: “Co-inertia analysis”). Indeed, genomic
dilution (h-index) and body shape deformation (from C.
nasus to P. toxostoma) were correlated (r = 0.64 in
Rosières to r = 0.88 in Saint-Just, P < 10e-6, permutational
test). However, we did not identify any locus or group of
loci related to a particular shape modification.
The ontogenetic deformation was heterochronic [30]:

the different landmarks evolved at different rates in the
two species (Figure 7). Note that the C. nasus specimens
from Saint-Just were small (and young). This could have
led to a misleading description of shape hybridization.
To avoid this potential problem due to ontogenetic ef-
fect, we used specimens from Chée and Allier (allopatric
populations) from the year 2008 rather than the Saint-
Just C. nasus population in the analysis. We then studied
the morphological pathway between species: surpris-
ingly, the observed mean hybrid (specimen displaying a
h-index equal to 0.5) differed from the hypothetical
hybrid (h = 0.5), indicating that body shape dilution was
not linear (Figure 7). These differences were not only
due to the intensity of vector modification (depending on
the species tendency) but also on the direction of the
vector. We demonstrated that hybrid body shape is a com-
plex phenomenon that combines heterochronic processes
between the two species in a non-linear way (Figure 7).
Hybrid specimens (based on h-index) present a mosaic of
characters: many are those of C. nasus (e.g. landmark 9
corresponding to the anal fin insertion), or of P. toxostoma
(e.g. landmark 2 corresponding to the extremity of the
mouth), and some are intermediate morphs (e.g. landmark
7 corresponding to the last scale in the lateral line), and
transgressive segregation morphs (e.g. landmark 11 corre-
sponding to the pectoral fin insertion), or similar to the
two parental species (e.g. landmark 14 corresponding to
the right side of the eye positioned on the line between
the landmarks 13 and 2). Thus, hybrids displayed a shorter
snout pointing down, a smaller eyes (leading to a shorter
head) and greater body height than either of the two
parental species.

Discussion
Plasticity of genomic architecture in hybrid zone
The Ardèche hybrid zone presents neutral and selective
forces, which are not homogeneous in the river. Indeed,
our results suggest that the patterns of introgression at
the downstream station (Saint-Just) were consistent with
a neutral diffusion model involving genome-wide admix-
ture whereas different selective forces affect rates of intro-
gression for 50% of the genome at two sites (Rosières and
Labeaume, the upstream part of the Ardèche basin). The
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Figure 7 Shape deformation for pure specimens and hybrids. a) The 21 landmarks chosen for morphologic analysis b) Mean ontogenetic
deformation for C. nasus, with progressing age, in reference conditions. c) Mean ontogenetic deformation for P. toxostoma, with age, in reference
conditions. d) Deformation between P. toxostoma (h = 1, Ardèche specimens) and C. nasus (Chée and Allier stations in 2008, see text). In blue,
form of the intermediate hybrid (h = 0.5).
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most important selective force at Rosières appeared to be
a positive selection of invasive C. nasus homozygotes
(17.07%) indicating that hybridization may increase the fit-
ness of admixed individuals. However, the percentage was
substantially lower than the 30% found in the sculpin hy-
brid [16]. The most important selective force operating in
the upstream parts of the river (Rosières and Labeaume)
appeared to be an overdominant fitness of heterozygotes
(12.20%) evidence of genomic compatibility between the
two species for the loci considered. This was especially
true for the Labeaume population which was 31.50% hy-
brids, and almost all the loci were in Hardy-Weinberg
equilibrium. This population is an example of panmixia
between specimens from C. nasus, P. toxostoma and hy-
brids, despite striking genetic differentiation between the
two species. Finally, the underdominance of interspecific
heterozygotes observed at the Rosières and Labeaume
sites (4.88%-7.32%) may reflect genomic isolation (incom-
patibility) between the two species and/or lower fitness of
heterozygotes in this environment. As indicated by Nolte
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et al. [16], an underdominance signal may be an artefact
due to a high frequency of null alleles in hybrids. However,
in our study the high frequency of null alleles can be an
artefact only at the Lid8 locus (See Additional file 2).
The map distances between several of the loci studied

are relatively large, and the map order of some of the
markers can only be predicted from the Danio rerio gen-
ome. Nevertheless, the loci implicated in overdominant
fitness of heterozygotes can be identified (see Figure 5).
Our genomic mapping of specimens from the Ardèche
hybrid zone revealed that the six loci presenting over-
dominance are clustered into two LG: four are members
of LG-1 (which includes a total of eight loci) and two are in
LG-2 (LG-2 contains four loci, Figure 5). These findings
may indicate a chromosomal region at which heterozygos-
ity confers an advantage, or particular regions of the
chromosome displaying a hitchhiking effect. However the
loci involved in other selective forces (positive selection or
underdominance) could not be mapped. Additional micro-
satellite markers need to be developed and mapped to help
decipher the contribution of the various evolutionary forces
to the hybrid genomic architectures observed.
The divergence between the two species is almost 7% on

cytochrome b of mitochondrial DNA [31], and a large
number of loci have high discriminant scores (25 loci with
a discriminant score >0.95, Figure 1a). Consequently, a
large number of interspecific heterozygotes at numerous
loci would not be expected in hybrid generations beyond
the F1 [32]. However, in our study were detected in
Labeaume population 31.50% of hybrid specimens and
12.20% of the loci presented an overdominant fitness of
heterozygotes. A similar result was found in the hybrid
zone in Populus [33]. The authors suggested that epistatic
interactions between loci best explain the heterozygote ad-
vantage of recombinant hybrids. Both species may have
co-adapted gene complexes and, possibly, only hybrids with
two complete sets display high fitness. In the Cottus model,
a set of transgressively over-expressed genes in the invasive
hybrid lineage is a non-random set that is functionally
linked; also, a large subset of these genes appeared to be
plastic [34]. These two previous studies and our findings
suggest therefore that the overdominant fitness of heterozy-
gotes may be a major source of evolutionary novelties.

Hybrid zone as a source of phenotypic novelties
Phenotype-genotype associations are a major topic of
research in evolutionary studies [12,35]. Pigliucci [36]
states that an understanding of the sources of variation
underlying the evolution of novel complex phenotypes
is one of the key challenges in biology. Mathematical
models can be used to test for associations between
genetic composition and complex sets of correlated
traits [37]. However it is not straightforward to take
ontogenetic parameters into account, especially in
studies involving hybrid zones. Here, we describe an
analytical framework in which the complex interactions
between morphological changes and genetic architec-
ture in hybrid zones are taken into account.
Hybridization between P. toxostoma and C. nasus pro-

duces a range of hybrid specimens such that there are
two different asymmetrical distributions. In our study
system, the upstream part of the river presented speci-
mens introgressed by P. toxostoma while the down-
stream part displayed specimens introgressed by C.
nasus. This new genomic landscape, constituted by
recombinant specimens (the hybrids), is the scene of
complex body shape evolution. Indeed, body shape does
not constitute a monolithic block but a heterogeneous
structure presenting a complex pattern of correlated
traits. Ontogenetic trajectories represent emergent pro-
cesses resulting from interaction between an individual’s
genotype and its environment. The new genomic archi-
tectures of Ardèche hybrids interact with environmental
cues and thereby generate new phenotypes via the onto-
genetic trajectories followed by each individual. We
found that the morphology of hybrids between C. nasus
and P. toxostoma is not a linear transition between the
two parental species; it is a mix of characters within the
range bounded by the two parental species but also of
characters outside this range (i.e. transgressive segrega-
tion). The landmark trajectories could be C. nasus dom-
inant, P. toxostoma dominant, C. nasus/P. toxostoma
co-dominant or different from those of both species
making each hybrid an evolutionary novelty. We pro-
vide clear evidence that Ardèche hybrids follow com-
plex ontogenetic trajectories due to a heterochrony and
heterotopy (as defined by Zelditch and Fink [38]) of the
various morphological traits.

Hybrid zone: general pattern or particular cases?
Hybridization is a diverse process that can have many
forms. Typical cline models are found in most hybrid
zones, and patterns in which both parental species are
found along the entire range (mosaic pattern) are more
unusual; diverse examples have been described and differ
between species and models [39]. Nevertheless, the
highly divergent patterns of hybridization we report be-
tween two species are uncommon. The Ardèche hybrid
zone displayed a clearly sigmoid cline, contrasting with
the mosaic hybrid zone in the Durance River [17]. The
presence of hybrids at the four Durance collecting sites
separated by dams indicated that human activity has
disrupted the ecology of both species, which share an
overlapping ecological niche. There were more hybrids
in the upstream and middle parts of the river (33.5% in
the less fragmented part) and specimens belonging to
the invasive C. nasus were abundant at the two most
separated stations: 32% for the upstream station and
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62% for the downstream station (versus 2.0-5.5% for the
intermediate stations). In Ardèche, the hybrids were
most abundant in the upstream part of the river (21.35%
of the Rosières and Labeaume populations) although
specimens of the invasive species (C. nasus) were rare
(2.86%). The C. nasus nuclear genome was rare in the
hybrid specimens whereas more than 81.99% of the hybrid
specimens carried C. nasus mitochondrial DNA. This
indicates that most hybridization involved female C. nasus
reproducing with male P. toxostoma.
Hybridization of Chondrostoma complex species does

not depend on the presence of dams and indeed occurs
whatever the habitat (both highly fragmented habitats
and natural habitats). However, patterns of hybridization
differ very substantially between two habitats, implying
that introgressive processes follow different pathways in
different environments.
We confirmed that the inheritance from the rarer species,

as described by Costedoat et al. [17] in the Durance River,
is also present in the Ardèche: this feature therefore seems
to be a characteristic of hybridization between C. nasus
and P. toxostoma that is conserved, independent of the
environment.

Conclusion
Species ecology makes a major contribution to the char-
acteristics of hybrid zones. In the system we studied, the
invasive species (C. nasus) lives mostly in the down-
stream part of the Rhône River and spawns in tributaries
(Suran River, Ardèche River as described by Nelva [40]).
The spawning period is sufficient to produce fertile hybrids
with the endemic species P. toxostoma. Hybridization be-
tween these two species is not driven by dams on the
Ardèche basin, but dams do contribute to the observed
pattern of hybridization in the Durance River. The
cause of hybridization is unclear, particularly as there is
a parapatric zone in the Rhône basin in which no hybrid
(or introgressed genome) was found in either C. nasus
or P. toxostoma populations. The consequences of eco-
logical factors on the number and diversity of hybrids
between divergent lineages should be studied. The Para/
Chondrostoma species complex is a useful model for in-
vestigating the ecological factors responsible for these
recent hybrid zones (created no more than 150 years
ago) and their persistence. Finally, it would be interesting
to decipher the evolution of genomic compatibility/in-
compatibility (endogeneous selection) between the two
species and their hybrids, both in different hybrid zones
and by more detailed analysis at the genomic scale.

Materials and methods
Sampling and molecular data
A total of 970 individuals were sampled from 12 localities
in France over four years. Both parental Chondrostoma
lineages were collected in allopatric and parapatric zones
(2007 to 2010; 593 individuals); these allopatric and
parapatric zones are referred to as “reference populations”.
We also sampled a non-fragmented hybrid zone, the
Ardèche basin (377 individuals), at three localities in 2008.
The dowstream station (Saint-Just, Ardèche) is close to
the junction with the Rhône River, the upstream station
(Rosières, Baume) is the limit of the distribution of the en-
demic species (P. toxostoma) and the third station is 7 km
downstream (Labeaume, Baume) from the upstream sta-
tion. The two stations (Labeaume and Rosieres) are sepa-
rated by a dry zone in the river without surface water
during the warmest periods. The details of the populations
and sample sizes are presented in Figure 8.

Genetic data collection
Total genomic DNA was extracted from a piece of caudal
fin, and a 500-bp fragment of the cytochrome b mitochon-
drial DNA gene was sequenced using standard polymerase
reaction (PCR) procedures, as described in Costedoat
et al. [31]. SEQSCAPE 2.5 software (Applied Biosystem®)
was used to align and correct sequences.
Forty-one microsatellite loci were amplified using five

multiplex PCR kits as described in Dubut et al. [41]; the
flanking regions of 19 of these loci in leuciscinae species
are homologous to those in Danio rerio. Allelic designa-
tion was standardised using an allelic ladder to calibrate
the various data obtained with samples collected in differ-
ent years. The procedure is described in LaHood et al.
[42]. GENEMAPPER 3.7 software was used for correction
and genotyping [43].

Genetic data analysis
The mitochondrial cytochrome b gene sequence was used
to identify the maternal inheritance of hybrid individuals.
Hardy-Weinberg equilibrium within populations was

estimated by comparing observed and expected hetero-
zygosity for each locus with ARLEQUIN 3.1 [44]. Then,
to analyse the cause of departure from Hardy-Weinberg
equilibrium, we used ML-NULLFREQ to estimate for
each locus the frequency of null alleles in populations
[45]. This generates estimates based on a maximum like-
lihood approach. Because no analytic expression of the
estimates is available, the EM algorithm [46] was used to
estimate the null allele frequency.
GENETIX 4.05.2 was used for a multiple correspond-

ence analysis (MCA) of 0/1/2 data (the genotypic
state), as proposed by She et al. [47]. The complete
data set (allopatry, parapatry and sympatry) for the two
species and their hybrids was considered.
We establish a discriminant score for each of the 41 loci.

The discrimination score considered here is the area
under the ROC (Receiver Operating Characteristic) curve
which plots the sensitivity (i.e. probability to detect true



Figure 8 Geographic distribution range. a) Sampling stations in allopatric and parapatric zones for Parachondrostoma toxostoma (red circles :
ORB, SURa, BER, SP); Chondrostoma nasus (green circles : ALL, CHE, ROU, MIR, SURb). b) Sympatric populations in the Ardèche (blue circles : ROS,
BAU, JUS). c) Locality names and sample sizes for analysis of body shape, microsatellites and mitochondrial DNA. *Microsatellites and
mitochondrial DNA only.
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positif ) in function of the inverse of the specificity (prob-
ability to detect true negatif), after performing a logistic
model explaining species status by allele composition.
Scores of 0.5 indicate a monomorphic locus (a single,
same allele in both species) or a polymorphic locus (the
same several alleles in both species); scores of 1 indicate
a locus at which the two species studied do not share
any allele.
Individual admixture
Bayesian procedure
We used a Bayesian model-based clustering algorithm
implemented in the software STRUCTURE 2.3 [22]. In-
dividuals in the sample were assigned to K populations
or a mix of populations if their genotypes indicate that
they are admixed. We used the ‘admixture model’ and
the “I-model” (independent allele frequencies). The
burn-in length was set to 100,000 followed by 1,000,000
iterations within a Markov Chain Monte Carlo
(MCMC) as recommended by the authors [22]. These
analyses were carried out with K = 2 (the two species)
up to 6 allowing for possible population structure
within each species. We selected the K value for which
the posterior probability of the data, LnP(D), was
maximised, taking into account the ΔK correction of
Evanno [48]. We also used the “q score” given by
STRUCTURE to quantify genome ancestry through the
populations.
Introgress procedure
The hybrid index (h index) is simply defined as the pro-
portion of alleles inherited from one of the two parental
populations [49]. A maximum likelihood estimate of the h
index has the advantage of taking uncertainty in inherit-
ance into account, i.e. when loci do not exhibit fixed
differences between the parental populations. The max-
imum-likelihood hybrid estimate of the h index for het-
erozygous genotypes is thus sensitive to parental allele
frequencies [49].
The INTROGRESS R package [50] was used to estimate

the h index for each of the specimens and for the three
stations on the Ardèche, separately.
To detect locus-specific selection, we used the proced-

ure proposed by Gompert and Buerkle [50]. It involves de-
veloping a multinomial logistic model explaining the
genotype (defined by three states: one heterozygous and
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two homozygous) according to the h index; significant
departure from a neutral model is tested using a log likeli-
hood ratio-test. Patterns of non-neutral loci are thereby
described as underdominance, overdominance, epistasis,
increase admixture or directional selection. Because F1
hybrids could induce a bias in the test, we use Newhybrids
software [51] to detect F1 specimens and two separate
analyses (with and without F1) were developped. We
found 3 specimens in Rosières, 15 specimens in
Labeaume, and 2 specimens in St-Just. The F1 specimens
constituted 12.50% of the “hybrid population” in
Rosières, 42.86% in Labeaume, and 28.57% in St-Just.
It is clear that a majority of individual presenting a
q-score between 0.45-0.55 are F1 (but not all). Popu-
lations considered without F1 in analysis are called
“wF1”.
We used the false discovery rate (FDR) with the

majoration proposed by Benjamini and Hochberg as
Pi≤ i

m x a , with i = the rank of the initial P-value
(from highest to the lowest), m = the number of loci,
α = 0.025 [52].
Linkage disequilibrium and linkage map
We used the JOINMAP 4.1 software [53] to construct
a genetic linkage map using 47 hybrid specimens
(selected using both STRUCTURE and INTROGRESS
estimations) which were mostly the result of back-
crosses. We use the RIx as population type codes to
represent a population of recombinant inbred lines in
the x-th generation (we use x = 2 for only back-
crossed specimens and x = 25 for the number of
generations since the C. nasus introduction). We used
the independence LOD parameter with threshold
ranges of 1.5 to 10.0 and of 2.0 to 5.0. This analysis
was combined with linkage disequilibrium testing
using GENEPOP software [54].
Morphological analysis
We analysed the body shape of 743 specimens collected
at five reference stations over two years (Orbieu, Suran
and Berre rivers for P. toxostoma; Allier and Chée rivers
for C. nasus) and at the three Ardèche stations. We used
the landmark-based geometric morphometric method
following the procedure described in Costedoat et al.
[17] and Corse et al. [55]: 21 homologous landmarks
were digitised with TPSDIG software [56], and the gen-
eralised procruste analysis (GPA) procedure was used
for a geometric morphometric analysis of their coordi-
nates [57]. Body shape variability was described first by
Principal Component Analysis (PCA) to identify the
main factor of between-specimen variability. A linear
discriminant analysis was performed with the same
dataset, groups being defined for reference conditions
by nine year x station combinations. In reference condi-
tions, values of h different from 0 (or 1) reflect shared
polymorphism between species. To estimate the h-value,
we performed the introgress analysis on each of the ref-
erence populations. The resulting range of h-values for
Chondrostoma nasus was [0, 0.087] and that for
Parachondrostoma chondrostoma was [0.940, 1]. Hence,
for the hybrid zone, we defined three classes according
to the observed h-index 1) a specimen whose h is within
[0, 0.087] will be considered as a C. nasus, hereafter
encoded “Cna”; 2) a specimen whose h is in the range
[0.940,1] will be considered as a P. toxostoma hereafter
encoded “Pto”; 3) a specimen whose h-index does not
fall within either of these two intervals will be considered
as a hybrid, hereafter encoded “Hyb”. These three h-
classes were crossed with stations to obtain the following
groups: Saint-Just x “Cna”, Saint-Just x “Pto”, Labeaume x
“Hyb”, Labeaume x “Pto”, Rosières x “Hyb”, Rosières x
“Pto”. Three combinations were not taken into account
because the samples were too small: Saint-Just x “Hyb”,
Labeaume x “Cna”, and Rosières x = “Cna”. To interpret
discriminant axes taking into account size effect, we
initially studied size and age distributions by group. As
form (resp. genotypes) corresponds to several variables
(resp. microsatellites), the logic to study their covari-
ation is to generalize univariate correlation. To do that,
we consider co-inertia analysis [58]. The two following
matrices restricted to the hybrid zone specimens (n = 363)
were considered: X, the n (=363) x p (=42) shape variables
(21 landmarks for abscissa and ordinate); and Y, the n
(=363) x 42 (42 = 41 genotypes coded in three classes
via the introgress procedure plus the h-index value).
Co-inertia analysis builds a set of orthonormal pairs of
axes (one for X and one for Y), with linear combinations
of the variables and maximizing their covariance. The
significance of the linear relationship between the two
members of a pair was tested using a permutation test.
We explored the possibly non-linear relationship be-
tween shape and h-index (hybrid-index) by modelling
the relationship between each coordinate (resulting
from the procruste superimposition) and h via height
parametric additive models: polynomial models of de-
gree 1 (i.e. simple linear model) to five, and piecewise
cubic polynomial models with one and two interior
knots. The Akaike information criterion [59] was used
to select the best model. This model describes body
shape transformation along the h-index gradient, taking
into account possibly non-linearity as well as heteroge-
neous speed of shape modifications. To interpret mor-
phological variations linked to hybridization, taking into
account of ontogenetic effects on shape, we also
performed a similar analysis replacing h by centroid-
size separately for each of the two species in reference
conditions.
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Additional files

Additional file 1: Observed (Ho) and expected heterozygosity (He)
for each marker for each population (* p-value < 0.05, “-” means
monomophic loci).

Additional file 2: Estimates of the frequency of null alleles for each
population and marker. With k visible alleles per locus (frequencies
<0.01 in italic, >0.05 in bold; “-” indicates monomophic loci).

Additional file 3: Assignment of individuals with INTROGRESS and
estimation of h-index. a) for Rosières b) for Labeaume c) for Saint-Just.
(green: h = 0 corresponding to C. nasus assignment, blue: h between 0
and 1 corresponding to hybrid assignment, and pink: h = 1
corresponding to P. toxostoma assignment).

Additional file 4: Admixture with STRUCTURE software between
populations of P. toxostoma and C. nasus. a) Graphs of admixtures of
populations from K = 2 to K = 6. b) Posterior probability (LnP(d)) and ΔK
as a functions of K group.

Additional file 5: Determination of marker genomic cline for each
population of the Ardèche and populations without F1 individuals.
(DS+: positive directional selection of invasive C. nasus homozygotes; DS-:
negative directional selection of C. nasus homozygotes; OD:
overdominance for interspecific heterozygotes; UD: underdominance for
interspecific heterozygotes; EP: epistasis; IA: increase admixture; M:
monomorph; “-” indicates neutral loci).

Additional file 6: Box-plot of size for each reference population
and Ardèche population for each year. (in green C. nasus, in red P.
toxostoma and in blue hybrids). These individuals are those considered in
the DA.

Additional file 7: Co-inertia analysis. Plot of first co-inertia analysis axis
for body shape as a function of first co-inertia analysis for microsatellites
(green: h = 0, yellow: 0 < h < 0.3, blue: h between 0.3 and 0.8, pink: 0.8 <
h < 1, red: h = 1).
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