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Abstract

Background: Wolbachia are vertically transmitted bacteria known to be the most widespread endosymbiont in
arthropods. They induce various alterations of the reproduction of their host, including feminization of genetic
males in isopod crustaceans. In the pill bug Armadillidium vulgare, the presence of Wolbachia is also associated
with detrimental effects on host fertility and lifespan. Deleterious effects have been demonstrated on hemocyte
density, phenoloxidase activity, and natural hemolymph septicemia, suggesting that infected individuals could have
defective immune capacities. Since nothing is known about the molecular mechanisms involved in Wolbachia-A.
vulgare interactions and its secondary immunocompetence modulation, we developed a transcriptomics strategy
and compared A. vulgare gene expression between Wolbachia-infected animals (i.e., “symbiotic” animals) and
uninfected ones (i.e., “asymbiotic” animals) as well as between animals challenged or not challenged by a
pathogenic bacteria.

Results: Since very little genetic data is available on A. vulgare, we produced several EST libraries and generated a
total of 28 606 ESTs. Analyses of these ESTs revealed that immune processes were over-represented in most
experimental conditions (responses to a symbiont and to a pathogen). Considering canonical crustacean immune
pathways, these genes encode antimicrobial peptides or are involved in pathogen recognition, detoxification, and
autophagy. By RT-qPCR, we demonstrated a general trend towards gene under-expression in symbiotic whole
animals and ovaries whereas the same gene set tends to be over-expressed in symbiotic immune tissues.

Conclusion: This study allowed us to generate the first reference transcriptome ever obtained in the Isopoda
group and to identify genes involved in the major known crustacean immune pathways encompassing cellular
and humoral responses. Expression of immune-related genes revealed a modulation of host immunity when
females are infected by Wolbachia, including in ovaries, the crucial tissue for the Wolbachia route of transmission.

Background
Wolbachia are endosymbiotic a–Proteobacteria that are

maternally transmitted and cause various reproductive

manipulations in a wide range of invertebrate hosts (see

[1] for a review). Wolbachia infection is widespread in

Crustacea where species of the three main classes

(Malacostraca, Ostracoda, and Maxillipoda) were found

to be infected [2]. Wolbachia prevalence reaches ~60%

in terrestrial isopods (order Oniscidea). In the pill bug

Armadillidium vulgare, one of the most intensively stu-

died examples, Wolbachia are responsible for inducing

the development of genetic males into functional

females. This is achieved by preventing the androgenic

gland differentiation responsible for male development

[3,4]. Consequently, in the progenies of infected mothers

the proportion of females reaches 70 to 80% according

to the transmission rate of Wolbachia [5,6]. This modifi-

cation of the host sex ratio leads to a low proportion of

males in the field reached 20% as evidenced by a meta-

analysis of 57 populations [2]. Since Wolbachia vertical

transmission is dependent on the reproductive success

of their hosts, it could be expected that the infection
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provides fitness benefit that could promote dispersion of

Wolbachia in the host population. Surprisingly, most

field populations of A. vulgare are not infected by Wol-

bachia [2], which could reflect the conflicting relation-

ships between the pill bug and the bacteria. As some life

history traits of A. vulgare are directly impacted by Wol-

bachia, the low prevalence of the infected specimens in

natural populations could be due to various factors that

reduce the host fitness. Feminizing Wolbachia have the

potential to reduce male to female ratio to values limit-

ing mating possibilities and therefore limiting population

size [7]. Furthermore, males are able to distinguish

between infected and uninfected females [7]. This mat-

ing preference could lead to a sexual selection in favor

of uninfected females. Rigaud and Moreau [8] also

demonstrated that after multiple mating, sperm deple-

tion in males affects fertility only in infected females. In

addition, a reduced fertility and survival is recorded in

Wolbachia-infected females [6,9,10]. However, these

females had a higher reproductive investment (they pro-

duce more offspring and more eggs per clutch) so ulti-

mately the reproductive success is similar between

infected and non-infected females [6]. More recently,

deleterious effects have been demonstrated on immuno-

competence of infected females [10,11]. Indeed, these

females have a lower hemocyte density, a decrease in

PO activity, and a more severe hemolymph septicemia

that could result in a reduced life span in A. vulgare

[10,11]. This latter effect could impact host fitness

including lower or higher resistance to intruders as it

has been shown in many insect species [12]. For exam-

ple, it has been demonstrated that Wolbachia suppress

the host defence of Drosophila simulans against parasi-

toids [13]. Conversely, Wolbachia-induced stimulation

of the host’s innate immune system has been suggested

as a mechanism conferring resistance to pathogens. In

D. melanogaster and D. simulans, Wolbachia protect

their hosts against RNA viral infection [14-16]. This has

also been demonstrated in Aedes aegypti where the

injection of the life-shortening wMelPop Wolbachia

strain provides resistance against the Dengue and the

Chikungunya viruses as well as against Plasmodium gal-

linaceum and Brugia pahangi [12,17-21]. In parallel,

Wolbachia were shown to induce immune gene expres-

sion in different biological systems. For example, a Wol-

bachia-infected cell line displayed an overexpression of

antioxidant proteins that are key components of Ae.

albopictus immune response [22,23]. Similarly, host

immune genes are up-regulated in Ae. aegypti [17] and

Anopheles gambiae [18] when infected by wMelPop.

Since nothing is known about the molecular mechan-

isms involved in Wolbachia-A. vulgare interactions and

its secondary immunocompetence modulation, different

Expressed Sequence Tag (EST) libraries [normalized,

non-normalized, and Suppression Subtractive Hybridiza-

tion (SSH) libraries] were constructed in order to gener-

ate a large transcriptomics data set. To identify genes

involved in Wolbachia-host association and in host

immune response, EST and SSH libraries were prepared

using RNA from ovaries (i.e., the tissue involved in ver-

tical transmission) and from A. vulgare females artifi-

cially challenged by Salmonella typhimurium. Host gene

expression in Wolbachia-infected individuals was then

compared to uninfected individuals by in silico and in

vitro subtractions. This analysis revealed a set of poten-

tially modulated immune genes. Expression of immune

genes were investigated to examine whether the

decrease of immunocompetence in the Wolbachia-

infected A. vulgare may be related to modulation of the

host innate immune system.

Methods
This work has been conducted in parallel in two other

invertebrate models (i.e., Asobara tabida-Wolbachia and

Sitophilus oryzae-SPE (Sitophilus primary endosym-

biont)) in order to determine conserved and divergent

immune pathways and to ascertain whether the inverte-

brates have selected common strategies to control their

symbionts and to discriminate between symbionts and

pathogens [24,25].

Symbiotic association

Armadillidium vulgare (Crustacea Isopoda) individuals

were sampled from two laboratory lineages whose Wol-

bachia-infection status is known. Animals infected by

the feminizing Wolbachia strain (wVulC) (i.e., “symbio-

tic” animals) originated from Celles-sur-Belle, France.

This lineage has been identified by crossing experiments

as composed of all ZZ individuals: ZZ males and ZZ

+Wolbachia females [2]. Uninfected individuals (i.e.,

“asymbiotic” animals) with genetic sex determinism (ZZ

males and WZ females) originated from Nice, France

[2,5,26]. These lines have been stably maintained in the

lab since 1967 and 1991 for asymbiotic and symbiotic

lineages, respectively. As A. vulgare males are never

infected by Wolbachia, only females (WZ females and

ZZ+Wolbachia females) were used in this study.

Bacterial challenge

Salmonella typhimurium (strain 12023G) were cultured

in LB medium overnight. Dilutions were performed to

obtain c104 bacteria.µL-1 (OD=0.01). Asymbiotic females

were injected with 1 µL of bacterial suspension at the

side of sixth pereon segment using a thin glass needle.

Females were dissected at 6h, 9h, and 15h post injection.

Ovaries, gut, caeca, fat tissues, hemocytes, hematopoietic

organ, nerve chain, and brain were conserved in liquid

nitrogen separately until total RNA extractions.
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Library constructions

Seven different EST libraries were prepared from differ-

ent tissues of A. vulgare (Figure 1A). Total RNA was

extracted as described in [27] and treated with DNAse

(TurboDNase, Ambio, Applied Biosystems), following

the manufacturer’s instructions.

Two non-normalized libraries were constructed from

asymbiotic and symbiotic ovaries (AO and SO) starting

with 1 µg of polyA RNAs. They were prepared using

Creator SMART cDNA Library Construction kit (Clon-

tech/BD Biosciences), following the manufacturer’s

instructions. cDNA was digested by SfiI, purified (BD

Chroma Spin – 400 column) and ligated into pDNRlib

vector for Escherichia coli transformation. Amplified

double strand cDNA (ds cDNA) was prepared using a

SMART approach [28]. SMART Oligo II oligonucleotide

(Clontech/BD Biosciences) and CDS primer were used

for first-strand cDNA synthesis. SMART-amplified

cDNA samples were further digested by RsaI

endonuclease.

The SSH libraries from asymbiotic and symbiotic

ovaries (SSH-A and SSH-S) were constructed starting

with 20 µg of total RNA. SSH libraries from specimens

challenged and not challenged by S. typhimurium (SSH-

C and SSH-NC) were performed on 20.4 µg of a total

RNA equally pooled from different tissues (i.e., ovaries,

gut, cæca, fat tissues, hemocytes, hematopoietic organ,

nerve chain, and brain) harvested at each time point.

The pooled total RNA was obtained by mixing equal

amounts of total RNA extracted separately for each tis-

sue and for each time point. Subtractive hybridizations

were performed using SSH method in both directions

(Asymbiotic vs. Symbiotic A/S and vice-versa S/A; Not

Challenged vs. Challenged NC/C and vice-versa C/NC)

as described in [29,30] using the PCR-Select cDNA Sub-

traction Kit (Clontech/BD Biosciences). SSH libraries

Figure 1 EST library characteristics A. Summary of the different EST libraries. Suppression Subtractive Hybridizations (SSHs) were performed
with Miror Orientation Selection procedure. cDNA libraries were sequenced with or without normalization (Norm. or Non Norm. respectively).
The wVulC Wolbachia strain (Celles sur Belle, France) induces feminization of genetic males and has some negative impacts in symbiotic females
(see text). Immune challenge was performed through the injection of 104 Salmonella typhimurium in asymbiotic females: RNA was extracted 6h,
9h, and 15h after challenge. F = whole female tissues, Ov = ovary tissues, S = symbiotic, A = asymbiotic, C = immune challenge, NC = no
immune challenge, ESTs = expressed sequence tags, Mt = mitochondrial genes, rRNA = ribosomal genes, UG = number of unigenes. B.
Abundance classes of ESTs and unigenes. C. Unigenes occurrences among EST libraries. The horizontal axe represents the different EST libraries,
the vertical axe represents the occurrence of unigenes within the libraries. Horizontal reading of the graph indicates the percentage of unigenes
shared by several libraries. D. GO annotation results for High Scoring Pairs (HSP) coverage of 0%. GO annotation was first conducted using the
Score Function (SF) of the BLAST2GO software. The GO terms selected by the annotation step were then merged with InterProScan predictions
(SF + IPR). Finally, the Annex annotation was run (SF + IPR + ANNEX). E. Annotation distribution of GO terms.
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were prepared by Evrogen (Moscow, Russia). The Mir-

ror Orientation Selection (MOS) procedure was used for

SSH-A/S and SSH-C/NC as described in [31] in order

to reduce the number of false-positive clones in the

SSH-generated libraries. Purified cDNAs from SSH-A/S

and SSH-C/NC were cloned into the pAL16 vector

(Evrogen) and used for E. coli transformation.

Finally, the normalized library (N) was prepared with

75 µg of a pooled total RNA from an equimolar propor-

tion of asymbiotic and symbiotic ovaries, and 6h, 9h,

and 15h challenged asymbiotic females. As for the

libraries of challenged specimens, total RNA was

extracted separately from the same tissues. This N

library was prepared by Evrogen (Moscow, Russia).

Total RNA sample was used for ds cDNA synthesis

using SMART approach [28]. SMART prepared ampli-

fied cDNA was then normalized using Duplex Specific

Nuclease (DSN) normalization method [32]. Normaliza-

tion included cDNA denaturation/reassociation, treat-

ment by DSN [33] and amplification of normalized

fraction by PCR. Normalized cDNA was purified using

QIAquick PCR Purification Kit (QIAGEN), digested

with SfiI, purified (BD Chroma Spin - 1000 column) and

ligated into pAL 17.3 vector (Evrogen) for E. coli

transformation.

EST sequencing and data processing

All clones from the libraries were sequenced using the

Sanger method (Genoscope, Evry, France) and were

deposited in the EMBL database [EMBL: FQ884936 to

FQ908260]. A general overview of the EST sequence

data processing is given in Figure 2. Raw sequences and

trace files were processed with Phred software [34] in

order to remove low quality sequences (score < 20).

Sequence trimming, which includes polyA tails/vector/

adapter removal, was performed by cross match. Chime-

rical sequences were computationally digested into inde-

pendent ESTs. Clustering and assembly of the ESTs

were performed with TGICL [35] to obtain unique tran-

scripts (unigenes) composed of contiguous ESTs (con-

tigs) and unique ESTs (singletons). For that purpose, a

pairwise comparison was first performed by a modified

version of megaBLAST (minimum similarity 94%). Clus-

tering was done with tclust that proceeds by a transitive

approach (minimum overlap: 60bp at 20bp maximum of

the end of the sequence). Assembly was done with

CAP3 (minimum similarity 94%).

To detect unigene similarities with other species, sev-

eral BLASTs (with a high cut-off e-values) were per-

formed against the following databases: NCBI nr

[BLASTx (release: 1 March 2011); e-value < 5, HSP

Figure 2 Sequence treatment (A) and functional annotation procedure (B).
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length > 33aa], Refseq genomic database (BLASTn, e-

value < 10), Unigene division Arthropods (tBLASTx, #8

Ae. aegypti, #37 An. gambiae, #3 Apis mellifera, #3 Bom-

byx mori, #53 D. melanogaster, #9 Tribolium castaneum;

e-value < 5), and Wolbachia sequences from Genbank

(Release 164; e-value < 1e-20). Gene Ontology (GO)

annotation was carried out using BLAST2GO software

[36]. In the first step (mapping), a pool of candidate GO

terms was obtained for each unigene by retrieving GO

terms associated to the hits obtained after a BLASTx

search against NCBI nr. In the second step (annotation),

reliable GO terms were selected from the pool of candi-

date GO terms by applying the Score Function of BLAS-

T2GO with “permissive annotation” parameters (EC-

weight=1, e-value-filter=0.1, GO-weight=5, HSP/hit cov-

erage cut-off =0%). In the third step of the annotation

procedure, the pool of GO terms selected during the

annotation step was merged with GO terms associated

to InterPro domain (InterProScan predictions based on

the longest ORF). Finally, the Annex augmentation step

was run to modulate the annotation by adding GO

terms coming from implicit relationships between GO

terms [37].

Statistical analyses on libraries

We used the randomization procedure (with 500 ran-

dom datasets) and R statistics described in [38] to detect

unigenes whose transcript abundance (number of ESTs)

was statistically different in AO and SO libraries (at a

false discovery rate of 2.5 %). In order to extract biologi-

cal processes and molecular functions statistically over-

represented in SO libraries, we performed a hyper-geo-

metrical test between GO terms from the SO library

and those from the AO library, which represents the

natural physiological conditions. The p-values were then

adjusted using Bonferroni’s correction.

In order to perform a functional enrichment analysis

of the unigenes extracted from the SSH, we used the

FatiGO web tool [39] against the SO library. With

respect to the GO analysis, four different levels of

description (3, 4, 6, and 9) were chosen for the biologi-

cal processes.

Quantitative expression by Real-Time RT-PCR

Gene expression quantification was performed in whole

animal, ovaries, and immune tissues (hemocytes and

hematopoietic organs pooled) of asymbiotic and symbio-

tic females.

RNA extractions

For the whole animal condition, each individual was

crushed with pestle and mortar in liquid nitrogen. Total

RNA extraction was performed from about 30 mg of

powder with TRIzol® reagent according to the manufac-

turer’s instructions (Invitrogen). For ovaries and

immune tissues, total RNA extractions were performed

from 25 and 50 females respectively with RNeasy Mini

Kit according to the manufacturer’s instructions

(QIAGEN).

Real-Time RT-PCR

First-strand cDNA was synthesized with the SuperScript

III kit (Invitrogen) in accordance with manufacturer’s

instructions, starting from 1 µg of total RNA using ran-

dom hexamer primers. For whole animal samples, 0.2

µg of 5 individual extractions were pooled in 1 µg.

Three biological replicates of each sample (whole ani-

mals, ovaries, and immune tissues) were used.

For each gene, primer pairs were designed with the

Real-time PCR function of PerlPrimer [40]. The Tm and

the length of each primer pair were fixed at 60°C and

18-22 bp, respectively. Primers used for quantitative

PCR are summarized in Additional File 1.

Quantitative RT-PCR was performed using LightCy-

cler LC480 system (Roche) as follows: 10 min at 95°C,

45 times [10 sec at 95°C, 10 sec at 60°C, 20 sec at 72°C].

A melting curve (65°C to 97°C) was recorded at the end

of each reaction in order to check that the PCR product

was unique. The reaction mixture consisted of 1.25 µL

of each primer (10 µM), 5 µL of Fast SYBR-Green Mas-

ter Mix (Roche) and 2.5 µL of diluted cDNA (corre-

sponding to 12.5 ng of cDNA). Standard curves were

plotted using 4 dilutions (125 ng, 25 ng, 5 ng, 1.25 ng)

of pooled cDNAs from whole animals and ovaries. Effi-

ciency of the PCR reaction was calculated.

Expression data for each gene were estimated using

the efficiency of the primer pair and the crossing point

[41]. All gene expressions were normalized by the geo-

metric mean of the expression level of the L8-ribosomal

(RbL8) and Elongation Factor 2 (EF2) reference genes.

Normalization and statistical pair-wise comparisons

have been determined using REST [42].

Results
First reference transcriptome in isopods

ESTs were generated from seven high quality cDNA

libraries, including four SSH libraries, two non-normal-

ized libraries and one normalized library. Characteristics

of cDNA libraries are summarized in Figure 1A. A total

of 28 606 ESTs (mean length: 504 ± 170 bp) were gen-

erated which covered around 14.4 Mb. Clustering of all

EST sequences was performed by TGICL [35] resulted

in 10 923 unique transcripts (i.e., unigenes which cov-

ered 6.4 Mb). About 75% of the clusters contained one

EST (i.e., singletons; n = 8 211) and 25% contained

ESTs assembled in a consensus sequence (i.e., contigs, n

= 2 712). The normalized library and the ovary libraries

contained a greater proportion of contigs which is likely

due to the deeper sequencing of these libraries (Figure

1C.). The average length of these unigenes was 590 ±
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250 bp with a GC content of 33.5% and an average cov-

erage of 3.5 (Figure 1B)

Functional annotation was performed on all 10 923

unigenes through BLASTx and tBLASTx similarity

searches against various databases. Because of the

ancient divergence between A. vulgare and the closest

sequenced genomes we used a cut-off threshold of 1e-05.

A total of 44% of the unigenes had BLAST similarities

to known sequences, mainly from Ae. aegypti (10.5%),

An. gambiae (8.7%), D. melanogaster (7%), and different

malacostracans (3.1%) with an e-value lower than 1e-20

for 64.8% of the unigenes. The remaining 66% of uni-

genes showing no match could correspond to species-

specific genes or UTR extremities of the cDNA.

Functional analysis

GO annotation was carried out using BLAST2GO soft-

ware (Figures 1D, 2B). A total of 42% of unigenes were

annotated after the BLAST2GO annotation procedure

for High Scoring Pair (HSP) coverage of 0%. While we

kept the unigenes/GO dataset corresponding to the

minimum HSP coverage percentage, the mean number

of GO terms assigned per unigene was low (1.18 GO

term/unigene, Figure 1E).

To determine the effect of Wolbachia on host gene

expression, an in silico subtraction was performed

between libraries of symbiotic (SO) and asymbiotic

(AO) ovaries. In these libraries, a total of 4564 unigenes

have been annotated and based on the R statistics, only

6 unigenes were differentially represented: 3 unigenes

were over-represented in symbiotic ovaries while 3 were

over-represented in asymbiotic ovaries. Unfortunately,

these unigenes could not be identified by BLAST and

only one is associated to a biological function (see Addi-

tional File 2: Unigenes differentially represented between

symbiotic and asymbiotic ovaries). The immune pro-

cesses were over-represented in symbiotic ovaries (Table

1 and Additional File 3: Processes and functions over-

represented in A. vulgare ovaries in response to Wolba-

chia infection, biological process levels 4 and 6). Indeed,

21 and 15 unigenes with immune gene similarities were

identified in AO and SO libraries, respectively (Addi-

tional File 4: Immune unigenes present in SO, AO,

SSH-S, SSH-A, SSH-C, and SSH-NC libraries).

In the same manner, two in vitro SSHs were performed

by subtracting common transcripts between symbiotic

and asymbiotic ovaries (SSH-S), and reciprocally (SSH-

A). These SSHs were contaminated by a high proportion

of mitochondrial ESTs (~40%) that were removed for

further analyses. To reveal the functions over-repre-

sented, we compared each SSH to SO library by the

FatiGO web tool. One biological process (vesicle trans-

port along microtubule) and one molecular function

(microtubule motor activity) were over-represented in

asymbiotic ovaries (Table 2). Most of the 223 unigenes

that are associated to these two GO terms belong to the

kinesin-like protein family. In these two libraries, the

BLAST analyses allowed the identification of 1 immune

gene in SSH-S and 6 immune genes in SSH-A libraries

respectively (Additional File 4: Immune unigenes pre-

sent in SO, AO, SSH-S, SSH-A, SSH-C, and SSH-NC

libraries).

Table 1 Functions over-represented in A. vulgare ovaries in response to Wolbachia infection.

Biological process GO accession A S A/S

AO ~ SO cell fate determination GO:0001709 0.02 0.05 0.40

level 3 immune effector process GO:0002252 0.07 0.16 0.44

(n= 99) regulation of immune system process GO:0002682 0.04 0.14 0.29

generation of a signal involved in cell-cell signaling GO:0003001 0.04 0.05 0.80

muscle contraction GO:0006936 0.02 0.07 0.29

chromosome segregation GO:0007059 0.18 0.23 0.78

ensheathment of neurons GO:0007272 0.00 0.02 0.00

circadian rhythm GO:0007623 0.07 0.09 0.78

cell recognition GO:0008037 0.02 0.07 0.29

reproductive behavior GO:0019098 0.04 0.05 0.80

membrane docking GO:0022406 0.04 0.05 0.80

viral reproductive process GO:0022415 0.02 0.05 0.40

cellular pigmentation GO:0033059 0.04 0.05 0.80

leukocyte activation GO:0045321 0.05 0.09 0.56

regulation of response to stimulus GO:0048583 0.12 0.18 0.67

coagulation GO:0050817 0.09 0.11 0.82

regulation of body fluid levels GO:0050878 0.04 0.05 0.80

endocrine process GO:0050886 0.11 0.14 0.79

cellular response to stimulus GO:0051716 0.05 0.07 0.71
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In order to identify genes expressed in response to

pathogenic bacteria, we performed SSH libraries

between S. typhimurium-challenged and unchallenged

asymbiotic A. vulgare females (SSH-C) and reciprocally

(SSH-NC). We thus identified 31 and 29 unigenes in

SSH-C and SSH-NC libraries, respectively, that are

related to crustacean immune processes. In the SSH-C

library these immune related unigenes exhibited a

greater diversity than those of the SSH-NC library

(Additional File 4: Immune unigenes present in SO, AO,

SSH-S, SSH-A, SSH-C, and SSH-NC libraries).

Finally, 30 non redundant immune related unigenes

were identified in libraries constructed from symbiotic/

asymbiotic conditions (SO/AO, SSH-S/SSH-A) and 59

in libraries constructed from challenged/not challenged

conditions (SSH-C/SSH-NC) (Additional File 3: Pro-

cesses and functions over-represented in A. vulgare

ovaries in response to Wolbachia infection, biological

process levels 4 and 6). Among them, 28 unigenes were

successfully amplified by PCR. In addition, 16 other uni-

genes were selected from the normalized library (N) for

their putative involvement in major immune processes.

Annotations were further confirmed by protein domain

identification (CD Search vs the Conserved Domain

Database on NCBI server [43]). If the complete domain

pattern of a given protein was not found, the suffix

“-like” was added to the unigene name (Table 3).

Expression of these 44 genes were further analysed by

RT-qPCR.

Immune gene expression

The expression of 46 candidate immune genes (Table 4

and Additional File 1: Primer pairs used for RT-qPCR

quantification) were quantified in whole animal, ovar-

ies and immune tissues of symbiotic and asymbiotic A.

vulgare females. Forty four genes were selected

through the procedure described above and 2 other

genes were selected from previous studies [44,45].

Twelve genes were selected from the SSH-C (11 uni-

genes) and SSH-NC (1 unigene) libraries in order to

examine whether Wolbachia induce an immune activa-

tion as observed in a challenged condition. All the 46

selected immune genes can be placed in known crusta-

cean immune pathways (Figure 3). We considered

genes involved i) in pathogen recognition (receptors

and associated signaling pathways), ii) in RNA interfer-

ence (RNAi), coagulation, PO pathway, phagocytosis,

apoptosis, and autophagy or iii) encoding antimicrobial

peptides (AMPs) [46-50].

In symbiotic conditions, expression of these genes

showed a general trend to a down-regulation in whole

animals (37/43) and ovaries (31/44). On the contrary, 30

genes among 37 are over-expressed in immune tissues

(Table 4 and Additional File 5: Expression profiles of

genes studied in whole animals, ovaries, and immune

tissues of A. vulgare).

Significant differential expressions in whole animals

and ovaries were recorded for 16 genes, 12 of them

were down-regulated and 4 up-regulated (Table 4). No

significant differential expression was detected in

immune tissues. Three genes involved in pathogen

recognition, the C-type lectin 1, C-type lectin 2, and the

C-type lectin 3 genes were differentially expressed. The

C-type lectin 1 was up-regulated in ovaries whereas the

C-type lectin 2 was down-regulated in the same tissue.

Finally, the C-type lectin 3 was down-regulated in the

whole animals. Three genes encoding AMPs were

down-regulated: The armadillidin and the i-type lyzo-

zyme genes in whole animals and the crustin3 gene in

both whole animals and ovaries. One serine protease

gene, the masquerade-like B, was also under-expressed

in whole animals. Three genes involved in detoxification,

the peroxiredoxin A and C and glutathione peroxidase,

were down-regulated in ovaries whereas the thioredoxin

A was up-regulated in the same tissue. In the autophagy

pathway, two genes, atg7 and atg12, were under-

expressed in ovaries. Among genes involved in stress

response, the ferritin A and C genes were over-

expressed in ovaries.

Discussion
The different EST libraries generated in this study con-

stitute the first reference transcriptome ever obtained in

the Isopoda group [51]. Among crustaceans, only the

Daphnia pulex (Branchiopoda, Cladocera) genome was

recently published [52] and some EST libraries were

constructed from a shrimp, a crayfish, and a porcelain

crab (Malacostraca, Decapoda) [53-57]. Another EST

database was obtained in the marine isopod Limnoria

quadripunctata, but it concerned only the

Table 2 Functional enrichment analysis: list of GO terms that were over-represented in the lists of unigenes obtained

by SSH experiments on ovaries (FatiGO web tool). P-value of Fisher’s exact unilateral tests. Adjusted p-value for

multiple test correction.

Test # unigenes Ontology domain Level Term GO ID p-value Adj. p-value

SSH-A versus SO 223 Biological process 9 vesicle transport along microtubule GO:0047496 1.35E-04 5.97E-02

Molecular function 3 microtubule motor activity GO:0003777 1.13E-03 9.85E-02

SSH-S versus SO 44 no significant term

Chevalier et al. BMC Microbiology 2012, 12(Suppl 1):S1
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Table 3 List of immune genes identified in the libraries.

Library occurrences

Biological
function

Gene BLAST
program

Accession Description Species e-
value

Query
coverage

Max
identity

SSH-
C

SSH-
NC

SSH-S SSH-A SO AO N

Pathogen
detection

Recognition C-type lectin 1 blastx ABA54612.1 C-type lectin 1 Fenneropenaeus
chinensis

5E-03 0.44 0.21 x

tblastx DQ871245.1 C-type lectin Litopenaeus
vannamei

8E-09 0.27 0.48

C-type lectin 2 blastx ACR56805.1 C-type lectin Fenneropenaeus
merguiensis

1E-08 0.39 0.30 x x x

tblastx CP000576.1 Prochlorococcus marinus
str. MIT 9301

Prochlorococcus
marinus

9E-05 0.12 0.50

C-type lectin 3 blastx ACC86854.1 C-type lectin-like domain-
containing protein PtLP

Portunus
trituberculatus

1E-09 0.74 0.27 x

tblastx EU477491.1 C-type lectin-like domain-
containing protein PtLP

Portunus
trituberculatus

4E-14 0.56 0.65

Peroxinectin-like
A

blastx XP_002435528.1 Peroxinectin. putative Ixodes scapularis 8E-27 0.85 0.32 x x

tblastx XM_002406272.1 Peroxinectin. putative Ixodes scapularis 1E-41 0.76 0.36

Peroxinectin-like
B

blastx XP_002406316.1 Peroxinectin. putative Ixodes scapularis 7E-23 0.70 0.38 x

tblastx EU934306.1 TSA: AD-573 salivary
peroxidase

Anopheles darlingi 6E-23 0.52 0.48

Transduction ECSIT blastx BAI40012.1 Evolutionarily Conserved
Signaling Intermediate in
Toll pathways

Marsupenaeus
japonicus

5E-43 0.58 0.59 x

tblastx AB491495.1 Evolutionarily Conserved
Signaling Intermediate in
Toll pathways

Marsupenaeus
japonicus

3E-51 0.63 0.60

MyD88-like blastx XP_001658635.1 Myd88 Aedes aegypti 4E-08 0.50 0.29 x

tblastx XM_001658585.1 Myd88 Aedes aegypti 4E-07 0.41 0.27

SOCS2-like blastx BAI70368.1 suppressor of cytokine
signaling-2 like

Marsupenaeus
japonicus

9E-35 0.81 0.47 x

tblastx AB516427.1 suppressor of cytokine
signaling-2 like

Marsupenaeus
japonicus

2E-34 0.74 0.50

Immune
response

AMP ALF 1 blastx ABP73291.1 anti-lipopolysaccharide
factor isoform 2

Penaeus monodon 2E-26 0.39 0.59 x

tblastx AB453738.1 MjALF2 Marsupenaeus
japonicus

8E-30 0.40 0.58

ALF 2 blastx BAH22585.1 anti-lipopolysaccharide
factor 2

Marsupenaeus
japonicus

2E-05 0.68 0.28 x

tblastx AB453738.1 MjALF2 Marsupenaeus
japonicus

8E-19 0.79 0.40

Crustin 1 blastx ACU25385.1 Crustin 4 Panulirus japonicus 5E-22 0.43 0.55 x

tblastx FJ797417.1 Crustin 1 (PJC1) Panulirus japonicus 7E-24 0.47 0.58
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Table 3 List of immune genes identified in the libraries. (Continued)

Crustin 2 blastx ACU25385.1 Crustin 4 Panulirus japonicus 1E-10 0.44 0.48 x

tblastx FJ797420.1 Crustin 1 (PJC1) Panulirus japonicus 7E-34 0.35 0.66

Crustin 3 blastx ACU25382.1 Crustin 1 Panulirus japonicus 2E-28 0.35 0.65 x

tblastx FJ797417.1 Crustin 1 (PJC1) Panulirus japonicus 6E-34 0.44 0.53

I-type lysozyme blastx ACZ63472.1 i-type lysozyme-like protein
2

Penaeus monodon 7E-41 0.70 0.67 x

tblastx GQ478704.1 i-type lysozyme-like protein
2

Penaeus monodon 1E-42 0.57 0.62

Serine
proteases

Masquerade-like
A

blastx ABY64694.1 Masquerade-like protein Armadillidium
vulgare

2E-
112

0.50 0.99 x x

tblastx EU216755.1 Masquerade-like protein Armadillidium
vulgare

5E-
134

0.50 0.99

Masquerade-like
B

blastx CAA72032.2 Masquerade-like protein Pacifastacus
leniusculus

2E-86 0.67 0.47 x x x

tblastx EU216755.1 Armadillidium vulgare
masquerade-like protein

Armadillidium
vulgare

1E-97 0.37 0.75

Serine
protease
inhibitors

a2-macroglobulin
A

blastx ABY64692.1 alpha-2-macroglobulin Armadillidium
vulgare

1E-
119

0.99 1.00 x x

tblastx EU216753.1 alpha-2-macroglobulin Armadillidium
vulgare

6E-
152

1.00 1.00

a2-macroglobulin
B

blastx AAX24130.1 alpha-2-macroglobulin Penaeus monodon 2E-06 0.28 0.54 x

tblastx DQ988330.2 alpha 2 macroglobulin Litopenaeus
vannamei

2E-81 0.54 0.57

a2-macroglobulin
C

blastx ABI79454.2 alpha 2 macroglobulin Litopenaeus
vannamei

6E-27 0.38 0.51 x

tblastx AY826818.1 alpha-2-macroglobulin Penaeus monodon 1E-12 0.35 0.52

a2-macroglobulin
D

blastx BAC99073.1 alpha2-macroglobulin Marsupenaeus
japonicus

1E-10 0.84 0.26 x

tblastx EF073268.2 alpha-2-macroglobulin Litopenaeus
vannamei

4E-35 0.36 0.44

a2-macroglobulin
E

blastx ABK60046.1 alpha-2-macroglobulin Macrobrachium
rosenbergii

5E-43 0.98 0.42 x

tblastx EF073269.1 alpha-2-macroglobulin Macrobrachium
rosenbergii

6E-64 0.97 0.48

Regulation of
granular
secretion

Cyclophylin G blastx ADD18906.1 peptidyl-prolyl cis-trans
isomerase

Glossina morsitans
morsitans

1E-62 0.72 0.71 x

tblastx EZ543483.1 TSA: Crepidula fornicata
3374.Cfedg

Crepidula fornicata 7E-74 0.67 0.70

RNAi Piwi blastx XP_002155913.1 PREDICTED: similar to Cniwi Hydra
magnipapillata

2E-93 0.73 0.51 x x x
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Table 3 List of immune genes identified in the libraries. (Continued)

tblastx XM_002155877.1 PREDICTED: similar to Cniwi
(LOC100201838)

Hydra
magnipapillata

4E-
105

0.73 0.64

Argonaute-like blastx NP_001181904.1 argonaute-2 Sus scrofa 6E-55 0.97 0.50 x

tblastx XM_001638444.1 predicted protein
(NEMVEDRAFT_v1g180719)

Nematostella
vectensis

3E-56 0.84 0.47

Stress
response

Ferritin A blastx ABY75225.1 Ferritin Macrobrachium
rosenbergii

4E-67 0.47 0.74 x x x x

tblastx EU371046.1 Ferritin Macrobrachium
rosenbergii

4E-80 0.48 0.75

Ferritin B blastx ABY75225.1 Ferritin Macrobrachium
rosenbergii

2E-50 0.66 0.57 x x

tblastx EU371046.1 Ferritin Macrobrachium
rosenbergii

2E-59 0.77 0.58

Ferritin C blastx ABY75225.1 Ferritin Macrobrachium
rosenbergii

3E-58 0.72 0.69 x

tblastx EU371046.1 Ferritin Macrobrachium
rosenbergii

4E-68 0.74 0.80

BIP2 blastx XP_001687763.1 AGAP000189-PA [Anopheles
gambiae str. PEST]

Anopheles
gambiae

7E-52 0.60 0.46 x x

tblastx XM_002428865.1 conserved hypothetical
protein

Pediculus
humanus

1E-59 0.51 0.57

Detoxification Peroxiredoxin A blastx ACS91344.1 Peroxiredoxin Fenneropenaeus
indicus

3E-56 0.81 0.56 x x

tblastx GQ161914.1 Peroxiredoxin Fenneropenaeus
indicus

1E-
117

0.82 0.85

Peroxiredoxin B blastx ACF35639.1 Peroxiredoxin 6 Eriocheir sinensis 1E-79 0.68 0.63 x x

tblastx EU626070.1 Peroxiredoxin 6 4E-95 0.68 0.65

Peroxiredoxin C blastx AAP93584.1 thioredoxin peroxidase Apis mellifera
ligustica

8E-78 0.76 0.78 x

tblastx NM_001030437.1 Peroxiredoxin Xenopus tropicalis 4E-92 0.77 0.76

Peroxiredoxin-like
D

blastx XP_970660.2 PREDICTED: similar to 1-Cys
peroxiredoxin

Tribolium
castaneum

5E-07 0.51 0.70 x

tblastx XM_965567.2 PREDICTED: similar to 1-Cys
peroxiredoxin

Tribolium
castaneum

1E-09 0.59 0.66

Thioredoxin A blastx XP_001608075.1 Thioredoxin-like protein Nasonia vitripennis 2E-73 0.88 0.60 x x

tblastx XM_001608025.1 Thioredoxin-like protein Nasonia vitripennis 2E-84 0.88 0.64

Thioredoxin B blastx XP_973267.1 PREDICTED similar to
Thioredoxin domain-
containing protein 14
homolog (LOC662051)

Tribolium
castaneum

4E-58 0.96 0.53 x x

tblastx XM_968174.1 PREDICTED similar to
Thioredoxin domain-
containing protein 14
homolog (LOC662051)

Tribolium
castaneum

3E-63 0.91 0.60
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Table 3 List of immune genes identified in the libraries. (Continued)

Glutathione
peroxidase

blastx AAY66814.1 selenium dependent
salivary glutathione
peroxidase

Ixodes scapularis 3E-39 0.95 0.43 x

tblastx EU399681.1 Glutathione peroxidase Metapenaeus ensis 5E-36 0.71 0.57

Cu/Zn SOD blastx ABU55006.1 Copper/zinc superoxide
dismutase

Macrobrachium
rosenbergii

1E-30 0.43 0.47 x x

tblastx EU077527.1 Copper/zinc superoxide
dismutase

Macrobrachium
rosenbergii

9E-32 0.31 0.71

cytMnSOD blastx CAR85669.1 cytoplasmic manganese
superoxide dismutase

Cyanagraea
praedator

2E-
102

0.68 0.66 x x x

tblastx FM242568.1 cytoplasmic manganese
superoxide dismutase

Cyanagraea
praedator

8E-
116

0.68 0.73

Coagulation Transglutaminase
B

blastx AAK69205.1 Transglutaminase Pacifastacus
leniusculus

3E-70 0.78 0.54 x x

tblastx AF336805.1 Transglutaminase Pacifastacus
leniusculus

8E-84 0.78 0.60

Cellular
differentiation

Astakine blastx ACI02322.1 astakine variant 2 Penaeus monodon 3E-11 0.64 0.52 x

tblastx EU980445.1 astakine variant 2 Penaeus monodon 7E-15 0.72 0.49

Runt blastx CAD44571.1 runt protein 1b Pacifastacus
leniusculus

2E-45 0.67 0.65 x

tblastx AJ506096.1 Pacifastacus leniusculus
mRNA for runt protein

Pacifastacus
leniusculus

8E-73 0.65 0.82

Apoptosis AIF-like blastx NP_001121885.1 apoptosis-inducing factor Danio rerio 7E-28 0.54 0.43 x

tblastx NM_001128413.1 apoptosis-inducing factor Danio rerio 9E-30 0.52 0.49

Autophagy ATG7 blastx XP_002600056.1 hypothetical protein
BRAFLDRAFT_79689

Branchiostoma
floridae

2E-40 0.88 0.52 x

tblastx NM_001129922.1 ATG7 autophagy related 7
homolog

Xenopus tropicalis 5E-40 0.68 0.61

ATG12 blastx ADO32996.1 Autophagy-like protein
ATG12

Biston betularia 3E-33 0.50 0.52 x

tblastx HM449861.1 Autophagy-like protein
ATG12

Biston betularia 1E-38 0.47 0.53

Other Cytoskeleton Kinesin blastx NP_999817.1 kinesin II Strongylocentrotus
purpuratus

3E-
159

0.81 0.83 x x

tblastx NM_214652.1 kinesin II Strongylocentrotus
purpuratus

0.0 0.82 84.00
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Table 4 Expression of the candidate genes involved in the A. vulgare immune response. Transcripts of genes were

quantified by RT-qPCR and normalized with the expression of the L8 ribosomal protein (RbL8) and the Elongation

Factor 2 (EF2). The ratio of expression between symbiotic and asymbiotic conditions was calculated for each sample

(F=whole females; Ov=ovaries; IT=immune tissues, see text). Over-expression and under-expression in symbiotic

samples were highlighted in light grey and in dark grey respectively (* p<0.05; ** p<0.001; - no measurable

response).

ratio symbiotic /asymbiotic

Biological functions Genes F Ov IT

Pathogen Detection Recognition C-type lectin 1 1.19 3.42** 1.55

C-type lectin 2 0.90 0.30** -

C-type lectin 3 0.47* - 1.06

Peroxinectin-like A 0.93 0.09 2.03

Peroxinectin-like B 0.72 0.93 2.03

Transduction ECSIT 1.44 0.63 1.48

MyD88-like 0.86 0.78 1.45

SOCS2-like - 0.72 1.44

Immune response AMP ALF 1 0.77 0.57 0.68

ALF 2 0.90 2.50 1.42

Armadillidine 0.44** 0.83 0.95

Crustin 1 0.57 - -

Crustin 2 0.77 0.48 -

Crustin 3 0.50** 0.47** -

i-type lyzozyme 0.63** 0.44 1.77

Serine proteases Masquerade-like A 0.41 1.30 1.18

Masquerade-like B 0.36* 0.33 -

Serine protease inhibitors a2-macroglobulin A 0.95 1.03 1.05

a2-macroglobulin B 0.80 0.83 1.21

a2-macroglobulin C 0.68 0.32** 0.74

a2-macroglobulin D 0.56 1.88 1.47

a2-macroglobulin E 1.44 1.68 3.05

Regulation of granular secretion Cyclophilin G 0.94 0.74 1.31

RNAi Piwi 0.95 0.74 -

Argonaute-like 0.98 0.62 1.31

Stress response/Detoxification Ferritin A 0.95 2.32* 1.71

Ferritin B 0.79 0.67 -

Ferritin C 0.84 1.90** 1.65

BIP2 0.86 0.57 1.23

Peroxiredoxin A 0.45 0.39 1.59

Peroxiredoxin B 0.58 0.44** 1.05

Peroxiredoxin C - 0.02** -

Peroxiredoxin-like D 0.71 1.16 0.53

Thioredoxin A 1.59 1.91** 2.13

Thioredoxin B 0.57 1.17 0.73

Glutathione peroxidase 0.82 0.17** 1.09

Cu/Zn SOD 0.45 0.68 1.12

cytMn SOD 0.65 0.77 1.66

Coagulation Transglutaminase A 0.75 2.67 1.95

Transglutaminase B 1.33 1.99 1.77

Cellular differenciation Astakine 0.98 0.49 2.08

Runt 1.40 0.83 1.69

Apoptosis AIF-like - 0.59 -

Autophagy atg7 0.73 0.53** 0.59

atg12 0.92 0.27* 0.69

Other Cytoskeleton Kinesin 0.94 0.34 1.35

S >A S < A

Chevalier et al. BMC Microbiology 2012, 12(Suppl 1):S1
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hepatopancreas [58]. Thus, our result represents the

eighth largest sequencing effort for any crustacean,

behind the cladoceran Da. pulex and the decapods Lito-

penaeus vannamei and Petrolisthes cinctipes, and the

sixth EST data set for any Malacostraca species [51,57].

Few A. vulgare unigenes present similarities with crusta-

cean ESTs. This could be in part explained by the phy-

logenetic distance between isopods and the crustaceans

from which EST libraries or genomics data are available.

However, the overlapping between libraries was low,

suggesting that the sequencing effort should be

increased.

The present work allowed us to identify the first

immune gene repertoire from a terrestrial crustacean.

Indeed, until now large scale characterizations of

immune genes in crustaceans have been based on only a

few model organisms, such as shrimps, crayfishes or

crabs. All immune genes identified in A. vulgare are

involved in canonical immune pathways (Table 4 and

Figure 3): i) pathogen detection including recognition

molecules such as the lectins and peroxinectins (PXN)

that are able to distinguish between self and non-self

particles and signal transducers; ii) immune cellular

responses including opsonization molecules (e.g., PXN

and masquerade-like proteins) inducing phagocytosis

and cellular encapsulation; iii) immune humoral

responses involving clotting and coagulation reactions,

production of AMPs, generation of reactive oxygen spe-

cies, detoxification processes, and the proPhenoloxidase

(proPO) cascade; and iv) other pathways connected to

immune responses such as antiviral immunity (RNA

interference), programmed cell death (apoptosis and

autophagy), and cell differentiation such as hematopoi-

esis [49,50,59,60].

Figure 3 Pathway map for known crustacean immune functions: Armadillidium vulgare immune genes identified in this study were highlighted
in pink boxes. The up and down arrows in gene boxes referred to significant up and down-regulation in symbiotic condition. AIF: Apoptosis
inducing factor; ALF: Anti-lipopolysaccharide factor; LGBP: Lipopolysaccharide and b-glucan binding protein; bGBP: b-glucan binding protein;
ECSIT: Evolutionary conserved intermediate in the Toll pathway; Hcy-PO: Hemocyanin with PO activity; MIP: Melanization Inhibitor Protein; PO:
Phenoloxidase; PPAE: Prophenoloxidase activating enzyme; PXN: Peroxinectin; SOCS: Suppressor of cytokine signaling; SOD: Superoxide
dismutase; TGase: Transglutaminase.

Chevalier et al. BMC Microbiology 2012, 12(Suppl 1):S1
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Although 40 new genes all involved in immune path-

ways have been identified, several key genes were lack-

ing (Figure 3). This can be explained by three non-

exclusive hypotheses: The relatively low depth of the

sequencing effort, the weak annotation (44%) due to

divergence between isopods and the other Arthropoda

clades, and the absence of some immune genes in iso-

pods. For example, genes encoding important innate

immune receptors, such as GNBPs or Toll, and their

signal transducers Imd, Dorsal, Cactus, Relish were

known in different crustacean species [47,49,61,62] but

were not identified in A. vulgare. PO activity is detected

in crustaceans, but isopods such as chelicerates seem to

lack PO enzyme and the corresponding gene

[11,58,63,64]. In the same way, the PGRP genes have

never been identified in crustacean EST libraries nor in

the brine shrimp genome [47], which suggests that these

genes could be absent in this clade.

A growing number of studies showed that the

immune system of Wolbachia-infected animals is modu-

lated at the molecular level [17,18,22]. In A. vulgare, it

has recently been shown that Wolbachia impact

immune cellular processes [10,11,65]. We show here

that Wolbachia symbiosis leads to a down-regulation of

some A. vulgare immune genes. Indeed, among the can-

didate genes tested, 72% are down-regulated in whole

females, 75% in ovaries and 19% in immune tissues.

Among the 46 genes analyzed, no significant differential

expression was detected in the immune tissues, whereas

the expression of 16 of them was significantly disturbed

when Wolbachia were present in whole animals and

ovaries. The impacted genes are involved in biological

functions such as stress response and detoxification,

autophagy, AMP synthesis, pathogen recognition, and

proteolytic cascades.

Several impacted genes are involved in oxidative stress

response. The production of reactive oxygen species

(ROS) is one of the first lines of defence against invad-

ing microbes. High concentrations of ROS create oxida-

tive stresses, resulting in damage to lipids, nucleic acids,

and proteins and reducing life span so that complex

antioxidant defence systems have evolved to minimize

damaging ROS. Our study shows a down-regulation of

antioxidant enzymes only in the ovaries. This result

agrees with those obtained in Drosophila S2 cell line

infected by Wolbachia [66] and in A. tabida - Wolba-

chia symbiosis [24] but not with those from the Ae.

albopictus Aa23 cell line [22]. In parallel, we show an

up-regulation of the thioredoxin gene that could be a

response to down-regulation of other genes encoding

antioxidant proteins. An alternative hypothesis is that

this last gene could be induced by Wolbachia to reduce

apoptosis and accelerate multiplication of gonadic cells.

Indeed, in mice, this electron donor protein reduces the

process of oxidant molecules but also increases cell pro-

liferation and the inhibition of apoptosis [67].

There was a significant over-expression of Ferritins A

and C in symbiotic ovaries. Ferritins are important iron

sequestration proteins and play a crucial role in the

iron-withholding defence system [68]. The up-regulation

of ferritin genes could be an active cellular reaction for

starving Wolbachia of iron, which would lead to bacter-

ial growth limitation. Besides, this over-expression could

be the result of the under-expression of the detoxifica-

tion enzymes (Peroxiredoxin B and C and Glutathione

peroxidase). As intracellular free iron produces ROS by

the Fenton reaction in presence of H2O2, iron sequestra-

tion could reduce ROS production and thus avoid dele-

terious effects in the cell. Regardless, this result

contrasts with that obtained in A. tabida-Wolbachia sys-

tem [24,69] where the ferritin genes were under-

expressed in symbiotic condition. This down-regulation

could be due to the dependence phenotype of A. tabida

- Wolbachia association for the oocyte maturation,

whereas our model is a facultative Wolbachia symbiosis

that is not involved in host oogenesis.

Autophagy was initially reported as a bulk self-degra-

dation mechanism for the turnover of proteins and

organelles. Autophagy can be induced via PGRP-LE,

which is essential in the innate bacterial recognition in

Drosophila resistance against Listeria monocytogenes

[70] suggesting that this biological process is involved in

the innate immune response against intracellular bac-

teria, viruses, and parasites [70,71]. In our study, the

atg7 and atg12 genes involved in autophagy were down-

regulated in ovaries. Autophagy-associated genes were

down-regulated also in A. tabida-Wolbachia and S. ory-

zae-SPE symbioses [24,25], which suggests that this pro-

cess is critical in bacterial symbiosis. We may

hypothesize that this down-regulation was an active

strategy of Wolbachia to reduce their elimination by

their host.

In Wolbachia-infected whole animals, three AMP

genes were under-expressed (i.e., armadillidin, crustin 3,

and i-type lyzozyme). Armadillidin and crustin are two

Gram-positive AMPs [44,72]. The impact of Wolbachia

on AMP gene expression varies according to the host-

symbiont association. In infected D. simulans and Ae.

albopictus [73], and in the silkworm cell line [74], Wol-

bachia did not disturb AMP expression. On the con-

trary, attacin and diptericin genes were down-regulated

in an infected D. melanogaster S2 cell line [66], whereas

many AMP genes were up-regulated in the mosquitoes

Ae. aegypti and An. gambiae transfected by the wMel-

Pop strain [17-19]. In the A. tabida-Wolbachia associa-

tion, the defensin, lyzozyme and hymenoptaecin genes

were under-expressed [24] as well as the coleoptericin 1

gene in S.oryzae-SPE symbiosis [25,75]. In A. vulgare,
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the down-regulation of AMP genes could be related to

the higher septicaemia found in Wolbachia-infected ani-

mals [10,11].

Two recognition molecules, the C-type lectins 1 and 2,

were up and down-regulated, respectively, whereas gene

expression of the C-type lectin 3 was not detected in

ovaries. The C-type lectins are mainly carbohydrate

binding proteins involved in pathogen recognition, opso-

nization and encapsulation response, and antiviral

response [76,77]. It has been shown that these proteins

are also involved in symbiont interactions: C-type lectins

were required for the symbiont acquisition in scleracti-

nian corals [78,79] and the marine nematode Laxus

oneistus [80]. In Ae. aegypti and An. gambiae transfected

with the pathogenic Wolbachia strain wMelPop, the C-

type lectin genes were up-regulated [17,18]. In A. vul-

gare, expression of the three C-type lectin genes pre-

sents different patterns, probably due to specific

functions of each protein.

Unlike what was observed in ovaries, the C-type lectin

3 gene expression was significantly down-regulated in

immune tissues of symbiotic females, which could

impact pathogen recognition ability of the host. In the

same way, the serine protease masquerade-like B gene

was down-regulated. This protein family is involved in

several biological functions such as pattern recognition,

opsonization, cell adhesion activity [81], and in antiviral

responses [82]. In our system, the under-expression of

this masquerade-like gene could potentially impair these

functions.

In symbiotic ovaries, one kinesin-related gene was

down-regulated. This pattern observed by RT-qPCR

was also confirmed by in silico comparison between

SSH-A vs. SO libraries. Indeed GO analysis highlighted

vesicle transport and microtubule motor activity as the

only functions over-represented in asymbiotic ovaries.

These functions were mainly associated with kinesin

protein family. In D. melanogaster, kinesin-1 has been

reported to be involved in wMel Wolbachia transport

toward the posterior part of the oocyte [83]. In A. vul-

gare, the relation between kinesin and Wolbachia is

still unknown. Nevertheless, the down-regulation

observed in symbiotic ovaries might be a host response

for limiting the movement of Wolbachia in oocytes. In

the weevil S. oryzae, the primary endosymbiont SPE

seems to stimulate vesicle trafficking, which empha-

sizes the importance of this process in host-symbiont

interactions [25].

Conclusion
Our study represents the first transcriptomics approach

that aims at deciphering the A. vulgare-Wolbachia interac-

tions and it established the first reference transcriptome

for isopods. In A. vulgare, Wolbachia colonize not only

the ovaries but also other tissues, particularly the immune

cells [65,84]. Therefore, perturbation of the host immune

gene expression could be a direct effect of the bacteria on

immunity. In such a scenario, Wolbachia would not be a

silent bacterium and could counteract the host immune

system to survive and establish a long term association

with the host. The quantification of immune-related gene

expression revealed a global trend to gene under-expres-

sion in Wolbachia-infected whole animals and ovaries.

Unexpected modulation of immune gene expression in

ovaries could reflect a Wolbachia strategy to manipulate

the crucial tissue for vertical transmission. Surprisingly,

most of the immune genes (30/37) tend to be up-regulated

in immune tissues. This general up-regulation could com-

pensate the immune depressive effect of Wolbachia pre-

viously described in A. vulgare [10,11,65]. These results

conflict with those observed in insect cell lines where Wol-

bachia down-regulated immune-related genes [66,85] but

are congruent with those obtained in transfected wMelpop

mosquitoes [17-19]. More work needs to be done to check

whether this up-regulation confers host pathogen protec-

tion as observed in Drosophila and mosquitoes

[14,15,17,19].
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