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Abstract 23 

Detailed studies of host/parasite interactions are currently limited because in-situ gene 24 

sequencing or monitoring of parasite gene expression is so far limited to genes presenting a 25 

high loci copy number in the Schistosome genome or a high level of expression. Indeed, how 26 

to investigate the host parasite molecular interplay when parasites are not directly accessible 27 

in vivo? Here we describe a method to circumvent this problem and to analyze DNA and 28 

RNA of Schistosoma mansoni during the interaction with its intermediate snail host 29 

Biomphalaria glabrata. We propose a technique for improved DNA and RNA extraction 30 

from the intra-molluscan stage of the parasite recovered after fixation of infected snails in 31 

Raillet-Henry solution. The extractions can be used for genetic analysis, transcription studies 32 

and microsatellite genotyping. 33 
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1. Introduction 39 

Schistosomiasis or bilharzia is a tropical parasitic disease affecting 200 million humans in 40 

74 countries, causing 200,000 deaths annually (WHO, 2002). It is the second most important 41 

tropical disease in terms of morbidity after malaria. Schistosomiasis is caused by flatworms of 42 

the genus Schistosoma (Plathyhelminth, Digenea) (Chitsulo, et al., 2004, Gryseels, et al., 43 

2006). The cycle of the parasite is complex. It requires humans as definitive hosts and 44 

freshwater snail species as intermediate hosts. Infection occurs in water by the free-living 45 

larval stages (cercaria for the definitive host and miracidia for the intermediate host). 46 

Significant attention has been paid to freshwater snails in the past because of both their 47 

medical and epidemiological importance as intermediate hosts for schistosome parasites. 48 

Moreover, the interaction between Schistosoma mansoni and the snail Biomphalaria glabrata 49 

provides a model of choice in evolutionary biology to investigate the host-parasite co-50 

evolutionary dynamics but also invertebrate immune response (Baeza Garcia, et al., 2010, 51 

Lockyer, et al., 2008, Mone, et al., 2010, Roger, et al., 2008). While snail response to 52 

infection can be readily studied particularly at the molecular level (Adema, et al., 2010, Baeza 53 

Garcia, et al., 2010, Guillou, et al., 2007, Hanington, et al., 2010) it is not easy for the S. 54 

mansoni intramolluscan stage parasite that is not directly accessible. To avoid this problem, in 55 

vitro culture is often used in this model to obtain pure parasites and/or secretion products to 56 

identify the molecules involved in host-parasite interplay (Bender, et al., 2002, Coppin, et al., 57 

2003, Guillou, et al., 2007, Roger, et al., 2008), to perform pharmacological investigations 58 

(Mattos, et al., 2006), or to study parasite development (Azzi, et al., 2009). However, 59 

miracidia to sporocyst in vitro transformation can be achieved only for a short period of time. 60 

For a longer period an artificial snail environment must be used involving sporocysts co-61 

cultured with Biomphalaria glabrata embryonic cells (Bge cell line) (Coustau and Yoshino, 62 

2000, Taft, et al., 2009, Vermeire, et al., 2004). These approaches has been used with great 63 



success in the past, however, the in-vivo response of the parasite to the authentic host snail 64 

environment was never investigated.  65 

Here we describe a new efficient method for improved DNA and RNA extraction from the 66 

S. mansoni intra molluscan stage. We show that the method can be used for PCR 67 

amplification, analysis of gene expression and microsatellite genotyping approaches. 68 

 69 

2. Material and Methods 70 

2.1. Biological material, Raillet-Henry fixation and parasite recovery 71 

Schistosoma mansoni (Guadeloupean strain) was maintained in its sympatric Biomphalaria 72 

glabrata strain and in hamsters (Mesocricetus auratus), as described previously (Théron, et 73 

al., 1997). Miracidia were hatched from eggs recovered from 60-day-infected hamster livers. 74 

The livers were homogenized and the eggs were filtered out, washed, and transferred to spring 75 

water. The miracidia were allowed to hatch under exposure to artificial light. For each 76 

experiment, snails (7-9 mm in diameter) were exposed individually to 20 miracidia. For 77 

primary sporocysts (SpI) detection and recovery, the snails were fixed 15 days post-exposure, 78 

according to a modified method, previously described (Mone, et al., 2010, Theron and 79 

Gerard, 1994). In brief, each infected snail was relaxed in pond water containing an excess of 80 

crystalline menthol for 6 h (menthol relaxation help in shell removing and snail anatomic 81 

observation), the snail body was recovered and fixed in modified Raillet-Henry’s solution 82 

(0.6% NaCl; 2% acetic acid; 2% formalin). After 24 hours in fixative, a dissection of the 83 

head-foot zone was performed, and SpIs (Figure 1) were recovered, washed two times in 84 

Phosphate Buffer Saline (PBS) for 15 min on ice and kept at -80°C until use. 85 

An alternative procedure can be used with a rapid fixation procedure when studying gene 86 

transcription. Infected snails were snap-frozen in liquid nitrogen and fixed directly with the 87 



shell in modified Raillet-Henry’s solution (0.6% NaCl; 2% acetic acid; 2% formalin). After 88 

24 hours in fixative, the shell is removed and SpI recovery was performed as above. 89 

 90 

2.2. DNA and RNA extraction and reverse transcription 91 

Genomic DNA (gDNA) was extracted from single Raillet-Henry fixed S. mansoni sporocysts 92 

according to the following protocol. Sixty µl of TE (Tris 10mM; EDTA 1mM; ph 8) 93 

containing 1.67mg/ml of Proteinase K (Merck) was added to the SpI. Samples were put 3 94 

hours at 55°C and vortexed each 15 min. Then samples were heated 10 min at 100°C for 95 

proteinase K inactivation. gDNA were kept at -20°C until use. 96 

Total RNA was isolated from single or pool of 5 SpIs using the High Pure FFPE RNA 97 

microkit (Roche) according to manufacturer recommendations. Reverse transcription was 98 

performed using random hexamer primer and the RevertAid H minus First Strand cDNA 99 

Synthesis kit (Fermentas) following the manufacturer’s protocol. cDNA were kept at -80°C 100 

until use. It as been largely documented that these new extraction methods have been now 101 

optimized for RNA extraction from formalin-fixed tissue to achieve high quality microarray 102 

and qRT-PCR downstream applications (April, et al., 2009, Ribeiro-Silva, et al., 2007, 103 

Serinsoz, et al., 2005). 104 

 105 

2.3. PCR amplifications of gDNA and cDNA 106 

gDNA PCR amplifications of fixed S. mansoni sporocyst were performed with the Advantage 107 

2 PCR Enzyme System (Clontech). To test PCR on gDNA as template, the SmPoMuc loci 108 

(Roger, et al., 2008, Roger, et al., 2008, Roger, et al., 2008) were amplified using specific 109 

primers designed to amplify specific fragment lengths (see Table 1 for primer sequences and 110 

PCR cycling conditions). PCR conditions were: 0.5µM primers; 1X final Advantage 2 PCR 111 



buffer (2mM MgCl2); 0.4mM dNTPs; 1X final Advantage 2 polymerase and 5µl of gDNA in 112 

a total volume of 20µl of RNase, DNase free water.  113 

cDNA PCR amplification of fixed S. mansoni sporocyst was performed with the GoTaq 114 

hotstart Enzyme (Promega). Five genes were tested (see Table 2 for gene name, primer 115 

sequences and PCR cycling conditions). PCR mix was: 0.4µM primers; 1.5mM MgCl2; 116 

0.2mM dNTPs, 1 unit GoTaq hot-start and 1µl of cDNA in a total volume of 20µl of RNase, 117 

DNase free water. All PCR products were separated by electrophoresis through 1% agarose 118 

gels, and visualized by staining with ethidium bromide. 119 

 120 

2.4. PCR amplification of microsatellite loci 121 

Fifteen microsatellite markers, SmC1, SmDO11, SmDA28 (Curtis, et al., 2001), R95529, 122 

SmD57, SmD28, SmD25, SCMSMOXII, L46951 (Durand, et al., 2000), SmBR16, SmBR10, 123 

SmBR13 (Rodrigues, et al., 2007), SmS7-1 (Blair, et al., 2001), SmBR1, SmBR6 (Rodrigues, 124 

et al., 2002) were used in this study (Table 3). The relevant DNA fragments were amplified 125 

using PCR. Details on microsatellite sequences, primers and PCR conditions are available in 126 

Table 3. To maximise efficiency and minimize costs, these PCRs were performed in three 127 

multiplex reactions using the QIAGEN multiplex kit. The PCR amplifications of loci: 128 

R95529, SmC1, SmDO11, SmBR16 and SmD57 were grouped in the multiplex 1 (M1); loci: 129 

SmDA28, SmBR1, SmS7-1, SmD28, SCMSMOXII were grouped in the multiplex 2 (M2); 130 

and loci: SmD25, L46951, SmBR6, SmBR10 and SmBR13 were grouped in the multiplex 3 131 

(M3). These multiplex reactions were carried out according to the manufacturer’s standard 132 

microsatellite amplification protocol in a final volume of 10µL and with 57°C as annealing 133 

temperature. PCR products were diluted in Sample Loading Solution (Beckman Coulter) with 134 

red-labelled size standard (CEQ™ DNA size standard kit, 400, Beckman Coulter) and 135 

electrophoresis was done on an automatic sequencer (CEQ™ 8000, Beckman Coulter). 136 



Microsatellite sizes were determined using the fragment analyzer package of Beckman 137 

Coulter. To confirm that the fixation procedure did not modify the microsatellite length and 138 

thus did not affect negatively microsatellite analyses, we used a clonal strain of S. mansoni 139 

(Brazilian strain selected for locus homozygosis) to compare the microsatellite profile 140 

between fixed and non-fixed material. These samples were processed as described above. 141 

 142 

2.5. Ethical Statements  143 

Our laboratory has received the permit # A66040 for experiments on animals from both the 144 

French Ministry of Agriculture and Fishing and the French Ministry of National Education, 145 

Research and Technology. Housing, breeding and animal care of the hamster followed the 146 

ethical requirements of the French government. The experimenter possesses the official 147 

certificate for animal experimentation delivered by both ministries (Décret # 87–848 du 19 148 

octobre 1987). 149 

 150 

 151 

3. Results 152 

3.1. Sporocysts detection and dissection. 153 

After 24 hours in Raillet-Henry fixation, SpIs are readily observable as translucent white 154 

bodies within an opaque grey tissue background (Figure 1A). At higher magnifications we 155 

could see the spherical aspect of SpI (Figure 1B and C). Figure 1 shows a snail at 15 DPI. 156 

SpIs were at their optimal development (filled with secondary sporocysts (SpIIs)), the biggest 157 

reached 1mm in diameter and could be recovered by careful dissection of the snail head-foot 158 

zone under a binocular microscope. Dissecting SpIs before 6 DPI remains very difficult. It is 159 

important to recover the SpI without taking snail tissue in order to enrich the parasite signal 160 

for genomic DNA or transcript RNA extractions.  161 



 162 

3.2. S. mansoni sporocysts fixation and genomic DNA amplification 163 

We tested the possibility to amplify gDNA of single SpI after Raillet-Henry fixation. PCR 164 

products of up to 2 kb in length could be amplified from gDNA (columns 1, 2, 3; Figure 2). 165 

At 2.5 and 3 kb amplification did not work anymore or only occasionally for some individuals 166 

(see individual of column 3 at 2.5kb, Figure 2). The results were compared to a positive 167 

control (classical gDNA extraction) for which PCR amplifications worked for up to 3kb 168 

(column 4; Figure 2). To achieve this fragment length specific amplification, we design 169 

primers for SmPoMuc genes for Schistosoma mansoni polymorphic mucins. These mucins 170 

were specific of S. mansoni and no related genes were present in the snail host B. glabrata, 171 

thus no cross-amplifications did occur (data not showed). 172 

 173 

3.3. S. mansoni sporocysts fixation and microsatellite amplification 174 

Microsatellite PCR on DNA extracted from Raillet-Henry fixed SpIs shown good results 175 

(Figure 3). All microsatellite loci were amplified and fragment lengths were in agreement 176 

with the expected sizes (see Figure 3 and Table 3) based on previous studies done on DNA 177 

extracted from adults of the same parasite strain (Bech, et al., 2010, Durand, et al., 2000). In 178 

addition using a clonal strain of S. mansoni without microsatellite diversity we showed that 179 

microsatellite profiles were the same for fixed and non-fixed material (Table 4). The fixation 180 

procedure did not modify the microsatellite length and thus did not affect negatively 181 

microsatellite analyses. 182 

 183 

3.4. S. mansoni sporocysts fixation and reverse-transcription PCR. 184 

Five genes were selected to study the sensitivity of transcript amplification, (i) alpha tubulin 185 

is a highly expressed gene involved in microtubules (one of the main components of the 186 



cytoskeleton) bio-synthesis, (ii) two genes involved in different metabolic pathways, the 187 

superoxide dismutase (SOD) that is part of the antioxidant defence against reactive oxygen 188 

species and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) involved mainly in 189 

glycolysis pathway ; (iii) calreticulin is a multifunctional calcium binding protein encoded by 190 

a single copy gene in S. mansoni genome (Berriman, et al., 2009). Finally (iv) the S. mansoni 191 

antigen 10-3, a developmentally regulated surface antigen known to be expressed specifically 192 

in cercaria, male and female worms, was tested. Transcript amplifications were tested for 193 

these five genes after menthol anaesthesia and Raillet-Henry fixation or after snail were snap-194 

frozen in liquid nitrogen and Raillet-Henry fixation and the same results were obtained for 195 

both techniques. For the four first tested genes, PCR products could be obtained when 5 SpI 196 

were used for cDNA preparation (Column 1, Figure 4). cDNA extracted from a single fixed 197 

SpI gave only an amplification for alpha-tubulin (Column 2, Figure 4) probably due to the 198 

greater amount of transcript for this highly expressed gene. PCR amplifications were highly 199 

specific as no cross amplifications with the intermediate host B. glabrata cDNA could be 200 

observed (Column 4, Figure 4). All those four genes were known to be expressed in miracidia 201 

and sporocysts of S. mansoni. Antigen 10-3 known not to be expressed was also tested as an 202 

internal control and as expected gave no amplifications (Figure 4). 203 

 204 

4. Discussion 205 

Identification of S. mansoni sporocyst intramolluscan stage using Raillet-Henry fixation is a 206 

classical technique used mainly to investigate prevalence and intensity or intramolluscan 207 

development of the larval stages in the S. mansoni / B. glabrata model (Sire, et al., 1998, 208 

Théron, et al., 1997, Theron, et al., 1998). However, recovery of these intramolluscan fixed 209 

parasite stages for extraction of DNA or RNA was never described. Indeed, study of genetic 210 

information in formalin-fixed tissues is often hampered by the impossibility to amplify the 211 



desired DNA or RNA as a consequence of nucleic acid damage (Zimmermann, et al., 2008). 212 

It is thus important to dissect snails and to recover the parasites after a short period of fixation 213 

(less than 24 hours). Studying genomic or transcriptomic information of these fixed 214 

intramolluscan stages will be of interest in many fields of research including the molecular 215 

dialogue between parasite and the host’s immune system, distribution of infrapopulation 216 

genotypes or gene expression during development and maturation from SpIs to cercariae. The 217 

present work describes an improved technique for DNA and RNA extraction from such 218 

samples and delivers proof for their use for the study of genomic DNA, transcript expression 219 

or microsatellite genotyping. 220 

Raillet-Henry fixation permits to recover SpIs that are more than 6 days old. To isolate SpIs 221 

before 6 DPI was quite impossible due to the minute size of these parasites at these steps. The 222 

use of this technique to study post-miracidial stage or SpI within the first days of infection 223 

remains therefore difficult. This constitutes the main limitation of this approach. However 224 

recovery of SpIIs or cercariae is feasible (data not shown). Our extraction protocols are 225 

efficient on SpIs but also on all other intramolluscan parasite stages (data not shown).  226 

However for gDNA a limited size of PCR amplification exists. Apparently, Raillet-Henry 227 

fixation results in gDNA breaks at around 2kb because amplification of fragment of 2.5 kb 228 

was difficult and of 3kb was impossible. Fragmentations in DNA extracted from formalin 229 

preserved samples has been described before and is based on nicks and double-strand breaks 230 

(Zimmermann, et al., 2008). Amplifications of microsatellite fragments of less than 500 231 

nucleotides worked very well using our protocols. There is no difference in microsatellite 232 

amplification between fixed and non-fixed material. Raillet-Henry fixation did not affect 233 

negatively the microsatellite analyses. The technique will allow for genotyping of single 234 

parasite intramolluscan stages and thus could permit reconstruction of the population structure 235 

of sporocyst infra-populations inside the snail. Finally, RNA extraction and RT-PCR showed 236 



good results, cDNA transcript amplification from Raillet-Henry fixed material with or without 237 

nitrogen freezing works well. In our model this will facilitate the study of gene expression for 238 

all intra-molluscan parasite developmental stages at 6 DPI and older.  239 

We hope that the technique developed herein paves the way to a better understanding of the 240 

host/parasite molecular dialogue by taking into account more easily an often neglected partner 241 

in this interaction, the parasite. 242 

 243 
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Table 1: Primers used for genomic DNA PCR 

Fragment 
length 

Forward 
primer name 

Forward primer sequence Reverse 
primer 
name 

Reverse primer sequence Cycling conditions 

1010 bp Exon6F TGAAGCTCAACTCAGTAAGCTGAAC Exon5R CTTGTATCGCCTTCGATTCCAATTC Ta: 58°C - elong: 68°C, 3min 30 - 40 cycles 
1422 bp 10483ex13.F2 ACGAGGATTAATGATTACAAATATGC Exon11R TAGATAATGTACTGCCCACTTTGTG Ta: 58°C - elong: 68°C, 3min 30 - 40 cycles 
1999 bp InTron14/15.F CACTTGTTCATAAACACGTGTCTTC Exon11R TAGATAATGTACTGCCCACTTTGTG Ta: 58°C - elong: 68°C, 3min 30 - 40 cycles 
2517 bp Exon11F ATTTCTTCTAGAATGTCTGAG InTron6/7.R TAAAGGTGGAATATGCCAAACTCAC Ta: 58°C - elong: 68°C, 3min 30 - 40 cycles 
3052 bp InT3/4-3.3.F CTATGGACACTATGAACAATATTCG InTron6/7.R TAAAGGTGGAATATGCCAAACTCAC Ta: 58°C - elong: 68°C, 3min 30 - 40 cycles 
 
bp: base pairs 
Ta: Primers annealing temperature in centigrade; elong: temperature in centigrade and duration of elongation in minutes. 

 

 

 

 



 

Table 2: Primers used for cDNA PCR 

Gene name Accession No. Forward primer Reverse primer Cycling conditions 

Alpha tubulin SCMSAT1A  AGCAGTTAAGCGTTGCAGAAATCA TGACGAGGGTCACATTTCACCAT Ta: 53°C - elong: 72°C, 30sec - 40 cycles 
Superoxide dismutase Cu/Zn 
(SOD) XM_002580438 AGTGGACTCAAGGCTG CCACGGCCTAAATCAT Ta: 54°C - elong: 72°C, 30sec - 40 cycles 

Glyceraldehydes-3-phosphate 
dehydrogenase (GAPDH) XM_002576947  GCGAGGTTTCGACTGA AACAACGAACATGGGTG Ta: 55°C - elong: 72°C, 30sec - 40 cycles 

Calreticulin XM_002574439  ATACGCTCTGGGACAT CCTTGCTTCTCGGCATTA Ta: 54°C - elong: 72°C, 30sec - 40 cycles 

S.mansoni antigen 10-3 (Ag10-3) M22346.1 CACAAGGGTCTACTGCTAACGGA CCTTTAACATGGAATTTATCAGTCTGG Ta: 54°C - elong: 72°C, 30sec - 40 cycles 

 
Ta: Primer annealing temperature in centigrade; elong: temperature in centigrade and duration of elongation in seconds. 
GenBank Accession numbers (No.) are indicated. 
 

 

 

 



 

Table 3: Primers used for Microsatellite PCR 

Multiplex Microsatellite 
name 

Accession 
No. 

Range 
size (nt) 

Repeat motif Forward sequence Reverse sequence Cycling conditions 

M1 R95529 R95529 228/275 (CAT)10 GTGATTGGGGTGATAAAG CATGTTTCTTCAGTGTCC Ta: 57°C - elong: 72°C, 1min - 35 cycles 

 SmC1 AF325694 287-296 (AAT)6-16 TGACGAGGTTGACCATAATTCTAC AACACAGATAAGAGCGTCATGG Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmD57 AF202967 276-300 (TA)22(GA)9 TCCTTGATTCCACTGTTG GCAGTAATCCGAAAGATTAG Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmBR16 L04480 337-341 (TA)10 TGTGACTTTGATGCCACTGA GGCCTGATACAATTCTCCGA Ta: 57°C - elong: 72°C, 1min - 35 cycles 
  SmDO11 AF325698 303-367 (GATA)20-37 TGTTTAAGTCGTCGGTGCTG ACCCTGCCAGTTTAGCGTAG Ta: 57°C - elong: 72°C, 1min - 35 cycles 
M2 SmDA28 AF325695 91-115 (GATA)7-14 CATGATCTTAGCTCAGAGAGCC AGCCAGTATAGCGTTGATCATC Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmBR1 L81235 154 (AC)9 GAGTATACGGCTTCTTGGA CGGAACGACAAGAAAATCAT Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmS7-1 AF330105 184 (AC)17 TCCTCCTCTCTATTTTCTCTTTG ATTACGATTGCACAGATACTTTTG Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmD28 AF202966 240-244 (CAA)5 CATCACCATCAATCACTC TATTCACAGTAGTAGGCG Ta: 57°C - elong: 72°C, 1min - 35 cycles 
  SCMSMOXII M85305 283-295 (CAT)9CGT(CAT)6 TTCTACAATAATACCATCAAC TTTTTTCTCACTCATATACAC Ta: 57°C - elong: 72°C, 1min - 35 cycles 
M3 SmBR10 DQ448293 109-133 (GATA)10 CATGATCTTAGCTCAGAGAGC GTACATTTTATGTCAGTTAGCC Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 L46951 L46951 168-174 (GAA)7 CAAACATATACATTGAATACAG TGAATTGATGAATGATTGAAG Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmBR13 DQ137790 205–225 (CTAT)16 GTCACAGATACCTGACGAGCTG ACTCCCCAGCAATTTGTCC Ta: 57°C - elong: 72°C, 1min - 35 cycles 
 SmBR6 AF009659 272-278 (CTT)10 CTTAACAGACATACACGC GAATACAGGCTATAATCTACA Ta: 57°C - elong: 72°C, 1min - 35 cycles 
  SmD25 AF202965 268-274 (CA)10 GATTCCCAAGATTAATGCC GCCATTAGATAATGTACGTG Ta: 57°C - elong: 72°C, 1min - 35 cycles 

 

Characteristics of Schistosoma mansoni strain Guadeloupe (GUA) microsatellite loci, including locus name, GenBank Accession number (No.), size 

of PCR products in nucleotides (nt), nature of repeated motifs, forward and reverse primer sequences, annealing temperature in centigrade (Ta); 

elong: temperature in centigrade and duration of elongation in minutes. 

 

 



Table 4: Comparison of microsatellite sizes for fixed and non-fixed materials. 

Multiplex Microsatellite name Size (bp) for fixed material Size (bp) for non-fixed material 
M1 R95529 275 275 
 SmC1 290 290 
 SmD57 296 296 
 SmBR16 337 337 
  SmDO11 332 332 
M2 SmDA28 115 115 
 SmBR1 154 154 
 SmS7-1 184 184 
 SmD28 240 240 
  SCMSMOXII 295 295 
M3 SmBR10 133 133 
 L46951 168 168 
 SmBR13 221 221 
 SmBR6 272 272 
  SmD25 292 292 
 

Microsatellite locus sizes of Schistosoma mansoni Brazilian clonal strain. 

 

 



Legends to figures 

 

Figure 1. Visualisation of implanted SpI in snail tissue at 15DPI after Raillet-Henry fixation. 

The SpI were readily observable as translucent white bodies within an opaque tissue 

background (A). Higher magnification showing the spherical aspect of SpI (B, C). 

Biomphalaria glabrata was exposed to 20 miracidia of Schistosoma mansoni. 

 

Figure 2. PCR amplification of genomic DNA recovered from Raillet-Henry fixed 

sporocysts. Columns 1, 2 and 3 correspond to individual sporocysts fixed in Raillet-Henry. 

Column 4 is a PCR positive control using gDNA extracted from non fixed miracidia and 

column 5 correspond to the negative PCR control. Specific fragment lengths were amplified 

using specific primer couples designed on SmPoMuc gene (Roger, et al., 2008, Roger, et al., 

2008, Roger, et al., 2008). See Table 1 for primer sequences and PCR conditions. 

MW: molecular weight in kilo bases. 

 

Figure 3. Multiplex microsatellite fragments profiles visualised after PCR amplifications and 

sequencing using the CEQ 8000 fragment analyzer package (Beckman Coulter). For each 

multiplex (M1, M2, M3) the name and size position of microsatellites were indicated (see 

Table 3 for primer sequences and PCR conditions). For SCMSMOXII, as the dye signal is 

faint compared to the others, we showed a higher magnification of this microsatellite in the 

upper right corner of the M2 picture.  

nt: nucleotide; RFU: relative fluorescent units. 

 

Figure 4. PCR amplification of cDNA transcripts recovered from Raillet-Henry fixed 

sporocysts. Column 1 corresponds to the pool of cDNA originating from 5 sporocysts fixed in 



Raillet-Henry. Column 2 corresponds to the cDNA of 1 sporocyst fixed in Raillet-Henry. 

Column 3 corresponds to a positive control using cDNA originating from non fixed miracidia. 

Column 4 corresponds to Biomphalaria glabrata cDNA. Column 5 corresponds to retro-

transcription negative control. Column 6 corresponds to PCR negative control. See Table 2 

for primer sequences and PCR conditions. 

MW: molecular weight in base pairs. 
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