

Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem

Amélie A. M. Cantarel, Juliette Bloor, Thomas Pommier, Nadine Guillaumaud, Caroline Moirot, Jean-François Soussana, Franck Poly

▶ To cite this version:

Amélie A. M. Cantarel, Juliette Bloor, Thomas Pommier, Nadine Guillaumaud, Caroline Moirot, et al.. Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem. Global Change Biology, 2012, 18 (8), pp.2520-2531. 10.1111/j.1365-2486.2012.02692.x . halsde-00722571

HAL Id: halsde-00722571 https://hal.science/halsde-00722571v1

Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Global Change Biology (2012) 18, 2520–2531, doi: 10.1111/j.1365-2486.2012.02692.x

Four years of experimental climate change modifies the microbial drivers of N_2O fluxes in an upland grassland ecosystem

AMÉLIE A. M. CANTAREL*†, JULIETTE M. G. BLOOR†, THOMAS POMMIER*, NADINE GUILLAUMAUD*, CAROLINE MOIROT*, JEAN-FRANÇOIS SOUSSANA† and FRANCK POLY*

*UMR CNRS 5557, Laboratoire d'Ecologie Microbienne, Université Lyon1, Université de Lyon, USC INRA 1193, bât G. Mendel, 43 boulevard du 11 novembre 1918, F-69622, Villeurbanne Cedex, France, †UR874-Grassland Ecosystem Research Unit, INRA, 234 Av. du Brézet, F-63100, Clermont-Ferrand, France

Abstract

Emissions of the trace gas nitrous oxide (N₂O) play an important role for the greenhouse effect and stratospheric ozone depletion, but the impacts of climate change on N₂O fluxes and the underlying microbial drivers remain unclear. The aim of this study was to determine the effects of sustained climate change on field N2O fluxes and associated microbial enzymatic activities, microbial population abundance and community diversity in an extensively managed, upland grassland. We recorded N₂O fluxes, nitrification and denitrification, microbial population size involved in these processes and community structure of nitrite reducers (nirK) in a grassland exposed for 4 years to elevated atmospheric CO₂ (+200 ppm), elevated temperature (+3.5 °C) and reduction of summer precipitations (-20%) as part of a long-term, multifactor climate change experiment. Our results showed that both warming and simultaneous application of warming, summer drought and elevated CO₂ had a positive effect on N₂O fluxes, nitrification, N₂O release by denitrification and the population size of N₂O reducers and NH₄ oxidizers. In situ N₂O fluxes showed a stronger correlation with microbial population size under warmed conditions compared with the control site. Specific lineages of nirK denitrifier communities responded significantly to temperature. In addition, nirK community composition showed significant changes in response to drought. Path analysis explained more than 85% of in situ N₂O fluxes variance by soil temperature, denitrification activity and specific denitrifying lineages. Overall, our study underlines that climate-induced changes in grassland N₂O emissions reflect climate-induced changes in microbial community structure, which in turn modify microbial processes.

Keywords: AOB, climate change, denitrification, diversity, grasslands, N2O, nirK, nitrification, nosZ

Received 19 January 2012 and accepted 20 February 2012

Introduction

In recent decades, changes in land use and human activities have had significant impacts on gaseous nitrogen (N) losses and the global cycle of N (Galloway *et al.*, 2004), contributing to regional and global changes in the atmosphere (IPCC, 2007). Emissions of nitrous oxide (N₂O) are of particular interest because this trace gas has a strong global warming potential (ca. 310 times greater than that of carbon dioxide) and is the single most important ozone-depleting emission (Ravishankara *et al.*, 2009). The magnitude of N₂O emissions depends on both microbial activities (nitrifiers and/or denitrifiers, Bremner, 1997; Wrage *et al.*, 2004) and abiotic factors, including soil temperature, oxygenation, mineral nitrogen, pH, carbon availability and water

Correspondence: Amélie A. M. Cantarel, tel. + 33 472 431 378, fax + 33 472 431 223, e-mail: amelie.cantarel@laposte.net

content (Simek et al., 2002; Smith et al., 2003; Jones et al., 2005). Consequently, understanding the interplay between microbial and environmental variables is critical for the estimation of potential N_2O fluxes from soils under climate change.

Despite a large number of studies documenting gaseous N₂O emissions from grassland ecosystems, few have focused on impacts of climate change drivers on N₂O fluxes and associated microbial processes (Clayton *et al.*, 1997; Flechard *et al.*, 2007; but see Avrahami & Bohannan, 2009). In theory, warming is expected to have positive effects on nitrification and denitrification rates (Gödde & Conrad, 1999), with cascading effects on N₂O emissions. However, warming responses of both nitrification and denitrification appear to be highly variable across sites (Emmett *et al.*, 2004; Horz *et al.*, 2004; Malchair *et al.*, 2010; Szukics *et al.*, 2010), which may partly reflect variable soil water content status during experiments (Barnard & Leadley, 2005). Impacts

of reduced soil moisture status on microbial processes are well established (Barnard et al., 2004; Barnard & Leadley, 2005; Bateman & Baggs, 2005), typically promoting denitrification at the expense of nitrification via changes in soil aeration and O2 content (Smith et al., 2003). In addition, elevated CO₂ may indirectly alter microbial processes by both increasing soil moisture (Smith & Tiedje, 1979) and carbon substrate availability (Luo & Mooney, 1999). Previous study suggests that elevated CO₂ may have greater positive effects on denitrification than nitrification (Baggs et al., 2003; Barnard et al., 2004), but considerable variation is observed across studies.

Although information on N₂O emissions and microbial activities subjected to individual climate change drivers is becoming increasingly available (Bateman & Baggs, 2005; Kammann et al., 2008; Malchair et al., 2010), data on N₂O flux responses to multiple and simultaneous environmental changes remain scarce. In a recent study, examining the impact of co-occurring climatic changes on N2O fluxes in an upland grassland, Cantarel et al. (2011) found that N2O fluxes responded equally strongly to both warming alone and the combination of summer drought or elevated CO2 and warmed conditions. Results from laboratory incubations suggest that interactions between soil moisture and temperature can generate complex patterns of N₂O emissions under controlled conditions (Avrahami & Bohannan, 2009), but the importance of multiple climate changes for field N₂O emissions remains unclear.

In addition to direct climate-induced changes in microbial activities, climate change drivers can impact N transformations and N₂O emissions via indirect effects on the abundance of different microbial populations, and microbial community structure. Variation in soil N2O emissions may reflect differences in terms of abundances and/or composition of AOB (ammonium oxidizing archea seem to be not involved in N₂O emission; Di et al., 2010) and denitrifying microorganisms (Avrahami & Bohannan, 2009; Philippot et al., 2010; Brown et al., 2011). To date, only AOB community structure has been studied for grasslands subjected to complex, multiple climate change treatments (Horz et al., 2004). Horz et al. found that abundance of AOB decreased in response to combined elevated CO2 and increased precipitation, but these effects appeared to be buffered under elevated temperature conditions. To our knowledge, no study has yet focused on changes in denitrifiers community structure under climate change. Hence, the potential impact of multiple climatic variables on the microbial community structure, and the respective contributions of AOB and denitrifying microorganisms to N₂O fluxes on terrestrial ecosystems remain poorly understood.

In the present study, we investigated the relationship between field N₂O fluxes and soil microbial parameters under three key climate change drivers at the Clermont Climate Change Experiment facility (Bloor et al., 2010). This long-term grassland climate change facility manipulates air temperature (+3.5 °C), atmospheric CO₂ (+200 ppm) and summer drought (-20% summer rainfall) in an additive experimental design. The aims of our study were to determine impacts of sustained single and combined climate change treatments on N2O fluxes, nitrification, denitrification, abundance of microorganisms (AOB and nitrite reducers), denitrifiers community structure and to estimate the existing relationships between N2O fluxes, abiotic parameters and microbial parameters. Specifically, we asked: (1) How do nitrification, denitrification, abundances and composition of microbial nitrifiers/denitrifiers respond to multiple and simultaneous climate changes? (2) Are variations in field N2O fluxes mirrored by changes in microbial activities, abundance or community structure of specific microbial functional groups?

Materials and methods

Experimental design and climate treatments

The studied ecosystem was an upland permanent grassland in the French Massif Central region (45°43'N, 03°01'E, 850 m a.s.l.), characterized by a Cambisol soil (59.5% sand, 19.7% silt, 20.8% clay, pH 6.2), and a grass-dominated plant community (Festuca arundinaceae, Elytrigia repens, Poa pratensis; described in Bloor et al., 2010). The study area has a mean annual temperature of 8.7 °C and a mean annual rainfall of 780 mm.

The Clermont Climate Change Experiment was established in 2005, manipulating air temperature, summer rainfall and atmospheric CO2 in line with IPCC projections for the study area in 2080 (ACACIA A2 scenario, IPCC, 2007; see Bloor et al., 2010 for full details). In brief, the experimental design consisted of 80 grassland monoliths (0.5 \times 0.5 \times 0.4 m in size), excavated from the study grassland site and allocated at random to one of four climate treatments; C (control), T (+3.5 °C), TD (+3.5 °C, 20% reduction in summer rainfall) and TDCO₂ (+3.5 °C, 20% reduction in summer rainfall, CO₂ levels of 600 ppm). Each experimental treatment comprised of five experimental units (or repetitions), formed by grouping four monoliths together in specially prepared cavities in the ground. Elevated temperatures were achieved by transporting monoliths to a nearby lower-altitude site (Clermont-Ferrand, 350 m a.s.l.). Summer drought was established by the use of rain screens and reduced watering regimes during June, July and August. Enrichment of atmospheric CO2 was obtained by Mini-FACE (Free Air Carbon dioxide Enrichment) technology; the target CO₂ concentration was only operational during daylight hours.

Meteorological measurements were achieved using a Campbell Scientific automatic weather station and logged to a CRX-10 data logger (Campbell scientific Inc., Utah, USA) at 30 min intervals for both the upland and lowland sites. Volumetric soil moisture (0–20 cm) was recorded hourly using ECH₂O-20 probes (Dielectric Aquameter; Decagon Devices, Inc., Pullman, WA, USA). To stimulate the management prior to monolith extraction (i.e., low-intensity sheep grazing and no fertilization), vegetation in all experimental units was cut to a height of 5 cm at 6 month intervals (April and October). Monoliths were not fertilized throughout the study, in keeping with extensive management practices.

N_2O flux measurements and soil sampling

N₂O fluxes were determined on four dates between May and November 2009, using medium-size, closed and non-vented manual chambers on one monolith per experimental unit (following Cantarel et al., 2011). During each N2O measurement campaign, chambers were fixed onto a permanent base for each target monolith and gas samples were taken at 520 min intervals using a quick release pneumatic connector (TST Tansam Inc, Kocaeli, Turkey) and a PTFE-Teflon tube connected to an INNOVA 1412 photoacoustic multi-gas analyzer (INNOVA AIR Tech Instruments, Ballerup, Denmark). The INNOVA gas analyzer was encased in an air-conditioned box maintained at 20-25 °C to avoid confounding effects of temperature on analyzer measurements. N2O fluxes were calculated by linear regression of N2O in the chamber against time; flux data were rejected if the statistic P-value was above 0.05 and $r^2 < 0.95$ (Cantarel et al., 2011). Soil temperature in the topsoil layer (2-5 cm) was recorded by thermocouples (TC S.A., Dardilly, France) during N2O measurement campaigns. Immediately following in situ N₂O measurements, three soil cores (diameter 1.5 cm) were taken from the top layer (0-10 cm) of each target monolith, pooled together and sieved at 4 mm. Soils were stored for less than 5 days at 4 °C before carrying out assays for nitrification and denitrification enzyme activity (NEA, DEA respectively). A subsample of ca. 2 g fresh soil was frozen at −18 °C for subsequent molecular analyses.

Denitrifying and nitrifying enzyme activities

Denitrification enzyme activity (DEA) was measured in fresh soils from each monolith following the protocol described in Patra et al. (2006). Two sub-samples (10 g equivalent dry soil) from each soil sample were placed into 150 ml plasma flasks, and 7 ml of solution containing KNO₃ (50 μg NO₃⁻ N g⁻¹ dry soil), glucose (0.5 mg C g⁻¹ dry soil) and glutamic acid (0.5 mg C g⁻¹ dry soil) were added. Additional distilled water was provided to achieve 100% water holding capacity and optimal conditions for denitrification. The atmosphere was replaced by helium to provide anaerobic conditions and for one flask of each pair, 10% C₂H₂ was added to inhibit N₂O reductase activity. During incubation at 28 °C, gas samples were taken at 2, 3h30, 5, 6h30 and immediately analyzed for N₂O quantitation using a gas chromatograph (R3000μGC; SRA instrument, Marcy l'Etoile, France). For the first series of samples without C₂H₂, we measured N₂O accumulation, i.e.,

potential N_2O emission rates of our soil (N_2O_{DEA}) . The second series of samples with C_2H_2 allowed the determination of maximal N_2O production (N_2O_{TOT}) . We estimated potential fluxes of N_2 (N_{2DEA}) by subtracting N_2O_{DEA} from N_2O_{TOT} .

Nitrification enzyme activity (NEA) was determined following the protocol described in Dassonville et al. (2011). Briefly, subsamples of fresh soil (3 g equivalent dry soil) were incubated with 6 ml of a solution of N-NH₄ (50 μ g N-(NH₄)₂SO₄ g⁻¹ drv soil). Distilled water was adjusted in each sample to achieve 24 ml of total liquid volume in flasks. The flasks were sealed with Parafilm® (Pechiney Plastic Packaging, Menasha, WI, USA) and incubated at 28 °C with constant agitation (180 rpm). During incubation, 1.5 ml of soil slurry was sampled at 1, 2h30, 4, 5h30 and 7h, filtered (0.2 μ m pore size). Samples were stored at -20 °C until analysis of NO2-/NO3- concentrations on an ionic chromatograph (DX120 Dionex, Salt Lake City, USA). A linear rate of NO₂⁻ + NO₃⁻ production with time was always observed, and the rates of NEA were determined from the slope of this linear regression. The intercept was used to estimate pools of soil nitrate (NO₃⁻).

Soil DNA extraction and quantitation of AOB, nirK and nosZ abundances

DNA was extracted for each frozen soil subsample (0.5 g equivalent dry soil) using the 96 Well Soil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) and manufacturer protocols. The quantity of the DNA extraction was checked using the Quant-iTTM PicoGreen® method (Quant-iTTM PicoGreen® dsDNA Assay kit; Molecular Probes Inc., Eugene, OR, USA).

All gene quantitations were obtained by qPCR, using a Lightcycler 480 (Roche Diagnostics, Meylan, France). The abundance of β -proteobacterial AOB, that represented known AOB in soil, and which are potentially implied in N2O emissions (Wrage et al., 2004) was measured by qPCR targeting 16S rRNA gene sequences specific to this group (Hermansson & Lindgren, 2001). The final qPCR reaction volume was 20 μ l, with $0.5~\mu\mathrm{M}$ of a 2:1 ratio of primer CTO189fA/B (GGAGR AAAGCAGGGATCG) and CTO189fC (GGAGGAAAGT AGGGGATGC; Kowalchuk et al., 1997), 0.5 μM of RT1r primer (CGTCCTCTCAGACCARCTACTG; Hermansson & Lindgren, 2001), 0.5 μ M of TPM1 probe (CAACTAGCTAATCAGR CATCRGCCGCTC), 0.4 mg ml⁻¹ bovine serum albumin (BSA), 10 ng of sample DNA or standard DNA with known number of copies. The samples were run as follow: 10 min at 95 °C; 45 cycles at 95 °C for 10 s, 58 °C for 20 s, and 1 s at 72 °C; and 30 s at 40 °C.

The abundance of nirK genes was determined using SYBR Green as the detection system in a reaction mixture of 20 μ l, with 10 μ l of SYBR Green PCR master mix, including HotStar TaqTM DNA polymerase, QuantiTec SYBR Green PCR buffer, dNTP mix with dUTP SYBR Green I, ROX and 5 mM MgCl₂ (QuantiTectTM SYBR $^{\otimes}$ Green PCR Kit; Qiagen, Courtaboeuf, France), 1 μ M of nirK876 primer (ATYGGCGGVAYGGCGA), 1 μ M of nirK1040 primer (GCCTCGATCAGRTTRTGGTT), according to Henry et~al., 2006, 0.4 μ g of T4 gene protein 32 (QBiogene, France), 5 ng of soil DNA and Rnase-free water to complete the 20 μ l volume. The conditions for nirK qPCR were 15 min at 95 $^{\circ}$ C for

denaturation; 45 cycles at 95 °C for 15 s, 63 °C for 30 s and 72 °C for 30 s for amplification; 1 s at 95 °C and 20 s at 68 °C for acquisition step and 10 s at 40 °C to finish analysis.

For nosZ gene quantitation, the primers nosZ2F (5'-CGCRACGGCAASAAGGTSMSSGT-3') and nosZ2R (5'-CAK-RTGCAKSGCRTGGCAGAA-3'), according to Henry et al. (2006) were used. The final volume 25 μ l PCR mix contained: OuantitTect SybrGreen PCR Master Mix 1X (Oiagen), 0.1 µg of T4 gene protein 32 (QBiogene), 1 μM of each primer, and 5 ng of soil DNA extract or 5 μ l of ten-fold standard serial dilution ranging from 107 to 102 nosZ copies of genomic DNA from Pseudomonas aeruginosa PA14. Thermal cycling was carried out by an initial enzyme activation step at 95 °C for 10 min followed by 55 cycles of denaturation at 95 °C for 15 s, annealing at 68 °C for 30 s with a touchdown of -1 °C by cycle until reach 63 °C and elongation at 72 °C for 30 s.

Characterization of nirK community by cloningsequencing

Characterization of nirK community was achieved on DNA extracted from samples taken at the beginning and at the end of flux measurements, i.e., May and November 2009 with/ without field N₂O fluxes respectively. We used the conditions described by Wertz et al. (2006) to amplify partial nirK gene sequences prior to cloning procedures. Briefly, PCR was performed using the primers Copper 583F (5'-TCATGGT GCTGCCGCGKGACGG-3') and Copper 909R (5'-GAAC TTGCCGGTPGCCCAGAC-3') according to Liu et al. (2003) and 30 ng of extracted DNA. The final reagent concentrations for PCR were 1 µM primers, 200 µM of each dNTP, 1.75 U of Taq (Qbiogene, Carlsbad, USA), and 0.5 μg of T4 protein in $50~\mu l$ of 10~m M Tris-HCl, 50~m M KCl, 0.1% Triton X-100, 1.5 mm MgCl2, pH 9. Thermal cycling was carried out by an initial step at 94 °C for 5 min followed by 30 cycles of denaturation at 94 °C for 30 s, annealing at 72 °C for 1 min with a touchdown of −1 °C by cycle until reach 67 °C and elongation at 72 °C for 1 min and a final elongation cycle at 72 °C for 7 min. PCR products were purified using the NucleoSpin® Extract II kit (Macherey-Nagel, Düren, Germany) and were cloned using the pGEM T-Easy vector system (Promega Ltd., Southampton, UK) and DH10B electrocompetent Escherichia coli cells (Fisher Scientific-Invitrogen, Illkirch, France). For each treatment, three clone libraries were constructed from three (out of the four) randomly selected replicates. From each clone library, at least 28 clones were randomly picked and their vector sent for purification and sequencing (LGC Genomics, Berlin, Germany). Nucleotide sequences have been deposited in GenBank under the following accession numbers: JQ770451-JQ771049.

DNA sequence process, phylogentetic assessment and comparison of microbial communities

Vector and primer sequences were trimmed from the raw sequence dataset. Chimera formations were detected using ChimeraCheck (Cole et al., 2005) and sequences shorter than 358 bp were removed from the original dataset. From a total

of 631 remaining 'clean' sequences random normalization of sample sizes was carried out using the Daisy Chopper tool (Gilbert et al., 2009), based on the smallest sample i.e., 25 sequences. This subsampled dataset was then aligned together, included the outgroup sequence of the nirS gene of Dechloromonas aromatica using MUSCLE (Edgar, 2004) and the resulting alignment was manually checked using Seaview (Galtier et al., 1996). From the resulting optimized alignment, a maximum likelihood phylogenetic tree was inferred using RAxML (Stamatakis, 2006) under a GTR + Gamma + Invariable model of sequence evolution (Appendix 1). The resulting tree was then imported into the UNIFRAC on-line tool (Lozupone et al., 2006) for comparison of community composition and detection of lineages specific to the various treatments. The RAMI tool was used to measure accurate branch lengths and distances between nodes containing (Pommier et al., 2009). Proportional abundances of selected nodes were depicted using the KRONA tool (figure 2, Ondov et al., 2011).

Statistical analyses

Effects of climate treatment on N₂O, NEA, NO₃⁻, N₂O_{DEA}, N_{2DEA}, and abundance of gene copies (16S rRNA of AOB, nirK, nosZ) were analyzed using mixed model repeated measures analysis of variance (ANOVA) with both treatment and date as fixed factors (Zar 1998). Effects of individual climate change drivers (temperature, drought, and CO2) were analyzed using orthogonal contrasts (Gilligan, 1986). Effects of warming were determined by comparing the C and T treatment; effects of summer drought under elevated temperature by comparing T and TD; effects of elevated (CO2) under elevated temperature and drought by comparing TD and TDCO2; effects of simultaneous application of warming, summer drought, and CO2 enrichment (2080 climate scenario) were investigated by the C vs. TDCO2 comparison. All data used were checked for normality and non-normal data were log transformed to conform with assumptions of normality and homogeneity of variances. Relationships between field N2O fluxes, potential activities and gene abundances were examined using Spearman correlation coefficients. All analyses were carried out using Statgraphics Plus 4.1® (Statistical Graphics Corp., Rockville, Maryland, USA).

We performed a restricted maximum likelihood method (REML) with the software JMP8® (SAS Institute Inc., SAS Campus Drive, NC, USA) considering monoliths as a random factor to determine, which variables (among soil temperature, WFPS, NO₃- and NH₄₊ contents, abundances, activities and composition of denitrifiers) were significantly related to in situ N2O fluxes in May and November (i.e., dates with diversity analyses). To compare field measures of N2O fluxes to denitrification activities measured in the laboratory, which differed in experimental temperature, we linearly transformed the denitrification values (N2ODEA corr) as suggested by their known linear correlation between 4 and 25 °C (Braker et al., 2010).

Structural equation modeling (SEM) was performed using Amos18® (Amos Development Corporation, Crawfordville, FL, USA) with the data from May and November to explore the causal links between denitrification, microbial community

structure, abiotic factors and the *in situ* N₂O fluxes, using the following parameters: soil temperature, WFPS, pool of NO₃-, N₂O_{DEA}, N₂O_{DEA} corr, percentage of sequences in *nir*K lineages A and B (Appendix 2). In a SEM, a χ^2 test is used to determine whether the covariance structures implied by the model adequately fit the actual covariance structures of the data. A non-significant chi-squared test (P > 0.05) indicates adequate model fit. The coefficients of each path as the calculated standardized coefficients were determined using the analysis of correlation matrices. Paths in this model were considered significant with a P-value <0.1. These coefficients indicate by how many standard deviations the effect variable would change if the causal variable was changed by one standard deviation.

Results

Characteristics of climate treatments

During the study period (May-November 2009), the difference in mean monthly temperature between control and elevated temperature treatments was 3.4 ± 0.03 °C (Appendix 3). In summer (June, July, and August), the drought treatments (TD, TDCO₂) were subjected to a 21% reduction in rainfall compared with the no-drought treatments (C, T). Mean daily CO₂ differences between the TDCO₂ treatment and the ambient CO₂ treatments (C, T, and TD) were 193.3 ± 13.1 ppm (data not shown). Meteorological variables (i.e., soil moisture and soil temperature) recorded on days of N2O measurement indicated higher soil temperature in the warmed treatments (T, TD and TDCO₂) compared with the control (C). No significant differences in soil moisture between the C, T and TDCO2 treatments were found for the four sampling dates (*T*-test, Table 1). However, the TD treatment showed lower soil moisture values than the T treatment in July and September. We found no significant difference between soil moisture

Table 1 Mean soil moisture (WFPS, %) and soil temperature recorded during each N_2O measurement date for experimental climate treatments. Means and SEs are presented (n=5)

	29th May	27th July	23rd September	28th November
WFPS (%)				
C	31.9 ± 0.0	35.9 ± 0.0	50.1 ± 0.0	52.9 ± 0.3
T	29.3 ± 1.1	32.7 ± 1.6	45.2 ± 2.9	52.6 ± 2.3
TD	32.4 ± 0.8	29.4 ± 0.3	30.6 ± 0.3	48.8 ± 0.2
$TDCO_2$	29.5 ± 0.8	37.3 ± 1.8	47.1 ± 1.7	51.8 ± 1.5
Soil temper	ature (°C)			
C	17.3 ± 0.4	17.3 ± 0.4	14.3 ± 0.2	4.2 ± 0.3
T	22.7 ± 1.5	23.8 ± 0.6	17.1 ± 0.5	6.3 ± 0.6
TD	23.5 ± 1.2	24.9 ± 1.1	17.3 ± 0.7	5.7 ± 0.7
$TDCO_2$	22.6 ± 1.2	22.9 ± 0.9	17.4 ± 0.8	6.7 ± 0.6

and air temperature measured on the days of sampling and the averages recorded on the five previous days (all dates and treatments). This consistence between measurements allows considering measurements of each sampling date as representative of the preceding week.

Effects of climate change drivers on in situ N₂O fluxes

During the four measurement dates, N2O fluxes ranged from -5 to 369 μ g N₂O-N.m⁻².hr⁻¹ across treatments. N₂O fluxes showed significant climate treatment effects for measurement dates during the growing season, but no response to climate treatments in November (significant treatment \times date interaction; $F_{1.9} = 2.16$, P < 0.05; Fig. 1). This significant interaction was driven by very low N2O fluxes in November across all climate treatments. With the exception of the November sampling date, warming had a positive effect on N₂O emissions (C vs. T comparison; $F_{1,16} = 23.1$, P < 0.001; $F_{1,16} = 6.6$, P < 0.05 and $F_{1,16} = 14.6$, P < 0.01 respectively for May, July and September). This pattern of response was also found for the combined climate change drivers (C vs. TDCO2) in May and July. Unlike warming and combined climate change, summer drought (T vs. TD) and elevated CO2 (TD vs. TDCO2) had little impact on N₂O fluxes. However, drought was associated with a significant negative effect on N₂O fluxes in September $(F_{1,16} = 15.5, P < 0.01; Fig. 1).$

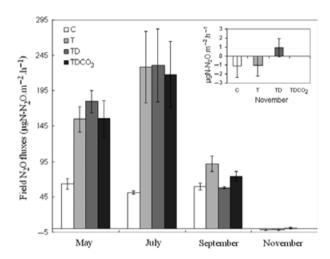


Fig. 1 Effects of climate manipulations on N₂O fluxes for measurement dates in spring, summer and autumn 2009. Treatments are given by: C, control; T, elevated temperature (+3.5 °C); TD, elevated temperature and summer drought (+3.5 °C, -20% rainfall); TDCO₂, elevated temperature, summer drought and CO₂ enrichment (+3.5 °C, -20% rainfall, +200 ppm CO₂). Means and standard errors are presented per treatment and measurement date (n = 5).

Changes in nitrifying and denitrifying enzyme activities

Over the course of the study, climate treatments had a significant effect on NEA, N₂O_{DEA} and soil nitrate pools (Table 2). Warming and combined climate treatments had a positive impact on nitrification (NEA; $F_{1,38} = 5.7$, P < 0.05 and $F_{1,16} = 6.9$, P < 0.05 respectively) and on NO₃⁻, which is the product of the nitrification ($F_{1.38} = 10.67$, P < 0.01 and $F_{1.38} = 10.85$, P < 0.01for C vs. T and C vs. TDCO2 respectively). In addition, combined warming, drought and elevated CO2 had a positive effect on N₂O_{DEA} across all measurement dates (C vs. TDCO₂, $F_{1.38} = 5.4$, P < 0.05). In contrast, the potential fluxes of N2 (N2DEA) and denitrification product ratio $(N_2O_{DEA}/[N_2O_{DEA} + N_{2DEA}])$ showed no response to climate treatments. Neither summer drought under warmed conditions (T vs. TD) nor elevated CO2 in combination with warming and summer

drought (TD vs. TDCO₂) had any significant effect on nitrifying and denitrifying enzyme activities. Across treatments, NO₃⁻, N₂O_{DEA}, N_{2DEA}, and denitrification product ratio showed a significant effect of measurement date (Table 2). NO₃⁻ and N_{2DEA} showed a continuous increase over time ($r^2 = 37.7$, P < 0.001 and $r^2 = 23.8$, P < 0.001 respectively), whereas N_2O_{DEA} and denitrification product ratio showed a progressive decrease overtime ($r^2 = 18.3$, P < 0.001 and $r^2 = 49.6$, P < 0.001 respectively).

Changes in the abundances of AOB, nirK and nosZ

Responses of gene abundances to climate change treatments varied depending on the gene considered (Table 3). Both warming and combined climate change had a positive effect on abundance of N2O reducers (nosZ; $F_{1,16} = 6.1$, P < 0.05 and $F_{1,16} = 6.4$,

Table 2 Effects of climate change treatment on (a) nitrifying enzyme activities (NEA), (b) nitrates (NO₃⁻), (c) potential N₂O fluxes (N_2O_{DEA}) , (d) potential N_2 fluxes (N_{2DEA}) and (e) denitrification product ratio (means and standard errors; n = 5). Results from repeated measures ANOVA testing the effects of climate change treatments, measurement dates and their interaction are presented (significant P values are shown in bold)

	Climate treatments				Repeated measures ANOVA				
	С	T	TD	TDCO ₂	P	Treatments	Dates	Treatments × dates	
(a) NEA (μg N($NO_2 + NO_3) g^{-1}$	$^{1}h^{-1}$)							
May	0.51 ± 0.09	0.82 ± 0.09	0.87 ± 0.16	0.89 ± 0.16	*	0.003	0.238	0.807	
July	0.53 ± 0.06	0.70 ± 0.16	0.89 ± 0.14	0.91 ± 0.08					
September	0.72 ± 0.10	0.94 ± 0.13	0.82 ± 0.09	0.92 ± 0.12					
November	0.81 ± 0.10	0.91 ± 0.13	0.82 ± 0.08	1.06 ± 0.18					
(b) NO ₃ ⁻ (μg N	$-NO_3^g^{-1}$								
May	3.1 ± 0.5	2.8 ± 0.6	2.5 ± 0.6	3.2 ± 0.6	***	0.002	< 0.001	0.080	
July	4.3 ± 0.4	5.5 ± 0.9	6.2 ± 1.9	7.2 ± 0.8					
September	6.8 ± 1.1	14.7 ± 3.9	15.5 ± 3.2	10.3 ± 2.3					
November	5.2 ± 0.8	13.3 ± 2.8	14.3 ± 3.6	14.9 ± 2.9					
(c) N ₂ O _{DEA} (μg	$N-N_2O g^{-1}h^{-1}$								
May	1.17 ± 0.04	1.39 ± 0.13	1.51 ± 0.22	1.39 ± 0.01	***	0.022	< 0.001	0.712	
July	1.05 ± 0.07	1.15 ± 0.09	1.15 ± 0.01	1.30 ± 0.09					
September	1.19 ± 0.06	1.15 ± 0.06	1.21 ± 0.13	1.28 ± 0.10					
November	0.98 ± 0.04	1.03 ± 0.07	1.03 ± 0.06	1.19 ± 0.1					
(d) N _{2DEA} (μgN	$(-N_2 g^{-1}h^{-1})$								
May	0.07 ± 0.04	0.04 ± 0.01	0.06 ± 0.01	0.17 ± 0.09	**	0.555	< 0.001	0.557	
July	0.08 ± 0.04	0.19 ± 0.05	0.20 ± 0.06	0.09 ± 0.03					
September	0.08 ± 0.03	0.27 ± 0.11	0.25 ± 0.15	0.19 ± 0.04					
November	0.29 ± 0.04	0.29 ± 0.05	0.38 ± 0.09	0.37 ± 0.03					
(e) Denitrification	on product ratio	(% N ₂ O _{DEA} /[N ₂	$_{2}O_{DEA} + N_{2DEA}$)					
May	93.1 ± 2.2	97.7 ± 2.2	96.8 ± 2.1	95.7 ± 1.9	***	0.129	< 0.001	0.197	
July	92.0 ± 3.6	85.8 ± 3.8	85.5 ± 3.6	93.1 ± 2.4					
September	93.3 ± 2.2	81.6 ± 10	80.1 ± 5.8	86.7 ± 3.6					
November	77.2 ± 2.6	77.8 ± 4.2	73.8 ± 8.9	75.7 ± 2.1					

^{*,****} indicates significant differences at P < 0.05; 0.01 and 0.001, respectively and italic indicates marginal differences (0.05 < P < 0.1).

Table 3 Effects of climate change treatments on the (a) AOB, (b) nirK and (c) nosZ gene abundances (means and standard errors are shown; n = 5). Results from repeated measures ANOVA testing the effects of climate change treatments, measurement dates and their interaction are presented (significant P-values are shown in bold)

	Climate treatments				Repeated measures ANOVA				
	С	T	TD	TDCO ₂	P	Treatments	Dates	Treatments × dates	
(a) Mean copy i	numbers of amm	onia-oxidizing b	pacteria (10 ⁶ copy	y per g of dry soi	il)				
May	3.97 ± 0.15	5.58 ± 0.67	4.34 ± 0.80	4.13 ± 0.15	***	0.083	< 0.001	0.021	
July	4.84 ± 0.70	4.95 ± 0.46	4.77 ± 0.69	5.32 ± 0.76					
September	5.14 ± 0.39	4.73 ± 0.50	4.40 ± 0.66	5.01 ± 0.32					
November	5.12 ± 0.43	6.40 ± 0.59	7.23 ± 0.54	8.36 ± 0.86					
(b) Mean copy	numbers of Cu n	itrite reductors	ıirK (10 ⁷ copy pe	r g of dry soil)					
May	1.70 ± 0.23	1.93 ± 0.12	1.48 ± 0.14	1.64 ± 0.18	ns	0.371	0.051	0.740	
July	2.10 ± 0.38	2.06 ± 0.35	2.31 ± 0.37	2.22 ± 0.33					
September	1.62 ± 0.25	2.20 ± 0.33	1.82 ± 0.31	1.94 ± 0.19					
November	1.36 ± 0.23	1.76 ± 0.26	1.98 ± 0.24	2.03 ± 0.84					
(c) Mean copy r	numbers of nitro	us oxide reducto	ors <i>nos</i> Z (10 ⁷ copy	per g of dry soi	1)				
May	2.24 ± 0.39	2.46 ± 0.38	2.54 ± 0.90	2.57 ± 0.85	*	0.017	0.048	0.942	
July	1.49 ± 0.26	2.76 ± 0.28	3.76 ± 0.91	2.98 ± 0.84					
September	1.64 ± 0.13	2.78 ± 0.38	3.22 ± 0.91	3.56 ± 0.94					
November	2.33 ± 0.12	3.93 ± 0.45	4.13 ± 0.66	4.71 ± 0.97					

C, control treatment; T, elevated temperature treatment; TD, temperature and drought treatment; TDCO₂, temperature, drought, and elevated CO₂.

P < 0.01 respectively) at all measurement dates (no significant Treatment \times Date interaction). In addition, nosZ gene abundance was found to increase over time (Table 3, $r^2 = 12.5$, P < 0.05). Climate treatment also had significant effects on the abundance of AOB sequences, but treatment effects varied overtime (significant treatment \times date interaction, Table 3). In general, numbers of AOB copies were significantly higher in November compared with those in May and July. Warming had a positive effect on the abundance of AOB in May and November ($F_{1,16} = 6.3$, P < 0.05 and $F_{1,16} = 9.1$, P < 0.01 respectively), whereas combined climate and elevated CO_2 alone was only associated with an increase in AOB in November

 $(F_{1,16} = 8.5, P < 0.05)$ for combined climate and $F_{1,16} = 16.5, P < 0.001$ for elevated CO₂). Unlike *nos* Z and AOB, abundance of *nir*K genes showed no significant response to climate treatments over the four measurement dates.

Relationship between microbial activities, microbial population abundances and abiotic factors

Across treatments, field N_2O fluxes showed a positive correlation with denitrification product ratio, which is consistent with its positive correlation with the denitrification enzyme activity producing N_2O (N_2O_{DEA}) and a negative correlation with the reduction of N_2O to N_2

Table 4 Correlation coefficients (Spearman) between field N_2O fluxes, microbial activities and gene abundances pooled across experimental climate treatments and dates (n = 80), and for each climate treatment pooled across dates (n = 20). Significant P values (P < 0.05) are shown in bold and marginal P values (P < 0.05) are in italic

N_2O fluxes	Microbial activities				Gene abundances			
	NEA	N_2O_{DEA}	N _{2DEA}	Denitrification product ratio	AOB	nirK	nosZ	nosZ/nirk
Pooled treatments	0.016	0.335	-0.291	0.411	-0.179	0.117	-0.166	-0.216
C	-0.462	0.477	-0.734	0.768	-0.205	0.281	0.017	-0.211
T	-0.428	0.221	-0.321	0.398	0.006	0.359	-0.177	-0.426
TD	0.206	0.275	-0.356	0.475	-0.314	-0.252	-0.447	-0.327
TDCO ₂	-0.101	0.305	-0.393	0.599	-0.346	0.120	-0.264	-0.394

^{*,***} indicates significant differences at P < 0.05 and 0.01, respectively and italic indicates marginal differences (0.05 < P < 0.1).

 (N_{2DEA}) during the study period (Table 4). This pattern was mirrored by N₂O fluxes in the control treatment. In addition, N2O fluxes in the C treatment showed a significant negative correlation with NEA (Table 4). Variation in gene abundances played a relatively more important role for N2O fluxes under warmed conditions compared with the control. In the T treatment, N₂O fluxes showed a significant negative correlation with both NEA and the nosZ/nirK ratio (Table 4). In the TD treatment, N₂O fluxes were positively correlated with the denitrification product ratio, but negatively correlated with nosZ abundance (Table 4). Finally in the TDCO₂ treatment, N₂O fluxes showed a positive correlation with the denitrification product ratio, but a negative correlation with N_{2DEA} and the nosZ/nirK ratio. No significant relationships were observed between N2O fluxes and gene abundances across treatments (Table 4).

Changes in nirK community and diversity structure

On the basis of the complete maximum likelihood tree (Appendix 1), both the Unifrac significance and the P-test significance indicated that the nirK community sampled in May was significantly different in its structure from the community sampled in November (P < 0.03). In addition, the sequences from the November samples had a significant number of unique branches compared to the rest of the tree ($P \leq 0.01$). When clus-

tering the environments according to the full tree topology (Appendix 4) the nirK communities from the treatments T and TDCO2 shared the most sequences, and were closer to the control nirK community than to the TD community. All pairwise comparisons of the treatments showed significant differences (Jackknife analysis, P < 0.05). At a branch threshold of 0.05, two lineages showed significant biases toward specific treatments (Fig. 2). Lineage A showed significant dominance in the TDCO₂ treatment (dominance 18 observed while 8.5 expected) and the C treatment (recession 2 observed instead of 8.5 expected). Lineage B showed significant dominance in all elevated temperature treatments compared with control (C = 3; T = 22; TD = 20; $TDCO_2 = 19$; expected = 16). Compared to the rest of the tree, the sequences belonging to both lineages showed significant differences in high-GC% sequences (mean GC % = 62.92% for lineages A and B; GC% = 62.03% for all other sequences; Kruskal–Wallis, $X^2 = 32.5$, P < 0.001).

Microbial drivers of N₂O fluxes, a structural equation modeling

Structural equation modeling (SEM) identified potential causal relationships between variables significantly correlated with in situ N₂O fluxes ($\chi^2 = 5.204$, P = 0.391; Fig. 3). Non-standardized path coefficients and tests of path significance are available in Appendix 5. Almost all of the N2O flux variance (87%) was

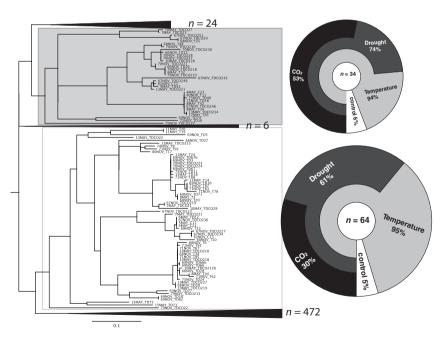


Fig. 2 Maximum likelihood tree based on GTR-GAMMA model of substitution. All but two nodes were collapsed to illustrate significant biases toward climate (lineage A in dark grey and lineage B in light grey). Bar legend indicates 0.1 substitutions/nucleotide.

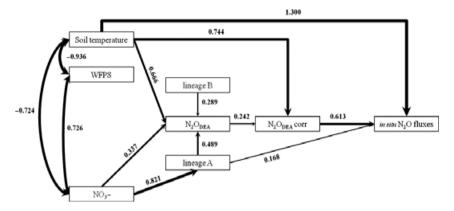


Fig. 3 Structural equation model results for effects of *nirK* denitrifiers on *in situ* N₂O fluxes. Path coefficients (values indicated next to the *arrows*) correspond to the standardized coefficients calculated based on the analysis of correlation matrices. Tests of path significance are given in Appendix 5.

explained by denitrifier processes (N2ODEA, N2ODEA corr), relative abundance of specific nirK lineages (lineage A, B) and by abiotic factors (soil temperature). Abundances of nirK and nosZ per se or their ratio had no effect on denitrification activity and in situ N₂O fluxes in the SEM (data not shown). NO₃ availability impacted in situ N2O fluxes indirectly via impacts on potential denitrification and the nirK community structure (lineage A). The nirK community structure influenced N2O fluxes either directly with lineage A or indirectly via impacts on potential N₂O emissions (N₂O_{DEA} with lineage A and B; Fig. 3). Soil temperature was identified as the driver of denitrification and N2O fluxes. The path coefficients indicated that changes in soil temperature were the major driver of altered in situ N2O fluxes. However, neither soil temperature nor WFPS measured on the day of sampling were related to changes in *nir*K community structure (Fig. 3, Appendix 5). SEM performed with nitrification (i.e., NEA and AOB gene abundances) were not significant (P < 0.05; data not shown) implying the weak effect of nitrifiers-related parameters on field N2O fluxes. Similarly, SEM performed with gene abundances of denitrifiers (nirK and nosZ) were not significant (P < 0.05; data not shown), implying uncoupled responses of gene abundances and the denitrification process.

Discussion

Global changes are known to enhance soil N_2O fluxes (Cantarel *et al.*, 2011; Carter *et al.*, 2011; Niboyet *et al.*, 2011). In the present study, we aimed to improve the mechanistic understanding of soil microbial functioning and the processes contributing to the emissions of N_2O for grasslands subjected to sustained climate change.

Warming and all combined climate change drivers induced strong modifications in field N_2O fluxes and microbial functioning

Throughout our study, we found that N₂O fluxes and microbial activities responded more strongly to warming and combined climate changes (simultaneous application of warming, summer drought and elevated CO₂) than to summer drought or elevated CO2 under warmed conditions. Flux data from the present study confirms the importance of warming as a key driver of climate-induced changes for N2O-N losses in grassland ecosystems (Cantarel et al., 2011). Accordingly, we found positive effects of warming on N2O fluxes recorded during the growing season, but no significant warming effects for the winter sampling date (Cantarel et al., 2011) due to an insufficient warning to compensate for the winter temperature. Such seasonal variation may reflect interactions between soil temperature and soil moisture on microbial processes (Flechard et al., 2007), as well as variation in root exudation and soil nutrient availability. Moreover, both nitrification enzyme activity (NEA) and the in situ nitrate pool increased in response to elevated temperature, in agreement with previous results observed in well-aerated soils (Barnard & Leadley, 2005). Warming was found to have a positive impact on AOB abundance in May, whereas combined warming, drought and elevated CO₂ had a positive impact on AOB abundance in November. Given the relatively limited changes in gene abundances observed, and their transient nature, it is likely that the increase of AOB abundances was probably a result of indirect effects, most likely mediated by the plant community (Horz et al., 2004). AOB are believed to be inferior competitors for nutrient resources (Belser, 1979), and temporal changes in AOB community size may reflect a shifting competitive

hierarchy for nutrient resources (mainly NH₄⁺) between AOB, heterotrophic microbes and plants.

Irrespective of measurement date, combined climate change (TDCO2) was found to increase N_2O_{DEA} and $N_2O + N_2$ emissions in the laboratory measurements (N_2O_{tot}) . Surprisingly, these two variables did not show a significant response to warming alone. This lack of response did not result from the confounding effects of soil moisture during the measurement campaigns, since similar soil moisture conditions were observed in the C and T treatments. Barnard & Leadley (2005) recently reported that denitrification enzyme activity (DEA) was generally less responsive to temperature in field experiments compared with laboratory studies, a phenomenon attributed to acclimation of DEA to ambient environmental conditions over time (French et al., 2009). Denitrifying bacteria harboring nosZ genes also carry nirK or nirS genes, though denitrifying bacteria may solely harbor nirK and/or nirS genes (Jones et al., 2008). Therefore, shifts in nosZ community may not always reflect nirK and/or nirS community changes. In our study, the abundances of nosZ denitrifiers increased more than those of nirK denitrifiers in response to warming and combined climate changes, suggesting a shift in nirK and/or nirS community structure. Between nirK and nirS communities, the former have been shown to respond to environmental changes (Hallin et al., 2009; Szukics et al., 2010). Herein, changes in nirK community structure were found under warming and combined climate change treatments. Indeed, we found two deeply branching lineages with significant biases for warmed treatments. This result suggests a selective process under warmed treatments; it is noteworthy that the sequences included in these two lineages harbored a higher GC-content than the other sequences on the tree, consistent with bacteria adapted to higher temperatures (Madigan & Martinko, 2006).

Low variation in soil water status modifies microbial community structure but does not affect N-related microbial activities and abundance

Combined summer drought and warming had no significant effect on microbial parameters (enzymatic activities and gene abundances) compared with warming alone. Previous study indicates that decreases in soil moisture are often associated with a decrease in DEA and an increase in NEA products (Barnard & Leadley, 2005; Bateman & Baggs, 2005). In our study, the variation in soil water status across T and TD treatments on measurement dates was weak, despite a 20% reduction of summer precipitation. Consequently, the limited effects of drought treatment on soil moisture conditions may have diminished the impact of experimental drought on

soil processes. Another explanation could be that changes in nitrite community structure under warmed and drought treatment mitigated drought responses in enzymatic activities and gene abundances. Irrespective of the sampling dates (May or November), phylogenetic analysis of *nir*K sequences indicated a strong divergence between the nitrate reducer community in the TD treatment and those communities found in the other climate change treatments. This suggests a key selective process linked to drought under warmed conditions, which could explain why no difference was found in denitrification activities in the various treatments.

Elevated CO₂ was expected to increase soil water status due to reduced plant stomatal aperture and transpiration rates (Schulze, 1986), which can have indirect consequences on denitrification by releasing the soil O₂ partial pressure (Smith et al., 2003). Although we measured significantly higher soil moisture conditions in July and September in the TDCO₂ treatment compared with the TD treatment (37% vs. 29% and 47% vs. 31% for July and September respectively), we found no impact of elevated CO2 on enzymatic activities and N₂O fluxes. The lack of response to drought and elevated CO₂ observed here mirrors the patterns of N₂O fluxes recorded in 2007-08 at the same site (Cantarel et al., 2011) and suggests that N2O-related microbial processes may also be insensitive to minor variations in soil water content. Moreover, drought and elevated CO₂ did not highly modify the relationship between field N₂O fluxes and microbial activities and gene abundances. The maintenance of soil functioning in combined warming, drought and elevated CO2 conditions despite substantial modifications in the bacterial community structure, agrees with other studies which show high-functional redundancy of microbial communities (Wertz et al., 2007; Cabrol et al., 2011).

Relationships among microbial parameters and field N₂O emissions

N₂O flux variations were better explained by the denitrification product ratio (N₂O_{DEA}/[N₂O_{DEA} + N_{2DEA}]) both across treatments and under cool, wet conditions (control site). Changes in DEA products over time (i.e., decrease of N₂O_{DEA} and increase of N_{2DEA}) were correlated with a decrease in field N₂O fluxes. This may result from continuous N losses via N2 fluxes in our grassland ecosystem even when no N2O fluxes were detected. The relative importance of microbial activities and microbial population size was modified under warmed conditions, with stronger correlations between field N₂O fluxes and gene abundances in the T, TD and TDCO₂ treatments. Nevertheless, field N₂O fluxes showed a stronger correlation with enzymatic activities

than with community abundance across climate treatments. Links between N_2O fluxes and microbial abundances are known to be elusive, and may depend on soil properties or ecosystem type (Ma *et al.*, 2008). Furthermore, the activity of a given enzyme may be uncoupled from the size of the corresponding functional gene pool due to subsequent enzyme regulation. Additional study is needed to examine the relative importance of other denitrifying and nitrifying genes on patterns of microbial activities and associated field N_2O fluxes under future climate conditions.

A challenge in this study was to link in situ N₂O fluxes and functioning microbial ecosystem, and particularly the nirK denitrifiers community. The SEM supported the importance of changes in abiotic conditions (i.e., soil temperature) toward in situ N2O fluxes. However, additional significant path coefficients suggested that other factors e.g., changes in denitrification activities and community structure were important in determining field N₂O fluxes. Moreover, the availability of NO₃⁻ pool influenced in situ N2O fluxes indirectly by providing substrate for denitrification and impacting the nirK community structure (lineage A). The observed direct and indirect influences of nirK diversity suggest that the mechanisms driving field N2O fluxes are subtler than simple warming effects on denitrifying enzymatic activities. Taken together, our results strongly suggest that the combined effects of soil temperature, denitrifier community structure and activity, provide a much better predictor of N₂O fluxes than nitrifier-related parameters. Further study coupling automated N₂O measurements with more frequent soil sampling over the course of the year is required to confirm these findings, and improve our understanding of climate change impacts on annual N₂O fluxes and N-related microbial functioning.

Acknowledgements

The authors would like to thank Alexandre Salcedo and Laurent Gaumy for assistance with soil sampling and chamber measurements, to Robert Falcimagne and Patrick Pichon for maintenance at the mini-FACE site. The authors acknowledge the financial support of the French Ministry of Education and Research for the doctoral fellowship to AAMC and of the EC FP6 'NitroEurope-IP' project and of the French ANR VMCS 'VALIDATE' project. Quantitative PCR were carried out at the platform DTAMB (IFR 41, Université Lyon 1). Nitrification and denitrification measurements were performed at the Chromatography platform (UMR5557-USC1193). The authors declare that there is no conflict of interest in the present manuscript.

References

Avrahami S, Bohannan BJM (2009) N₂O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria. Global Change Biology, 15, 643–655.

- Baggs EM, Richter M, Hartwig UA, Cadisch G (2003) Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO₂ (Swiss FACE). Global Change Biology, 9, 1214–1222.
- Barnard R, Leadley P (2005) Global change, nitrification, denitrification: a review. Global biogeochemical cycles, 16, GB1007.
- Barnard R, Barthes L, LeRoux X et al. (2004) Atmospheric CO₂ elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands. Global Change Biology, 10, 488–497.
- Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N₂O emissions from soils at different water-filled pore space. Biology and Fertility of Soils 41 379–388
- Belser LW (1979) Population ecology of nitrifying bacteria. Annual Review of Microbiology, 33, 309–333.
- Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana JF (2010) Effects of warming, summer drought and CO₂ enrichment on aboveground biomass production, flowering phenology and community structure in an upland grassland ecosystem. Ecosystems. 13, 888–900.
- Braker G, Schwarz J, Conrad R (2010) Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbial Ecology, 73, 134–148.
- Bremner JM (1997) Sources of nitrous oxide in soils. *Nutrient Cycling in Agroecosystem*, **49**, 7–16.
- Brown JR, Blankinship JC, Niboyet A et al. (2011) Effects of multiple global change treatments on soil N₂O fluxes. Biogeochemistry, in press, doi: 10.1007/s10533-011-9655-2
- Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL (2011) Bacterial dynamics in steady-state biofilters: beyond the functional stability. FEMS Microbiology Ecology, 79, 260–271.
- Cantarel AM, Bloor JMG, Deltroy N, Soussana JF (2011) Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland. *Ecosystems*, 14, 223–233
- Carter MS, Ambus P, Albert KR et al. (2011) Effects of elevated atmospheric CO₂, prolonged summer drought and temperature increase on N₂O and CH₄ fluxes in a temperate heathland. Soil Biology and Biochemistry, 43, 1660–1670.
- Clayton H, Mc Taggart IP, Parker J, Sawn L, Smith KA (1997) Nitrous oxide emissions from fertlised grassland: a 2-year of the effects of N fertiliser form and environmental conditions. Biology and Fertility of Soils, 25, 252–260.
- Cole JR, Chai B, Farris RJ et al. (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research, 33, D294–D296.
- Dassonville N, Piola F, Meerts P, Poly F (2011) Niche construction by the invasive Asian knoweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers. *Biological Invasions*, 13, 1115–1122
- Di HJ, Cameron KC, Sherlock RR, Shen JP, He JZ, Winefield CS (2010) Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. *Journal of Soils and Sediments*. 10, 943–954.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.
- Emmett BA, Beier C, Estiarte M et al. (2004) The response of soil processes to climate change: results from manipulation studies across an environmental gradient. Ecosystems, 7, 625–637.
- Flechard CR, Ambus P, Skiba U et al. (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture Ecosystem Environment, 121, 135–152.
- French S, Levy-Booth D, Samarajeewa A, Shannon KE, Smith J, Trevors JT (2009) Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World Journal of Microbiology and Biotechnology, 25, 1887–1900.
- Galloway JN, Dentener FJ, Capone DG et al. (2004) Nitrogen cycles: past, present, and future. Biochemistry, 70, 153–226.
- Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer Applications in the Biosciences (CABIOS), 12, 543–548.
- Gilbert JA, Field D, Swift P et al. (2009) The seasonal structure of microbial communities in the Western English Channel. Environmental Microbiology, 11, 3132–3139.
- Gilligan CA (1986) Use and misuse of the analysis of variance in plant pathology. Advances in Plant Pathology, 5, 225–261.
- Gödde M, Conrad R (1999) Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biology and Fertility of Soils, 30, 33–40.

- Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. The ISME Journal. 3, 597–605.
- Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and Environmental Microbiology, 72, 5181–5189.
- Hermansson A, Lindgren P-E (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and environmental microbiology, 67, 972– 976.
- Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammoniaoxidizing bacteria respond to multifactorial global change. Proceedings of the National Academy of Sciences of the United States of America. 101, 15136–15141.
- IPCC (2007) Climate change 2007: the physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge University Press, Cambridge and New York, NY.
- Jones SK, Rees RM, Skiba UM, Ball BC (2005) Greenhouse gas emissions from a managed grassland. Global and Planetary Change, 47, 201–211.
- Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular Biology and Evolution, 25, 1955–1966.
- Kammann C, Müller C, Grünhage L, Jäger HJ (2008) Elevated CO₂ stimulates N₂O emissions in permanent grassland. Soil Biology and Biochemistry, 40, 2194–2205.
- Kowalchuk GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. *Applied and Environment Microbiology*, **63**, 1489–1497.
- Liu X, Tiquia SM, Holguin G et al. (2003) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the pacific coast of Mexico. Applied and Environment Microbiology, 69, 3549–3560.
- Lozupone C, Hamady M, Knight R (2006) UniFrac an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 7, 371.
- Luo Y, Mooney HA (eds) (1999) Carbon dioxide and Environmental Stress. Academic Press San Diego, San Diego.
- Ma WK, Bedard-Haughn A, Siciliano SD, Farrell RE (2008) Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils. Soil Biology and Biochemistry, 40, 1114–1123.
- Madigan MT, Martinko JM (2006) Brock Biology of Microorganisms (11th edn). Pearson Education, Inc., Upper Saddle River, NI.
- Malchair S, DeBoeck HJ, Lemmens CMHM, Merckx R, Nijs I, Ceulemans R, Carnoal M (2010) Do climate warming and plant species richness affect potential nitrification, basal respiration and ammonia-oxidizing bacteria in experimental grasslands? Soil Biology and Biochemistry, 42, 1944–1951.
- Niboyet A, Brown JR, Dijkstra P et al. (2011) Global change could amplify fire effects on soil greenhouse gas emissions. PLoS ONE, 6, e20105.
- Ondov B, Bergman N, Phillippy A (2011) Interactive metagenomic visualization in a Web browser. *BMC Bioinformatics*, **12**, 385.
- Patra AK, Abbadie L, Clays-Josserand A et al. (2006) Effects of management regime and plant species on the enzyme activity and genetec structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environmental Microbiology, 8, 1005–1016.
- Philippot L, Andersson SGE, Battin TJ (2010) The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology, 8, 523–529.
- Pommier T, Canbäck B, Lundberg P, Hagström Å, Tunlid A (2009) RAMI, a tool for identification and characterization of phylogenetic clusters in microbial communities. *Bioinformatics*, 25, 736–742.
- Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123–125.

- Schulze ED (1986) Carbon-dioxide and water-vapor exchange in response to drought in the atmosphere and in the soil. Annual Review of Plant Physiology and Plant Molecular Biology. 37, 247–274.
- Simek M, Jisova L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil? *Soil Biology and Biochemistry*, **34**, 1227–1234.
- Smith MS, Tiedje JM (1979) Effect of roots on soil denitrification. Soil Science Society of America Journal. 43, 951–955.
- Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of green-house gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 56, 779–791.
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.
- Szukics U, Abell GCJ, Höld V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiology Ecology, 72, 395–406.
- Wertz S, Degrange V, Prosser JI et al. (2006) Maintenance of soil functioning following erosion of microbial diversity. Environmental Microbiology, 8, 2162–2169.
- Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of nitrifiers and denitrifiers following a model disturbance. *Environmental Microbiology*, 9, 2211–2219.
- Wrage N, Lauf J, del Prado A (2004) Distinguishing sources of N₂O in European grasslands by stable isotope analysis. Rapid Communications in Mass Spectrometry, 18. 1201–1207.
- Zar JH (1998) Biostatistical Analysis (4th edn). Prentice Hall, Upper Saddle River, NJ.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Maximum likelihood tree based on GTR-GAMMA model of substitution. Bar legend indicates 0.1 substitutions/nucleotide.

Appendix S2. The initial structural equation models.

Appendix S3. Daily air temperature (a), rainfall (b) and soil moisture (c) recorded during the study period (April–November 2009). The control, upland site is given by gray line, whereas the warmer, lowland site is presented by black line (T, full line; TD, dashed line; TDCO₂, dotted line). Arrows represented day of N₂O measurement and soil sampling.

Appendix S4. Clustering environments according to the full tree topology.

Appendix S5. Full SEM results for each path in the model. UnStd Est, unstandardized path coefficient estimates; SE, standard error of the unstandardized path estimate; CR, critical ratio for regression weight (UnStd Est/SE); *P*-value, test of significance of path estimate; Std., standardized path coefficient estimates.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.