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Abstract

The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic

species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the

Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which

includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations
possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive

genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the

presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that

were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the

linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative

functional units, four of which had been verified experimentally. The combination of G8-specific functions defines

a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8

ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching
genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find

such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona

fide genomic species.

Key words: bacterial species, Agrobacterium, ecological niche, bacterial evolution, linear chromosome.

Introduction

The species as basic taxonomic unit dates back to Carl Lin-

naeus and has since been universally used to describe all liv-

ing organisms, including microbes. In superior Eukaria, the

separation of distinct species relies on the occurrence of sex-
ual barriers, as summed up in the famous biological species

concept proposed by Mayr (1942). However, in asexually re-

producing organisms, species are defined upon similarities

of their members contrasted by interspecies genetic

discontinuities.

In Bacteria, similarity discontinuities were first revealed

through phenotypic traits and used to classify strains in dif-
ferent species by numerical taxonomy (Sneath and Sokal

1973). It was soon discovered that discontinuities also occur

at the genomic level, leading to the current genomic species

definition. Indeed, empirical studies revealed a gap in the

distribution of genomic DNA hybridization ratio for pairwise

comparisons of numerous strains around 70% (or around

5 �C for DTm) that matched previous phenotype-based dis-

tinction of species. Strains displaying genomic similarities
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above this level are thus considered to belong to the same
species (Wayne et al. 1987; Stackebrandt et al. 2002), that

are called genomic species. Alternatively, based on sequence

data, genomic species can be distinguished through multilo-

cus sequence analysis (Gevers et al. 2005). This is in line with

the phylogenetic species concept based on the evolutionary

relatedness among organisms that applies to all organisms,

including Bacteria and Archaea, as pinpointed by Staley

(2004). Although this definition is operational, efficiently
leading to the delineation of readily distinguishable genomic

species in most taxa, we still need to understand what

mechanisms lead to differentiation of such genomic species

(Fraser et al. 2009).

In our view, a genomic species is likely descending from

a single ancestor that speciated a long time ago consecutively

to adaptations to a novel ecological niche. Adaptations of the

ancestor to its ecological niche were determined by adaptive
mutations that should have been conserved in the progeny as

long as they continued to exploit the same primary niche.

Traces of adaptation could thus be found in progeny

genomes, namely species-specific genes present in genomes

of all members of a given species but not in closely related

species. Species-specific genes inherited from the ancestor

may still be responsible for the adaptation of present species

members to a species-specific ecological niche. This hypoth-
esis can be tested using comparative genomics to reveal

species-specific genes that likely encode species-specific

ecological functions.

Some studies intended to characterize the genomic specif-

icities of bacterial species and understand their evolutionary

history (Porwollik et al. 2002; Cai et al. 2009; Touchon et al.

2009; Lefébure et al. 2010; Zhao et al. 2010), other studies

aimed to characterize the differences in ecology of ecotypes
(or ecovars) among a taxon (Cohan 2002; Sikorski and Nevo

2005; Johnson et al. 2006; Sanjay et al. 2008; Cai et al. 2009;

Connor et al. 2010; Zhao et al. 2010). We aimed to combine

these approaches to test the hypothesis of genomic species

arising from specific ecological adaptations. Good candidate

species to test this hypothesis should preferentially display

high within-species diversity, so as to capture the most com-

mon species characters, with the least possible divergence
from their closest neighbors, thus maximizing the chance

of detecting specific determinants. The bacterial taxon

Agrobacterium tumefaciens fulfils these requirements.

According to the current genomic species definition, this

taxon displays a too large genomic divergence to be a single

species and must be considered as a complex of ten distinct

genomic species, currently named genomovar G1 to G9 and

G13 (Mougel et al. 2002; Costechareyre et al. 2009).
Although, they clearly belong to distinct genomic/genetic

lineages, these species have not yet received Latin binomials

essentially because they are not easily distinguishable by

usual biochemical identification systems. They are, however,

bona fide species to test our hypothesis because they are

closely related and also have large infraspecies diversity.
In addition, agrobacteria are common inhabitants of soils

and rhizospheres, with several strains and genomic species

commonly found in the same soil samples (Vogel et al. 2003;

Costechareyre et al. 2010). Because complete competitor can-

not coexist, according to the competitive exclusion principle

(Hardin 1960), co-occurring species must be adapted to partly

different ecological niches. Hence, often co-occurring and

highly diverse Agrobacterium species are choice candidates
for testing whether genomic species harbor presumptive

determinants of a species-specific ecology. In addition, strain

C58 of genomovar G8 is completely sequenced (Goodner

et al. 2001; Wood et al. 2001), so a set of reference genes

is available for classification according to their level of ubiquity

within the entire taxon. The genomic sequence of strain

H13-3 from A. tumefaciens genomovar G1 (Wibberg et al.

2011) has been published at the time of submission of this
work, providing another reference to validate our results.

In the present work, we looked for genes that could be

involved in the ecological specificity of bacterial species. Be-

cause we were able to experimentally determine the set of

genes specific to genomovar G8, we focused particularly on

genomovar G8 as a model species. We then: 1) manually

annotated the functions of genes putatively determining

ecological specificities, 2) inferred cellular pathways that
may be involved in the adaptation of G8 agrobacteria to

their ecological niches, and 3) experimentally validated most

of the predicted functions and checked that they specifically

occurred within all G8 members but not elsewhere. We used

this information to precise our representation of the ecolog-

ical niches of genomic species of the A. tumefaciens com-

plex and develop a scenario for ecology-driven speciation of

genomovar G8.

Materials and Methods

Bacterial Strains and Culture Conditions

In the present paper, we used a homogenous nomenclature

defined according to the literature as follows: A. tumefaciens
for members of the species complex with reference to genomic

species, as explained by Costechareyre et al. (2010),
A. larrymoorei forstrainAF3.10(BouzarandJones2001),A.vitis
for the sequenced strain S4 (Ophel and Kerr 1990; Slater et al.

2009), Rhizobium rhizogenes for the sequenced strain K84

(Slater et al. 2009; Velázquez et al. 2010), and Ensifer meliloti
for the sequenced strain 1021 (Galibert et al. 2001; Martens

et al. 2007). Strains of the species complex A. tumefaciens
and A. larrymoorei tested in the study (table 1) are available

at the Collection Francxaise de Bactéries Phytopathogènes
(CFBP, INRA, Angers, France). They were routinely grown at

28 �C on YPG medium (yeast extract, 5 g/l; Bacto Peptone,

5 g/l; glucose, 10 g/l, pH 7.2). Genomic DNAs were extracted

andpurified from50-ml liquidYPGculturesusing the standard

phenol–chloroform method (Sambrook and Russell 2001).
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Comparative Genome Hybridization Array Design

Comparative genome hybridizations (CGHs) were performed

with DNA microarrays specifically designed for this experiment.

Microarrays were made of 389,307 spots of 50-nt probes.
All the four replicons of A. tumefaciens str. C58 (GenBank ac-

cessions NC_003302, NC_003303, NC_003304, NC_003305)

were covered with a probe every 50 nt on each strand and

a shift of 25 nt between strands. To obtain a set of control

genes known to be absent from the tested strains, the

microarrays also included probes designed in the same way
to cover some plasmids from diverse Rhizobiaceae members,

corresponding to the following GenBank accessions:

NC_002377 (pTiA6), DQ058764 (pTiBo542), NC_002575

(pRi1724), NC_006277 (pAgK84), AJ271050 (pRi2659),

AF065242 (pTiChry5), and plasmids from R. etli str. CFN42:

NC_007 762, NC_007763, NC_007764, NC_004041,

NC_007765, NC_007766. In order to model hybridization in-

tensities as a function of levels of DNA base pairing between
probe and target DNAs, the microarray contained 50-nt probes

designed on the direct strand of all alleles of mutS, recA, and

gyrB genes known at that time in A. tumefaciens, A. rubi,
A. larrymoorei, A. vitis, and in some remote Rhizobiaceae

species including R. rhizogenes and E. meliloti. The micro-

array also included 39,746 constructor-designed random

probes for hybridization control. The C58 whole-genome

microarray was constructed by NimbleGen Systems Inc.
(Madison, WI), which also performed DNA labeling, hybridiza-

tion, image capture, and raw data extraction steps accord-

ing to internal company procedures. Hybridization

intensities considered hereafter are log2 transformations

of the raw data delivered by the company. Microarray design

and experimental raw data are available at http://www.ebi.

ac.uk/arrayexpress/ under the accessions A-MEXP-1977 and

E-MTAB-558, respectively.

Modeling of Probe Hybridization Behaviors

Hybridization intensity (I) ranged, approximately, from 6 to

16 arbitrary units, including a long range (6–9) for back-

ground noise. Even in case of a perfect match, I spanned over

a long range (e.g., 8–16 with C58). This complicated the de-

termination of a single presence/absence threshold value in-

distinctly valid for all probes, especially for strains distantly
related to C58. Instead, we used the fact that lacking genes

are characterized by long stretches of successive probes

mostly delivering a low background signal. Thus, to detect

C58 coding DNA sequences (CDSs) homologs in the tested

strains, we developed a method to classify segments of C58

replicons according to the homogenous presence or absence

of homologous segments in each tested strain by compari-

son with perfectly matching C58 DNA probes as positive
control. For each replicon a, plots of probe hybridization in-

tensities of tested strain i (denoted Ia.i) and reference C58

DNA (denoted Ia.C58) revealed the presence of two popula-

tions of points: one, which displayed an almost linear rela-

tionship between Ia.i and Ia.C58, corresponding to probed

regions that were ‘‘present’’ in the tested strain; and another,

that displayed no correlation between Ia.i and Ia.C58, corre-

sponding to regions that were ‘‘absent’’ (supplementary
fig. S3, Supplementary Material online). A model (M) fitting

these conditions was constructed using a mixture of two

linear models, that is, (A) (absent) and (P) (present):

ðAÞ : Ia�i follows a law N ðmA; sdAÞ

Table 1

Agrobacterium Strains Used in This Study

Strain Name

CFBP

Code

Nb of Detected C58 CDS

Homologs

CcC58 LcC58 pAtC58 pTiC58

Agrobacterium tumefaciens

genomovar G1

CFBP 5771 2493 1392 205 14

ICPB TT111 5767 2461 1394 101 30

A. tumefaciens genomovar G2

CFBP 5495 2371 1185 53 0

CFBP 5494 2168 944 36 0

A. tumefaciens genomovar G3

CFBP 6624 2501 1104 0 0

CFBP 6623 2586 1388 32 0

A. tumefaciens genomovar G4

(bona fide A. radiobacter)

B6 2413 2584 1389 131 32

DC07-012 7273 2503 1283 36 0

Kerr 14 5761 2557 1376 3 81

A. tumefaciens genomovar G5

CFBP 6625 1751 626 1 0

CFBP 6626 2378 1164 9 1

A. tumefaciens genomovar G6

NCPPB 925 5499 2533 1507 50 36

A. tumefaciens genomovar G7

DC07-042 7274 2370 1184 5 0

RV3 5500 2516 1266 1 0

Zutra 3/1 6999 2529 1349 22 169

A. tumefaciens genomovar G8

(A. fabrum nov. sp.)

Mushin 6 6550 2686 1693 273 132

C58T 1903 2765 1851 542 197

DC04-004 7272 2757 1851 542 197

J-07 5773 2683 1677 200 0

LMG 46 6554 2674 1669 0 172

LMG 75 6549 2681 1736 198 117

T37 5503 2663 1678 270 134

A. tumefaciens genomovar G9

Hayward 0362 5507 2565 1195 7 197

Hayward 0363 5506 2524 1213 17 0

A. tumefaciens genomovar G13

CFBP 6927 2517 1215 10 0

A. larrymoorei

AF 3.10T 5473 1032 228 8 0

NOTE.—CFBP, Collection Francxaise de Bactéries Phytopathogènes, INRA, Angers,

France (http://www.angers.inra.fr/cfbp/). CcC58, circular chromosome of C58; LcC58,

linear chromosome of C58; pAtC58, At plasmid of C58; pTiC58, Ti plasmid of C58.
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ðPÞ: Ia�i follows a law N ðmP þ q � Ia�C58; sdPÞ

ðMÞ: Ia�i follows a law p� N ðmA; sdAÞ
þ ð1 � pÞ�N ðmP þ q � Ia�C58; sdPÞ

where parameters {mA, sdA} and {mP, sdP} are means and

standard deviations for normal models (A) and (P), q is the

slope of the linear relationship between present Ia.i

and Ia.C58, and p is the weight of model (A) in (M), which re-

flects the proportion of probes belonging to the absent pop-

ulation.

For each strain i, given the set of probes representing a C58

replicon a on the microarray, it is straightforward to compute

a likelihood function on the basis of this modeling. Then, we

looked for the maximum likelihood given this data using

the method of Nelder and Mead (1965) as implemented in

the ‘‘stats’’ R package (R Development Core Team 2009). This

process optimized values for the parameters in three steps:

1. First, parameters {mA, sdA} were analytically computed
from the means and standard deviations of two sets of
control probes: a) on probes covering NC_004041
(p42d) which was absent from every tested strain,
giving values {mAa, sdAa} or b) on constructor-
designed random probes, giving values {mAb, sdAb}.

2. Secondly, parameters were optimized from both start
points {p 5 0.5, mA0 5 mAx, sdA0 5 sdAx, mP 5 1,
sdP 5 1, q 5 1}, with x 5 a or x 5 b. During this first
optimization step, {mA, sdA} were fixed in order to
find the (P) mode. The posterior likelihood of models
was calculated for each set of optimized parameters
and the best fit between both sets of optimized
parameters a and b was kept.

3. To adjust the proportions of points recruited by each
mode, parameters were again optimized with {mA,
mP, q} fixed and with a constraint on sdA: sdA �
(1.05�sdA0). To maintain the exclusivity of (A) and (P)
modes, an additional constraint was set in the case of
plasmids NC_003604 and NC_003605: mA þ 1.5.
sdA þ 11. q � mP þ 2�sdP.

{mA, sdA} parameters were constrained during steps 2)

and 3) to avoid a side effect of optimization due to the non-

exclusivity of both modes, which may lead to overrecruitment

of present points in absent mode (A) in some instances. When

mode (A) should recruit very few points, that is, for tested

strains very closely related to C58, a greedy optimization

algorithm was tented to fill mode (A) by enlarging its bound-
aries (i.e., increasing sdA) or shifting its mean mA toward

present points or conversely to fill mode (P) when plasmids

NC_003604 and NC_003605 were completely absent from

a strain. Sets of parameters for each microarray are listed in

supplementary table S7 (Supplementary Material online).

Segmentation of C58 Replicons into Regions
Present/Absent in Tested Strains

Multiple prediction partitioning was performed using Sar-

ment Python modules (Guéguen 2005) to build an incremen-
tal partitioning of the sequence of replicon a when hybridized

with strain i into segments of consecutive probes of common

Absent or Present state given the likelihoods of each probe by

models (A) and (P) nested in the optimized model (M). The

segmentation process was independent of the sequence

annotation; however, it appeared that partitions generally

occurred between CDSs. As our interest was to screen for

C58 CDSs present or absent in other strains, the incremental
process was stopped when the number of CDSs which 100%

probes mapped in absent segments was stabilized, typically

after a few hundred segmentation iterations. Note that as

a result of the segmentation procedure, some probes with

high hybridization values surrounded by large number of

low hybridization value probes can occur within absent seg-

ments. All CDSs located in absent segments are nevertheless

considered absent.

Estimate of Genomic DNA-Probe Similarities

Similarity between microarray probes and probed DNA was

estimated via probes of alleles of marker genes gyrB, mutS,
and recA spotted on the microarray. The actual nucleotidic

similarities between probes and known sequences of

marker genes of the probed strain were computed using

BlastN. The results were imported and parsed using Biopy-

thon libraries (Cock et al. 2009). Linear regressions between

hybridization intensities and actual nucleotide similarities

were done for each microarray while excluding nonhybri-

dized probe noises (empirically determined to be below
80% genomic DNA-probe match) by using the stats R pack-

age (R Development Core Team 2009). Linear models

(supplementary table S8, Supplementary Material online)

were used to estimate the similarity between hybridized

DNA and microarray probes (estimated nucleotidic similarity

[ES]), thus allowing the calculation of average ESs of all CDSs

covered by probes on the microarray (supplementary table S2,

Supplementary Material online). For C58 replicons, it was also
possible to cope with intensity heterogeneities among CDSs by

calculating weighted estimated nucleotidic similarities

(WESs). ESs recorded with a given strain were thus divided

by the corresponding values obtained with C58, then ad-

justed according to the actual similarities of sequenced poly-

merase chain reaction (PCR) products of the tested strain with

the C58 genome (supplementary table S3, Supplementary

Material online).

Codon Usage Analysis

Effective counts of the 64 codons of the 5,355 CDSs of

C58 were calculated using the ‘‘seqinR’’ package from
R project (Charif and Lobry 2007). Correspondence
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analyses were performed and projected using ‘‘dudi.coa’’
and ‘‘s.class’’ functions from the ‘‘ade4’’ package (Dufour

and Dray 2007).

Strain Clustering

Agrobacterium tumefaciens strains were clustered on the ba-

sis of gene presence/absence characters, as described in Lake

(1994), by using logdet distances with C58 as conditioning

genome. Logdet/paralinear distances (Lake 1994) were

computed using the ‘‘binary.dist’’ function from R project

(R Development Core Team 2009). Trees were built using the

NEIGHBOR algorithm from PHYLIP package (Felsenstein 1993).

Functional Annotation of Specific Genes

The functional annotation of CDSs included in G8-specific

clusters was manually curated using a relational database,

that is, AgrobacterScope (in open access at https://www.

genoscope.cns.fr/agc/microscope), with the MaGe web

interface (Vallenet et al. 2009).

Construction of Deletion Mutants of SpG8-Specific
Clusters

Mutants were constructed by mutagenic PCR as described

by Choi and Schweizer (2005). Briefly, mutagenic PCR frag-

ments were created by joining three fragments corresponding

to the two regions flanking the sequence to be deleted of C58

(ca. 1 kb each) and a fragment encoding the nptII kanamycin
resistance gene amplified from plasmid pKD4 (Datsenko and

Wanner 2000) by using 70-nt primers consisting of 20 nt prim-

ing the kanamycin-resistance gene (3# segment of the primer)

and 50 (±3) nucleotides corresponding to flanking sequence

endsoftargetedsites(5#segmentoftheprimer) (supplementary

tableS9,SupplementaryMaterialonline).Firstandsecondround

PCRs were performed as in Choi and Schweizer (2005), and

then PCR fragments were cloned into the pGEM-Teasy vector
(Promega,Madison,WI) according tomanufacturer’s instruc-

tions. After digestion of the resulting plasmids with ApaI and

SpeI, fragments were subcloned into pJQ200SK, a plasmid

carrying the sacB gene conferring sucrose sensitivity (Quandt

and Hynes 1993) digested with the same enzymes.

To generate deleted mutants, PCR fragments cloned into

pJQ200SK were inserted in C58 by electroporation. Single

recombinants were selected on YPG media containing
25 lg/ml kanamycin and 25 lg/ml neomycin. Double cross-

over events were identified by sucrose resistance on YPG

media supplemented with 5% sucrose. Deletion mutants

were verified by diagnostic PCR with appropriate primers.

Experimental Validation Assays

Ferulic acid catabolism was tested using the two-step proce-

dure described by Civolani et al. (2000). In a first step, cells

were induced for 24 h at 28 �C (optical density [OD]600 nm 5 1)
in AT minimal medium (Petit et al. 1978) supplemented

with 10 mM (NH4)2SO4 and 10 mM succinic acid, and

0.52 mM (0.1 mg�mL�1) ferulic acid (Sigma-Aldrich, St Louis,

MO). Cells harvested by centrifugation were then suspended

at OD600 nm 5 0.1 into AT medium containing 10 mM

(NH4)2SO4 and 0.52 mM ferulic acid as sole carbon

source. Ferulic acid disappearance was monitored by high-

performance liquid chromatography (HPLC) performed on
an Agilent 1200 series (Agilent Technologies, Santa Carla,

CA) liquid chromatograph associated with a diode array

detector. Data acquisition and processing were controlled

via Agilent Chemstation software. The separations were

carried out on a Kromasil 100-5C18 column (250 � 4.6 mm).

Compounds were eluted with a methanol–water gradient

(0.4% formic acid) in which the methanol concentration

was varied over time as follows: from 0 to 5 min, 20%;
5 to 22 min, increased to 62%; 22 to 25 min, increased to

100%; 25 to 30 min, 100%; 30 to 31 min, decreased to

20%.Theflowratewas1ml.min�1. Ferulic acidwasdetected

at a wavelength of 320 nm after injection of 5-ll sample. UV

spectra and retention time (12.43 min) of ferulic acid were

determined by injection of a methanolic suspension of

ferulic acid. Identification of ferulic acid in bacterial cultures

was confirmed by comparison with this standard.
Curdlan production was assessed by streaking bacteria

onto plates containing a modified Congo red medium adap-

ted from Kneen and LaRue (1983) with glucose as sole

carbon source, incubated at 28 �C for 48 h and then kept

at room temperature for 48 h.

Results

Presence of Homologs of CDSs from C58 Replicons
and Other Rhizobiaceae Plasmids

CGH results obtained with an original C58 genome–based

microarray were used to detect the presence or absence of

genes homologous to C58 in 25 agrobacterial strains. These

strains included seven G8 members, one to three for each of

the nine other genomic species of the A. tumefaciens com-

plex and one for A. larrymoorei, a sister species of A. tume-
faciens (table 1). An original probabilistic method was used to

segment C58 replicon sequences into regions that were ab-
sent or present in the tested strains, thus allowing us to detect

the presence of homologs of C58 CDSs in the tested strains

(supplementary table S1, Supplementary Material online).

The absence of detection, however, might have been due

to the absence of a real locus or to a weak hybridization sig-

nal caused by high sequence divergence between the target

genome and C58 DNAs. We thus calculated the ES for CDSs

of all replicons probed by the microarray in reference to
internal control probes of known mismatch values with tested

DNAs (supplementary table S2, Supplementary Material
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online). In addition, we observed strong intensity heterogene-
ities among CDSs, even in case of a perfect match with C58. A

better similarity estimate was reached by weighting ESs of

tested strains by ESs recorded with C58 to provide WESs

(supplementary table S3, Supplementary Material online).

We used the segmentation method to detect the presence of

CDSs displaying WESs as small as 80–86% in G1-ICPB TT111

and G7-DC07-042, respectively, in spite of high hybridization

background noise (supplementary table S4, Supplementary
Material online). This demonstrated the higher sensitivity of

our probabilistic approach over threshold methods.

Beyond the analysis in terms of CDS presence, WES allowed

us to estimate whether C58 and the tested strains had diver-

gent or identical alleles. WES measures were plotted against

CDS positioned along replicons for G8 members (fig. 1).

G8-DC07-004 was expected to belong to the same clone

or at least the same clonal complex as C58 because both
strains have identical alleles for marker genes located on

circular and linear chromosomes (recA, mutS, gyrB, chvA,

ampC, glgE, gltD, . . . ) (data not shown). G8-DC07-004

displayed an average WES of 100% with little dispersion

(average DWES 5 ±1%) over all four replicons and thus ap-

peared to be identical to C58, except for eight genes that were

lacking on the circular chromosome. In contrast, G8-T37,

which had different alleles for most marker genes, displayed
an average WES clearly below 100% with greater dispersion

(average DWES 5 ±4%). In contrast, this allowed us to dis-

cover that large regions of the C58 linear chromosome were

likely identical in other G8 strains. Remarkably, a region of

more than 1 Mb encompassing the left arm of the linear chro-

mosome was identical between C58 and G8-LMG 75 or

G8-Mushin 6 (fig. 1). This strongly suggests recent transfer

of half of the linear chromosome between members of this
species. Although we found such long regions of identity with

C58 in several G8 members, such long stretches of genome

identity with C58 were not found outside G8 (supplementary

fig. S1, Supplementary Material online), suggesting that large

transfer events may essentially concern members of the same

species.

Strains were clustered according to their C58 CDS homo-

log content. As expected, this clearly allowed significant
clusteringofallG8members (fig.2).Differences ingenecon-

tent similarities according to chromosomes were observed

between genomic species. For six genomic species, the dif-

ferent members significantly grouped when considering

CDSs of the C58 linear chromosome, compared with only

four grouped genomic species when considering CDSs of

the C58 circular chromosome. This suggests that the linear

chromosome content better characterizes genomic species
than the circular chromosome. Remarkably, G2 members as

well as G5-CFBP 6625 were located at a basal position (i.e.,

far from G8), indicating that they had the lowest number of

CDS in common with C58. The remaining species branched

together at the same distance from the G8 groups (forking

branches), indicating that they had comparable numbers
but different sets of C58 CDS homologs.

The presence of C58 CDS homologs according to their

location in C58 replicons confirmed the presence of

C58-circular and -linear chromosome CDS homologs in all

tested strains (table 1). In contrast, this revealed the com-

plete lack of pTiC58 or pAtC58 homologs in several strains

such as for G8-J-07 and G8-LMG 46, which respectively

lacked Ti and At plasmids or the absence of large regions
of C58 plasmids in numerous strains (supplementary table

S1 and fig. S1, Supplementary Material online), which high-

lights the mosaic nature of these replicons. The segmenta-

tion method was not applicable for replicons outside C58,

thus hampering detection of barely similar CDS homologs

in these cases. Nevertheless, high CDS homologies of around

100% ES were recorded for all CDSs of pTiA6 for both G4-B6

and G1-ICPB TT111, indicating the likely presence of the
same Ti plasmid in both strains (supplementary table S2

and fig. S2, Supplementary Material online). The results of

the CDS presence/absence analysis were, however, related

to the high hybridization stringency conditions used, which

may not allow detection of barely similar homologs. For in-

stance, A. larrymoorei AF 3-10 was found to have no detect-

able CDS homology with pTiC58 (table 1), although this

strain is known to be pathogenic with a chrysopine type
Ti plasmid (Vaudequin-Dransart et al. 1995). As expected,

however, AF3.10 exhibited significant estimated similarity

values (ca. 93%) with more similar CDSs of the chrysopine

type Ti plasmid pTiChry5 (supplementary table S2 and

fig. S2, Supplementary Material online).

Ubiquity Level of C58 CDSs in the A. tumefaciens
Complex

Homologs of the 5,355 CDSs of C58 were classed according

to their level of ubiquity in Agrobacterium strains and

grouped in six classes: only in C58 (‘‘specific to C58,’’

166 genes); only in G8 strains but not all (‘‘sporadic in

G8,’’ 151 genes); in all G8 and only G8 strains (‘‘specific

to G8,’’ 196 genes); with no specific presence pattern in

A. tumefaciens ("sporadic in At," 2,846 genes); in all A. tu-
mefaciens strains but not in A. larrymoorei (‘‘specific to At,’’
976 genes); or in both A. tumefaciens and A. larrymoorei
(‘‘At-Al core genome,’’ 1,020 genes) (supplementary table

S1, Supplementary Material online).

The core genome of A. tumefaciens (‘‘At core genome,’’

sum of the ‘‘specific of At’’ and At-Al core genome classes)

consists of 1,996 genes (37% of the genome). Seventy-five

percent and 25% of the At core genome are located on cir-

cular and linear chromosomes, respectively (accounting for
56% and 25% of these replicons, respectively), showing

clear core genome enrichment on the circular chromosome

(fig. 3). As expected, no part of the core genome was found

on plasmids because these accessory replicons were lacking

in some strains (table 1).
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FIG. 1.—Presence and estimated similarity of C58 CDS homologs in other genomovar G8 members. Percentage of WES of C58 CDS homologs

were plotted against their coordinates on the four C58 replicons. Dot colors indicate the presence (green) or absence (red) of C58 CDS homologs.

Diamonds indicate actual similarity values of sequenced PCR products.
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Genes Specific to C58 and Sporadic in G8. G8-DC07-

004 was found to be the same as C58 except for eight CDSs

(Atu1183–Atu1190), which were absent in G8-DC07-004

(table 1). These eight CDSs were, strictly speaking, the real

C58-specific genes, whereas the remaining 158 genes specific

to C58 were specific to both C58 and G8-DC07-004. These

genes were mainly grouped in three clusters: Atu1183-

Atu1194, Atu4606-Atu4615, and Atu4864-Atu4896. The
Atu1183–Atu1194 region, which included the deleted region

described above, was located on the circular chromosome. It

constituted a prophage (ATPP-2, see below). The last two

clusters were located at the right extremity of the linear

chromosome close to the telomeric region. They harbored

transposase genes, suggesting that they were recombino-

genic. The Atu4606–Atu4615 region was annotated as being

involved in lipopolysaccharide biosynthesis, a function likely
gained by transfer and specific to C58 and G8-DC07-004.

In addition, four regions sporadic in G8 were also identified

as probable mobile genomic elements. Three were evidently

prophages, which we named A. tumefaciens prophages

(ATPP): ATPP-1 (Atu0436–Atu0471), ATPP-2 (Atu1183–

Atu1194), and ATPP-3 (Atu3831–Atu3858), which contained

genes encoding proteins characteristic of prophages, such as:

integrase, excisionase, resolvase, DNA methyl-transferase,
phage tail structural and assembly proteins, and DNA-

dependent RNA polymerase. By analyzing similarities in their

integrase gene sequences with those available in databanks,

prophages were assigned to known prophage families:

ATPP-1 and ATPP-2 were related to Podoviridae of P22

and T-7 families, respectively, whereas ATPP-3 was related

to Myoviridae of the P4 family. The very recent publication

of the genomic sequence of strain H13-3 of genomovar
G1 (Wibberg et al. 2011) showed that prophages ATPP-1

and ATPP-2 were absent from this strain, but that traces

of their past presence could be found at the corresponding

loci. The fourth region, ranging from Atu3636 to Atu3665

next to tRNA genes, had a less clear nature. It was apparently

undergoing a process of genetic decay and was referred to in

this study as a decaying mobile DNA region (DMR). Many

CDSs in this region were short CDSs that coded for hypothet-
ical proteins, pseudogenes, and gene remnants, indicating

that this region might no longer be under selection pressure.

Genes Specific to G8. In fact, 51 CDSs were strictly specific

to the genomovar G8, but 145 CDSs found in all G8 members
were also detected in one or two other non-G8 strains. In sev-

eral instances, those latter genes were contiguous to strictly

G8-specific genes (supplementary table S1, Supplementary

Material online), suggesting that they cooperate with strict

G8-specific genes for their functions. Thus, in order to capture

more complete functions, we decided to use a loose definition

of species-specific genes by merging the two gene classes for

a total of 196 G8-specific CDSs (SpG8) (supplementary table
S5, Supplementary Material online). No SpG8 genes were

FIG. 2.—Clustering of Agrobacterium tumefaciens strains based

on absence/presence of C58 CDS homologs. Neighbor-joining trees

were constructed using the paralinear distances of Lake (1994)

calculated from the presence/absence of C58 CDSs in other strains.

With the reference genome being C58, this strain and its nearly identical

relative DC07-004 were excluded from the analysis.
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found on plasmids, but they were unevenly dispersed on the

two chromosomes: 72% on the linear and 28% on the circular

chromosomes, respectively. Remarkably, 61% of SpG8 genes

were organized into clusters of five or more contiguous CDSs,
whereas others were interspersed within the C58 genome

(supplementary table S5, Supplementary Material online).

Seven large SpG8 clusters, numbered SpG8-1 to SpG8-7, were

located either on the circular chromosome (SpG8-1) or on the

linear chromosome for the six others (table 2 and fig. 3). As

explained below, some SpG8 clusters were subsequently

divided into subclusters encoding homogeneous functions.

Sequence data validated the presence of SpG8 clusters in

G8 members and the absence of SpG8 genes with a similarity

above 70% outside G8 (data not shown).

SpG8 regions seem to occur in hotspots of gene inser-

tions. Cluster SpG8-3 adjoins a region containing different
types of putative mobile elements referred to here as DMR.

SpG8-4 was located next to the putative prophage ATPP-3.

Blocks made of SpG8-3 and DMR and SpG8-4 and ATPP-3

are next to tRNA genes. SpG8-5 and SpG8-6 are next to

rRNA operons containing tRNA genes (fig. 3).

We performed a correspondence analysis on the codon

usage of CDSs in C58 to determine whether genes of dif-

ferent ubiquity classes could be differentiated on the basis of

FIG. 3.—Ubiquity in the Agrobacterium tumefaciens species complex of C58 CDSs according to their localization on C58 chromosomes. Tracks are

numbered from inner to outer track (circular chromosome) or top to bottom track (linear chromosome). tRNA and rRNA genes are represented track 1

and 2, respectively (pink). CDSs are represented according to their levels of ubiquity: track 3, specific to C58 (black); track 4, sporadic in G8 (yellow);

track 5, strictly specific to G8, and track 6, specific to G8 with a loose criterion (red); track 7, sporadic in At (purple); track 8, specific to At (blue); track 9,

‘‘At-Al core-genome’’ (green). Boxes indicate G8-specific (SpG8) gene clusters.
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their DNA sequence composition. Inertia ellipses of ubiquity

classes were found to be dispersed along the first axis of the

codon usage space over a gradient reproducing the ubiquity

class order, which extends from core-genome genes to

sporadic/strain-specific genes (fig. 4). Within the ubiquity

class corresponding to SpG8 genes, we could sort SpG8

gene clusters along the ‘‘core versus sporadic’’ axis, from

the group of isolated SpG8 genes (i.e., not located in clusters,
fig. 4, box #0) at the ‘‘sporadic-like’’ extremity, to loci SpG8-1,

SpG8-4, SpG8-7 at the ‘‘core gene’’ extremity. Notably,

subclusters of large SpG8 gene clusters with different occur-

rence patterns in A. tumefaciens displayed different genome

signatures. In fact, SpG8-1a and SpG8-7a, which shared

genes with the closest relative of G8, that is, G6-NCPPB 925

(Costechareyre et al. 2010), displayed a more marked ‘‘core-

like’’ code usage signature than SpG8-1b and SpG8-7b (fig. 4).

SpG8 Functions

We were able to infer global functions for most SpG8 clus-

ters, strengthening the hypothesis that they correspond to

coherent functional units. Our expert manual annotations

available in the AgrobacterScope database revealed that

SpG8 clusters encoded functional units related to environ-
mental sensing (SpG8-7), secreted metabolite production

(SpG8-2a, SpG8-3), detoxification (SpG8-6), and metabolite

catabolism (SpG8-1, SpG8-4, SpG8-5) (table 2).

SpG8-7: Environmental Signal Sensing. SpG8-7 en-

coded functions that could be related to environmental signal

sensing and transduction: two mechanosensitive channels of

the MscS family and a two-component transduction system

with a receptor histidine kinase containing a PAS sensory box

and two putative response regulators. Genes encoding

a two-component system (Atu4300 and Atu4305) were ho-

mologous to nwsAB from Bradyrhizobium japonicum USDA

110, whose proteins are involved in plant host recognition

during the nodulation process (Lang et al. 2008) and to todST
from Pseudomonas putida F1 and styRS from Pseudomonas
sp. VLB120, whose proteins recognize toluene and styrene,

respectively, and activate related degradation pathways (Lau

et al. 1997; Panke et al. 1998). A more comprehensive block

was conserved in synteny with genes from Parvibaculum
lavamentivorans DS-1 (4 genes, 60.2% amino acid identity

on average) and E. meliloti 1021 (7 genes, 64% amino-acid

identity on average).

SpG8-2a: Curdlan Biosynthesis. Atu3056 in SpG8-2a
codes for a putative beta-1,3-glucan synthase (curdlan syn-

thase, CrdS) that is involved in the synthesis of curdlan, an

exopolysaccharide. We experimentally verified this function

by deleting the whole locus in C58 (i.e., Atu3054–Atu3059).

As a result, colonies formed by the mutant C58DSpG8-2a

did not bind Congo Red, whereas colonies formed by

wild-type C58 were red, indicating that the mutant was

affected in polysaccharide production (fig. 5B). In addition,
we found that all G8 members similarly accumulated red

dye, in contrast with members of other genomic species

(data not shown), which demonstrates that this function

is specific to G8.

Table 2

Characteristics of SpG8 Gene Clusters

G8-Specific

Regions C58 CDSs

Region Occurrence

Outside G8

Main Predicted

Functions

Experimental

Validationa

SpG8-1a Atu1398–Atu1408 G6-NCCPB 925 Sugar and amino acid transport;

sugar metabolism

Not done

SpG8-1b Atu1409–Atu1423 G9-Hayward 0362 Ferulic acid uptake and

catabolism

Present work

SpG8-2a Atu3054–Atu3059 r Curdlan EPS biosynthesis Present work

SpG8-2b Atu3069–Atu3073 r Secondary metabolite

biosynthesis

Not done

SpG8-3 Atu3663–Atu3691 G1-ICPPB TT111 Siderophore biosynthesis;

iron-siderophore uptake

Rondon et al. (2004)

G6-NCCPB 925

SpG8-4 Atu3808–Atu3830 G6-NCCPB 925 Ribose transport; monosaccharide

catabolism and

carbohydrate metabolism

Not done

SpG8-5 Atu3947–Atu3952 r Opine-like compounds catabolism Not done

SpG8-6a Atu4196–Atu4206 G1-CFBP 5771 Drug/toxic (tetracycline)

resistance

Luo and Farrand (1999)

SpG8-6b Atu4213–Atu4221 r Drug/toxic resistance Not done

SpG8-7a Atu4285–Atu4294 G6-NCCPB 925 Environmental signal

sensing/transduction

Not done

SpG8-7b Atu4295–Atu4307 Not present outside G8 Environmental signal

sensing/transduction

Not done

NOTE.—r, rare occurrence of some CDSs outside G8.
a
Deleted mutants of C58 were obtained for all regions.
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SpG8-3: Siderophore Biosynthesis, Release, and
Reuptake. The largest SpG8 gene cluster, that is, SpG8-3,

ranged from Atu3663 to Atu3693. Nearly, all SpG8-3 genes

were also shared by G6-NCPPB 925 and G1-ICPB TT111. This

region has already been characterized as coding for functions

involved in siderophore biosynthesis in C58 (Rondon et al.
2004). It includes eight polypeptides that may form a

mega-enzyme complex corresponding to seven nonriboso-

mal peptide synthase (NRPS) modules and three polyketide

synthase modules. An isolated NRPS gene (Atu3072) located

at the remote locus SpG8-2 may also interact with this mega-

enzyme complex. Genes for transporter proteins were also

located in SpG8-3: Atu3669 coding for a transporter of

the multidrug extrusion transporter family MATE, that in-
cludes proteins involved in secondary metabolite transport

(Moriyama et al. 2008), and thus is perhaps involved in side-

rophore release in the medium; and Atu3684–Atu3691 that

are homologous to fecABCDE genes involved in TonB-

dependent reuptake of the siderophore when it is chelated

to iron (Braun et al. 2006). Finally, Atu3684, Atu3692,

and Atu3693 (fecAIR) seemed to form a cell surface signal-

ing system, whose homolog in Escherichia coli was
proposed to regulate the whole system of biosynthesis,

release, and reuptake of the siderophore (Braun et al.

2006). We noted that the whole region was conserved in

synteny with A. vitis S4 (30 genes, 51.2% amino-acid iden-

tity on average) on its larger plasmid.

SpG8-6: Detoxification. SpG8-6 (Atu4196–4221) con-

tained three putative multidrug transporter systems. Interest-
ingly, one of them (tetR-tetA, Atu4205-Atu4206) was

experimentally characterized for tetracycline resistance in

G8-C58 and G8-T37 (Luo and Farrand 1999). These authors

did not detect this resistance in several other agrobacteria,

and some of their genomic species assignments are now

known: G4-B6, G4-ATCC15955, and G1-Bo542, thus con-

firming the G8 specificity of this genomic region. Tetracycline

is, however, not the natural inducer of these genes (Luo and
Farrand 1999). The TetR-TetA efflux pump system might

allow for detoxification of other unknown compounds.

SpG8-4, SpG8-1a, SpG8-5: Carbohydate Catabolism.
Among regions involved in carbohydate catabolism, SpG8-4

(Atu3808–3830) seems to constitute a functional unit dedi-

cated to monosaccharide uptake, via the putative ribose-

specific ABC transporter encoded by rbsAC1C2B genes,
and sugar metabolism involving putative enzymatic functions

such as rhamnose mutarotase or D-galactarate dehydroge-

nase. Four LysR-type transcriptional regulators were found

within this locus, which could be involved in substrate-

FIG. 4.—Codon usage signatures of SpG8 genes. First factorial plan in the correspondence analysis of C58 CDSs according to their codon usage.

First and second axes explain 4.5% and 2.2% of total variance, respectively. Grey dots represent CDSs, ellipses represent the inertia of ubiquity classes,

and boxes represent barycenters of SpG8 loci named as detailed in table 2 and supplementary table S6 (Supplementary Material online) (and 0 for

interspersed SpG8 CDSs). Codon usage of ubiquity classes were found to gradually vary from core to sporadic genes revealing, in turn, that SpG8

clusters can be distinguished by this criterion from core-like ones to sporadic-like ones. Interestingly, SpG8-1a, SpG8-4, and SpG8-7a—which are shared

by the most closely related non-G8 strain G6-NCPPB 925 (table 2)—displayed a core-like codon usage.
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dependant regulation of metabolic pathways (Maddocks and

Oyston 2008).

SpG8-1a (Atu1398–1409) also seemed to be involved in

sugar metabolism with an ABC transporter operon puta-

tively specific to monosaccharides and genes for glycolate

catabolism enzymes. Two other ABC transporter operons

were located alongside within SpG8-1, which homologs

have been described to specifically import amino acids.

These include genes homologous to braBCDEF genes from

R. leguminosarum bv. viciae 8401 that are involved in

branched-chain amino acid uptake (Hosie et al. 2002).

SpG8-5 (Atu3947–Atu3952) encodes enzymes similar to

sarcosine oxidase, ornithine cyclodeaminase, and an alanine

racemase with a lectine-like sugar-binding domain likely

involved in the catabolism of opine-like compounds. Opines

are condensates of an amino acid and a sugar or a cetonic

acid that are well known to be involved in the ecology of

plant pathogenic Agrobacterium (Vaudequin-Dransart

et al. 1995). However, the annotation is not precise enough

to ascertain the substrate molecule class. It is thus possible

that the concerned substrates belong to another class of

condensates of amino acids and sugars called Amadori com-

pounds—a class of molecules produced in decaying plant

material and thus common in humic soil.

All functions found in SpG8-1, SpG8-4, SpG8-5 are thus

likely to confer G8 agrobacteria a general ability to metabo-

lize sugar and/or opine/Amadori-like compounds. However,

many functional annotations are made on the basis of protein

similarities with databases. In the case of sugar-binding

proteins and ABC transporters, protein families contain many

sequences, only a few of which are characterized. Inciden-

tally, although we obtained deletion mutants of these three

regions, we could not yet assign precise candidate substrates

to improve the annotation or to experimentally verify the pre-

dicted functions.

SpG8-1b: Phenolic Catabolism. SpG8-1b (Atu1409–

Atu1423) was shared by all G8 strains and also by G9-Hayward

0362. This locus was involved in phenolic catabolism (fig. 6,
supplementary table S6, Supplementary Material online for

details on homology relationships). Indeed, SpG8-1b includes

a gene homologous to fcs (Atu1416), which is involved in

a pathway for CoA-dependent, non-beta-oxidative degra-

dation of ferulic acid in Pseudomonas (Overhage et al.

1999; Plaggenborg et al. 2003; Calisti et al. 2008), and other

putative enzymatic functions that could be related to the

same metabolic pathway, including: an enoyl-CoA hydratase
(Ech) (Atu1417), a feruloyl-CoA dehydratase (Fcd) (Atu1414),

a tetrahydrofolate-dependent vanillate O-demethylase (LigM)

(Atu1420), and a methylenetetrahydrofolate reductase

(MetF) (Atu1418), as well as substrate-binding regulators

VanR (Atu1419) and FerR (Atu1422). Indeed, we were able

to reconstruct a complete ferulic acid degradation pathway

(fig. 6B) and to propose a transcriptional regulation scheme

(fig. 6C) in C58—and in other G8 strains as well—thanks
to the presence of a gene nonspecific to G8 in the linear

chromosome, that is, Atu4645 (vdh), encoding vanillin oxi-

dase. The final product of this putative pathway was proto-

cathechuic acid, which can be degraded into metabolites

suitable for complete oxidation through the tri-carboxylic acid

cycle (Parke 1995). In addition, the SpG8-1 gene Atu1415 en-

coded a putative n-phenylalkanoyl-CoA dehydratase. This

FIG. 5.—Experimental evidences of G8-specific phenotypes determined by SpG8 loci. (A) Ferulic acid degradation by A. tumefaciens strains

determined by HPLC and UV spectrum at 320 nm. mAU, milli absorbance units. All genomovar G8 members were able to catabolize all ferulic acid in 12

h, contrary to non-G8 strains lacking SpG8-1b. (B) Curdlan production revealed by red dye on Congo red medium. C58: Agrobacterium tumefaciens

wild-type strain C58 (red colonies), C58DSpG8-2a: SpG8-2a-deleted mutant (white colonies).
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enzyme is involved in a beta-oxidative pathway of long chain
substituted phenolic degradation in Pseudomonas (Olivera

et al. 2001), yielding short-chain phenylalkanoyl-CoAs such

as cinnamoyl-CoA. This suggests alternative entries for this pu-

tative G8-specific phenolic degradation pathway: either by up-

take of ferulic acid (as one of the cognate transporters could

provide this ability) or by transformation of more complex

phenolics, for example, by iterative oxidation of long

chain–substituted cinnamic acids. G8 strains could thus likely
degrade ferulic acid into protocathechuic acid and then as-

similate it as a carbon source.

We verified this possibility by testing strains for their

ability to degrade ferulic acid. After 12 h incubation,

strains bearing SpG8-1b (G8 strains and G9-Hayward

0362) degraded all the ferulic acid in a comparable

manner, whereas other strains did not (fig. 5A). In ad-
dition, a C58 mutant deleted for the whole SpG8-1b

(C58DSpG8-1b, fig. 5A) was unable to degrade ferulic

acid. This locus is therefore clearly involved in ferulic

acid degradation.

As a generalization, other genes involved in aromatic

compounds catabolism were found in other SpG8 gene clus-

ters: a putative mandelate racemase, in SpG8-1a (Atu1406)

and a putative shikimate dehydrogenase in SpG8-7b
(Atu4295). These enzymatic reactions were parts of pathways

leading to protocathechuic acid production, mandelate

degradation, or shikimate degradation, respectively, sug-

gesting that degradation of aromatic compounds into

protocathechuic acid may be a crucial synapomorphic trait

of genomovar G8.

FIG. 6.—Putative ferulic acid catabolism pathway encoded by SpG8-1b. (A) SpG8-1 CDSs organization in C58 (top): subregions SpG8-1a and

SpG8-1b are colored in purple and red, respectively. Presence in other Agrobacterium tumefaciens strains (bottom): presence, black; absence, white. (B)

Reconstructed ferulic acid catabolism pathway encoded by SpG8-1b according to similarities to sequences in databases and associated literature: Fcs,

feruloyl-CoA synthetase (Overhage et al. 1999; Plaggenborg et al. 2003); Ech, enoyl-CoA hydratase (Pelletier and Harwood 1998); Fcd, feruloyl-CoA

dehydratase; LigM, tetrahydrofolate-dependent vanillate O-demethylase (Nishikawa et al. 1998); MetF, methylenetetrahydrofolate reductase

(Nishikawa et al. 1998). (C) Putative transcriptional regulation of SpG8-1b genes inferred from sequence similarities in databases: VanR, vanillate

catabolism repressor (Morawski et al. 2000); FerR, ferulate catabolism regulator (Breese and Fuchs 1998; Calisti et al. 2008).
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Occurrence of SpG8 Genes in Other G8 Members

A question could be asked about the overall relevance of the

present work. Within the chosen species, that is, the A. tume-
faciens genomovar G8, we used the largest set of markedly

different strains available when the array was designed. The

results were thus valid for this set of strains, but are SpG8
genes also present in other G8 members? Indeed, curdlan

biosynthesis genes were already described in the industrial

agrobacterial strain ATCC 31749 (Portilho et al. 2006), that

we found to be very likely another G8 member based on

the high sequence similarities of several genes of ATCC

31749 and C58 as compared with other genomic species

(data not shown). Similar observations could also apply to

tetA-tetR (Luo and Farrand 1999). In addition, we tracked
G8 members in the many agrobacterial strains that can be

isolated from various environments. We succeeded in isolat-

ing a new one, that is, MKS.01 (CFBP 7336), which differed

fromallotherG8strainsbycoregenemarkers,andweverified

that MKS.01 had all the G8-specific genes and phenotypes

defined in the present work, including curdlan production

and ferulic acid degradation (data not shown). Conversely,

the SpG8 genomic islands appear to be absent from the re-
cently published genomic sequence of the genomovar

G1strainH13-3 (Wibberget al. 2011).All of theseaposteriori

verifications confirmed the hypothesis of genomic species

characterized by common species-specific genes inherited

from a common ancestor adapted to a specific primary

ecological niche.

Discussion

The aim of the present study was to disclose the speciation

mechanism leading to differentiation of genomic species by

assessing the presence of species-specific genes in ge-

nomes. As this is amenable by comparative genomics, the

present study was geared toward detecting C58 gene ho-
mologs in other genomes by using a microarray constructed

with probes spanning the entire C58 genome. However, al-

though it is easy to detect present genes with CGH arrays

when hybridized DNAs are highly similar to C58 DNA (i.e., in

genomovar G8), there is a dramatic decrease in the signal

over background ratio for more divergent genomes from

other genomic species. This difficulty was overcome by tak-

ing into account the regional organization of the hybridiza-
tion signal along the genome because, in spite of their

weakness, successive signals of present loci are generally

more intense than noises of absent ones. Thanks to this par-

tition procedure, we were able to confidently detect the

presence of genes not only in all other species of the A. tu-
mefaciens complex but also in the remote species A. larry-
moorei. We, however, failed to obtain accurate results in A.
vitis CFBP 5523T, R. rhizogenes K84, or E. meliloti 1021 (data
not shown), likely because those bacteria generally diverged

beyond the estimated detection threshold (80% similarity at

best) of the procedure (supplementary table S4, Supplemen-
tary Material online).

G8-Specific Functions Useful for Life in Plant
Rhizospheres

Remarkably, SpG8 functions seemed to collectively define an

ecological niche of G8 agrobacteria related to commensal in-

teractions with plants (fig. 7). Although agrobacteria are well
known to be pathogenic to plants by inducing crown gall dis-

ease, this isasecondaryecological trait relatedtotheavailabil-

ity of a dispensable plasmid (i.e., Ti plasmid which harbors the

pathogenicity determinants). Agrobacteria are generally

Tiplasmidfreeandareprimarilycommonsoilborneorganisms

able to live commensally in plant rhizospheres (Savka et al.

2002; Hartmann et al. 2009). As we were looking for general

adaptive determinants of the species regardless of its patho-
genic status, we assumed that species-specific adaptations

were more likely related to life in soils or rhizospheres rather

than to crown galls.

SpG8 loci code for numerous catabolic pathways of car-

bohydrates, namely ferulic acid (SpG8-1b), diverse sugars

(SpG8-1a, SpG8-4), amino acids (SpG8-1a, SpG8-5), and

opine-like/Amadori compounds (SpG8-5). All are typical

molecules that can be found in plant rhizospheres, exuded
by plants (complex sugars) or derived from plant degrada-

tion products (phenolics, opine/Amadori products). Clearly,

ferulic acid is a plant compound involved in the lignin bio-

synthesis present at plant wounds (Humphreys et al. 1999).

Degradation products are, however, released in soil and may

thus facilitate the survival of agrobacteria in soil as well. The

SpG8 loci involvement in life adaptation to plants or soil are

therefore not exclusive alternatives. Moreover, sugar, phe-
nolics, and opines are also known to play an important role

in the pathogenicity of Ti plasmids harboring agrobacteria.

In that sense, the present results support the exaptation

hypothesis of Dessaux’s team (Vaudequin-Dransart et al.

1995), who proposed that the ability of agrobacteria to

use opines selectively arose from a more general ability of

this taxon to use opine-like compounds, including Amadori

products and other related substrates.
In addition to carbon resources available in the rhizo-

sphere, other factors are important in the bacterial niche def-

inition. For instance, bacterial cells may be able to recognize

a favorable environment, reach it (e.g., via positive tropism)

and stay inside it (e.g., via physical attachment), or modify it

(e.g., by secreting extracellular products or stimulating a plant

to modify its exudation spectrum). These functions involve

molecular signaling that can be distant (by diffusion of a signal
molecule) or by contact between the bacterium and its

specific habitat (including a partner plant).

Indeed, production of insoluble b-1,3-glucan exopolysac-

charide(curdlan)encodedbySpG8-2amayplayaroleinattach-

ment (Matthysse and McMahan 1998; Rodrı́guez-Navarro

Ecology Drives Bacterial Speciation GBE

Genome Biol. Evol. 3:762–781. doi:10.1093/gbe/evr070 Advance Access publication July 27, 2011 775

http://gbe.oxfordjournals.org/cgi/content/full/evr070/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr070/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr070/DC1


et al. 2007) and contact signaling. Annotated functions may,

however,havepleiotropiceffects, andcurdlanproductionmay

also be important for passive resistance to toxics, especially in

plant rhizospheres where antimicrobial agents-like flavonoids

are secreted (Palumbo et al. 1998). Other putative defense

mechanism of G8 agrobacteria may be provided by SpG8 loci

by action of multidrug exporters (SpG8-6), whereas the side-

rophore biosynthesis locus (SpG8-3) might provide another

general fitness gain in competition with other bacteria present

in the biotope. Scavenging of limiting resources like iron is

FIG. 7.—Hypothetical integrated functioning of SpG8 genes allowing G8 member adaptation to their specific ecological niche. EPS,

exopolysaccharide; CrdS, curdlan synthase; McsS, mechano-sensitive channel; NodVW, two-component system sensor kinase and response regulator;

BraCDEFG, branched-chain amino acid transporter; RbsABC, ribose transporter; TetA, tetracycline extrusion pump; MatE, multidrug transporter;

FecBCD, iron-siderophore transporter.
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known to be a very potent means to outperform competitors,
especially in habitats like rhizospheres with dense and diverse

populations,asdescribedforplantgrowth-promotingrhizobac-

teria like Pseudomonas fluorescens or R. rhizogenes (Penyalver

et al. 2001; Siddiqui 2006).

Finally, locus SpG8-7b, which encodes membrane pro-

teins involved in the perception of mechanical and chemical

signals, is a candidate to facilitate recognition of favorable

environments. Interestingly, those putative environment-
sensing genes are homologous to systems of perception

of toluene and styrene in Pseudomonas sp. (Lau et al.

1997; Panke et al. 1998) and are conserved in synteny with

those from the chromosome of P. lavamentivorans SD-1.

This latter species is known to switch from motile to sessile

behavior in the presence of phenyl-substituted long-chain

fatty acids (Schleheck et al. 2004) that share structural fea-

tures with ferulic acid. These homology relationships strongly
suggest that two-component signaling systems of this family

are activated by the presence of some phenolics in the

medium. Moreover, these genes code proteins also homolo-

gous to NodVW/NwsAB from B. japonicum, which mediate

host recognition during the nodulation process. Consider-

ing these relationships, we hypothesized that locus

SpG8-7b is involved in the perception of signals from

the environment that may be responsible for activation
of other functions, including, perhaps, SpG8 functions

such as phenolic metabolism. The frequent reference to

phenolics in annotation of SpG8 genes suggests that these

compounds could be of primary importance in the biology

of G8 agrobacteria, being both metabolites and signals

released by the host plant.

Evolutionary History of SpG8 Genes

The presence of species-specific genes can be understood as

due to the conservation of ancestral genes lost in other spe-

cies or to the acquisition of foreign genes by the most recent

common ancestor. Several SpG8 regions (SpG8-1a, SpG8-4,

and SpG8-7a) contained genes that were also found in G6-

NCCPB925, the closest outgroup of G8. This suggests that

these specific regions may have been present in the common

ancestor of G8 and G6. Remarkably, these regions tended to-
ward the codon usage signature of core-genome genes (sup-

plementary table S5, Supplementary Material online, fig. 4).

Based on these elements, SpG8-1, SpG8-4, and SpG8-7 may

be clusters of ancestral genes already present in the genome

of an ancient ancestor of agrobacteria, specifically retained in

the [G6,G8] clade but lost in other clades. This is especially

probable for region SpG8-1. This region was possibly present

as an entire cluster in ancestors of G6-NCCPB925 and G9-Hay-
ward0362 and may then have been partially lost, leading to

differential retention of subregions SpG8-1a and SpG8-1b

in G6-NCCPB925 and G9-Hayward0362, respectively

(fig. 6A). In contrast, transfers may be more likely for SpG8

genes shared with more distant genomic species such as
G1 (SpG8-3 and SpG8-6a gene clusters) or G4 (Atu4215-

4218 in cluster SpG8-6b), which have sporadic-like codon us-

age signatures. This suggests that lateral gene transfer as well

as gene retention contribute to the establishment of a species-

specific gene repertoire.

Gene Content Flexibility of the Linear Chromosome

As previously observed at higher taxonomic level by compar-

ing Agrobacterium ‘‘biovars’’ (i.e., A. tumefaciens C58 to A.
vitis S4 and R. rhizogenes K84; Slater et al. 2009) and other

bacteria such as Vibrio (Chen et al. 2003; Vesth et al. 2010),

the second chromosome of A. tumefaciens genomic species

also appears as the major spot for innovation in the gene
repertoire (fig. 3). This high genomic flexibility of the second

chromosome was moreover likely facilitated by a linear ar-

chitecture as illustrated by the transfer of half of the linear

chromosome between C58 and other G8 members (fig. 1).

Actually, a bacterial linear chromosome could behave as

a standard eukaryotic chromosome requiring a single cross-

over to exchange almost a complete chromosome branch.

Linear chromosomes, which are rare genomic features in
bacteria, may facilitate the spread of adaptive genomic in-

novations and likely played a key role in speciation in the A.
tumefaciens complex as suspected in Streptomyces or Bor-
relia spp. (Volff and Altenbuchner 2000; Chen et al. 2010).

Parapatric Speciation Gives Rise to Genomic
Species

We found genes coding ecologically relevant functions pres-

ent in the genomes of members of a given genomic species

but not in its closest relatives. They were likely present in the

most recent common ancestor of its members likely allowing
ecological isolation. We may in turn speculate this isolation

initiated the speciation process. We chose to work with a ge-

nomic species with high known diversity (Mougel et al. 2002;

Portier et al. 2006; Costechareyre et al. 2009, 2010) and also

because this species has very closely related sister species of-

ten co-inhabiting the same soil (Costechareyre et al. 2010),

even at the very microscale (Vogel et al. 2003). Agrobacteria

are moreover common rhizospheric bacteria (Krimi et al.
2002, Costechareyre et al. 2010) which genomic species

are differentially trapped according to plant host (Lavire C,

unpublished data). Agrobacteria in soils thus form ecological

guilds where every species likely taps the same resources

(e.g., rhizospheres) in a similar way, except for a few specific

traits. As agrobacterial species are not geographically isolated

and because they have determinants for species-specific eco-

logical niche, we assume that these species have arisen by
parapatric speciation. It is likely that speciations in the same

habitat occurred as a consequence of local adaptations to

host plants, as suggested by annotations of G8-specific

functions.
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Adaptations to plants might be related to host specificity
as already suggested by the known preferential occurrence of

A. rubi, A. vitis, and A. larrymoorei in tumors of Rubus sp.,
Vitis sp., and Ficus benjamina, respectively. Determination of

specific adaptations of A. tumefaciens species may also

improve our knowledge about crown gall epidemiology, in-

cluding preferential spread by some hosts. In the case of G8,

we suspected preferential trapping by Medicago truncatula
(Lavire C, unpublished data), echoing the homology of SpG8-7
with sensors of E. meliloti—the symbiont of M. truncatula. Ad-

aptation to plant is possibly not confined to commensal adap-

tation to the root biotope but more generally to ecological

features encountered in the whole plant, including tumors.

Consequently, it is possible that A. tumefaciens species adap-

tations to plants may also modulate the epidemiology of path-

ogenic agrobacteria.

Interest of Ecological Species Concept Investigation
for Taxonomy

Agrobacterium tumefaciens genomic species are valid spe-
cies but they are still awaiting a valid Latin binomial because

they were lacking well-characterized distinctive phenotypic

traits. Novel G8 members could be identified by phyloge-

netic analysis of core genes such as recA or chvA, as previ-

ously described (Costechareyre et al. 2009, 2010) or by

looking for G8-specific genes via CGH microarrays or

PCR. However, the present work actually emphasizes several

traits such as curdlan production, ferulic acid degradation,
resistance to tetracyclin for genomovar G8 that, when com-

bined, would be valuable traits for species distinction. This is

why, in agreement with the latest recommendations of

Stackebrandt et al. (2002), we propose to valid the status

of genomovar G8 as a recognized bacterial species by giving

it a Latin binomial and a type strain, C58. We thus propose

this novel species be named Agrobacterium fabrum, from

the Latin plural genitive of smith, in reference to the use
of C58 to construct genetically modified plants, while also

honoring the pioneer isolator of Agrobacterium (Smith) as

well as other scientists with a Faber-related name in different

languages, for example, Smith, Schmidt, Smet, Faivre, Far-

rand, Faure, Herrera, etc., who studied various aspects of

Agrobacterium biology.

Generalization of the Concept of Bacterial Genomic
Species as Ecological Species

The question of ecological speciation of bacteria is still in

debate (Achtman and Wagner 2008) partly because the

bacterial species definition is at the center of this debate.
Here, we only consider the genomically based species def-

inition still acknowledged by international taxonomic com-

mittees (Wayne et al. 1987; Stackebrandt et al. 2002), even

though if there is still named bacterial species—especially in

anciently described human pathogens—that do not fit the

genomic species criterion. We thus chose a taxon level rel-
evant for the current taxonomy and intended to verify that

this taxon level could have specific ecological features that

scheme a potential primary niche. This was usually achieved

by investigating differential ecological properties of species

as for instance within the genus Prochlorococcus (Johnson

et al. 2006). We showed here that the discovery of the spe-

cific ecological niche of a species is amenable by compara-

tive genomic, when it is performed with several strains
within this species compared with strains belonging to

closely related species. This was done with Salmonella enter-
ica (Porwollik et al. 2002), Lactobacillus casei (Cai et al.

2009), and Campylobacter coli versus C. jejuni (Lefébure

et al. 2010). This should be generalized in future taxonomic

investigations in order to improve the biological information

attached to novel species. Of course, it is also possible to

infer primary ecology of other taxonomic levels such as
strain clusters within a species as shown in E. coli (Touchon

et al. 2009), genera, or still higher taxa (Philippot et al.

2010). Interestingly, these latter authors showed that the

broader the clade, the less defined is the associated ecology.

The present study highlighted the relevance of looking for

species-specific genes by assessing genome features. We

showed that—at least for the present model—species-specific

genes were involved in ecological adaptations to the species
primary niche. Consequently, it is likely that in this instance the

genomic species was of ecovar descent. Our study benefits

from the synergy between bioinformatic treatments of high

throughput data and bench works. Both approaches are

essential for reconstructing—without a priori knowledge—a

reliable ecological niche model for further investigations on

bacterial speciation and evolution.

Supplementary Material

Supplementary tables S1–S9 and figures S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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