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H I G H L I G H T S

► Influences of a PAH on microbial activities and worm bioturbation in river sediments

► Low direct impact of benzo(a)pyrene on micro-organisms

► Benzo(a)pyrene inhibited the influence of worms on microbial processes.

► Ecosystem services can be affected by sublethal concentrations of PAHs.
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The interactions between invertebrates and micro-organisms living in streambed sediments often play key

roles in the regulation of nutrient and organic matter fluxes in aquatic ecosystems. However, benthic sedi-

ments also constitute a privileged compartment for the accumulation of persistent organic pollutants such

as PAHs or PCBs that may affect the diversity, abundance and activity of benthic organisms. The objective

of this study was to quantify the impact of sediment contamination with the PAH benzo(a)pyrene on the in-

teraction between micro-organisms and the tubificid worm, Tubifex tubifex, which has been recognized as a

major bioturbator in freshwater sediments. Sedimentary microcosms (slow filtration columns) contaminated

or not with benzo(a)pyrene (3 tested concentrations: 0, 1 and 5 mg kg−1) at the sediment surface were in-

cubated under laboratory conditions in the presence (100 individuals) or absence of T. tubifex. Although the

surface sediment contaminations with 1 mg kg−1 and 5 mg kg−1 of benzo(a)pyrene did not affect tubificid

worm survival, these contaminations significantly influenced the role played by T. tubifex in biogeochemical

processes. Indeed, tubificidworms stimulated aerobic respiration, denitrification, dehydrogenase and hydrolytic

activities of micro-organisms in uncontaminated sediments whereas such effects were inhibited in sediments

polluted with benzo(a)pyrene. This inhibition was due to contaminant-induced changes in bioturbation (and

especially bio-irrigation) activities of worms and their resulting effects onmicrobial processes. This study reveals

the importance of sublethal concentrations of a contaminant on ecological processes in river sediments through

affecting bioturbator–microbe interactions. Since they affect microbial processes involved in water purification

processes, such impacts of sublethal concentrations of pollutants should be more often considered in ecosystem

health assessment.

1. Introduction

Water–sediment interfaces are dynamic zones that regulate the
fluxes of organic matter, nutrients, and contaminants in marine and
freshwater ecosystems (Palmer et al., 1997; Covich et al., 2004). Eco-
logical processes occurring at these interfaces are driven by interac-
tions between the abiotic characteristics of the sedimentary habitat
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(e.g., organic matter quantity, sediment permeability) and the activities
of resident organisms (Godbold et al., 2011; Mermillod-Blondin, 2011).
Biogeochemical processes are principallymediated bymicro-organisms
but trophic and ecosystem engineering activities of macro-organisms
often play a very significant role on these microbial processes (e.g. Aller,
1994; Traunspurger et al., 1997). For instance, bioturbation by U-shaped
tube burrower and gallery-diffuser invertebrates may increase microbial
respiration at the water–sediment interface of marine and lake sys-
tems by up to 250% (Svensson and Leonardson, 1996; Kristensen,
2000; Karlson et al., 2005). Although bioturbation activities can sig-
nificantly enhance the degradation of organic matter and nutrient
cycling in benthic systems, the ability of bioturbators to significantly
impact these processes is largely mediated by environmental factors
such as temperature (Przeslawski et al., 2009), organic matter quality
and quantity (Nogaro et al., 2009;Michaud et al., 2010), hydrodynamics
(Biles et al., 2003; Mermillod-Blondin, 2011; Navel et al., 2012) or the
presence of pollutants (Lagauzère et al., 2009a).

Previous studies focusing on the interactions between contami-
nants and bioturbation processes aimed at quantifying not only the
role of bioturbation on the fate of pollutants (Gilbert et al., 1996;
Kure and Forbes, 1997; Grossi et al., 2002; Banta and Andersen,
2003; Granberg et al., 2008; Timmermann et al., 2011) but also the
impacts of sublethal concentrations of pollutants on bioturbation
activity (Gilbert et al., 1994; Madsen et al., 1997; Landrum et al.,
2004; Ciutat et al., 2005; Lagauzère et al., 2009b). Some of these
works demonstrated a negative influence of contaminants on sedi-
ment reworking and burrowing of benthic invertebrates. For exam-
ple, Mulsow et al. (2002) showed that the burial rate induced by
the polychaete Heteromastus filiformis was reduced by more than
50% in sediment contaminated by dichlorodiphenyltrichloroethane
(DDT, concentration: 10 mg kg−1 of sediment) compared to uncon-
taminated sediment. Landrum et al. (2004) also measured a significant
decrease in sediment reworking activity of the oligochaete Lumbriculus

variegatus due to sediment contamination with polychlorinated biphe-
nyl (PCB). However, the impacts of pollutants on bioturbation activities
were only studied in benthic habitats of marine and lake ecosystems.
Although benthic sediments of streams and rivers are recognized as
major sinks for organic and metallic pollutants (e.g., Reynoldson,
1987), the impacts of contaminants on bioturbation and associated
ecological processes in such ecosystems (e.g. organicmatter processing,
denitrification,Mermillod-Blondin et al., 2002;Marshall andHall, 2004)
remain understudied.

Thus, the present study aimed at quantifying the impact of a
streambed contamination not only on bioturbation activity but also
on micro-organisms (bacterial abundance, community structure and
microbial activities) and biogeochemical processes (aerobic respiration,
denitrification) occurring in freshwater sediments. We employed a fac-
torial experimental approach in which the presence of the freshwater
tubificidworm Tubifex tubifex and sediment contaminationweremanip-
ulated to address how these featuresmay interact to determine interface
functioning. The influences of T. tubifex on sediment reworking and
microbial processes were studied across a gradient of sediment contam-
ination. Specifically, three concentrations of benzo(a)pyrene (0, 1, and
5 mg kg−1 of dry sediment) were used to assess the influence of surface
sediment contamination by polycyclic aromatic hydrocarbons (PAHs).
In our experiment, the tested concentrations of benzo(a)pyrene did
not exceed 5 mg per kg in order to simulate realistic environmental
conditions. We thus did not expect lethal effects of this contaminant
on the survival of T. tubifex which is commonly encountered in PAH-
contaminated sediments (Lafont and Vivier, 2006; Datry et al., 2003b;
Nogaro et al., 2007). We rather predicted a negative relationship be-
tween the benzo(a)pyrene concentrations in sediments and the bio-
turbation activities of worms. Consequently, the stimulatory influence
of T. tubifex on biogeochemical processes (e.g. aerobic respiration, deni-
trification) and micro-organisms (bacterial abundances, dehydrogenase
and hydrolytic activities, community structure) would be significantly

reduced in sediment contaminated with benzo(a)pyrene compared to
uncontaminated sediment.

2. Material & methods

2.1. Experimental design

To address how sediment contamination by benzo(a)pyrene mod-
ulates the effects of a bioturbator at the water–sediment interface
of rivers, a factorial design was employed to manipulate the occur-
rence of T. tubifex (0 or 100 individuals) and the contamination of
surface sediments with benzo(a)pyrene (3 tested concentrations)
in microcosms. In addition to its high toxicity in the environment,
benzo(a)pyrene has been selected because of its (with other PAHs)
widespread occurrence in aquatic habitats and of its high concentra-
tion in urbanized areas where freshwater systems act as collectors
of storm waters (Pitt et al., 1999; Datry et al., 2003a; Grapentine
et al., 2004; Nogaro et al., 2007). For example, Datry et al. (2003a)
reported benzo(a)pyrene concentrations of 5.6 mg kg−1 of dry sedi-
ment collected in a stormwater infiltration basin. The worm T. tubifex

was selected because it exhibits large populations in most freshwater
habitats (Brinkhurst and Kennedy, 1965), it is strongly tolerant to
pollutants (Lafont and Vivier, 2006) and it is recognized as a key
bioturbator in freshwater sediments (McCall and Fisher, 1980). In-
deed, T. tubifex is a common deposit feeder that produces fecal pellets
at the water–sediment interface, creates biogenic structures and
affects O2 and nutrient concentrations in sediments (e.g. Nogaro and
Mermillod-Blondin, 2009; Lagauzère et al., 2009b).

Surface sediments were contaminated by spiking fresh sand with
benzo(a)pyrene (>99% dissolved in acetone, HPLC-grade, Sigma-Aldrich
Co., France). Unpolluted fresh sand (benzo(a)pyrene concentrationsb
5 μg kg−1, sediment grain size distribution: 8%, 23%, 43% and 26% of
particles ranging between 10–150 μm, 150–300 μm, 300–500 μm
and 500–800 μm, respectively) was collected in a braided channel of
the Rhône river and elutriated to eliminate coarse particulate organic
matter. Eighty grams of fresh sand were spiked with 0.14 mg or
0.70 mg of benzo(a)pyrene dissolved in acetone and vigorously mixed
with a stainless-steel spoon during 5 min (Doick et al., 2003). For the
uncontaminated treatment, fresh sand was only spiked with acetone.
The same volume of acetone (1 mL) has been introduced into the sand
used for the 3 benzo(a)pyrene treatments to prevent the co-variation
of acetone and benzo(a)pyrene concentrations on results. After spiking,
acetone was allowed to evaporate during 10 h under an extractor hood
at room temperature (around 22 °C) and spiked sand was mixed with
80 g of fresh sand to minimize the influence of spiking on indigenous
microbial populations (Brinch et al., 2002). Final benzo(a)pyrene con-
centrations obtained with this procedure were 0.003±0.005, 1.08±
0.09 and 5.08±0.23 mg kg−1 of dry sand (measurements performed
following the methodology described in Section 2.4.2.) for nominal con-
centrations of 0, 1 and 5 mg kg−1 of dry sand, respectively. Sand spiking
with benzo(a)pyrene and/or acetone did not influence the C, N or P
contents of surface sediments at the start of the experiment. Analyses
indicated that the amounts of total organic C, total N and P per dry
mass of sand (means±SD, n=9, 3 replicates per benzo(a)pyrene treat-
ment)were 900±30 mg kg−1, 77±6 mg kg−1 and 3.8±1.5 mg kg−1,
respectively.

Experiments were carried out in slow filtration columns (height=
25 cm and inside diameter=10 cm, Mermillod-Blondin et al., 2005)
at constant temperature (15±0.5 °C) under a 12:12 h light:dark cycle.
Each Plexiglas® column (n=18) was filled by a 13 cm-thick layer of
fresh sand (same sand as those spiked with benzo(a)pyrene). This
sandy matrix was topped by an additive 1 cm-thick layer of sand con-
taminated or not with benzo(a)pyrene (0, 1 and 5 mg kg−1 of dry
sand, see above). Six columns were set-up for each benzo(a)pyrene
treatment. Our experimental design simulated a surface contamina-
tion of the sediment, a phenomenon classically observed in systems



impacted by urban storm waters (Winiarski et al., 2006). After
sediment filling, all columns were provided by the top with
chemically-controlled water (96 mg L−1 NaHCO3, 39.4 mg L−1

CaSO4·2H2O, 60 mg L−1 MgSO4·7H2O, 4 mg L−1 KCl, 19 mg L−1

Ca(NO3)2·4H2O and 6.4 mg L−1 (CH3CO2)2Ca·H2O; pH=7.5; US
EPA, 1991) using a peristaltic pump controlling a constant infiltration
flow rate of 0.5 mL min−1. Supplied water was aerated to maintain
concentrations of dissolved oxygen between 7.5 and 8.5 mg L−1 at
the inlet of the columns. Dissolved acetate [(CH3CO2)2Ca·H2O] supplied
to all columnswas enrichedwith 0.2% of 13C-marked acetate (13C2H4O2,
99 atom% 13C; Sigma-Aldrich, Saint-Quentin Fallavier, France) to deter-
mine the assimilation of dissolved organic carbon (DOC) in attached
bacteria and tubificid worms. About 10 cm of water was left above
the sediment surface. During the experiment, the sediment layer was
kept in the dark (using 3 layers of black adhesive tape) to suppress
photoautotrophic processes in sediments located on inner wall of
slow filtration column. Openings at different depths on each column
allowed sampling water at centimetric scale and different times during
the experiment. Seven days after the set up of the sedimentary columns
(time necessary to allow the physico-chemical stabilization of the sys-
tem), 100 individuals of T. tubifex were added to half of the columns
(n=3 for each benzo(a)pyrene treatment). The tubificid worms came
from a commercial breeding (GREBIL & Fils, Arry, France) and were
maintained for 3 months in the laboratory for acclimation to experimen-
tal conditions (at 15 °C in aquariums filled with the uncontaminated
sand and chemically-controlled water used during the experiment).
Tubificid worms used were 15- to 20-mm in length and 0.5-mm in
diameter. The density of tubificid worms in the experimental units
(12,800 individuals m−2) was in accordance with densities reported
from natural sandy sediments (Fruget, 1989; Martinet, 1993).

During the experiment, water was sampled every 7 days at 4
depths (see below) to determine O2, NH4

+, NO3
−, NO2

−, PO4
3−, and

DOC concentrations in all columns. At the end of the experiment, col-
umns were dismantled and sediment was cut into 0.5 cm thick slices.
From each slice, sediment subsamples were collected for sediment
reworking analyses (see below). The remaining sediments obtained
from slices 0–0.5 cm, 0.5–1 cm, 1–1.5 cm and 1.5–2 cm were pooled
for each column to reconstitute a sediment sample of the layer
0–2 cm. The same procedure was followed for the layers 2–4 cm
and 5–7 cm. The resulting three samples of sediments per column
(0–2 cm, 2–4 cm and 5–7 cm) were used to i) realize microbial anal-
yses (abundances of bacteria and active eubacteria, hydrolytic and
dehydrogenase activities, bacterial community structure), ii) quantify
the assimilation of DOC by bacteria using 13C/12C ratios and iii) deter-
mine the benzo(a)pyrene concentrations in sediments. Moreover,
tubificid worms were collected and counted during column disman-
tling to assess worm mortality during the experiment. These intact
worms were then maintained during 24 h in glass bowls with artifi-
cially reconstituted river water to purge their guts before stable iso-
tope analysis and benzo(a)pyrene measurements in their tissues.

2.2. Sediment reworking analyses

Particle redistribution induced by tubificid worms in the sedimen-
tary matrix was estimated by the luminophore tracer technique
(Gerino, 1990). In each column, 0.5 g of natural sediment particles
(150–300 μm) dyed with pink luminescent paint (Partrac Ltd, UK)
was deposited uniformly at the top of the sedimentary matrix a
few hours after the introduction of T. tubifex. The grain size of
luminophores was chosen to represent a significant fraction of the
sandy sediment used in columns (23% of sand particles ranged between
150 and 300 μm). During columndismantling, the top 8 cmof sediment
were cut into 0.5 cm thick slices. Each slice of fresh sediment was
homogenized and a sub-sample was freeze-dried and deposited in a
well of a 24-well microplate. Detection of luminophoreswas performed
with a Synergy Mx microplate reader (Biotek, USA) according to a

protocol adapted from Lagauzère et al. (2011): fluorescence bottom
reading; λem: 565 nm; λex: 602 nm; and area scan: 9∗9.

2.3. Physico-chemical analyses of water samples

From day 0 (before worm introduction) to day 28 (4 weeks after
worm introduction), water was sampled every 7 days at 2 cm above
and 1 cm, 3 cm and 6 cm below the water–sediment interface. An
oxygen micro-sensor probe fitted in a glass tube (OX 500, Unisense,
Aarhus, Denmark) was used to determine O2 concentration without
contact with atmospheric oxygen during water sampling. Water
samples were filtered through Whatman GF/F filters (pore size:
0.7 μm; Millipore, Billerica, MA, U.S.A.) and N-NH4

+, N-NO3
−, N-NO2

−,
P-PO4

3−, SO4
2− concentrationsweremeasured following standard color-

imetric methods (Grashoff et al., 1983) by using an automatic analyzer
(Easychem Plus, Systea, Anagni, Italia). For DOC measurements, water
samples were filtered through Whatman HAWP filters (pore size:
0.45 μm; Millipore, Billerica, MA, U.S.A.) and acidified with 3 drops of
HCl (35%). The DOC concentration in water samples was measured
with a total carbon analyzer (multi N/C 3100, Analytik Jena, Jena,
Germany) based on combustion at 900 °C after removal of dissolved
inorganic C with HCl and CO2 stripping under O2 flow.

Average O2, N-NO3 and DOC uptake rates (UR, expressed in
mg L−1 h−1) between overlying water and 6 cm below the water–
sediment interface (i.e. between +2 cm in the overlying water and
−6 cm in sediments) were calculated by using the following formula:

UR ¼ ΔC " Q= V " PÞð

where ΔC was the difference in O2 (or N-NO3
− or DOC) concentration

(mg L−1) between sampling points, Q was the hydraulic discharge
rate in the column (0.03 L h−1) and V and P were the volume (L) and
the porosity of the sediment layer between the two sampling points
(+2 and −6 cm), respectively.

2.4. Physico-chemical analyses of sediment and worms

2.4.1. Stable isotope analysis

Sediment samples (with attached bacteria) collected at three
depths in columns and tubificid worms were freeze-dried for at least
48 h and then crushed using a mortar and pestle. About 500 mg of
dry sediments were placed in pre-cleaned Oakridge centrifugation
tubes and 2 MHCl was added for 12 h at room temperature to remove
calcite. After centrifugation at 4000 g during 10 min, the supernatant
was discarded; sediments were rinsed three times with ultrapure
water and oven dried at 50 °C. An amount of 10 mg of dry sediments
were weighted in tin capsules for stable isotope analysis. A total of
0.25 to 0.5 μg of dry tubificid worms were weighted in tin capsules
for stable isotope analysis.

Carbon isotope ratios (13C/12C) were measured by continuous
flow stable isotope ratio mass spectrometer (CF-IRMS) using a GVI
Isoprime mass spectrometer interfaced with a Eurovector Euro-
EA3028-HT elemental analyzer. 13C/12C ratios were expressed as
δ (‰) and referenced to V-PDB standard. The analytical precision
achieved for tyrosine standards analyzed along with the samples
was better than 0.2‰ (±standard deviation).

2.4.2. Analysis of benzo(a)pyrene

Sediment samples collected at three depths in columns and tubifi-
cid worms were dried at 50 °C and ground before benzo(a)pyrene
extraction. For each sediment sample, 50 g (equivalent dry soil)
were transferred into a stainless steel extraction cell and PAHs were
extracted using an accelerated solvent extraction system (Dionex
ASE 200™) with 5 mL of dichloromethane at 50 °C and 1500 psi dur-
ing a 5 min heating phase followed by a 10 min static extraction. Cells
were then rinsed with 17 mL of dichloromethane and the sediment



solutions containing the extracted compound were flushed from the
extraction cell into a collection vial using N2 at 1500 psi. The sample
was extracted again using fresh solvent and flushed into the same
collection vial. Extracts were dried using a speedvac concentrator
(Labconco) and then re-suspended with 300 μL of ethyl acetate for
HPLC analyses.

Worm samples (ca. 30 mg) were extracted 3 times with an ultra-
sonic probe (Sonicator XL 2020; Misonix Inc., Farmingale, NY, U.S.A.)
using 25 mL of dichloromethane/methanol (2:1 v/v). After evapora-
tion of the solvent using a rotary evaporator, the total extract was
dried under a N2 flow and dissolved in 300 μL of ethyl acetate for
HPLC analyses.

Quantification of benzo(a)pyrene in each sample was carried out
using a HPLC HP 1100 (Agilent Technologies) with a C-18 Kromasil®
reversed-phase column (250×4.6 mm, 5 μm, AkzoNobel). Twenty
microliters of each extract were injected and eluted at 1 mL min−1

using solvent A (formic acid, 0.4% in water, v/v) and solvent B (formic
acid 0.4% in acetonitrile, v/v) in isocratic condition (85% of solvent B)
for 35 min. HPLC was coupled with a fluorescence detector (Agilent
Technologies) set to 296 nm for excitation and 406 nm for emission
to detect benzo(a)pyrene and diode array detection (DAD; 200 to
600 nm, Agilent Technologies). Benzo(a)pyrene was identified on
the basis of its specific retention time and the detection by fluores-
cence compared to the standard. Quantification of BaP was performed
using DAD detection at 254 nm. Few measurements performed on
sediment collected at depths below 8 cm in columns treated with
5 mg kg−1 of benzo(a)pyrene showed that no contamination oc-
curred at these depths (concentrations were between 0.002 and
0.004 mg kg−1 and comparable to the uncontaminated columns).
Therefore, we assessed the quantity of benzo(a)pyrene recovered in
columns at the end of the experiment (QBaP) using benzo(a)pyrene
concentrations measured in 0–2 cm, 2–4 cm, and 5–7 cm layers by
the following formula:

QBaP ¼ BaP½ &0−2cm "M0−2cm þ BaP½ &2−4cm "M2−4:5cm

þ BaP½ &5−7cm "M4:5−7:5cm

where [BaP]0–2 cm, [BaP]2–4 cm, [BaP]5–7 cm were the benzo(a)pyrene
concentrations measured on sediments collected at the three sampled
layers and M0–2 cm, M2–4.5 cm and M4.5–7.5 cm were the mass of dry sedi-
ment of layers 0–2 cm, 2–4.5 cm and 4.5–7.5 cm, respectively.

2.5. Microbial analyses

2.5.1. Bacterial abundances

For each sampled layers (0–2 cm, 2–4 cm and 5–7 cm), 1 g of
fresh sand was collected and immediately fixed with 4% paraformal-
dehyde in phosphate-buffered saline (PBS; 0.13 M NaCl, 7 mM
NaHPO4, 3 mM NaH2PO4, pH=7.2) for 10 h. Fixed samples were sub-
sequently washed twice in PBS and stored in ethanol and PBS (50:50)
at −20 °C. After storage (2 weeks), 0.5 g of fixed sediment was
homogenized in 20 mL of 0.1% pyrophosphate in PBS using a sonicator
with a 2-mm-diameter probe at 50 W for two periods of 60 s. All
homogenized samples were finally supplemented with the deter-
gent NP-40 (Flucka, Buchs, Switzerland) to a final concentration
of 0.01%. Aliquots (10 μL) of homogenized samples were spotted
onto gelatine-coated slides and were hybridized with Cy3-labeled
oligonucleotide probe (mix of EUB 338, EUB 338 II and EUB 338 III,
eubacteria) and concomitantly stained with the DNA intercalating
dye DAPI (200 ng μL−1; Sigma, Buchs, Switzerland) according to
Navel et al. (2011). Slides were mounted with Citifluor solution
(Citifluor Ltd, London, U.K.), and the preparations were examined
at 1000×magnification with a BH2-RFCA Olympus microscope fitted
for epifluorescence with a high-pressure mercury bulb (50 W) and

filter sets BP 405 (for DAPI) and BP 545 (for Cy3). Bacteria from the
samples were analyzed in 20 fields per sample with up to 30 cells
per field. Numbers of DAPI and Cy3 bacteria were counted separately
from the same field to determine the percentages of active eubacteria
(% Cy3-bacteria/DAPI-bacteria, Karner and Fuhrman, 1997). Total
numbers of bacteria (DAPI-bacteria) were expressed as number of
cells g−1 dry weight (DW) of sediment.

2.5.2. Microbial activities

The 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium
chloride (INT) was used to measure dehydrogenase activity
(Houri-Davignon et al., 1989). For each column and sampled layer, 3
replicates of 1 g of fresh sand were incubated into a 0.02% INT solu-
tion (final solution) for 2 h at 15 °C and then filtered on a nylon
membrane (0.22 μm, MSI, Westboro, MA, U.S.A.). In parallel, controls
were prepared by adding formaldehyde (2% final) in INT solution.
Extraction of INT formazan was made in vials containing 5 mL of
methanol. Each vial was sonicated at 100 W during two periods of
60 s using a sonicator fitted with a 2-mm-diameter probe (Sonicator
XL 2020; Misonix Inc., Farmingale, NY, U.S.A.) to increase solvent
extraction yield (Maurines-Carboneill et al., 1998). The INT formazan
extract was measured by a spectrophotometer adjusted at 480 nm
against control blank. The quantity of INT formazan was computed
by using the molar extinction coefficient of 18,000 M−1 cm−1 at
480 nm and was expressed as μmol of INT h−1 g−1 DW of sediment.

Microbial hydrolytic activity was estimated using the fluorescein
diacetate (FDA) hydrolysis method (Jørgensen et al., 1992). For each
column and sampled layer, 3 replicates of 1 g of fresh sand were
placed into 3 mL of a pH 7.6 phosphate buffer solution with 0.15 mL
of 4.8 mM FDA solution. The incubation was maintained for 1 to 3 h
until a green coloration of fluorescein appeared. At the same time,
following Battin (1997), we prepared controls treated with 1.5 mL of
acetone and 1.5 mL of phosphate buffer 40 min prior to the addition
of the FDA solution. The reaction was stopped by freezing samples
and controls after the addition of 3 mL of acetone. Fluorescein concen-
tration was estimated from the absorbance of the filtered supernatant
(0.45 μm, Millipore, Billerica, MA, U.S.A.) measured at 490 nm and
was expressed as μmol of FDA h−1 g−1 DW of sediment.

2.5.3. Bacterial community structure

Genomic DNA was extracted from 0.5 g of sediment using the Fast
DNA Spin Kit for soil (QBIOgene, Illkirch, France) according to the
manufacturer's instructions. Modifications in bacterial community
structure were assessed by Automated Ribosomal Intergenic Spacer
Analysis (ARISA). The 16S–23S intergenic spacer region from the
bacterial rRNA operon was amplified by PCR as described in Ranjard
et al. (2001). Amplification was performed using the primers S-D-
Bact-1522-b-S-20 (eubacterial rRNA small subunit, 5′-TGC GGC TGG
ATC CCC TCC TT-3′) and L-DBact-132-a-A-18 (eubacterial rRNA
large subunit, 5′-CCG GGT TTC CCC ATT CGG-3′). PCR reactions were
carried out in a total volume of 25 μL containing a 10× Taq reaction
buffer (Eurobio), 1.5 mM MgCl2, 120 μM of each deoxynucleotide,
1 μM of each primer, bovine serum albumin (Sigma, 0.5 mg mL−1

final concentration), 1.25 U Taq DNA polymerase (Eurobio) and 2 μL
of template DNA. PCR reactions were run in a Thermal Cycler
Tpersonal (Biometra, Göttingen, Germany) under the following condi-
tions: an initial denaturation at 94 °C for 3 min, followed by 25 cycles
of denaturation (1 min at 94 °C), annealing (30 s at 55 °C), and ex-
tension (1 min at 72 °C), and a final extension at 72 °C for 5 min.
Amplified fragments were separated by capillary electrophoresis on
an Agilent 2100 bioanalyzer using a DNA 1000 kit (Agilent Technolo-
gies, Santa Clara, CA, USA) according to the manufacturer's instruc-
tions. Fluorescence data were converted in 2-dimensional gel image
using 2100 Expert Software (Agilent Technologies, Santa Clara, CA,
USA). Image analysis was then performed using the GelCompar II ver-
sion 4.6 software (Applied Maths, Ghent, Belgium). Sample profiles



were normalized with an internal standard and external ladder in-
cluded in each gel and DNA fragments of different size were classified
into operational taxonomic units (OTUs). A matrix (with samples as
rows and OTUs as columns) based on the presence/absence of a
given OTU in each sample was then constructed. Dissimilarity based
on OTU composition was calculated between all pairs of samples
using the Dice coefficient.

2.6. Data treatment

The quantification of luminophore redistribution following sedi-
ment reworking by T. tubifex was realized using the bioadvection–
biodiffusion model (Officier and Lynch, 1982; Gerino et al., 1994).
This model was applied under non-steady-state treatments after a
pulse input of tracers at the sediment surface at the beginning of
the experiment. This model allows the estimation of suitable values
for the two parameters Db (the biodiffusive rate that quantifies omni-
directional dispersion) and V (the bioadvective rate that quantifies
the burial velocity of tracers). This model is especially useful in
order to estimate sediment mixing by conveyor species like T. tubifex

(i.e. sediment bioadvective process with sediment ingestion at depth
and fecal pellet accumulation at the sediment surface) (Ciutat et al.,
2005). Biodiffusion and bioadvection coefficients of particles obtained
with tubificid worms were compared among benzo(a)pyrene treat-
ments using a one-way analysis of variance (one-way ANOVA).

The influences of benzo(a)pyrene treatments and tubificid worms
on water chemistry (concentrations of dissolved oxygen, DOC, N-NH4

+,
N-NO3

−, N-NO2
−, P-PO4

3− and SO4
2−) were analyzed on data obtained

the two last sampling dates of the experimentation (days 21 and 28).
In thisway,we used a three-way repeatedmeasures analysis of variance
(RM-ANOVA3) with “benzo(a)pyrene treatment”, “depth” and “worm”

as main factors and time (n=2, days 21 and 28) as repeated factor.
Microbial characteristics (bacterial abundance, ratio active/total bac-
teria, hydrolytic activity, dehydrogenase activity), 13C/12C ratios and
benzo(a)pyrene concentrations measured on sediment were ana-
lyzed using three-way analysis of variance (3-way ANOVA) with
“benzo(a)pyrene treatment”, “depth” and “worm” as main factors.
When significant differences (αb0.05) were detected among treat-
ments, Tukey post hoc tests were performed to identify significant
pair-wise differences between treatments. The 13C/12C ratios and
benzo(a)pyrene concentrations in tubificid worms were compared
among benzo(a)pyrene treatments using a one-way analysis of var-
iance (one-way ANOVA).

When necessary, data were log-transformed, and data expressed
as percentages (% of active bacteria) were arcsine-transformed before
statistical analysis, to satisfy the assumptions of homoscedasticity and
normality. Statistical analyses were performed using Statistica 6 TM
(Statsoft, Tulsa, OK, USA).

The significance of differences in bacterial community structure
that could be accounted for by the effects of “benzo(a)pyrene treat-
ment”, “depth”, and “worm”, and their interactions were estimated
using permutational multivariate analysis of variance (PERMANOVA,
Anderson, 2001; McArdle and Anderson, 2001). Statistical tests
were based on 9999 permutations of the Dice dissimilarity matrix
and significant differences among treatments were assessed through
pair-wise post hoc multiple comparisons using the PERMANOVA
program (Anderson, 2005). Significance for these statistical tests
was accepted at αb0.05. Bacterial community structure pattern
was visualized using non-metric multidimensional scaling (NMDS)
based on Dice dissimilarity matrix. A stress function (which ranges
from 0 to 1) was used to assess the goodness of fit between the
ordination and the original data. Stress values below 0.2 suggest that
the ordination accurately represents the dissimilarity among samples.
NMDS and graphical displays were performed using functions in the
vegan (Oksanen et al., 2011) package in R (R Development Core Team,
2008).

3. Results

3.1. Survival of tubificid worms and bioturbation activity

The survival rates of tubificid worms were comparable among
the three benzo(a)pyrene treatments with values of 84.3±12%,
79.7±6% and 83±10% for benzo(a)pyrene treatments of 0, 1 and
5 mg kg−1, respectively. In treatments without worms, no sediment
reworking was measured and all luminophores remained at the sed-
iment surface at the end of the experiment (Table 1). With tubificid
worms, the biodiffusive mixing quantified by the Db coefficient was
the same in all treatments. Due to the high variability among replicat-
ed columns, we did not detect statistical difference in bioadvective
rates induced by worms among the 3 benzo(a)pyrene treatments
(one-way ANOVA, benzo(a)pyrene effect, p>0.2). Despite this lack
of statistical significance, it is however important to note a clear ten-
dency of the average values of bioadvective rates to decrease with
benzo(a)pyrene concentration, from 4.5 cm year−1 in unpolluted sys-
tems to 2.7 cm year−1 in columns with 5 mg kg−1 of benzo(a)pyrene
(Table 1).

3.2. Water chemistry

P-PO4
3−, N-NH4

+ and N-NO2
− concentrations remained low

(b30 μg L−1 for both) at all depths throughout the experiment
(data not shown). The concentration of SO4

2− varied between 73
and 78 mg L−1 in columns without any significant influence of
depth, worms or benzo(a)pyrene treatments (RM-ANOVA3, p>0.25
for the three effects). In contrast, O2 and N-NO3

− concentrations
significantly decreased with depth in columns owing to microbial
activities (Fig. 1A and B, RM-ANOVA3, depth effect, pb0.0001 for
the two variables). Significant influences of benzo(a)pyrene treat-
ments were detected on O2 and N-NO3

− concentrations (RM-ANOVA3,
benzo(a)pyrene effect, pb0.01 for the two variables). These effects
resulted from slightly higher concentrations of O2 (+0.35 mg L−1)
and N-NO3

− (+0.04 mg L−1) measured in the columns contaminated
with 5 mg of benzo(a)pyrene per kg of surface sand compared with
data collected in uncontaminated columns. The influence of tubificid
worms on vertical profiles of O2 and N-NO3

− strongly depended on the
depth and the benzo(a)pyrene treatment considered (RM-ANOVA3,
interaction “benzo(a)pyrene∗depth∗ fauna”, pb0.0001 for the two
variables). In contaminated treatments (with 1 or 5 mg kg−1 of
benzo(a)pyrene), tubificid worms did not influence O2 and N-NO3

−

concentrations (Tukey post-hoc tests, p>0.3 for the two variables
at the 4 depths for the 2 contaminated treatments). In contrast, the
presence of worms significantly increased oxygen concentration at
1-cm depth (Fig. 1A, Tukey post-hoc test, pb0.001) and led to a sig-
nificant decrease of oxygen concentrations at 6-cm depth (Tukey
post-hoc test, pb0.001) in the uncontaminated columns. Conse-
quently, O2 consumption rates measured between overlying water
and 6-cm depth were stimulated (+12%) by the presence of
worms (Table 2, Tukey post-hoc test, worm effect in uncontaminated

Table 1

Biodiffusion (Db) and bioadvection (V) coefficients calculated repartition of luminophores

initially deposited at the sediment surface. Values are means±SD (n=3 columns per

treatment).

Benzo(a)pyrene

treatment

Animal

treatment

Db

(cm2 year−1)

V

(cm year−1)

0 mg kg−1 Control 0.0±0.0 0.0±0.0

T. tubifex 0.3±0.0 4.5±1.2

1 mg kg−1 Control 0.0±0.0 0.0±0.0

T. tubifex 0.3±0.0 3.6±0.8

5 mg kg−1 Control 0.0±0.0 0.0±0.0

T. tubifex 0.3±0.0 2.7±0.7



treatment, pb0.01). The occurrence of T. tubifex also significantly re-
duced the concentrations of N-NO3

− at depth in the uncontaminated
treatment (Fig. 1B, Tukey post-hoc tests, pb0.001 at depths of −3
and −6 cm). The consumption rates of nitrate were increased by
49% with worms in this treatment (Table 2, Tukey post-hoc test,
“worm” effect in unpolluted treatment, pb0.01) whereas no influ-
ence of worms was detected in contaminated treatments (Tukey
post-hoc tests, “worm” effect in the 2 contaminated treatments,
p>0.9). Vertical profiles of DOC concentrations presented two phases:
a decrease in the top first cm of the sediments and a slight increase
below this depth (Fig. 1C, RM-ANOVA3, depth effect, pb0.0001).
Benzo(a)pyrene concentrations and tubificid worms did not have a

with worms
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Fig 1. Vertical profiles of (A) O2, (B) N-NO3
− and (C) dissolved organic carbon (DOC) measured in slow filtration columns with or without tubificid worms for each benzo(a)pyrene

treatment. Values are means±SD (n=3). Left column: 0 mg kg−1 of benzo(a)pyrene; central column: 1 mg kg−1 of benzo(a)pyrene; and right column: 5 mg kg−1 of benzo(a)pyrene.

Significant influences of tubificid worms determined by post-hoc tests were indicated by asterisks (***pb0.001).

Table 2

Average consumption rates±SD (n=3) of O2 (respiration), N-NO3 — (denitrification)

and dissolved organic carbon (DOC) measured in the 6 treatments (calculated for each

column with data obtained on days 20 and 27). Values are expressed in mg of O2

(N-NO3 — or DOC) h−1 L−1 sediment.

Benzo(a)pyrene

treatment

Animal

treatment

O2 N-NO3
− DOC

0 mg kg−1 Control 1.87±0.03 0.17±0.01 0.50±0.08

T. tubifex 2.09±0.04 0.25±0.01 0.53±0.06

1 mg kg−1 Control 1.83±0.01 0.20±0.01 0.42±0.01

T. tubifex 1.91±0.04 0.19±0.03 0.44±0.07

5 mg kg−1 Control 1.78±0.05 0.19±0.01 0.54±0.04

T. tubifex 1.79±0.06 0.19±0.01 0.50±0.04



marked effect on the vertical profiles of DOC and then they did not sig-
nificantly influenceDOCuptake rate (Table 2, two-wayANOVA, “worm”

effect and “benzo(a)pyrene” effect, p>0.1).

3.3. Benzo(a)pyrene

The concentrations of benzo(a)pyrene measured in columns at the
end of the experiment are presented in Table 3. Benzo(a)pyrene was
detected down to the 5–7 cm layer whereas the spiked sediments
were originally deposited at the sediment surface at the start of the
experiment. This redistribution of benzo(a)pyrene was not signifi-
cantly affected by the occurrence of tubificid worms (3-way ANOVA,
worm effect alone or in interaction with depth or/and benzo(a)
pyrene concentrations, p>0.4). Using the concentrations measured
at the different sediment layers, the amount of total recovered
benzo(a)pyrene calculated on the entire columns was significantly
lower than the amount of benzo(a)pyrene added to columns with
recovery rates fluctuating between 35 and 48%. Variations in recovery
rates were however not related to initial benzo(a)pyrene concentra-
tions and/or to the occurrence of tubificid worms.

The incorporation of benzo(a)pyrene in worm tissues led to aver-
age concentrations of 0.09 mg g−1 and 0.51 mg g−1 in surface sedi-
ments contaminated with 1.08 mg kg−1 and 5.08 mg kg−1 of
benzo(a)pyrene, respectively. Therefore, the ratio of the concen-
tration of benzo(a)pyrene in worms over sediment contamination
(i.e. bioaccumulation/bioconcentration factor, Bott and Standley,
2000) gave comparable values (between 83 and 102) in the two con-
taminated conditions.

3.4. δ13C on sediments and tubificid worms

The enrichments in 13C of organic carbon attached to sediments
were measured between the start and the end of the experiment for
all columns. They significantly decreased with depth in sedimentary
columns (3-way ANOVA, depth effect, pb0.0001). The increase in
δ13C of total organic carbon attached to sediment during the course
of the experiment was the highest in the top sediment layer (from
−30‰ to +20.5‰). At deeper layers, δ13C values measured at the
end of the experiment were comparable (−28.7‰ for the layer
2–4 cm and −29.6‰ for the layer 5–7 cm) to those measured at
the start of the experiment (−30‰). T. tubifex did not significantly
influence the carbon isotope composition of total organic carbon at-
tached to the sediment (3-way ANOVA, worm effect alone or in inter-
action with depth or/and benzo(a)pyrene concentrations, p>0.12).

The δ13C values of worms suggest a comparable incorporation of or-
ganic carbon in their tissues for the three benzo(a)pyrene treatments
(one-way ANOVA, p>0.15): mean increases in δ13C of worms were
140‰, 117‰ and 158‰ in the treatments with 0, 1 and 5 mg kg−1

of benzo(a)pyrene, respectively.

3.5. Bacterial abundances and microbial activities

At the end of the experiment, the bacterial abundance, the per-
centage of active eubacteria and the microbial activities (dehydroge-
nase and hydrolytic activities) presented a significant decrease with
depth in the sedimentary system (Fig. 2, 3-way ANOVA, depth effect,
pb0.0001 for the four variables). The total abundance of bacteria was
neither influenced by benzo(a)pyrene concentrations nor by tubificid
worms (3-way ANOVA, benzo(a)pyrene and worm effects, p>0.1).
Benzo(a)pyrene concentrations significantly influenced the per-
centage of active bacteria and the dehydrogenase activity (3-way
ANOVA, benzo(a)pyrene effect, pb0.001): regardless of its concentra-
tion, the presence of benzo(a)pyrene negatively affected these two
microbial variables in comparison with the uncontaminated treat-
ment (Tukey post-hoc tests, comparison between unpolluted and
polluted conditions, pb0.01 for the two variables). A significant effect
of tubificid worms was detected on percentages of active bacteria and
microbial activities depending on the benzo(a)pyrene contamination
(3-way ANOVA, interaction between benzo(a)pyrene and worm ef-
fects, pb0.01). More precisely, the presence of worms stimulated
the percentage of active bacteria, hydrolytic and dehydrogenase
activities in the top layer of sediment (0–2 cm) of the unpolluted col-
umns (Fig. 2, Tukey post-hoc tests, pb0.01), whereas these influences
were not observed in polluted systems (Tukey post-hoc tests, p>0.2).

3.6. Bacterial community structure

A total of 29 OTUs was identified and the number of OTUs aver-
aged 17±2 per sample (n=54). Average dissimilarity between
samples based on Dice index was 0.57±0.09. A significant change
in bacterial community structure was observed among sediment
depth (PERMANOVA, depth effect, pb0.001). NMDS plot (Fig. 3)
and post-hoc tests indicated that bacterial community structure in
the top layer of sediment (0–2 cm) was significantly different from
that found in deeper sediment layers (2–4 and 5–7 cm, post-hoc
test, pb0.001). Benzo(a)pyrene had a significant impact on bacterial
community structure but only 10% of the total variation in bacterial
community structure could be explained by benzo(a)pyrene treat-
ments. Post-hoc tests revealed a significant difference in bacterial
community structure between the uncontaminated treatment and
the treatment contaminated with 1 mg kg−1 of benzo(a)pyrene
(p=0.001) whereas no difference was found between the un-
contaminated treatment and the treatment contaminated with
5 mg kg−1 of benzo(a)pyrene (p>0.05). The impact of tubificid
worms on bacterial community structure depended on the depth
considered (worm ∗depth, pb0.05). Tubificid worms significantly
modified the bacterial community structure in the 0–2 cm layer
(post-hoc test, pb0.05) but had no effect on deeper sediment layers
(p>0.05). PERMANOVA indicated that the impact of tubificid
worms on bacterial community structure was not dependent on
the benzo(a)pyrene contamination level (benzo(a)pyrene∗ fauna
or benzo(a)pyrene∗ fauna∗depth, p>0.05).

4. Discussion

Chemical (O2 and NO3
− vertical profiles) and microbiological

(hydrolytic and dehydrogenase activities, percentage of active bacteria)
analyses confirmed our hypothesis stating that benzo(a)pyrene con-
tamination influences the role played by T. tubifex in biogeochemical
processes. Indeed, tubificid worms stimulated aerobic respiration,

Table 3

Concentrations of benzo(a)pyrenemeasured at the endof theexperimentat three sediment

layers, for the 6 treatments. Values are means±SD (n=3 columns per treatment).

Benzo(a)pyrene

treatment

Animal

treatment

Sediment

layer

BaP

(μg kg−1)

0 mg kg−1 Control 0–2 cm 2±1

T. tubifex 3±4

Control 2–4 cm 3±2

T. tubifex 3±2

Control 5–7 cm 2±1

T. tubifex 3±1

1 mg kg−1 Control 0–2 cm 206±24

T. tubifex 162±46

Control 2–4 cm 14±8

T. tubifex 12±2

Control 5–7 cm 5±2

T. tubifex 8±5

5 mg kg−1 Control 0–2 cm 725±105

T. tubifex 772±45

Control 2–4 cm 38±18

T. tubifex 70±14

Control 5–7 cm 11±1

T. tubifex 28±10



denitrification and micro-organisms in uncontaminated sediments
whereas such effects were inhibited in sediments treated with
benzo(a)pyrene.

The positive influence of tubificid worms on microbial processes
measured in uncontaminated sediments was in agreement with previ-
ous studies performed in freshwater sediments (Chatarpaul et al., 1979;
Mermillod-Blondin et al., 2001; Nogaro et al., 2007; Lagauzère et al.,
2009a). T. tubifex probably increased dissolved oxygen concentration
in subsurface sediments (1 cm below the water–sediment interface)
through the construction and irrigation of burrows (Mermillod-
Blondin and Lemoine, 2010). Such bioturbation activity of tubificid
worms, which increased solute exchanges at the water–sediment

interface, has been recognized as a major factor influencing biogeo-
chemistry in freshwater sediments (Pelegri and Blackburn, 1995;
Svensson et al., 2001; Nogaro et al., 2007). As described by Delmotte
et al. (2007), the significant bioadvection of luminophores measured
in treatments with T. tubifexwas linked to the deposition of fecal pellets
at the sediment surface by tubificid worms. Burrowing and production
of fecal pellets that often act as hot spots for micro-organisms (Quéric
and Soltwedel, 2007) were the two main activities of worms stimulat-
ing microbial activities in the top 2 cm of the sediment. Such stimula-
tion increased oxygen and nitrate consumptions in the top 6 cm of
the sedimentary infiltration column, showing a net positive effect of
worms on organic matter processing through aerobic (+12% of aerobic
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Fig. 2. (A) Total abundance of bacteria, (B) percentage of active eubacteria, (C) hydrolytic activity and (D) dehydrogenase activity measured at three layers in slow filtration columns

with or without tubificid worms for each benzo(a)pyrene treatment. Values are means±SD (n=3). Left column: 0 mg kg−1 of benzo(a)pyrene; central column: 1 mg kg−1 of

benzo(a)pyrene; and right column: 5 mg kg−1 of benzo(a)pyrene. Significant influences of tubificid worms determined by post-hoc tests were indicated by asterisks (***pb0.001).



respiration) and anaerobic (+49% of NO3
− consumption by denitrifica-

tion) processes.
The presence of benzo(a)pyrene totally inhibited the positive

influence of T. tubifex on micro-organisms. Such impact was not
linked to an increased mortality of animals by contamination because
survival rates of worms were comparable in all benzo(a)pyrene treat-
ments (between 79.7% and 85.3% of survival). The impact was rather
due to a contaminant-induced change in the activities (bioturbation
and/or metabolism) of worms and, consequently, in microbial pro-
cesses. The fact that worms did not increase O2 concentration at
1 cm below the sediment surface in the presence of benzo(a)pyrene
indicates that the bioirrigation activity of tubificid worms was affect-
ed by this PAH. As observed with a metallic contamination with ura-
nium (Lagauzère et al., 2009c), benzo(a)pyrene might have reduced
the density of burrows produced by T. tubifex, consequently affecting
the transfer of dissolved oxygen through burrows. The impact of
benzo(a)pyrene on surface sediment irrigation by tubificid worms
could explain why T. tubifex tended to rework less surface sediment
when the concentration of contaminants increased. The reduction of
40% in bioadvection rates (from 4.5 to 2.7 cm year−1) due to the con-
tamination of surface sediment with 5 mg kg−1 of benzo(a)pyrene
also supposed a pollution-induced reduction of worm feeding activity
associated with the production and deposition of fecal pellets at the
sediment surface. However, the 13C/12C ratios of worm tissues col-
lected at the end of the experiment were comparable in contaminated
and uncontaminated conditions, suggesting that T. tubifex fed at the
same rate on surface sediments enriched with 13C whatever the
benzo(a)pyrene contamination. The analyses of benzo(a)pyrene in
worm tissues also showed similar bioaccumulation factors (between
83 and 102) for the two concentrations of benzo(a)pyrene tested.
Because the major pathway for PAH accumulation in aquatic worms
results from food ingestion (Bott and Standley, 2000; Leppänen and
Kukkonen, 2000), our data suggest a low influence of benzo(a)pyrene
on worm feeding activity. Consequently, in the present study,
benzo(a)pyrene had a major impact on the bioirrigation activity of
T. tubifex without affecting significantly its feeding activities. As ob-
served in many studies (e.g. Aller, 1994; Kristensen, 2000; Stief et al.,

2004; Mermillod-Blondin, 2011), the increase of solute fluxes at the
water–sediment interface was the main process by which bioturbators
influenced microbial processes in our experiment.

Our results also showed that tubificid worms had a significant ef-
fect on the bacterial community structure living in the top sediment
layer (0–2 cm). In contrast with microbial activities, this influence
of tubificid worms on micro-organisms was observed in all contami-
nation treatments (with or without benzo(a)pyrene), suggesting a
decoupling between community structure and bacterial activity in
our experiment. This could be explained by the upward conveyor
mode of tubificid worms. As T. tubifex selects fine sediment particles
when feeding at depth (Rodriguez et al., 2001), this tubificid worm
might have produced a transport of fine sand from deep layers to sed-
iment surface, creating specific colonizable area for micro-organisms
in the top sediment. Such sediment transport likely induced a trans-
port of bacteria (which could have been affected during gut transit
as observed in the lugworm Arenicola marina, Grossi et al., 2006)
and, consequently, a change in bacterial communities occurring in
the top layer of sediments contaminated with benzo(a)pyrene. It
has been shown that the production of irrigated burrows and sub-
sequent oxygenation could modify bacterial communities in deep
anaerobic marine sediments (Papaspyrou et al., 2005; Bertics and
Ziebis, 2009; Laverock et al., 2010). In our experimental conditions,
we did not detect such an effect in sedimentary layers below 2 cm be-
cause anaerobic conditions did not occur in the whole sedimentary
column. As commonly measured in river sediments (e.g. Ingendahl
et al., 2009), the physical interstitial flow rate applied to columns
maintained dissolved oxygen concentrations higher than 1 mg L−1

in sediments (Fig. 1) and, in these conditions, bioturbators could
not drastically modify aerobic/anaerobic boundaries in sediments.
It is also interesting to note that benzo(a)pyrene contamination did
not have a clear effect on bacterial community structure as samples
obtained with 0 mg kg−1 and 5 mg kg−1 of benzo(a)pyrene exhibited
comparable bacterial communities. In sediments, the occurrence of PAH
can have both negative (toxic) and positive effects (through organic
matter enrichment) on micro-organisms (e.g., Bauer and Capone,
1985a; Verrhiest et al., 2002). However, these effects were essentially
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observed with high concentrations of PAHs (>100 mg kg−1 of sedi-
ment) that are only encountered in heavily contaminated sites
(Juhasz and Naidu, 2000). By focusing on low contaminated sediments
(fewmg kg−1, WHO, 1982), our experiment clearly demonstrated that,
in freshwater ecosystems, microbial processes could be more affected
by contaminant-induced changes in microbe–invertebrate interactions
rather than by a direct effect of contaminants on micro-organisms.

Although our study was not designed to determine the fate of
the PAH in experimental systems, analyses showed that more than
50% of the benzo(a)pyrene was lost during the 30 days of the exper-
iment. The loss rates obtained from the present study varied from 17
to 105 μg of benzo(a)pyrene kg−1 of sediment day−1. Several envi-
ronmental factors (e.g., oxygen availability, temperature, nutrients,
sediment structure) influence the fate and the degradation of PAHs
in sediments (Bauer and Capone, 1985b; Lei et al., 2005; Toyama
et al., 2011). They can explain the wide range of benzo(a)pyrene deg-
radation rates reported by Shiaris (1989) in estuarine sediments
(4–1190 μg of benzo(a)pyrene transformed kg−1 of sediment day−1).
It has been demonstrated that oxygen concentrations have a predomi-
nant role on the fate of PAHs since the degradation of PAH by micro-
organisms is much more efficient under aerobic conditions than under
anaerobiosis (Boyd et al., 2005; Quantin et al., 2005; Haritash and
Kaushik, 2009). Therefore, bioirrigation of sediments by benthic fauna
can stimulate PAH degradation through continuous or periodical in-
crease of oxygen availability in anaerobic sediments (Granberg et al.,
2005; Timmermann et al., 2008; Montgomery et al., 2008; Cuny et al.,
2011). In the present study, we did not detect a stimulation of
benzo(a)pyrene loss due to the bioirrigation activity of T. tubifex. This
lack of effect is easily explainable because (1) the bioirrigation behavior
of tubificid worms was inhibited by benzo(a)pyrene contamination
and (2) tubificid worms could not much modify oxygen availability in
a sedimentary system where aerobic conditions prevailed. Extending
the present experiment to sedimentary systems characterized by aero-
bic and anaerobic zoneswould be of great interest to evaluate the role of
interactions between bioturbators and environmental conditions on
contaminant degradation.

5. Conclusion

The present study reveals the importance of sublethal concentra-
tions of a contaminant on ecological processes in river sediments
through affecting bioturbator–microbe interactions. A concentration
of 1 mg kg−1 of benzo(a)pyrene in the top layer of sediment was
large enough to inhibit the stimulation of micro-organisms by tubificid
worms and resulted in the reduction of the capacity of the sedimentary
habitat to process organic matter by aerobic respiration (−12%) and
denitrification (−49%). In literature, the significant impacts of pollut-
ants on invertebrates and associated ecological processes in streams
have been essentially demonstrated in systems where invertebrate
communities were severely affected. For instance, it has been shown
that the leaf litter breakdown rates were strongly reduced when con-
taminants decreased the abundances of key functional species such as
gammarids (e.g., Dangles et al., 2004; Piscart et al., 2011). Our results
further demonstrate that sublethal concentrations of pollutants also
need to be considered in ecosystemhealth assessment as they can affect
self-purification processes
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