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The co-evolution between hosts and parasites involves huge reciprocal selective pressures 

on both protagonists. However, relatively few reports have evaluated the impact of these reciprocal 

pressures on the molecular determinants at the core of the relevant interaction, such as the factors 

influencing parasitic virulence and host resistance. Here, we address this question in a host-parasite 

model that allows co-evolution to be monitored in the field: the interaction between the mollusk, 

Biomphalaria glabrata, and its trematode parasite, Schistosoma mansoni. Reactive oxygen species 

(ROS) produced by the hemocytes of B. glabrata are known to play a crucial role in killing S. 

mansoni. Therefore, the parasite must defend itself against oxidative damage caused by ROS using 

ROS scavengers in order to survive. In this context, ROS and ROS scavengers are involved in a co-

evolutionary arms race, and their respective production levels by sympatric host and parasite could 

be expected to be closely related. Here, we test this hypothesis by comparing host oxidant and 

parasite antioxidant capabilities between two S. mansoni/B. glabrata populations that have co-

evolved independently. As expected, our findings show a clear link between the oxidant and 

antioxidant levels, presumably resulting from sympatric co-evolution. We believe this work 

provides the first supporting evidence of the Red Queen Hypothesis of reciprocal evolution for 

functional traits at the field-level in a model involving a host and a eukaryotic parasite. 

 

Keywords: Host-parasite co-evolution, Schistosoma mansoni, Biomphalaria glabrata, Reactive 

oxygen species (ROS), ROS scavengers 
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 Understanding the co-evolution of host-parasite interactions represents a challenge in 

evolutionary biology. Parasites cause substantial deleterious effects on their hosts, and therefore 

represent a major driving force in their evolution (Howard, 1991). Similarly, the host immune 

defenses represent the major selective pressure driving the evolution of parasites. For parasites to 

survive and develop in the host they must adapt to the host-defense system or they will die. This 

parallel co-evolution of host-parasite interactions can be viewed as an arms race in which both the 

host and the parasite develop mechanisms to circumvent the weapons developed by their opponent. 

In this context of reciprocal co-evolution, illustrated by Van Valen (1974), under the Red Queen 

Hypothesis it is assumed that the parasitic genes responsible for infectivity will evolve alongside the 

host defense genes, resulting in adaptation of the interactions between local host and parasite 

populations (Dybdahl and Storfer, 2003). To date, however, only a few studies have sought to 

verify this prediction and convincing experiments have only been reported for models involving 

viruses, bacteria and unicellular eukaryotes (Lohse et al., 2006; Forde et al., 2008).  

Demonstrating co-evolution in an animal host-parasite system is not straightforward and 

most prior discussions of such processes have been indirect, as in studies describing local 

adaptation when compatibility is higher between sympatric host-parasite combinations than 

between allopatric combinations (Gasnier et al., 2000; Gagneux et al., 2006; Munoz-Antoli et al.), 

or studies that have focused on only one trait of the interaction, such as host resistance (Green et al., 

2000) or parasite infectivity (Little et al., 2006). Moreover it is important to take into account that 

non-co-evolutionary mechanisms could also explain correlations between the traits of interacting 

species and that the absence of correlated traits is not evidence for an absence of co-evolution 

(Nuismer et al., 2007, 2010; Yoder and Nuismer, 2010). However we assume that the direct 

examination of reciprocal selection in both the host and the parasite could provide supporting 

evidence of co-evolution. 



Two relatively recent studies investigated this reciprocal response more thoroughly. In the 

first, reciprocal changes in resistance and infectivity were identified for co-evolving Potamopyrgus 

snail hosts and their trematode parasites; however, while these changes were identified using 

prevalence phenotypes, they were not supported by the studied functional markers (Koskella and 

Lively, 2007). The second report provided experimental support for the reciprocity of adaptation 

costs, rapid genetic changes and increased genetic diversity during the co-evolution of a 

multicellular host, the nematode Caenorhabditis elegans, and its pathogenic bacteria, the Gram-

positive bacterium, Bacillus thuringiensis (Schulte et al., 2010). In both papers, co-evolution was 

studied using laboratory strains selected by experimental evolutionary approaches, and only the 

second paper focused on molecular changes induced by the co-evolutionary process. Both papers 

were based on an "over time" approach in which the evolution of phenotypes was monitored over 

the course of experimental laboratory generations. Other empirical studies have been based on a 

"point time" approach in which the pattern of co-variations between host-parasite populations or 

strains that co-evolved independently were assessed at a single experimental time point (Forde et 

al., 2004; Morgan et al., 2005). 
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Here, we investigated the reciprocal evolution of molecular mechanisms directly at the core 

of the host-parasite interaction in a natural system of co-evolution, by comparing host and parasite 

populations that have co-evolved independently. As a model, we used the interaction between the 

trematode, Schistosoma mansoni (responsible for human intestinal schistosomiasis), and its mollusk 

intermediate host, Biomphalaria glabrata. This interaction is a model of choice for the study of 

potential co-evolutionary dynamics (Webster and Davies, 2001; Webster et al., 2004; Beltran and 

Boissier, 2008; Beltran et al., 2008; Bouchut et al., 2008; Roger et al., 2008a; Roger et al., 2008b; 

Roger et al., 2008c; Steinauer, 2009).  

During its intramolluskal stage, the parasite must cope with the snail’s immune system. One 

of the main immune effectors in mollusks are the reactive oxygen species (ROS) produced by 

hemocytes (the circulating immune cells of snails) (Hahn et al., 2000; de Jong-Brink et al., 2001; 



Hahn et al., 2001b; Mourao et al., 2009b). Previous studies conducted by Hahn and co-workers 

demonstrated that hydrogen peroxide (H
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2O2) plays a crucial role in the killing of S. mansoni 

sporocysts (Hahn et al., 2001a, b). Furthermore, hemocytes from S. mansoni-resistant snails were 

shown to generate significantly more H2O2 than susceptible snails, perhaps due at least in part to the 

former having constitutively elevated levels of the mRNA encoding the copper/zinc superoxide 

dismutase (Cu-ZN SOD) (Goodall et al., 2004; Bender et al., 2005; Bender et al., 2007). To resist 

ROS-mediated attacks, the S. mansoni larvae produce ROS-detoxifying enzymes (Vermeire et al., 

2006; Guillou et al., 2007; Vermeire and Yoshino, 2007; Roger et al., 2008c; Wu et al., 2009), 

several of which appear to be secreted by sporocysts (Guillou et al., 2007; Wu et al., 2009). 

Supporting this, a recent report showed that antioxidant enzymes produced by S. mansoni 

sporocysts are directly involved in protecting the pathogen against immune cell-mediated oxidative 

stress (Mourao et al., 2009b). 

In this context, the snail-produced ROS and the parasite-produced ROS scavengers are 

involved in a co-evolutionary arms race, and we can hypothesize that their production levels will be 

closely related. Here, we tested this hypothesis by comparing host oxidant and parasite antioxidant 

abilities for two S. mansoni/B. glabrata strains that have evolved independently, originated from 

different geographic endemic zones and which are found to display significant differences in 

compatibility. 

 

2. Materials and methods 

2.1 Ethics statement 

Our laboratory has received the permit # A66040 for experiments on animals from both the French 

Ministry of agriculture and Fishing and the French Ministry of National Education, Research and 

Technology. Housing, breeding and animal care of the mice followed the ethical requirements of 

French government. The experimenter possesses the official certificate for animal experimentation 



delivered by both ministries (Décret # 87–848 du 19 octobre 1987; number of the authorization 

007083). 
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2.2. Biological materials 

Two strains of S. mansoni were used in this study: a Brazilian strain (SmBRE) and a 

Guadeloupean strain (SmGH2). Each strain was maintained: (i) in their sympatric strain of B. 

glabrata (BgBRE and BgGUA, respectively); and (ii) in hamsters (Mesocricetus auratus), as 

described previously (Théron et al., 1997).  

Miracidia from SmBRE and SmGH2 were hatched from eggs axenically recovered from 60-

day-infected hamster livers, according to the previously described procedure (Roger et al., 2008c). 

Briefly, livers were collected and kept overnight at 4°C in sterile saline solution (NaCl 150 mM) 

containing an antibiotic/antimycotic mixture (penicillin 100 units/ml, streptomycin 0.1 mg/ml, 

amphotericin B 0.25 μg/ml; Sigma). The livers were then homogenized and the eggs were filtered 

out, washed, and transferred to spring water. The miracidia were allowed to hatch out under 

illumination.  

 

2.3. Schistosome-snail compatibility: snail exposure, infection rates and intensities 

The compatibilities of the tested snail-schistosome combinations were evaluated by 

monitoring the infection rates (% of snails infected) and the intensity of infection (number of 

mother sporocysts (SpI) developed) among snails individually challenged with different numbers of 

miracidia. As the miracidial dose increased, a larger fraction of the phenotypic diversity in the 

parasitic isolate was sampled; thus, dose-response curves are much more informative than single-

dose challenges when examining the dynamics of compatibility between two host-parasite 

combinations (Théron et al., 2008). 

For each experiment, snails (7-9 mm in diameter) were exposed individually to a fixed 

number of miracidia in approximately 10 ml of water for 8 h. Following exposure to miracidia, the 



snails were replaced in their original containers until their infection status (presence of SpI) was 

assessed. For the detection of SpI, the snails were fixed 15 days post-exposure, following 

previously described methods (Gerard et al., 1995; Moné et al., 2010b). In brief, each snail was 

relaxed in pond water containing an excess of crystalline menthol for 6 h, the body was removed 

and fixed in modified Raillet-Henry’s solution, exhaustive dissection of the head-foot zone was 

performed, and the number of SpI present in each snail (readily observable as translucent white 

bodies within an opaque gray tissue background) was determined.   
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Dose-response curves were obtained by challenging individual snails (30-40 snails per 

treatment) with doses of 1, 10, 20, 30 and 50 miracidia. Compatibility was measured for the two 

sympatric combinations (SmBRE versus BgBRE and SmGH2 versus BgGUA) and the two 

allopatric combinations (SmBRE versus BgGUA and SmGH2 versus BgBRE). 

 

2.4. Cytotoxicity of H2O2 on S. mansoni sporocysts 

H2O2 cytotoxicity was measured using the Roche Cytotoxicity Detection Kit (Roche 

Diagnostics, Mannheim, Germany), which is based on the measurement of lactate dehydrogenase 

(LDH) activity released from dead and lysed cells into the supernatant. Four hundred miracidia each 

of SmBRE and SmGH2 were submitted to in vitro transformation to obtain primary sporocysts 

(Sp1). Briefly, the miracidia were cultured for 24 h in sterile Chernin’s balanced salt solution 

(CBSS) (Chernin, 1963), containing an antibiotic/antimycotic mixture (penicillin 100 units/ml, 

streptomycin 0.1 mg/ml, amphotericin B 0.25 μg/ml; Sigma). The sporocysts were then exposed to 

four different concentrations of H2O2 (0, 75, 150 and 200 µM) for 2 h and cytotoxicity was 

examined according to the manufacturer’s instructions. As a positive control, we measured LDH 

release from Sp1 that had been lysed with the provided lysis solution (high control, HC); this was 

taken as 100% LDH release. To correct for the background, we measured LDH levels in Sp1-free 

H2O2-treated culture medium (substance control, SC). All measured values were assayed in 



triplicate. The percentage of specific H2O2-induced LDH release was determined as: % cytotoxicity 

= [(experimental result - SC)/(HC - SC)] x 100. 
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2.5. Effect of H2O2 on S. mansoni sporocyst mortality 

Two independent experiments were conducted in triplicate on 24-well plates containing 20 

Sp1 (representing SmBRE or SmGH2) per well. The Sp1 were in-vitro transformed as described 

above (see Materials and methods section 2.2), and exposed to 0, 200, 400, 800 or 1,600 µM of 

H2O2 (Hydrogen peroxide 35%, FLUKA, Germany) for 4 h. Mortality was assessed under a light 

microscope, with the Sp1 considered “dead” when we failed to observe motility and/or the beating 

of the flame-cell flagella.  

 

2.6. The total antioxidant capacity of S. mansoni sporocysts  

The cumulative (total) antioxidant capacity of the sporocysts was quantified for the two 

parasite strains, SmBRE and SmGH2, using an Antioxidant Assay Kit (Sigma). For each test, 2,000 

sporocysts were in-vitro transformed as described above. After 24 h, fully transformed sporocysts 

were recovered by gentle centrifugation (800 g, 5 min, 4°C). The samples were then disrupted by 

sonication (three pulses of 20 s each) and pelleted by centrifugation (12,000 g, 15 min, 4°C), and 

the antioxidant capacity of each supernatant was determined following the manufacturer’s 

recommendations. The amount of protein in each supernatant was determined using a Bradford 

protein assay kit and used as a correcting factor. The experiment was performed six times per strain. 

 

2.7. Reverse Transcription-quantitative PCR (RT-qPCR) 

RT-qPCR analyses were conducted to compare the expression of parasite antioxidant 

enzymes suspected to play key roles in the detoxification of host-induced oxidative stress. Real-

time PCR analyses were performed using a LightCycler 2.0 system (Roche Applied Science) and a 

LightCycler Faststart DNA Master SYBR Green I kit (Roche Applied Science). Total RNA 

extractions from miracidia were performed using the Trizol Reagent (Life Technologies, USA) and 



the manufacturer’s protocol. Reverse transcription was performed according to previously described 

procedures (Guillou et al., 2004). qPCR amplification was performed using 2.5 μl of cDNA in a 

final volume of 10 μl containing 3 mM MgCl
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2, 0.5 μM of each primer and 1 μl of master mix. The 

primers were designed using either the LightCycler probe design software or the web-based 

Primer3 plus interface (http://www.bioinformatics.nl/cgibin/ primer3plus/primer3plus.cgi) and are 

given in Table 1. The following Light-Cycler run protocol was used: denaturation at 95◦C for 10 

min, followed by 40 cycles of amplification and quantification at 95◦C for 10 s, 60◦C for 5 s and 

72◦C for 16 s, a melting curve of 60–95◦C with a heating rate of 0.1◦C/s and continuous 

fluorescence measurement, and then a cooling step to 40◦C. For each reaction, the cycle threshold 

(Ct) was determined using the “Fit Point Method” of the LightCycler Software, version 3.3. The 

PCR reactions were performed in duplicate and the mean Ct value was calculated. For each sample, 

the expression level of the target gene was normalized with regard to the expression of two 

constitutively expressed genes (28S rRNA and α tubulin). The expression ratio (R) was calculated 

according to the formula: R = 2(ΔCt), where ΔCt represents Ct (target gene) – Ct (constitutively 

expressed gene). 
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2.8. ROS detection in single cells 

The cell-permeable fluorescent oxygen probe, 1-pyrenebutyric acid (PBA), can be used for 

the measurement of free radicals in solution (Oter and Ribou, 2009) and in living cells (Ribou et al., 

2004; Rharass et al., 2006), with the fluorescence intensity and lifetime of PBA decreasing 

proportionately to the free-radical concentration. Measurement of the fluorescent lifetime offers 

many advantages over intensity based measurements when working in vivo, not the least that the 

measurements are independent of the absolute intensity of emitted light and the fluorophore 

concentration, thereby avoiding artifacts arising from optical losses. Moreover, these probes do not 

require a reaction with ROS, are usually stable and the fluorescent lifetime is not modified by probe 

degradation or variations in its intracellular accumulation.  

http://www.bioinformatics.nl/cgibin/
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2.8.1. Staining and fixation 

Hemolymph samples were recovered from BgBRE and BgGUA snails, and aliquots (150 µl) 

were put in a Sykes-Moore chamber. After 4 h, the adhered hemocytes were rinsed with Hank's 

buffered salt solution (HBSS) and stained for 20 min with PBA (Acros Organics, Belgium; 0.10 

µM in 1% ethanol). The hemocytes were then rinsed three times and placed in HBSS for 

measurements. For fixation experiments, hemocytes were treated as described above except that 

after the final rinsing step, the cells were killed by incubation for 10 min in Baker solution (10% 

paraformaldehyde in 1% aqueous calcium chloride). In the latter case, the experiments were 

performed within 1 h after cell killing, in order to avoid probe reorganization (Ribou et al., 2004).  

 

2.8.2. ROS quantification by fluorescent-lifetime measurement of single cells 

The fluorescent decay of single living cells loaded with PBA was recorded using time-

resolved microfluorimetry, as previously described (Ribou et al., 2003). Briefly, a laser (nitrogen 

laser NL100; Stanford Research Systems, USA) delivered monochromatic 337-nm pulses, each 

with a half-amplitude pulse-width of 3 ns, and an objective (40×; Unitron) was used to concentrate 

the excitation beam on the microscopic sample. Emitted photons were collected and focused on a 

photomultiplier 1P28 (Hamamatsu Corporation, Japan). A diaphragm placed on the emission 

pathway allowed the selection of signals from single cells, while a 404-nm bandpass filter (half 

bandwidth; 40 nm) also located along the emission pathway was used to select the pyrene emission. 

Each signal was digitalized by a digital oscilloscope (TDS 3032C; Tektronix, USA). The 

fluorescent decay of single PBA-loaded cells selected by the 404-nm filter could be resolved into 

three exponential curves. The time constants (i.e. lifetimes) and amplitude values of each 

exponential curve in the decay were obtained using the downhill simplex method (Nelder and 

Mead, 1965). The first two decays corresponded to the intrinsic fluorescence of the cell attributed to 

the reduced form of NAD(P)H. The third long-time constant (> 100 ns), which was characteristic of 



pyrene derivatives, was related to the ROS concentration through the Stern-Volmer equation (Stern 

and Volmer, 1919) that describes collisional fluorescent quenching of a probe (i.e. PBA) by a 

quencher (i.e., free radicals). The method has been described in several papers (Ribou et al., 2003; 

Ribou et al., 2004; Rharass et al., 2006). We calculated the variation of intracellular ROS 

concentrations as follows: 
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 [ROS] / [ROS]m = [tm (t0 - t)] / [t(t0 - tm)]  Equation 1 

where t is the fluorescent lifetime  measured for 108 single hemocytes originating from eight 

BgBRE snails and 111 cells from eight BgGUA snails; tm is the mean of all lifetimes; and t0 is the 

fluorescent lifetime in the absence of ROS (measured from dead hemocytes fixed with Baker 

solution). In this equation, [ROS]m is the mean of the concentrations from all tested cells (219 

cells). We assumed that fixation ended all cellular activity and ROS production. In the presented 

data, the mean ROS concentration has been assigned an arbitrary value of 1.  

 

2.9. H2O2 production and release by B. glabrata hemocytes  

The H2O2 production by hemocytes was measured using Amplex® Red (Invitrogen). 

Hemolymph was collected from the head-foot regions of BgBRE and BgGUA snails (7-11 mm in 

diameter) as previously described (Bouchut et al., 2006), and the number of hemocytes per µl of 

hemolymph was quantified using a cell counter (Z Series Coulter Counter; Beckman Coulter); 

226.2 ± 50.6 cells /µl and 241.2 ± 102.1 cells /µl were obtained for BgBRE and BgGUA, 

respectively. The Hemolymph of four snails was pooled and 45,000 hemocytes per well were 

dispensed to a 96-well plate for each strain. The hemocytes were allowed to adhere and spread for 1 

h at 26°C. The plate was then centrifuged (600g for 10 min), the plasma was removed, the adhered 

hemocytes were washed three times with HBSS, and the wells were treated with Amplex® Red 

reaction mixture (100 µL per well, prepared according to the manufacturer’s instructions). Optical 

density was measured with a microplate reader at 570 nm during the following 1 h (at 5, 10, 15, 20, 

30, 40, 50, 60 min). The results are expressed as Amplex Red O.D. at 570 nm / 45,000 cells. 
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2.10. Biomphalaria glabrata superoxide anion plasma content 

The plasma content of superoxide anion was monitored via the superoxide-mediated 

reduction of nitroblue tetrazolium (NBT), which results in the precipitation of an insoluble blue 

formazan that can be quantified spectrophotometrically. Briefly, hemolymph was collected from 

BgBRE and BgGUA snails as described above. Hemocytes were removed by centrifugation (1,500 

g for 15 min), and then 50 µL of plasma from each snail was mixed with 50 µl of 0.1% NBT 

(Sigma) dissolved in PBS; (Na2HPO4 8.41 mM, NaH2PO4 1.65 mM, NaCl 45.34 mM, pH 7.45). 

Formazan blue formation was measured with a microplate reader at 620 nm over the course of 3 h 

(at 5, 10, 15, 30, 60, 90, 180 min). NBT-free plasma was used as a control, and triplicate 

experiments were conducted for 10 individuals per strain. 

 

2.11. Statistical analyses 

The normality of our experimental data was assessed using the Shapiro-Wilk normality test 

(Shapiro and Wilk, 1965). Our data on the effect of H2O2 cytotoxicity on S. mansoni sporocysts 

(LDH test), B. glabrata hemocyte H2O2 production, and superoxide anion plasma content were all 

found to be normally distributed (P > 0.05), and were subsequently analyzed using the student's t-

test. Our data on the effect of H2O2 on S. mansoni sporocyst mortality and the total antioxidant 

capacity of sporocysts were not normally distributed (P < 0.05), and were subsequently analyzed 

using the Mann-Whitney test. The results of the ROS concentration assays in each mollusk strain 

were analyzed using the Mann-Whitney test. The Kolmogorov-Smirnov two-samples test was 

utilized to determine whether the ROS concentrations were similarly distributed in hemocytes from 

BgBRE and BgGUA. 

 

3. Results 

3.1. Effect of H2O2 on S. mansoni sporocysts  



Two different assays were conducted to test the effect of H2O2 on the two strains of S. 

mansoni sporocysts (SmBRE and SmGH2) (Fig. 1). First, an LDH test was used to examine the 

cytotoxicity of H
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2O2 on sporocysts of each strain. Our results revealed that the susceptibility to 

H2O2 was significantly higher for SmGH2 than SmBRE (Fig. 1A). When exposed to 200 µM H2O2, 

SmGH2 sporocysts showed 25.8% cytotoxicity (i.e., 25.8% of the cells had lysed and released their 

LDH content), whereas no changes were observed for SmBRE at the same H2O2 concentration (Fig. 

1A). However, although cell lysis occurred in SmGH2, the sporocysts were still alive at this 

concentration. To investigate possible between-strain differences in mortality, we next exposed 

sporocytes to increasing concentrations of H2O2 and examined motility and the beating of the 

flame-cell flagella, which were taken as distinguishing between living and dead larvae. No 

difference between the two strains was observed until the concentration of H2O2 reached 1,600 µM 

(Fig. 1B). At this concentration, 31.2% and 2.6% of the SmGH2 and SmBRE sporocysts were dead, 

respectively; this difference is statistically significant (student’s t-test; P = 0.017). These results 

suggest that SmGH2 sporocysts are more susceptible to H2O2 than SmBRE sporocysts. 

 

3.2. The total antioxidant capacity of S. mansoni sporocysts  

To investigate potential differences in the constitutive antioxidant abilities of sporocysts 

from SmBRE and SmGH2, we measured the cumulative antioxidant activities of these two strains 

(Fig. 2). Our results revealed that the antioxidant ability of SmGH2 was significantly lower than that 

of SmBRE (approximately 13% less; Mann-Whitney test, P = 0.0001).  

 

3.3. Reverse Transcription-quantitative PCR of ROS-scavenger expression among S. mansoni 

strains 

RT-qPCR was used to compare the expression of parasite antioxidant enzymes suspected to 

play key roles in the detoxification of host-induced oxidative stress (Table 1) (Guillou et al., 2007). 

Notably, Cu-Zn SOD (Smp_176200.2) was found to be expressed at a significantly higher level in 



SmBRE than in SmGH2 (2.7-fold; P = 0.017) (Fig. 3). In contrast, no difference was observed in the 

expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Smp_056970.1), GST 

omega (Smp_152710.1), GST 28 kD (Smp_054160), GST 26 kD (Smp_163610), glyoxalase II 

(Smp_091010) or thioredoxin peroxidase (TPX, Smp_158110) (data not shown).  
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3.4. Intracellular ROS measurements in single B. glabrata hemocytes 

We monitored intracellular ROS levels in single hemocytes, using PBA. This method allows 

global ROS to be measured without interference from the reactive hydroxyl radical or H2O2. PBA 

fluorescent lifetimes were measured for 108 and 111 individual hemocytes originating from eight 

BgBRE and eight BgGUA snails, respectively. BgBRE hemocytes produced significantly (11.2%) 

more ROS than BgGUA hemocytes (Mann-Whitney test; P = 0.009) (Fig. 4A). Fig. 4B shows the 

distribution of hemocytes from both strains according to their ROS concentrations, which were 

calculated from the ratio given in equation 1 (see Materials and methods section 2.8.2.). Although 

the cells from both BgBRE and BgGUA samples were distributed around the mean ROS 

concentration, their distributions were significantly different (Kolmogorov-Smirnov test, P = 

0.012). Among the hemocytes producing more than 1.5-fold of the mean ROS concentration, 68.8% 

were from BgBRE strain, while only 31.2% were from BgGUA. Conversely, among the hemocytes 

that showed the lowest ROS concentrations (< 0.7-fold of the mean ROS concentration) 38.1% 

were from BgBRE and 62% were from BgGUA (Fig. 4B). By recording the fluorescent lifetimes of 

single cells loaded with PBA, we also obtained the relative concentrations of free and bound 

NAD(P)H (an indicator of metabolic change) in each cell. However there was no significant 

difference in the quantity of bound and free NAD(P)H (mean ratio = 0.60 for both strains; data not 

shown), suggesting that the strains had similar levels of metabolism. Thus, the only molecular 

difference observed between the two strains was the level of ROS production. 

 

3.5. H2O2 production and release by B. glabrata hemocytes 



We assessed H2O2 production and secretion by hemocytes of both strains using Amplex 

Red. Fig. 5 shows the cumulative amount of H
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2O2 constitutively released by hemocytes of each 

strain over 1 h. The maximum level of H2O2 production was reached at 20 min for BgGUA and at 

40 min for BgBRE after addition of Amplex Red substrate. In total, BgBRE hemocytes produced 

significantly more (1.44-fold; mean value) H2O2 than BgGUA hemocytes (student’s t-test; P < 0.05) 

(Fig. 5).  

 

3.6. Biomphalaria glabrata superoxide anion plasma content 

To our knowledge, all spectrophotometric methods currently available for the determination 

of H2O2 are based on the measurement of red or orange pigments, making these methods unsuitable 

for use on B. glabrata plasma samples, which are already tinted red by hemoglobin. Consequently, 

we used NBT to measure the amount of superoxide anion (O2
.-; a precursor of H2O2) produced in 

both strains. As shown in Fig. 6, at 3 h after addition of NBT BgBRE plasma contained 

significantly more (44% more) superoxide anion than BgGUA plasma (student’s t-test; P = 0.0007).  

 

3.7. Compatibility of sympatric and allopatric S. mansoni/B. glabrata combinations  

Sympatric pairings of S. mansoni and B. glabrata originating from Brazil and Guadeloupe 

were previously shown to display different levels of compatibility that remained remarkably stable 

across laboratory generations (Théron et al., 2008). We first used dose-response curves obtained by 

challenging snails with increasing doses of miracidia to confirm that similar differences could be 

observed between our strains. At doses of 10 or more miracidia/snail, SmBRE/BgBRE showed an 

infection rate of 100%, while SmGH2/BgGUA had an infection rate of approximately half that, at 

around 55%. Interestingly, differences were also observed for the number of parasites (SpI) that 

develop within the snails. The infection intensity rose gradually as the challenge doses increased for 

SmBRE/BgBRE, reaching 16.18 ± 0.86 parasites/snail at the 50-miracidia dose. In contrast, the 



infection intensity for SmGH2/BgGUA remained low regardless of the challenge dose, varying 

between 1.6 ± 0.20 and 3.2 ± 0.64 parasites/snail (Fig. 7). 
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When we tested the heterologous combinations, we found that the SmBRE/BgGUA pairing 

showed a substantial level of compatibility, with infection rates of 80-90% (not significantly 

different from the 100% achieved by the SmBRE/BgBRE pairing), but with lower parasite intensities 

(9.8 ± 0.89 for the 50-miracidia dose) compared with the sympatric combination (16.18 ± 0.86 

parasites/snail at the 50-miracidia dose). In contrast, the SmGH2/BgBRE combination showed very 

little infectivity, with infection rates < 6% and ~1 parasite/snail regardless of the challenge dose 

(Fig. 7). 

 

3.8. ROS, ROS scavengers and compatibility in sympatric and allopatric S. mansoni/B. glabrata 

combinations  

The above-described results indicated that levels of ROS and ROS scavengers were 

correlated in both sympatric combinations, with high-level ROS/ROS scavenger production in the 

Brazilian combination, but lower-level ROS/ROS scavenger production in the Guadeloupean 

combination. If high levels of S. mansoni ROS scavenger are correlated with better resistance of the 

intramolluskan stage of the parasite (as we hypothesized), we would expect SmGH2 to have a 

relatively low ability to infect the allopatric BgBRE snails, while SmBRE would have a high ability 

to infect the allopatric BgGUA snails. This hypothesis was verified in our model, as shown in Fig. 

8. 

 

4. Discussion 

Snail-schistosome compatibility and infection rates result from a complex interplay between 

the host’s defense mechanisms and the parasite’s infectivity strategies. Due to selective pressures 

exerted by the parasite on the host and vice versa, co-evolutionary dynamics may be observed 

(Janzen, 1980; Howard, 1991). Between-population or between-strain differences in the outcomes 



of such evolutionary processes may be expected due to differences in the epidemiological and 

environmental conditions, and/or genetic architectures. Such differential selection patterns could 

explain, at least in part, the geographic and/or strain-specific compatibility variations seen in snail-

schistosome interactions (Théron et al., 2008). At present, however, there is relatively little 

empirical evidence demonstrating reciprocal molecular adaptations in both host and parasite.  
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 Here, we investigated the interaction between S. mansoni and the snail, B. glabrata, as this 

interaction is a popular model for the study of co-evolutionary dynamics (Beltran and Boissier, 

2008; Beltran et al., 2008; Bouchut et al., 2008; Roger et al., 2008a; Roger et al., 2008b; Roger et 

al., 2008c; Steinauer, 2009). We confirmed that there are different levels of compatibility between 

two geographic strains of S. mansoni and their sympatric snail hosts, B. glabrata (Fig. 7) that both 

have co-evolved independently. We compared the host oxidant and parasite antioxidant abilities 

that appear to form the core of the attack/defense interactions of these two pairings.  

ROS are the main effectors of the snail immune system; they are highly reactive and can 

trigger irreversible cell damage. Indeed, ROS produced by the hemocytes of B. glabrata are known 

to play a crucial role in the killing of S. mansoni (Hahn et al., 2000; Hahn et al., 2001a, b; Bender et 

al., 2005; Bayne, 2009). Conversely, S. mansoni possess antioxidant systems capable of 

counteracting the ROS produced by their host’s immune system. Schistosoma mansoni is exposed 

to ROS in both their intermediate (snail) and definitive (human or mammalian) hosts, and produce 

oxidative-stress scavengers in their excretory-secretory products (ESP) during all stages of their life 

cycle (Mei and LoVerde, 1997; Curwen et al., 2004; Zelck and Von Janowsky, 2004; Knudsen et 

al., 2005; van Balkom et al., 2005; Bernal et al., 2006; Dzik, 2006; Perez-Sanchez et al., 2006; Cass 

et al., 2007; Guillou et al., 2007; Mourao et al., 2009a; Wu et al., 2009). Therefore, the success or 

failure of host invasion by S. mansoni depends at least in part on its ability to defend itself against 

oxidative damage (Mourao et al., 2009a). In this system, therefore, ROS and ROS scavengers 

should be involved in a co-evolutionary arms race, and we would expect their respective production 

levels in sympatric host/parasite combinations to be closely related. 



As previous studies have established that H2O2 is the main ROS involved in killing S. 

mansoni sporocysts, probably due to its stability and capacity to cross cell membranes (Hahn et al., 

2001b; Bienert et al., 2006), we studied the susceptibility of two strains of S. mansoni to H
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2O2. Our 

results showed a clear intrinsic difference between parasites isolated from two different geographic 

regions: the intramolluskan stages of Guadeloupean S. mansoni (SmGH2) were more sensitive to 

H2O2 than those of the Brazilian strain (SmBRE) (Fig. 1). Moreover, we observed a difference in 

antioxidant potential between strains, with SmGH2 displaying a lower level of antioxidant activity 

than SmBRE (Fig. 2). Thus, SmBRE has a more efficient antioxidant system, which would seem to 

explain its higher level of resistance to H2O2-mediated oxidative damage.  

In order to identify the molecular pathways involved in these differential antioxidant 

properties, we investigated the strain-specific transcription levels of genes encoding various 

antioxidant enzymes, including GAPDH (Smp_056970.1), GST omega (Smp_152710.1), GST28 

(Smp_054160), GST26 (Smp_163610), glyoxalase II (Smp_091010), thioredoxin peroxidase, and 

Cu-Zn SOD (Smp_176200.2) (Guillou et al., 2007; Vermeire and Yoshino, 2007; Roger et al., 

2008c; Mourao et al., 2009a; Wu et al., 2009). Among these candidates, only the Cu-Zn SOD 

mRNA displayed differential expression, with expression levels that were 2.7-fold higher in 

SmBRE than in SmGH2 (Fig. 3). This finding is consistent with our protein-level results from a 

previous proteomic study (Roger et al., 2008c), and these observations collectively suggest that Cu-

Zn SOD plays a key role in the antioxidant strategy of S. mansoni. The involvement of Cu-Zn SOD 

in ROS detoxification is a recurring and intriguing question, because it is capable of dismutating the 

superoxide anion (O2
•-) to produce H2O2 (Zelck and Von Janowsky, 2004; Guillou et al., 2007; 

Mourao et al., 2009a). The hypothesis currently used to explain the role of S. mansoni Cu-Zn SOD 

in ROS detoxification is based on a suspected peroxidative function (Yim et al., 1993; Yim et al., 

1996; Kim and Kang, 1997; Bayne et al., 2001). In short, it has been proposed that S. mansoni Cu-

Zn SOD could use its own dismutation product (H2O2) to produce hydroxyl radicals (HO•) that are 

less toxic for sporocysts (Bayne et al., 2001). 



In a co-evolutionary context, the between-strain differences in ROS susceptibility and 

antioxidant activity of these S. mansoni strains suggest that there could be comparable differences 

in the ROS production capabilities of the host snail strains. To test this hypothesis, we investigated 

ROS production by the two snail strains. First, we used a fluorescence-based method (Rharass et al., 

2006) to investigate the hemocyte production of free-radicals such as nitric oxide and superoxide 

anion. This approach revealed that BgBRE snails produced more free radicals than BgGUA snails 

(Fig. 4A). Moreover, a distribution analysis of free-radical concentrations in single hemocytes 

showed that the cells producing higher concentrations of ROS came from BgBRE individuals, while 

those producing lower levels of free radicals were from BgGUA snails (Fig. 4B).  
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However, although our results revealed that global ROS production differed between 

BgBRE and BgGUA, oxidants can differ in their reactivity and efficient parasite killing requires 

that the host produce the right oxidant (Bayne et al., 2001). As previous studies have demonstrated 

the crucial role of hydrogen peroxide (H2O2) in the killing of S. mansoni sporocysts (Hahn et al., 

2001b; Goodall et al., 2004; Bender et al., 2005; Bender et al., 2007), we investigated potential 

differences in hemocyte H2O2 production between the snail strains. Our results showed that 

hemocytes from BgBRE constitutively produced more H2O2 than those from BgGUA (Fig. 5). We 

then examined the H2O2 content of plasma from these snails. As technical restrictions make it 

impossible to directly measure H2O2 in plasma, we measured the superoxide anion, which is a 

precursor of H2O2 (Selkirk et al., 1998). Our results confirmed that BgBRE plasma contained 

significantly more superoxide anion than BgGUA plasma (Fig. 6). All of these data were obtained 

from hemocytes harvested from uninfected snails and without cell stimulation. Notably, no 

difference in ROS production was observed when these hemocytes were stimulated by the addition 

of phorbol 12-myristate 13-acetate (PMA) to culture medium (data not shown).  

Taken together, our data show that: (i) the production of ROS in general and H2O2 (the main 

ROS acting against S. mansoni sporocysts) in particular differ between the two snail strains; and (ii) 

this H2O2 production seems to be correlated with the level of ROS scavengers produced by 



sympatric parasites. BgBRE snails produce higher amounts of H2O2 and interact naturally with 

SmBRE, which have better resistance against oxidative stress, while BgGUA snails produce less 

H
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2O2 and are sympatric with SmGH2, which is more susceptible to ROS. If our hypothesis is 

accurate, therefore, we would expect our cross-infection experiments to reveal differences: (i) in the 

infective potential of our two S. mansoni strains; and (ii) in the resistance potential of our two B. 

glabrata strains.  

Indeed, the results of the infection and cross-infection experiments showed significant 

differences in the infection rates and intensities (Fig. 7). The factors and mechanisms underlying 

these differences are not yet known, but may include historical epidemiological conditions, 

differential selective pressures in the transmission areas, genotypic diversities in the host and 

parasitic isolates, recognition mechanisms developed through the matching-phenotypes model, and 

intraspecific competition among sporocysts (for details, see (Théron et al., 1997; Théron and 

Coustau, 2005; Théron et al., 2008; Bech et al.). Notably, the host-parasite combination 

characterized by the higher infection rates and parasite intensities (SmBRE/BgBRE) was also 

characterized by a higher ROS-production capacity by the host and a higher ROS-scavenging 

ability by the parasite. In contrast, the host-parasite combination with lower infection rates and 

parasite intensities (SmGH2/BgGUA) showed lower ROS production by the host and lower ROS 

scavenging by the parasite (Fig. 8). These observations argue for the presence of reciprocal 

adaptation between the ROS and ROS scavenger traits. This was further supported by the results 

from our allopatric cross-infections. The SmGH2 strain, which had co-evolved with its sympatric 

snail (BgGUA) to produce lower levels of ROS, could not effectively infect high-ROS-producing 

BgBRE snails (Figs. 7 and 8). Conversely, the SmBRE strain, which had co-evolved with a host that 

produced more ROS (BgBRE), could easily infect low-ROS-producing BgGUA snails (Figs. 7 and 

8). Interestingly, however, the infection success of SmBRE was lower for the allopatric combination 

than the sympatric pairing (Figs. 7 and 8), suggesting that the oxidative factors probably act in 

combination with other factors to determine the outcome of the B. glabrata/S. mansoni interaction.  



Within hosts, immune effectors exert the main selective pressure on parasites (Loker and 

Adema, 1995; Damian, 1997). However, another factor that helps to define the interaction is the 

efficiency of parasite recognition by snail immune receptors, and the ability of the parasite to escape 

this recognition. We previously discovered a group of polymorphic antigens of S. mansoni (the S. 

mansoni polymorphic mucins, SmPoMucs) (Roger et al., 2008a; Roger et al., 2008b; Roger et al., 

2008c), and recently showed that these antigens are recognized by diversified B. glabrata immune 

receptors (the fibrinogen-related proteins, FREPs) (Moné et al., 2010a). These reports on the 

molecular interactions underlying snail-schistosome compatibility suggest that co-evolutionary 

(reciprocal adaptation) processes probably occur through a combination of changes in general 

resistance (ROS/ROS scavengers) and more specific interactions (FREPs/SmPoMucs). In non-

specific resistance/infectivity interactions involving density-dependant forces (e.g., the number of 

developing parasites within the host), co-evolution leads to global increases in the amount of 

attack/defense products, such as the interplay of ROS and ROS scavengers described herein. In 

highly specific genotype-by-genotype interactions, such as recognition/evasion processes, however, 

co-evolution leads to increases in the diversification and/or polymorphisms among specific 

molecules, as observed for FREPs and SmPoMucs. 
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Even if the success of infection is not exclusively based on the levels of ROS and ROS 

scavengers, our model of dynamic co-evolution predicts that a change in parasite virulence or host 

resistance would be associated with life history trade-offs (reallocation of resources), with increased 

production of a molecule under co-evolutionary pressure yielding indirect negative consequences 

for other functions (development, growth, fecundity, reproductive rate, etc.) (Green et al., 2000; 

Lohse et al., 2006; Forde et al., 2008). Indeed, this kind of trade-off has been observed in our 

model, as a previous study showed that cumulative cercarial production was two-fold higher for the 

SmGH2/BgGUA combination than for the SmBRE/BgBRE (Théron et al., 1997). This could 

indicate that SmBRE has made a tradeoff by investing in the production of ROS scavengers at the 

expense of producing cercariae.  



In summary, host-parasite interactions are dynamic biological systems in which the host’s 

defense mechanisms face the parasite’s infectivity mechanisms, leading to a co-evolutionary arms 

race (Combes, 2000; Howard and Jack, 2007).  
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Developing correlation approaches to studying co-evolution have some limitations. Indeed 

the correlations between traits of interacting species cannot always provide unequivocal evidence 

for co-evolution. Reciprocity could also occur and an absence of correlated traits is not evidence for 

an absence of co-evolution (Nuismer et al., 2007; Nuismer et al., 2010; Yoder and Nuismer, 2010). 

Non-co-evolutionary mechanisms could explain correlations between the traits of interacting 

species. For example, the correlation could result from a colonization process in which a parasite 

species with new potential arrived in a new environment and is more well-adapted to the sympatric 

interacting species. In other interaction models correlated traits could evolve if the abiotic or biotic 

environments favour similar traits in both of the interacting species. For example, a biotic selection 

that affects only one of the interacting species can itself cause trait matching. This can occur if 

interactions have potent fitness consequences for only one of the species or if the outcome of 

interactions depends on the phenotype of only one of the species. These one-way interactions can 

generate correlations that are indistinguishable from those that evolve due to co-evolutionary 

processes (Nuismer et al., 2007; Nuismer et al., 2010; Yoder and Nuismer, 2010). In our model of 

interest B. glabrata could be infected by a lot of pathogens species (other than S. mansoni) that 

represent a selective pressure that could enhance snail ROS production. In this context, 

schistosomes for which the specificity for the intermediate snail host is very high will still succeed 

in infecting the snails, only if they are able to circumvent ROS by increasing their ROS scavenger 

production.  

 However, Nuismer et al. (2007, 2010) state that correlation could occur if interactions are 

mediated by a mechanism of phenotype matching such as what takes place for host-parasite 

interactions. This phenotype matching process was proposed for our S. mansoni / B. glabrata model 

of interest (Théron and Coustau, 2005).  



 Therefore whatever are the mechanisms involved in the apparition of trait correlation 

between two interacting species, our present results reveal the existence of phenotypic matching 

between host and parasitic strains in terms of their attack (ROS production) and defense (ROS 

scavenging) traits. To our knowledge, this work provides the first example of a clear link between 

the level of oxidant and antioxidant molecules possibly resulting from sympatric co-evolution, and 

provides supporting evidence for a field illustration of the Red Queen Hypothesis (Van Valen, 

1974) and its predictions of a functional trait in a metazoan host/parasite model. Detailed 

mechanistic studies will be conducted in multiple populations to fully confirm the link between 

correlated traits and the Red Queen context.  
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Fig. 1. Effect of hydrogen peroxide (H2O2) on Schistosoma mansoni sporocysts. (A) Cytotoxicity 

among S. mansoni sporocysts 2 h after exposure to different H2O2 concentrations. The 

asterisk indicates a significant difference (P < 0.05) in the cytotoxic effect of H2O2 on S. 

mansoni Guadeloupean strain (SmGH2) versus S. mansoni Brazilian strain (SmBRE) 

sporocysts. (B) Percent sporocyst mortality after 4 h exposure to different H2O2 

concentrations. The asterisk indicates a significant difference (P < 0.05) in the mortality 

rates of SmGH2 versus SmBRE sporocysts. 

 

Fig. 2. Constitutive total antioxidant capacities of Schistosoma mansoni Guadeloupean strain 

(SmGH2) and S. mansoni Brazilian strain (SmBRE) sporocysts. Values are expressed as µM 

of antioxidant activity per 10 µg of sporocyst proteins. The asterisk indicates a significant 

difference (P < 0.05).  

 

Fig. 3. Ratios of Zn-Cu superoxide dismutase (Zn-Cu SOD, Smp_176200.2) transcript levels in the 

two strains of Schistosoma mansoni miracidia (Guadeloupean strain, SmGH2 and Brazilian 

strain, SmBRE). Ratios were determined using real-time quantitative PCR and are expressed 

relative to the expression levels of 28s rRNA and α-tubulin. The histogram represents the 

average values of duplicates ± S.D. The expression ratio was calculated according to the 

formula: R = 2(ΔCt), where ΔCt represents Ct (target gene) – Ct (constitutively expressed 

gene). 

 

 

 

 



Fig. 4. Intracellular ROS measurements in single Biomphalaria glabrata hemocytes (A) Global 

reactive oxygen species (ROS) concentration in each snail strain. The histogram represents 

the ROS concentrations in arbitrary units (-fold mean) for the Biomphalaria glabrata 

Guadeloupean strain, BgGUA and Brazilian strain, BgBRE. The asterisk indicates a 

significant difference (P < 0.05) in ROS production by hemocytes of the two snail strains. 

(B) ROS concentrations in hemocyte populations from BgGUA and BgBRE snails. The 

histograms represent the fluorescent lifetimes of 1-pyrenebutyric acid (PBA)-loaded 

hemocytes from eight each of BgGUA and BgBRE; 108 single hemocytes from eight 

BgBRE and 111 hemocytes from eight individuals of BgGUA snails were assessed. The x 

axis represents the fluorescent lifetime in nanoseconds, while the y axis corresponds to the 

number of cells.  
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Fig. 5. Hydrogen peroxide (H2O2) production by Biomphalaria glabrata hemocytes. Cumulative 

production of H2O2 was measured using Amplex Red. The data are presented as the mean (± 

S.D.) of Amplex Red absorbance at 570 nm (A570nm) per 45,000 cells over five replicates. 

The asterisk indicates a significant difference (P < 0.05) in H2O2 production from 

hemocytes of B. glabrata Guadeloupean strain, BgGUA, versus Brazilian strain, BgBRE. 

 

Fig. 6. Constitutive superoxide anion plasma content in Biomphalaria glabrata Guadeloupean 

strain, BgGUA, versus Brazilian strain, BgBRE. The superoxide anion plasma content was 

assessed by spectrophotometric measurement (620 nm) of nitroblue tetrazolium (NBT) 

reduction. At 3 h after initiation of the reaction, the BgBRE plasma contained significantly 

more superoxide anion than that from BgGUA (the asterisk indicates a significant 

difference; P < 0.05).  

 



Fig. 7. Infection rates and intensities in sympatric and allopatric Schistosoma 

mansoni/Biomphalaria glabrata combinations. The percentage of snails infected and the 

intensity of infection: number of mother sporocysts (SpI) developed (n SpI) was measured 

after individual snails were challenged with different miracidial doses (1, 10, 20, 30 or 50 

miracidia (Mi)).   
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Fig. 8. Schematic representation of our reactive oxygen species (ROS)-based co-evolutionary 

hypothesis. The percentage of prevalence is indicated for each Biomphalaria 

glabrata/Schistosoma mansoni combination. The number of arrows represents the 

differential host oxidant (ROS) or parasite antioxidant (ROS scavenger) capabilities. 

Biomphalaria glabrata Brazilian strain, BgBRE, and Guadeloupean strain, BgGUA; S. 

mansoni Brazilian strain, SmBRE, and Guadeloupean strain, SmGH2. 

 

 



Table 1 
Primer sequences for Reverse Transcription-quantitative PCR in this study. 
 
Gene Name and SchistoDB ID Amplicon Length Smp_scaffold Forward primer (5’ to 3’) 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Smp_056970  125 000155 TGGCCGTGGAGCGATGCAAA 

Glutathione S-transferase omega Smp_152710 148 000154 ACAGCTCTAGTTGTCGACCAAACA

Glutathione S-transferase 28 kD (GST 28) Smp_054160 128 000143 CGGACGCGGACGTGCTGAAT 

Glutathione-S-transferase 26 kD (GST 26) Smp_163610 104 000249 GCAAAGCTGGTGGTTTGGGGC 

Glyoxalase II Smp_091010 124 000428 ATGGCCTTCATTGCTTTGGACAGA

Thioredoxin peroxidase (TPX) Smp_158110 101  CAAAGGCCTTGTACAACCAACTCG

Superoxide dismutase (SOD) Smp_176200.2  100 000615 AGTGGACTCAAGGCTG 

 
Gene names are given according to the SchistoDB accession numbers 
(http://schistodb.net/schistodb20/). Their respective scaffolds are included in the table. 
Smp_163610 primer sequences are given according to the mRNA sequence of the gene 
(XM_002582157.1) due to inconsistency in the genome assembly. α-tubulin and 28S primers 
sequences were previously published (Bahia et al., 2006; Roger et al., 2008a).  
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