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Abstract

magna and its bacterial parasite Pasteuria ramosa.

detected in the D. magna-P. ramosa system.

Background: A central hypothesis in the evolutionary ecology of parasitism is that trade-offs exist between
resistance to parasites and other fitness components such as fecundity, growth, survival, and predator avoidance,
or resistance to other parasites. These trade-offs are called costs of resistance. These costs fall into two broad
categories: constitutive costs of resistance, which arise from a negative genetic covariance between immunity and
other fitness-related traits, and inducible costs of resistance, which are the physiological costs incurred by hosts
when mounting an immune response. We sought to study inducible costs in depth using the crustacean Daphnia

Results: We designed specific experiments to study the costs induced by exposure to this parasite, and we re-
analysed previously published data in an effort to determine the generality of such costs. However, despite the
variety of genetic backgrounds of both hosts and parasites, and the different exposure protocols and
environmental conditions used in these experiment, this work showed that costs of exposure can only rarely be

Conclusions: We discuss possible reasons for this lack of detectable costs, including scenarios where costs of
resistance to parasites might not play a major role in the co-evolution of hosts and parasites.

Background
Parasites are thought to be a major cause of evolution-
ary change due to the deleterious fitness effects they
impose on their hosts [1-3]. Coevolution between hosts
and parasites has resulted in the evolution of several
mechanisms to avoid or limit these deleterious effects,
including behavioural modifications, boundary defences
(e.g. the cuticle) and finally the immune system
[reviewed in [4]]. Following theory on the evolution of
life-history traits [5], the evolution of the immune sys-
tem is thought to be shaped by costs of resistance, as
investment in fighting infection by mounting and then
maintaining an immune response should divert
resources from other fitness-related traits [4,6-10].
These costs fall into two broad categories. Constitutive
costs of resistance arise from a negative genetic covar-
iance between immunity and other fitness-related traits
(a genetic-based trade-off) [4,7,9,10]. Inducible costs of
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resistance are the physiological costs incurred by hosts
when mounting an immune response [4,9,10]. Such
inducible costs of mounting an immune response can
be measured by comparing the fitness of individuals
that are challenged with infection but successfully fight
it off, to the fitness of hosts that are unchallenged [7].
The mechanistic cause of these costs (induced or consti-
tutive) is thought to be the energy requirements neces-
sary to fight infection, but they could also be linked to
direct deleterious effects of immune effectors on the
host itself (that is, immunopathology [see reviews by
[4,9-11]).

Both inducible and constitutive costs may play a role
in maintaining polymorphism for resistance to infection.
Specifically, host genotypes enduring costs (either
because they launch powerful, self-damaging responses,
or because they have invested heavily in preparatory
defences) may be outcompeted when the threat of para-
sitism recedes. A great number of studies, particularly in
invertebrates, have tested for the presence of both forms
of costs of resistance. Costs are clearly present in some
systems (Table 1 [reviewed in [12,13]), but not in others,
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where they may be transient or manifest only in a subset
of life history traits. Some examples of cost-free resis-
tance appear certain. For example, more than 100 years
after their introduction outside the range of their nat-
ural parasite, Microphallus sp, an experimental study
found that Potamopyrgus snails are still resistant, which
would not be expected if resistance bore fitness costs
[14]. Costs are almost certainly not universal.

Daphnia magna, a planktonic crustacean found in
temperate freshwater ponds, has been the object of con-
siderable research regarding parasitism [reviewed in
[15]. Substantial genotypic variability for resistance has
been found in natural populations [15-19], while studies
incorporating environmental variation (temperature and
food levels) have found pervasive genotype-by-environ-
ment interactions, indicating that the environment may
change the fitness consequences of parasitism [20-24].
Past studies on costs of resistance in Daphnia magna
indicated no constitutive costs, but detectable costs of
launching an immune response (Table 1[25]). We
sought to extend understanding of the costs of launch-
ing an immune response by testing if costs were
enhanced with successive exposures to the parasites, or
under certain (harsh) environmental conditions. This
investigation of induced costs of exposure yielded results
that did not agree with previous work [25]. In an effort
to settle the issue, we gathered additional data sets that
were originally produced for other questions, but which
were suitably designed such that costs of induced immu-
nity could be probed. In sum, we present the results of
five experiments to show that, under a variety of genetic
backgrounds, exposure protocols, and environmental
conditions, costs of immunity are only occasionally
detected in the D. magna-P. ramosa system.

Methods

Below, we describe the detailed methods of the three
main experiments, which are new experiments designed
to test for costs of resistance. For brevity, we only report
the results and a tabular summary of methods for the
additional experiments (i.e. those which, although not
originally designed for testing costs, could nevertheless
be used for that purpose). The detailed methods for the
set of additional experiments are reported in the Addi-
tional file 1. However, the following descriptions of host
and parasite biology, as well as the general experimental
schemes, are applicable to all experiments reported.

Daphnia magna clones and Pasteuria ramosa strains

Daphnia magna is a filter-feeding crustacean zooplankter
that reproduces by cyclical parthenogenesis. Pasteuria
ramosa is a gram-positive bacterium that is an obligate,
spore-forming endoparasite of D. magna. Hosts become
infected with P. ramosa by filtering transmission spores
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present in the water or sediments at the pond bottom.
Infection causes host castration and gigantism, as well
as premature death. Within the host, P. ramosa goes
through a developmental process that culminates in
the formation of spores. Host death is essential for
transmission, mature spores being released from the
remains of dead infected hosts. P. ramosa spores are
horizontally transmitted only, i.e. there is no evidence
of transovarial infection [26].

In the main experiments, we used 4 Daphnia clones,
named GG3, GG4, GG7 and GG13, which were origin-
ally collected in Germany from a population near Gaa-
zerfeld [16]. Two strains of the parasite P. ramosa were
used, Spl and Sp8; they each originated from the same
Gaarzerfeld population and have been used to infect
Daphnia in the laboratory for over a decade (they were
originally named 1 and 8 [16]). The Daphnia hosts were
maintained in the laboratory in a state of clonal repro-
duction, whereas the P. ramosa strains were kept frozen
until needed for the experiments. From Carius et al.
[16], we know that GG3 and GG4 are relatively suscep-
tible clones to a variety of parasite strains, whereas GG7
and GG13 are mostly resistant. Similarly, Sp1 is a rela-
tively highly infective P. ramosa strain, whereas Sp8 is
comparatively innocuous. The specific infection levels
expected for the different host-parasite pairs are indi-
cated in Table A3 (Additional file 1).

General experimental protocol

To equilibrate maternal effects prior to the experiments,
replicate jars of each host clone were kept under
controlled conditions for three generations: 20°C (in
temperature-controlled incubators), a set light:dark cycle
(Experiment 1: 12:12; Experiments 2 & 3: 16:8 hours),
and fed equal amounts of chemostat grown algae
(Chlorella sp. or Scenedesmus sp., see Table 2) per
Daphnia per day (quantity varies among experiments,
see Table 3). Replicates contained 5 females, either in a
60 ml or 200 mL jar of Daphnia medium, depending on
the experiment (Aachener Daphnien Medium [27], see
Table 2). Medium was changed every 2 to 3 days.

For the parasite exposures, we used a split-brood
design: offspring (less than 24 hours old) of each repli-
cate jar were split into the different treatments (various
spore types, D. magna clones, spores quantity, number
of exposures, temperatures, see Table 3 and Additional
file 1 S1). On the day of exposure, the medium was
changed, a teaspoon of sterile sand and a solution of
P. ramosa spores (treatments) or a sham solution
(controls) were added to each jar. Exposure length was
variable among experiments (Table 2). During the expo-
sure, the sand was stirred daily, and the Daphnia were
fed with low amounts of food (Table 2). The combina-
tion of sand and low food increases bottom grazing
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Table 1 Literature survey of studies testing for constitutive (a) and inducible (b) costs of immunity in arthropods

Ref Species Cost ? Selection  Challenge Environment Observations
a Constitutive
cost
[35] Plodia development time?, longevity, resistance - Standard lab “development time difference tend to
interpunctella reproduction virus conditions decrease after two more generations
[41] Plutella growth rate®, survival® resistance - Poor quality Peost of resistance for one population,
xylostella B. food advantage for the other
thuringiensis
[41] Plutella survival® resistance - larval “cost of resistance for one population on
xylostella B. competition two tested
thuringiensis
[55]  Biomphalaria fertility, mortality resistance - Standard lab includes a susceptiblity-selected control
glabrata Schistosoma conditions (different effect)
[34] Aedes aegypti  early pupation = low melanization  early/late beads to Standard lab no control for wounding
pupation test conditions
melanization
[6] Tenebrio cuticular color® - - Standard lab deuticular color is correlated with
molitor conditions investment in immunity; positively
correlated with longevity, no effect on
fecundity
[56]  Anopheles longevity, fecundity, mating success resistance - Standard lab includes a susceptiblity-selected control
gambiae Plasmodium conditions (same effect)
[36]  Drosophila competitive ability against resistance - Various food “cost found only for lowest food levels
melanogaster ~ controls®, survival, development time,  A. tabida levels and
fecundity, size, fluctuating asymetry competition
[371  Drosophila fecundity, egg viability, starvation resistance L. - Standard lab
melanogaster tolerance boulardi conditions
[37]  Drosophila competitive ability’ resistance L. - Various food fcost found only for lowest food levels
melanogaster boulardi levels and
competition
[55]  Drosophila resistance, survival, competition high/low - Standard lab  9individuals selected at high densities fare
melanogaster ability? densities conditions actually better
[571  Drosophila fecundity”, longevity resistance - High/Low Pcost found only for high temperature
melanogaster Macrocheles temperatures
[58]  Drosophila fecundity - - Standard lab
melanogaster conditions
8] Drosophila fecundity' - - High/Low 'cost found only for low food
melanogaster food levels
[59]1  Drosophila fecundity!, competitivity’ resistance - High/Low  Jcost found only for high competition level
melanogaster T. kingi larval
competition
[39]  Drosophila longevity®, body mass, development  resistance - Standard lab kcost found only for females; 'reduced
melanogaster time!, egg viability, productivity, P. conditions development time for selected lines
mating aeruginosa
[60] Acyrthosiphon fecundity, resistance to different - - High/low
pisum parasites food quality
[53] Acyrthosiphon fecundity, survival without food™, - - Standard lab ~ ™Mresistance is actually positively correlated
pisum size™, competitive ability"” conditions with this trait; "unpublished data cited
[32] Daphnia mortality, age of 1st reproduction, - - Standard lab
magna fecundity conditions
[32] Daphnia competitive ability - - High
magna densities,
very low
food
[31] Daphnia fitness - - Low quality
magna natural
environment
[33] Daphnia survival, fitness +/- O. - low density,

magna bayeri high food
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Table 1 Literature survey of studies testing for constitutive (a) and inducible (b) costs of immunity in arthropods
(Continued)

b Inducible cost

[40] Tenebrio 7° - generalist solitary/ Passume plasticity = cost
molitor fungus gregarious
[6] Tenebrio longevity, fecundity - Nylon Standard lab
molitor inserted conditions
[61] Tribolium fecundity; development®, survival® - heat killed  Standard lab Pcosts shown in 1 line only
castaneum bact conditions
injected
[62] Bombus survival" - LPS injected,  High/zero sterile workers; "cost found only when
terrestris® beads food levels starved
inserted
[63] Aedes aegypti fecundity® - beads Standard lab *depend on the charge of the bead
inserted conditions
[8] Drosophila fecundity* - P. rettgeri High/low  ‘costs result from wounding only, just after
melanogaster injected food levels injection (not lasting)
[59]  Drosophila fecundity, survival resistance  exposure 7. Standard lab
melanogaster T. kingi kingi conditions
[25] Daphnia mortality - exposure P.  low food and “high density for first experiment only
magna ramosa high density"
[31] Daphnia fitness - exposure O.  Low quality
magna bayeri natural

environment

Details given for each study are: the species studied (Species), whether a cost was found or not (Costs?: traits for which a cost was detected are bolded), whether
the lines used in the experiment where selected before, and if so the object of the selection (Selection), how the animal’s immunity was challenged (Challenge)
and finally what were the environmental conditions tested (Environment).

behaviour, thus increasing the chances of Daphnia  days if they did not. The recording of infection status
encountering the parasite spores. began from 10 to 16 days after exposure: by this time

After the exposure period, all Daphnia were trans-  infected individuals were red in colour, larger and had
ferred to new jars with new medium. The medium was  mostly ceased reproducing. Individuals that died before
changed when hosts produced a clutch, or every 2 or 3  infection assessment were removed from the analyses.

Table 2 Details of experimental designs presented in the current study

Exposure Food
# Host clones Parasite  spore nb time age Jarsize Sp. qty T°(°C) rep ind/ Cont. Expe time
strains nb (days) (days) (mL) (x10%) jar (Days)
1 GG3,GG4, GG7,GG13 Sp1,5p8 50000 1 2 5 60 C 35 20 35 1 c. D. last death
Sp1 200000
2 GG4,GG7 Sp1 20000 1,2, 2 5 11,19, 60 C 35 20 40 1 c. D. last death
4 27
3 GG4 Sp1 2500 1,2 10° 1,5° 60 C 2.1 15, 30 1 c. D. 60 days®
20,25 H,0
4 GG3 Sp1 5000 1 5 1 60 S 5 200 24/ 1 cD. 38 days
72
50000
5 <20 clones, recently Mix wild 50000 1 5 1 200 S 5 20 70 5 - 35
wild-caught® spores
100000

“at 20°C, degree-day equivalent for other T°

P Hosts were collected from a Scottish population in Summer 2003, see Duncan and Little Evolution 2007, 61(4):796-803

For each experiment (referred to by their number: #), the D. magna clones (Host clones) and the P. ramosa strains (Parasite strains) used are indicated. The
protocol used for the exposure(s) is given, described by the number of spores per Daphnia added (spore nb), the number (nb), the length (time) and the age
(age) of the individuals when each exposure was performed. The environmental conditions of the experiment are detailed. For food, the algae species (Sp.: C for
Chlorella, S for Scenedesmus) and the quantity (qty, in millions of cells) are indicated. The temperature(s) at which the experiment was performed (T°), the number
of replicates per treatment (rep), the number of individuals per jar (ind/jar), the jar size, the controls used [Cont.: crushed unexposed Daphnia (c. D.) or sterile
water (H,0)] and the total length of the experiment (Expe time) are also given.
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Table 3 Costs in Daphnia magna
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# Inducible Cost? Challenge Environment Observations
1 age first reproduction, size, survival®,  various strains and doses low food @ only for one Daphnia clone (GG3)/Pasteuria strain
fecundity? combination at high dose
2 age first reproduction, survival, multiple exposures low food
fecundity
3 fecundity, survival single or double dose various T°, low
food
4 fecundity, survival single or double dose normal one Daphnia clone only (GG3)
5 survival single or double dose (no normal many genotypes (wild-caught Daphnia)

control)

For each experiment (referred to by their number: #), the finding (bolded) or absence (normal) of inducible costs of immunity in response to exposure is
indicated for the traits tested. Details of the type of challenge and experimental environment for each experiment are also given.

The presence of a clutch was checked for daily or every
other day (depending on the experiment, see Additional
file 1 S1), and the number of offspring and clutch date
were recorded. When an individual was dead, the death
date was recorded and the individual was transferred
into a 1.5 ml Eppendorf tube, dried and frozen at -20°C.
Frozen Daphnia were later crushed in CASY°ton solu-
tion and P. ramosa transmission stages were counted
using a CASY® model DT electronic cell counter (Inno-
vatis AG). The total experiment length was variable
among experiments (see Table 2). Tables 2 and 3 pro-
vide a summary of the protocols and treatments used in
the different experiments. Additional details of each
experiment can be found in Additional file 1 (A1l).

Statistical analyses

To test the effect of the treatment on the proportion of
hosts that became infected, we used generalized linear
models of the form: PROPORTIONINFECTED = GEN-
O*EXPO (main effects and 2-way interactions), where
the response variable PROPORTIONINFECTED is a
proportion (binomial error) and the explanatory vari-
ables are categorical: GENO is the Daphnia genotype
(clone) used (number of levels equal to number of geno-
types) and EXPO is the type of treatment (number of
levels equal to number of treatments). Genotype is a
fixed effect rather than a random effect because it is
both replicated and we were interested in clonal means.
Models were checked for overdispersion. For other
traits, we used general linear models (GLM) of the
form: TRAIT = GENO*INF*EXPO (main effects, 2-ways
and 3-ways interactions), where the response variable
TRAIT is continuous (normal error) and INF is the
infectious status (categorical, 2 levels: infected or unin-
fected). Normality of residuals was checked and the data
were log-transformed when necessary to ensure normal-
ity. For analyses of age of first reproduction and for age
of death (survival) we also used Cox’s proportional
hazards models (CoxPH) of the form TRAIT = GEN-
O*EXPO”INF. Hosts that did not die by the end of the

experiment were entered as censored data. For Experi-
ment 3 (Table 2), the degree-day was used as the time
scale to allow comparisons between temperature treat-
ments; this is the product of the real day by the tem-
perature, and is used as an approximate measure of
Daphnia physiological time [22].

The models were simplified according to Crawley [28]:
significance of the different terms was tested starting
from the higher-order terms. Non-significant terms (P >
0.05) were removed. When an interaction term was sig-
nificant, each level of the factors in the interaction were
then analysed separately. Factor levels of qualitative vari-
ables that were not different in their estimates were
grouped, as described by Crawley [28]. This process
gives the minimal model. Analyses were performed
using the R freeware package (v 2.0.1, http://www.r-pro-
ject.org; Experiments 1, 2, 4 and 5) or the JMP 7 (SAS
Institute Inc., Experiment 3).

Results

A results summary is provided in Table 3, indicating
whether evidence for costs of resistance was detected or
not. As this study aims at identifying potential costs of
resisting parasites, only data from uninfected hosts are
presented, which includes both unexposed individuals
(controls) and exposed but not-infected individuals (i.e.
individuals that resisted the infection). The results on
costs of parasitism (i.e. the effects of infection on life
history traits for exposed and infected individuals) are
presented in Additional file 1 (A2).

Experiment 1: single exposure, four clones

In this experiment, we exposed four clones of Daphnia
with relatively extreme resistance phenotypes (GG3 and
GG4 are generally susceptible (S), while GG7 and GG13
are generally resistant (R) [16]) to different strains and
doses of P. ramosa (Table 2). For a total of 560 exposed
individuals, we report measurements of four life history
traits: age at first reproduction, size (body length mea-
sured for each individual on day 12, see Additional file 1),
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lifespan and lifetime number of offspring (Figure 1). We
were thus able to examine inducible costs of resistance,
by comparing between unexposed and exposed-but-
uninfected individuals. Note that for survival, only the
GLM analyses are reported, as the CoxPH analyses led
to identical results. The rates of infection observed in
this experiment for the various host clones and para-
site strains were similar to those expected from an ear-
lier study (Additional file 1, Table A3). We found a
significant effect of the genotype for the age at first
reproduction (GENO: F = 47.7, P < 0.001, Figure 1A),
for size (GENO: F = 20.37, P < 0.001, Figure 1B), for
lifespan (GENO: F = 16.12, P < 0.001, Figure 1C) and
for the total number of offspring (GENO: F = 2.75, P
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< 0.05, Figure 1C). However, while this shows that
there are genotypic determinants for performance, they
do not appear to be related to resistance phenotypes.
Induced costs of resistance are indicated when the
performance of exposed-but-uninfected individuals is
poorer than that of unexposed controls. For age of first
reproduction, there was no difference between controls
and exposed-uninfected individuals for any clone,
regardless of exposure dose (GENO:EXPO: F = 0.72,
P = 0.69; EXPO: F = 0.97, P = 0.40). For body size, the
3-way interaction Geno:INF:EXPO was significant(F =
4.93, P = 0.026), but we found no clear effect of expo-
sure (EXPO: F = 0.36, P = 0.78), all treatment sizes
being globally similar to that of controls. The
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Figure 1 Experiment 1 results (four D. magna host genotypes exposed once to Pasteuria ramosa, see text). In all panels, the black bar
represents means for unexposed controls. For the exposed individuals, light grey bars are means for uninfected hosts and dark grey bars are
means for the infected. For each genotype, the exposure order is always: controls, parasite spore 8 (Sp8) low dose (uninfected/infected), parasite
spore 1 (Sp1) low dose (uninfected/infected) and Sp1 high dose (uninfected/infected). Panel A presents for each category the average age at
which females released their first clutch (for GG3, a and b represent two statistically different groups, see text). Panel B presents for each
category the average body size of host at day 12. Panel C presents for each category the average age on the day of death (for GG3, g and b
represent two statistically different groups, see text). Panel D presents for each category the mean reproductive success, i.e. the number of
offspring produced during the entire life (for GG3, a and b represent two statistically different groups, see text). Bars are standard errors.
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significance of the 3-way interaction is probably due to
GG3 uninfected individuals exposed to high dose of
Spl being smaller than expected, and GG13 uninfected
individuals exposed to Sp8 being larger than expected
(Figure 1B). For the age of death, we found no effect
of exposure, except for GG3 individuals exposed to
high dose of Spl, for which lifespan is shorter than
controls (F = 3.53, P = 0.019; Figure 1C). Finally for
the total number of offspring produced during the
individuals’ life, again only GG3 individuals exposed to
a high dose of Spl showed significantly lower fecundity
than controls (F = 4.83, P = 0.004; Figure 1D). The
analysis of other fecundity related traits (number of
clutches, average clutch size, data not shown) indicates
that this lower fecundity is essentially due to a reduc-
tion of the clutch number, which is probably linked to
the reduction of their lifespan.
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Experiment 2: multiple exposures, two clones

In this experiment, we tested for inducible costs of
resistance, by applying multiple parasite exposures. The
assumption is that repeated exposures lead to repeated,
and thus more costly, immune responses. Two host
clones (GG4 (S) and GG7 (R)) were exposed to spores
of P. ramosa strain Spl. Three exposure treatments
were carried out, with hosts being exposed either once,
twice or four times to 20,000 spores each time (with a
week between exposures). A total of 320 individuals
were analysed for the same traits as in Experiment 1
(Figure 2). Again, the GLM and CoxPH analyses are
similar, so only the GLM is reported. Rates of infection
observed in this experiment were lower than that
observed in Experiment 1, as expected due to the lower
spore dose used (for more details see Additional file 1
A2). In comparing the performances of exposed-but-
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Figure 2 Experiment 2 results (two host genotypes and multiple parasite exposures, see text). The black bar represents means for
unexposed controls. For the exposed individuals, light grey bars are means for uninfected and dark grey bars are means for infected. For each
genotype, the exposure order is always controls, single exposure (uninfected/infected), double exposure (uninfected/infected) and quadruple
exposure (uninfected/infected). Panel A presents for each category the average age at which females released their first clutch. Panel B presents
for each category the average age on the day of death. Panel C presents for each category the mean reproductive success i.e. the number of
offspring produced during the entire lifetime. Bars are standard errors.
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uninfected individuals to controls, we found no effect of
the number of exposures either for the age of first
reproduction (EXPO, F = 0.64, P = 0.59, Figure 2A), the
time to death (EXPO, F = 0.64, P = 0.59, Figure 2B) or
for the total number of offspring (EXPO, F = 0.68, P =
0.56, Figure 2C). However, we found a genotype effect
in each case, confirming Experiment 1: GG4 individuals
reproduce earlier (GENO, F = 8.33, P = 0.004), die later
(GENO, F = 7.39, P = 0.007) and reproduce more
(GENO, F = 9.06, P = 0.003) than GG7 individuals.

Experiment 3: One or two exposures, three temperatures,
one clone

Given recent research on the environment-dependent
nature of infection outcomes in host-parasite systems
[13], we performed this experiment to test whether
costs of resisting infection were temperature dependent.
We chose a single host clone (GG4) and parasite strain
(Sp1) and exposed a total of 360 individual Daphnia to
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either single or double doses (2,500 spores per dose) of
P. ramosa at 15°C, 20°C, and 25°C (Table 2). No signifi-
cant difference was detected between our two control
treatments (ddH2O or healthy crushed Daphnia) for
either fecundity (F = 0.316, P = 0.576) or lifespan (y° =
0.212, P = 0.645), therefore we combined these into one
‘control’ treatment.

Again, we measured the cost of resisting infection (i.e.
inducible cost) as the reduction in either fecundity or
survival in hosts that were exposed to parasites but did
not develop infection, relative to unexposed controls.
We found a significant main effect of temperature on
fecundity (F = 89.11, P < 0.001) and lifespan (y° =
23.86, P < 0.001), but no effect of dose nor a dose-by-
temperature interaction for either trait (DOSE: fecund-
ity: F = 1.41 P = 0.247; lifespan y° = 2.65 P = 0.266;
DOSE:TEMP fecundity: F = 0.30 P = 0.878; lifespan y°
= 9.41 P = 0.052; CoxPH analyses yield the same results;
Figure 3). This suggests that while temperature affects
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the expression of these life-history traits, being exposed
or not to P. ramosa had little or no effect, and this was
the case at all temperatures.

Additional datasets

We analysed two additional datasets for inducible costs
of resistance where exposed but uninfected hosts could
be compared with unexposed hosts.

Experiment 4

In this experiment, we gathered data from a 38-day sur-
vey of survival and fecundity traits in D. magna geno-
type GG3 either exposed to two doses (5,000 or 50,000
spores per Daphnia) of P. ramosa (Spl) or not-exposed.
Among the exposed individuals, we only considered
those not infected (low dose: 39 individuals out of 72,
high dose: 21 out of 72). We compared them with unex-
posed controls (N = 23) for several life history traits. We
found no effect of exposure for the number of offspring
(EXPO: F = 0.17, P = 0.85) or the number of clutches
(EXPO: F = 1.35, P = 0.26; data not shown). Regarding
lifespan (Figure 4A), 22, 11 and 8 individuals were still
alive at the end of the experiment respectively for not-
exposed, low dose and high dose treatments). A CoxPH
model with censorship indicated exposed individuals
died significantly more than those not exposed (Likeli-
hood Ratio Test (LRT) = 30.6, P < 0.001).

Experiment 5

We used data from Daphnia exposed to one of two
doses (50,000 and 100,000 spores per Daphnia) of P.
ramosa (the spore solution was a mix of spores collected
from the same pond as the Daphnia, see Additional file 1
Al). We only included in the analysis replicate jars where
none of the 5 individuals were infected (26 jars out of
141). We found no significant effect of exposure for the
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Figure 4 Experiments 4 and 5 results. Panel A presents the
results of experiment 4: survival curves of uninfected individuals are
presented for different exposure doses. Panel B presents the results
of experiment 5: the distributions of the proportion of live
uninfected individuals per jar after 35 days are presented for two
doses of parasites (50, 000 spores, grey bars; 100, 000 spores, dark
bars).
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mean clutch size (EXPO: F = 4.12, P = 0.054; data not
shown). However, hosts exposed to 100, 000 spores died
at a faster rate compared to those exposed to 50, 000
spores (EXPO: LRT = 8.86, P = 0.003; Figure 4B).

Discussion

Investing in immune defence is thought to bear fitness
costs in the absence of infection, as investing in prevent-
ing or fighting infection should divert resources from
other fitness-related traits [e.g. [4,6-8,29,30]]. Conse-
quently, the fittest genotype should not necessarily be
the most resistant; it will be the one with optimal
investment in the various fitness traits in a given envir-
onment. Two types of costs have been widely studied:
constitutive costs (i.e. the cost of being resistant in
absence of parasites) and inducible costs (i.e. the cost of
using the immune system when challenged by a para-
site). Table 1 presents a (non-exhaustive) survey of stu-
dies (N = 24; note that some publications describe
several independent studies, which are thus presented
individually), which have looked for one or the other
type of cost. Although there may be a publishing bias
toward studies demonstrating costs, Table 1 indicates
that costs of immunity are not uncommon: 12 studies
out of 22 found evidence of a constitutive cost of resis-
tance for at least one of the life history traits measured,
and for inducible costs of immunity, eight studies of
nine documented them.

To this list, we now add five additional experiments
based on the D. magna-P. ramosa interaction. The first
experiment investigated inducible costs of resistance
with different P. ramosa strains and doses on 4 Daphnia
clones (Figure 1). There were no general fecundity or
survival costs of being exposed to the parasite, except
perhaps for one highly susceptible host clone (GG3)
which showed delayed development, lower reproductive
success and shorter lifespan when exposed to the high-
est dose of Spl (the most virulent parasite strain). A
second experiment expanded this work by applying
repeated exposures (under the assumption that this
would be more costly to resist, Figure 2), while a third
tested if costs might be more evident under temperature
stress (Figure 3), but none of these experiments yielded
measurable costs. Finally, we analysed two additional
datasets that were appropriate for testing for inducible
costs. These experiments (experiments 4 and 5) both
revealed that the individuals exposed to a higher parasite
spore dose died faster than those exposed to lower
quantity of parasite spores or not exposed (Figure 4).
These last results are similar to a previously reported
one [25] where higher exposure doses also induced high
mortality amongst host that fought off infection.

Thus, while inducible costs of resistance are occasion-
ally detectable, they clearly are not as pervasive in the
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Daphnia-Pasteuria interaction as they appear to be in
other systems (Tables 1 and 3[31]). Similarly, constitu-
tive costs have not been detected in Daphnia, either
towards P. ramosa [32] or other parasites [31,33]. It
would appear that both types of costs of resistance to
parasitism in Daphnia are at best elusive and condition-
dependent, and might be of little evolutionary relevance.

It is difficult to say at present why costs are more preva-
lent in some systems, and it may simply be that the var-
ious host-parasite systems have different evolutionary
histories; some of these lead to costs, others do not. How-
ever, we wish draw attention to three aspects related to
experimental design. First, some studies documenting
costs used lines that were artificially selected for resistance
to a particular parasite or for a life-history trait modifica-
tion (e.g. early or late pupation[34-36]), and there are a
number of reasons why such studies could misrepresent
the importance or pervasiveness of costs in natural set-
tings. For example, deleterious mutations can hitchhike
with resistance [13,37,38], leading to an overestimation of
the magnitude of costs. Second, many studies of cost used
artificial rather than natural host/parasite combinations
[e.g [39,40] and/or artificial immune stimulation (injection,
beads insertions, see Table 1[13,33,37,38,41]. It is expected
that while new parasite challenges induce costly responses,
in a longer-term, coevolving interaction, the response is
possibly more finely tuned (e.g. more specific [42]), and
will carry little cost [43]. This is illustrated by a study on
the isopod Asellus aquaticus, which displays costly
responses to an acanthocephalan parasite in naive popula-
tions where the parasite is unknown, but resistance
appears to be cost-free in coevolving populations [44]. A
third critical point about documented immunity costs is
that they are mostly detected in quite extreme conditions
(low food, high densities, or extreme temperatures; Table
1 [e.g. [12]]), which may differ from those used during
selection for resistance [33]. While it is often assumed that
harsh conditions actually reveal the existence of a cost
[e.g. [12]], the evolutionary significance of such costs in
natural conditions may be debateable [13,33,41,42,45].
The three main experiments presented here were carried
out under relatively low food quantities, as a shortage of
food is thought to be a stressor that can reveal costs
[8,12,36,37]. In addition, experiment 3 included a tempera-
ture treatment of 25°C, a stressful temperature at which
host physiology is suboptimal [46] and background mor-
tality in increased [21,24], and yet costs of resistance
remained undetectable.

Costs can potentially contribute to the maintenance of
resistance polymorphism in host-parasite interactions
[4,7,30,47,48], but depending on the nature of the
genetic variation that underlies susceptibility, costs may
not be needed to maintain polymorphism [49,50].
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Specifically, under a “gene-for-gene” model of genetic
specificity, where a mutation in the host allows resis-
tance to any genotype of the parasite, the resulting
dynamic is asymmetrically frequency dependent (i.e.
repeated selective sweeps of universally infective parasite
strains), and costs are needed to prevent fixation of host
resistance [49]. By contrast, under a “matching-allele”
model [51] of genetic specificity, resistance requires an
allele that matches the parasite virulence allele. In this
case, the host is resistant to that genotype of parasite,
but remains susceptible to the others, which results in
symmetrical frequency dependence, where resistance
costs are not needed to maintain susceptibility geno-
types [49]. The presence of strong genotype-by-genotype
interactions in the D. magna-P. ramosa system, coupled
with a lack of apparent costs, supports a “matching-
allele” coevolution scenario in this system [16].

Conclusions

Moving beyond simple genetic models, complex
immune systems may incorporate substantial redun-
dancy [13,43] to face the changing challenges and selec-
tion pressures in a dynamic environment [52]. Thus,
evaluating costs probably requires detailed mechanistic
and genetic knowledge about resistance to actually mea-
sure the pleiotropic effects of a single modification,
instead of a general phenotypic effect incorporating
multiple effects that potentially compensate each other
[43,50]. Still, the now extensive work on the D. magna-
P. ramosa does not appear to suggest a crucial role of
immunity costs in their coevolution [14,31,33,44]. Other
studies have even documented advantages rather than
costs linked with constitutive resistance in absence of
parasite (increased survival [6,41,53,54], competitive
ability [54] or reduced development time [39]), suggest-
ing a limited role for costs in coevolution, or that more
complex processes are at work.

Additional material

Additional file 1: Experimental details and infection costs. A1:
Detailed experiments protocols. A2: Analyses of infection costs. Table A3:
Infection levels for the different host-parasite combinations. Fig. A4:
Experiment 2 spore loads. Fig. A5: Experiment 3 spore loads.
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