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Abstract: 

Histone modifications are important epigenetic marks that influence chromatin structure and 

consequently play a role in the control of eukaryotic transcription. Several histone modifying 

enzymes have been characterized in Schistosoma mansoni and it has been suggested that the 

regulation of gene transcription in schistosomes may require the action of these enzymes. 

However, the influence of chromatin structure on gene transcription in schistosomes has never 

been investigated. Chromatin immunoprecipitation (ChIP) is the technique of choice to study 

the relationship between histone modifications and gene expression. Although this technique 

has been widely used with cultured cells from model organisms and with many unicellular 

organisms, it remains challenging to apply this technique to non-conventional organisms that 

undergo complex life-cycles. In this work, we describe a native ChIP procedure that is 

applicable to all the stages of the S. mansoni life cycle and does not require expensive 

equipment. Immunoprecipitated DNA was analysed on a whole-genome scale using 

massively parallel sequencing (ChIP-Sequencing or ChIP-Seq). We show that ChIP-Seq and 

conventional quantitative PCR deliver comparable results for a life-cycle regulated locus, 

smRHO, that encodes a guanine-protein coupled receptor. This is the first time that the ChIP-

Seq procedure has been applied to a parasite. This technique opens new ways for analyzing 

epigenetic mechanisms in S. mansoni at a whole-genome scale and on the level of individual 

loci. 

 

Introduction 

In eukaryotes, genotype and epigenotypes manifest themselves as a complex nuclear structure 

called chromatin. This nucleoprotein structure contains histone and non-histone proteins that 

interact with the genomic DNA. Chromatin exists either as a relaxed structure that is 
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permissive to gene expression and called euchromatin, or as a condensed structure that is 

typically silent and called heterochromatin [1]. The genotype refers to the DNA sequence of 

an organism. “Epigenotype” refers to the sum of chemical modifications of DNA (e.g., DNA 

methylation) and of DNA-associated proteins (e.g., histones) that can affect chromatin 

structure. Other mediators of epigenetic information are non-coding RNA and the location of 

genes in the nucleus [2, 3]. Posttranslational modifications of histones, for example 

methylation, acetylation and phosphorylation, are widely studied and have been shown to play 

a key role in chromatin compaction and control of gene transcription [4].  

Schistosoma mansoni is a parasitic helminth whose life-cycle is characterized by passage 

through two obligatory sequential hosts: the fresh-water snail Biomphalaria glabrata (or 

dependent on the geographical location other Biomphalaria species) for the asexual stages, 

and human or rodents as hosts for the sexual stages. An estimated 200 million people in 74 

countries suffer from schistosomiasis caused by S. haematobium, S. japonicum, and S. 

mansoni, and schistosomiasis is the most severe tropical disease in terms of morbidity after 

malaria [5]. Eggs of the parasite accumulate in the host’s liver and cause disease symptoms. 

Eggs are also released with the faeces and when they come into contact with water, free-

swimming miracidia hatch and actively seek B. glabrata snails as intermediate host. After 

penetration into this host, the parasite develops via a primary “mother” sporocyst and a 

secondary “daughter” sporocyst generation into cercariae that can infect the vertebrate host.  

It has been proposed that the regulation of gene transcription in schistosomes may require the 

action of factors that can modify chromatin [6]. Genomic DNA of S. mansoni is not 

methylated [7]. However, histone-modifying proteins are present. The histone arginine 

methyltransferase, SmPRMT1, for instance plays a role in nuclear receptor-mediated 

chromatin modification [8]. A predicted histone acetyltransferase, SmGCN5, displays high 

acetyltransferase activity with histone H3 as a substrate [9], SmCBP1 acetylates histones with 
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a marked activity toward H4 [10] and several histone deacetyalses (HDACs) have been 

characterized in schistosomes [11]. Transformation of miracidia into sporocysts can be 

blocked by HDAC inhibitors [12]. Posttranscriptional gene silencing (PTGS) can occur, both 

in miracidia and in adult stages of this parasite [13] [14]. PTGS shares pathway components 

with RNA-mediated heterochromatin formation identified in fission yeast and plants [15]. 

Taken together, these results suggest that the chromatin of S. mansoni may be 

compartmentalized as that of other eukaryotes and that the different levels of compaction may 

be developmentally regulated. It is therefore obvious that chromatin structure changes must be 

analyzed in S. mansoni and other metazoan parasites.  

One of the methods to map chromatin along the genome is chromatin immunoprecipitation 

(ChIP). When we attempted to apply existing protocols to S. mansoni we realized that they 

were not adapted to the model, and we have therefore developed a native chromatin 

immunoprecipitation procedure (N-ChIP) for S. mansoni based on existing protocols [16]. S. 

mansoni undergoes a complex life cycle with larval stages for which biological samples are 

not readily available in sufficient amounts for many laboratory uses. Exhaustive optimization 

was thus required to apply the ChIP procedure to this organism. We describe here an 

optimized N-ChIP procedure for S. mansoni. This includes cell lysis, extraction of nuclei, 

chromatin fragmentation, choice of antibodies, and conditions for antibody/chromatin 

interactions. We optimized the sensitivity of the assay to reduce the amount of starting 

material and render the procedure feasible to all the life cycle stages of this parasite. In 

addition, immunoprecipitated DNA was analyzed at the whole-genome scale by high-

throughput sequencing on an Illumina/Solexa 1G sequencing system. Results were validated 

through quantitative PCR analyses at the SmRHO locus, a previously characterized gene that 

encodes a guanine-protein coupled receptor (GPCRs) [17].  
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Methods 

Parasite strains and cell culture: 

A Guadeloupean strain of S. mansoni (GH2) was used in this study. The strain was 

maintained in its sympatric B. glabrata strain, and in hamsters (Mesocricetus auratus) as 

described previously ([18] and [19]). Eggs were axenically recovered from 50-day infected 

hamster livers and miracidia were hatched from eggs as previously described [19]. Miracidia 

were concentrated by sedimentation on ice for 15 min. Subsequently, miracidia were induced 

to transform to sporocysts in-vitro by incubation in sterile filtered B. glabrata embryonic 

(Bge) cell medium (Schneider’s Drosophila Medium (Gibco BRL, #21720-016) with 4.5 % 

(w/v) lactalbumin hydrolysate (Gibco BRL, #18080-028), 10% (v/v) fetal calf serum (Sigma, 

#F-2442), 1.3% (w/v) galactose (Sigma, #G-5388), 1x antibacterial/antimicotic solution 

(Sigma, #A5955), pH 7.4) during 24 hours. Cercariae were recovered from infected snails (4 

weeks post-infection) and harvested on ice by pipetting. They were pelleted by centrifugation 

(4000 g for 6 min). Eight-week adult worms were recovered by portal perfusion of hamsters 

with 0.9 % (w/v) NaCl and 0.8 % (w/v) trisodium citrate. For the ChIP procedure, miracidia, 

sporocysts, cercariae and adults were kept at -80°C. For RNA extractions, miracidia, 

sporocysts, cercariae and adults were pelleted and suspended immediately into 100 µl lysis 

buffer (Dynabeads mRNA DIRECT™ Micro kit, Dynal® Biotech, Invitrogen, #610.21) in 

RNase-free tubes and stored at -80°C. 

Human lymphoblastic cells (CCRF-CEM) were grown as stationary suspension cultures in 

RPMI1640 medium with 2 mM l-glutamine, 10 % (v/v) heat-inactivated fetal calf serum, and 

1x antibiotics (penicillin and streptomycin), at 37 °C in a humidified chamber (5% CO2). 

mRNA Isolation:  

Messenger RNA was extracted from parasites (1000 miracidia, 1000 sporocysts, 1000 

cercariae, 10 adults) using a Dynabeads
®
 mRNA DIRECT Micro kit (Invitrogen, #610.21) 
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according to the manufacturer’s instructions. At the end of the purification procedure, RNA 

was separated from the beads by heating to 80°C for 2 min in 20µl 10mM Tris-HCl, pH 7.5. 

Resuspended mRNA was transferred to fresh RNase-free tubes.  

cDNA Synthesis: 

First strand cDNA was synthesized using 10 µl of the mRNA preparation in a final volume of 

20 µl (0.5 mM dNTPs, 0.01 mM DTT, 1x first-strand buffer, 5 µM oligo-dT, 40 Units RNase 

out) with 200 Units of SuperScript™ II RT (Invitrogen, # 18064-014) as recommended per 

manufacturer instruction. After reverse transcription, the cDNA was purified with the 

Wizard
®
 SV gel and PCR clean-up system (Promega, #A9281). cDNA was eluted from the 

column with the elution buffer of the kit in a final volume of 100 µl.  

Real time PCR analysis:  

Real time PCR analyses were performed using the LightCycler® 2.0 system (Roche Applied 

Science) and LightCycler® Faststart DNA Master SYBR Green I kit (Roche Applied Science, 

12239264001). qPCR amplification was done with 2.5 µl of cDNA in a final volume of 10 µl 

(3 mM MgCl2, 0.5 µM of each primer, 1 µl of master mix). The primers were designed with 

the LightCycler
®
 probe design software or the web-based Primer3 plus interface 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) (Supplementary Table 1). 

The following Light-Cycler run protocol was used: denaturation, 95°C, 10 min; amplification 

and quantification (repeated 40 times), 95°C for 10 s, 62°C for 5 s, 72°C for 16 s; melting 

curve, 60–95°C with a heating rate of 0.1°C/s and continuous fluorescence measurement, and 

a cooling step to 40°C. For each reaction, the crossing point (Ct) was determined using the 

‘‘Fit Point Method’’ of the LightCycler Software 3.3. PCR reactions were done in duplicates 

and the mean value of the Ct was calculated. The -tubulin gene was used as an internal 

control [20]. The amplification of a unique band was verified by agarose gel electrophoresis 

for each qPCR product. 



 7 

Sequence analysis: 

Alignment of DNA sequences was performed using Sequencher
TM

 software (Gene Codes 

Corporation). 

Western blot:  

Western blots were performed as described previously [12]. 

Native chromatin immunoprecipitation (N-ChIP): 

Biological samples (miracidia, sporocystes, cercariae, adults and lymphoblasts) were 

centrifuged at 4000 rpm for 10 min at 4°C. The pellets were suspended in 1ml of buffer 1 (0.3 

M sucrose, 30 mM KCl, 7.5 mM NaCl, 2.5 mM MgCl2, 0.05 mM EDTA, 0.1 mM PMSF, 0.5 

mM DTT, 7.5 mM Tris-HCl, pH 7.5) containing protease inhibitor cocktail tablets (two 

tablets for 50ml of buffer 1) (Roche Applied Science, #116974998001) and 5 mM sodium 

butyrate as histone deacetylase inhibitor (Sigma, #B5887). Samples were lysed by adding 1 

ml buffer 1 with 0.8% NP40 and homogenized in a SZ22 tissue grinder tube (Kontes Glass 

Company, #885462-0022) using an SC tissue grinder pestle (Kontes Glass Company, 

#885451-0022) on ice for 3 min. The samples were kept on ice for 7 min after which lysates 

were overlaid on 8 ml of buffer 3 (1.2 M sucrose, 30 mM KCl, 7.5 mM NaCl, 2.5 mM MgCl2, 

0.05 mM EDTA, 5 mM sodium butyrate, 0.1 mM PMSF, 0.5 µM DTT, 7.5 mM Tris HCl pH 

7.5) in Corex centrifuge tubes and centrifuged for 20 min (8500 rpm at 4°C) in a JJ-25 

beckman coulter centrifuge using a TA-14-50 rotor. The buffer was removed and the pelleted 

nuclei were suspended in 1ml chromatin digestion buffer (0.12 M sucrose, 0.2 mM PMSF, 4 

mM MgCl2, 5 mM sodium butyrate, 1 mM CaCl2, 0.05 M Tris HCl pH 7.5) and divided into 

aliquots of 500 µl in 1.5 ml Eppendorf tubes. 

Chromatin digestion was performed for 4 min at 37°C with 1µl (15 U) of microccocal 

nuclease (MNase) (USB, #70196Y). To stop the reaction, 20 µl of 0.5M EDTA was added 

and the tubes were immediately placed on ice. Samples were centrifuged for 10 min (13000 
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Xg at 4°C) and the supernatant (Fraction S1) was transferred into fresh tubes. The pellets (P1) 

were suspended in 100 µl dialysis buffer (200 µM EDTA, 200 µM PMSF, 5 mM sodium 

butyrate, 1 mM Tris HCl pH 7.5) and dialyzed overnight at 4°C in a Slide-A-Lyser MINI 

Dialysis Unit (cut-off at 3,500 Daltons) (Pierce, #69550). The fraction that remained in the 

dialysis tubes was centrifuged for 10 min (13000 Xg at 4°C). The supernatant (Fraction S2) 

was transferred into fresh tubes. Fractions S1 and S2 were then centrifuged three times for 10 

min (13000 Xg at 4°C) and each time the supernatants were transferred into fresh tubes. 

Chromatin from two combined fractions S1 and S2 were pooled and quantified by measuring 

the OD at 260nm. Thirty µg of chromatin were used and antibodies were added in excess (≥ 

saturating amount). An appropriate amount of stock solution was added to generate 

immunoprecipitation incubation buffer (150 mM NaCl, 20 mM sodium butyrate, 5 mM 

EDTA, 100 µM PMSF, 20 mM Tris HCl pH 7.5). Samples were incubated overnight at 4°C 

on a rotating wheel. 

Fifty µl of protein A-sepharose (Sigma, #P3391) were added and incubated with the 

chromatin-antibody complexes for 4 hours at 4°C on a rotating wheel. The chromatin-

antibody-protein A bead mixture was centrifuged for 10 min (11660 Xg at 4°C). The 

supernatant was transferred to a fresh tube, yielding the unbound fraction (“UB”). 

Pellets (chromatin-antibody-protein A bead complex) were suspended in 10 ml washing 

buffer (50 mM Tris HCl pH 7.5, 10 mM EDTA, 5 mM sodium butyrate, 75 mM NaCl) and 

mixed gently for 10 min on a rotating wheel at 4°C. The mixture was centrifuged for 10 min 

at 4000 rpm at 4°C. The same procedure was repeated twice with increasing stringency 

conditions by using 125 mM and 175 mM NaCl as wash buffers, respectively. Finally, the 

pellets were suspended in 500 µl elution buffer (1% SDS, 20 mM Tris HCl pH 7.5, 50 mM 

NaCl, 5 mM EDTA, 20 mM sodium butyrate and 100 µM PMSF) and incubated for 15 min at 
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room temperature on a rotating wheel. The mixture was centrifuged for 10 min at 11600 g at 

18°C, and the supernatants with the bound fraction (“B”) was transferred into fresh tubes.   

DNA from the bound and unbound fractions was extracted with phenol/chloroform. DNA 

precipitation was done overnight at -80°C with 0.02 µg/µl glycogen, one volume isopropanol 

after adjusting the NaCl concentration to 250 mM. After centrifugation and a 70% ethanol 

wash, the pellets were suspended in 20 µl 10mM Tris HCl pH 7.5. The amounts of gene-

specific sequences associated with each antibody were quantified by real-time PCR. A 

schematic representation and a detailed step-by-step procedure are described on our webpage: 

http://methdb.univ-perp.fr/cgrunau/methods/native_chip_sm.html . 

Generation of Illumina/Solexa libraries: 

DNA (30 ng) from native ChIP was polished to generate blunt ended fragments, add 3’-dA 

overhangs by treatment with Klenow polymerase and ligated to adapters as described 

(Pomraning et al., 2008). Fragments were size selected (150 bp to 500 bp) after migration 

through a 2% NuSieve agarose gel and sequencing libraries were generated by PCR 

amplification with 1 µl sample DNA, 1 X Phusion polymerase mix (Finnzymes, #F531), 2.25 

µM of each Solexa PCR primer. We used a standard protocol: denaturation, 90°C, 30s; 

amplification (repeated 18 times), 98°C for 10 s, 65°C for 30 s, 72°C for 30 s; final 

elongation, 72°C, 5min. PCR products were purified on QIAquick PCR Purification columns 

(Qiagen, #28104) and eluted in 30 µl Qiagen elution buffer. We quantified the DNA library 

with a Nanodrop1000 spectrophotometer (Thermo Scientific) and clusters were generated 

with 4 pM of the 10 nM library dilution on the Illumina cluster station. A 36-cycle sequencing 

kit on the Illumina 1G analyzer was used according to the manufacturer’s instructions [21].  

Processing 1G data: 

The resulting short reads were initially processed with the standard Illumina pipeline. The 

ELAND software trims all reads to 32 nt to decrease error rates on the Illumina 1G platform. 

http://methdb.univ-perp.fr/cgrunau/methods/native_chip_sm.html


 10 

Only reads that matched a unique genomic locus with no (U0), one (U1) or two mismatches 

(U2) to the S. mansoni reference genome sequence 

(http://www.sanger.ac.uk/Projects/S_mansoni/) were considered for further analysis. We used 

“findpeaks” software to generate a lists of peaks and their genomic locations [22].  

The rhodopsin gene (SmRho) was analyzed for enrichment of H3K9Ac by amplification of 

seven regions (amplicons R1 to R8) that were also used for validation by qPCR. We summed 

the U0 and U1 values for each bp in amplicons R1 to R8 (see Supplementary Table 1) and 

divided these sums by the length of each amplicon. For normalization, these values were 

divided by the value for R1 that is located 5.9 kb upstream of the transcriptional start site of 

SmRho. 

Quantitative real-time PCR: 

Real-time PCR was performed as previously described on a two-fold dilution of the N-ChIP 

samples with the primers described in Supplementary Table 1. Primer sets were designed to 

amplify amplicons shorter than 150 bp. Above this size, qPCR sensitivity is strongly affected, 

which results in background and amplification bias. The amount of target DNA recovered in 

the immunoprecipitated fraction was quantified by calculating the percent input recovery (% 

IR) normalized with the percent input recovery obtained with the -tubulin gene. The percent 

input recovery of the bound immunoprecipitated fraction for each amplicon was calculated as 

previously described [23] by the following formula: % input recovery = 100*E^(Ct (input) - 

Ct (IPBound)). The percent background was calculated by the following formula: % 

background = 100*E^(Ct (input) - Ct (C-Bound)), where E is the primer efficiency designed to 

amplify the amplicon, Ct (IPBound) is the Ct of the bound fraction obtained in the 

immunoprecipitated sample, Ct (C-Bound) is the Ct of the bound fraction obtained in the 

negative control (fraction without antibody), and Ct (input) is the Ct of the unbound fraction 

obtained in the negative control. It represents the quantity of chromatin that was used for the 

http://www.sanger.ac.uk/Projects/S_mansoni/
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study minus the fraction that bound non-specifically to the protein A Sepharose beads. 

 

Results 

Many commercial antibodies do not recognize histones of S. mansoni or bind unspecifically 

to proteins 

We used ChIP-grade antibodies when available. We tested antibodies raised against specific 

modifications of histone H3 or histone H4 from Abcam, Upstate and Active Motif (Table 1). 

These commercially available antibodies are raised against conserved peptides of histone 

proteins. Prior to any ChIP analysis, we performed western blots to confirm that these 

commercial antibodies were suitable for detection of modified histones of S. mansoni. The 

Upstate antibody raised against acetylated H3K9 (Cat# 07-352) resulted in a unique, specific 

band (supplementary figure 1). Other antibodies from Upstate or Active Motif (see Table 1) 

led to the detection of a band at the expected size but detected also several non-specific bands. 

These non-specific bands were not caused by secondary antibody interaction as this control 

alone did not reveal any signals (data not shown). Most Abcam antibodies did not recognize 

any S. mansoni proteins by western blot; an exception was the antibody against the C-

terminus of H3 (Cat# ab1791) (supplementary figure 1). All optimization steps for the ChIP 

procedure were performed with the Upstate antibody raised against acetylated H3K9 

(H3K9Ac).  

The antibody type and amount must be determined experimentally 

Since the western blot analysis with different antibodies did not always lead to unique bands, 

the amount of antibodies required in each N-ChIP reaction was determined by titration. N-

ChIP reactions were performed starting with 1500 sporocysts for one immunoprecipitation 

assay and increasing concentrations of each antibody were used. Immunoprecipitated DNA 

was analyzed by qPCR on the -tubulin gene. The antibody from Upstate that specifically 
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recognized H3K9Ac in western blots was saturating at 4 µl (supplementary figure 1A). In 

commercial antibody preparations, the antibody concentration (g/l) is not always indicated, 

however, the standardized production technology allows for reproducibly results based on 

volume values. The H3K9Me3 antibody from Abcam successfully immunoprecipitated S. 

mansoni chromatin but no signal was obtained with this antibody on western blots 

(supplementary figure 1B). Saturation for this antibody was reached at 4 µg. The antibodies 

from Upstate that recognized H3K9Me3 and H3K27Me1 never reached saturation although 

up to 40 µg of antibody were used for N-ChIP experiments (supplementary figure 1C and D). 

Apparently, these antibodies interact with additional proteins. This is in agreement with the 

western blots where additional high molecular weight bands were revealed. Their non-specific 

interaction may interfere with the immunoprecipitation and lead to background. Examination 

of S. mansoni sequence databases indicates that other proteins with conserved histone-like 

domains exist (data not shown), which may be recognized by these antibodies. Our findings 

show that the affinity of antibodies to S. mansoni histones can vary substantially, even if they 

have been tested on a wide range of model organisms. Thus, quantity and type of antibody for 

N-ChIP must always be determined experimentally. 

Optimization of the N-ChIP procedure for different S. mansoni life cycle stages: 

We established the S. mansoni N-ChIP protocol based on the previously published methods 

[16, 24]. Details of the procedure are described in the method section. We have optimized 

both lysis and extraction of nuclei for S. mansoni larvae (miracidia, sporocysts and cercariae) 

and adults. We found four minutes to be the optimum time for micrococcal digestion; this 

fragmented chromatin into mononucleosomes, thus providing the highest possible resolution 

for ChIP assays.  

We also optimized washing steps and stringency conditions to reduce the background and 

increase signal to background ratio as much as possible. Triple washing, each time 10 min, of 
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fraction S1 and S2, and later of the chromatin-antibody-protein A complex (see Material and 

Methods) are essential.  

To determine the minimum amount of biological material, the procedure was used with 3000, 

1500, 750 and 375 miracidia for one immunoprecipitation with 2 µl antibody against 

H3K9Ac. The immunoprecipitated DNA was analysed by qPCR of a segment within the -

tubulin gene. This experiment indicates that with 3000, 1500 and 750 miracidia, the input 

recovery is 9%, with background levels below 1% (data not shown). Using 375 larvae, the 

background levels increase to 5%. We concluded that at least 750 larvae are necessary to 

successfully perform N-ChIP.  

We quantified the immunoprecipitated DNA applying our N-ChIP procedure with an excess 

of antibody against H3K9Ac (8 µl). Starting with 1500 miracidia, sporocysts and cercariae 

and a single adult, we were able to immunoprecipitate 100 ng, 170 ng, 110 ng and 120 ng of 

DNA, respectively, which allowed us to perform 16 qPCR analyses.  

Alternatively, we applied a carrier N-ChIP procedure using lymphoblast cells as carrier cells. 

This procedure has been previously described to permit ChIP analysis of as few as 100 cells 

[25]. However, despite extensive washes and high stringency conditions, this procedure 

resulted in strong background and was therefore deemed not applicable to S. mansoni cells. 

Profile of H3K9Ac enrichment along the rhodopsin gene 

(I) ChIP-sequencing 

ChIP-sequencing (ChIP-Seq) combines chromatin immunoprecipitation with high-throughput 

parallel sequencing. This method is increasingly being used to map protein–DNA interactions 

in-vivo on a genome scale [26] [27] [28]. Our N-ChIP procedure was applied to miracidia, 

cercariae and adults using 8 µl of the Upstate antibody against H3K9Ac. We then performed 

genome-wide sequencing of the immunoprecipitated DNA on an Illumina/Solexa 1G genome 

analyzer. We generated 23,758, 27,958 and 34,925 clusters for adults, cercariae and miracidia 
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respectively, corresponding to roughly 660 Mb. Although the length of the input DNA is 

approximately 150 bp, only 36 nt are sequenced for each read. Trimmed, 32-nt reads were 

mapped to the S. mansoni reference genome with the Solexa ELAND software and only reads 

that map to unique genomic locations in the reference genome (U0, U1 and U2) were 

considered for further analysis. Regions of high sequencing read density are referred to as 

peaks. We used the findpeaks software [22] to generate a list of peaks that comprises the 

genomic locations of sites inferred to be occupied by H3K9Ac. This data is not yet fully 

analyzed but will be made available in the future. 

To validate our N-ChIP-seq analysis, we examined the profile of H3K9Ac along the S. 

mansoni rhodopsin gene (SmRHO). SmRHO (Smp_104210) encodes a guanine-protein 

coupled receptor (GPCR), a member of an important family of eukaryotic receptor molecules 

that connects intracellular second messengers to extra-cellular inputs [29]. The rhodopsin 

subfamily of GPCRs encodes light-absorbing proteins that mediate dim light vision. SmRHO 

has been previously identified in S. mansoni. This gene shows large life-cycle-specific 

changes in gene expression [17]. We measured transcript levels of the rhodopsin gene at 

different developmental stages by qPCR with the R7 primer set (Figure 1). Rhodopsin is 

strongly expressed in cercariae. Transcript levels in miracidia and sporocysts are four- and 

tenfold lower, respectively. Rhodopsin expression was barely detectable in adults. This 

confirms previous analyses, where rhodopsin expression had been investigated by semi-

quantitative RT-PCR [17].  

The predicted coding region of SmRHO (GenBank accession number AF155134) was used to 

identify Smp_scaff001984 as the scaffold of the current S. mansoni genome assembly 

(assembly 4) that carries the entire SmRHO gene. Alignment of the coding sequence with 

Smp_scaff001984 was used to annotate the gene. SmRHO spans a 30 kb region from position 

20699 to 50125 of Smp_scaff001984 (Figure 2). The gene has seven exons. Exon size varies 
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from 85 bp to 414 bp, and intron size varies from 791 bp to 12,138 bp. We noted some 

discrepancies with the GeneDB S. mansoni annotation (version 4). Exon 1 of the gene is not 

annotated on Smp_scaff001984. Furthermore, a 146 bp sequence corresponding to the 5’ end 

of exon 5 is missing in the assembly of Smp_scaff001984 although a genomic DNA sequence 

that corresponds to this missing part is present in the trace sequence “shisto6493g08.p1k”, 

which suggests incomplete assembly of this scaffold. The transcriptional start site is at 

position 20,699 and the predicted start codon is at position 31,407 of Smp_scaff001984.  

We added the U0 and U1 findpeaks output values that correspond to R1 to R8 locations along 

SmRHO (see Supplementary Table 1). In miracidia, two regions are enriched for H3K9Ac: 

region R2, located 2.2 kb upstream of the transcriptional start site, and R4, located 100 bp 

downstream of the transcriptional start site (Figure 2). In adults, H3K9Ac is underrepresented, 

which is consistent with the lack of expression of SmRHO in this stage (Figure 1). H3K9Ac is 

a histone mark mainly found in the promoters of active genes or within the coding sequence 

of active genes [30].  

(II) ChIP and qPCR 

ChIP-qPCR was performed on miracidia, sporocysts, cercariae and adults to validate the 

ChIP-Seq analysis at the rhodopsin locus (Figure 2 and Supplementary Table 1). The percent 

input recovery was calculated for regions R1 to R8 as described in the Materials and Methods. 

The results were normalized with the percent input recovery of the -tubulin gene. All data 

were normalized to the R1 results. The ChIP-qPCR analysis showed enrichment in H3K9Ac 

at the R2 in cercariae, R3 in sporocysts and R4 in miracidia but no enrichment was observed 

on the ChIP product obtained from adults. These results are consistent with the expression 

analysis and confirm the results obtained on adults, cercariae and miracidia with the ChIP-Seq 

analysis. 
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Discussion: 

Chromatin immunoprecipitation is the technique of choice for studying protein-DNA 

interactions and to investigate the relationships between histone modifications and gene 

expression [4]. Particularly, ChIP in combination with high throughput sequencing analysis is 

of considerable interest to investigate the specific roles of individual histone modifications. 

Generally speaking, these analyses have been restricted to cultures of cells from model 

organisms [31][26][30]. ChIP has also been widely applied to unicellular parasites [32][33] 

[34][35][36] and combined with whole genome analysis using the “ChIP-on-chip” technology 

[37][38]. Metazoan parasites are more difficult to study by these methods, as they go through 

complex life cycles. Caenorhabditis elegans is the only metazoan of a size comparable to S. 

mansoni for which a ChIP protocol was published [39].  

In the present work, we describe for the first time a protocol to perform native chromatin 

immunoprecipitation of S. mansoni. We have optimized all individual steps of this procedure. 

We show the feasibility of the technique for the investigation of all life cycle stages of this 

parasite, at the same time minimizing the amount of biological samples required. A drawback 

of most current ChIP protocols is the requirement for high numbers of cells, which limits the 

feasibility of ChIP for samples with limited amount of starting material, as is the case with S. 

mansoni larvae. Therefore, we established conditions that are as sensitive as possible to 

minimize the amount of biological samples (750 larvae or one adult) required for each 

experiment. We have investigated the quality of histone-specific antibodies from different 

companies and show that each antibody must be tested carefully before it can be used for the 

ChIP procedure.  

We have analyzed the immunoprecipitated products by a whole-genome approach, and we 

have validated the method by comparing the H3K9Ac profile at the SmRHO locus by both 

ChIP-qPCR and ChIP-Seq. It is evident from our results that H3K9 acetylation is high in the 
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5’ region of the SmRho gene in those developmental stages in which SmRho is expressed. The 

level of acetylation corresponds to the level of transcription. In contrast, in the body of the 

gene, H3K9 acetylation is relatively low. These findings are fully compatible to what is 

known from the literature. Our results indicate also that, while in the majority of sites qPCR 

and ChIP-Seq confirm each other, and despite the fact that both methods deliver the above 

outlined 5’-3’ profile, in some sites qPCR and ChIP-Seq enrichment factors can be different. 

We believe that this is due to the fact that bioinformatics analysis of ChIP-Seq data is still in 

its infancy and that artifacts are probably introduced by the data treatment. Fortunately, many 

laboratories have initiated the development of new or improved software tools [40] [41] . We 

intend to re-analyze our data when mature solutions become available. Nevertheless, we 

underline that by the very nature of the ChIP-Seq procedure (2 consecutive PCR, data 

treatment) for the moment the method should be considered explorative, and its results should 

always be confirmed by qPCR. Nevertheless, to our knowledge this is the first time that the 

ChIP-Seq technology has been applied to study protein-DNA interactions in a parasite.  

Work by others has clearly demonstrated the influence of histone modifying enzymes on the 

control of gene expression in S. mansoni [6] [10]. Our work shows that S. mansoni chromatin 

states can be analyzed by ChIP using antibodies that recognize known euchromatic and 

heterochromatic marks. It will now be possible to investigate if different chromatin states are 

responsible for gene expression regulation during adaptation of the parasite to different 

environments, maturation from larval to adult stages, and sexual differentiation. 
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Legends:  

Supplementary Figure 1: Antibody titration for N-ChIP analysis on S. mansoni 

N-ChIP analysis was performed with 1500 sporocysts and with increasing amounts of 

antibody that recognize H3K9Ac (Upstate) (A), H3K9Me3 (Abcam) (B), H3K27Me1 

(Upstate) (C) and H3K9Me3 (Upstate) (D). Immunoprecipitated DNA was quantified by 

qPCR of a region in body of the -tubulin gene. Input Recovery as % of input (%IR, y axis) is 

shown for each tested antibody (in µl or µg, x axis). The value % IR background indicates % 

IR without antibodies. On the right side of each graph, the corresponding western blot is 

shown. For anti H3 (Abcam) no ChIP experiments were performed (E). 

 

Figure 1: Stage specific expression of rhodopsin 

Ratios of transcript levels corresponding to SmRHO at different developmental stages of S. 

mansoni. Ratios were determined using real-time quantitative PCR and are expressed relative 

to mRNA -tubulin expression levels. Each histogram represents the average value of 

duplicates ± S.D. 

 

Figure 2: Schematic representation of the rhodopsin coding sequence on S.mansoni 

scaffold 001984 and enrichment of acetylated H3K9 along the gene 

Above: Seven exons were identified and are represented as gray boxes. The dashed box 

represents a 146 bp sequence that is present in the previously described rhodopsin sequence 

(Hoffman et al. 2001; AF155134) but that is absent in the Smp_scaff001984. Intron sizes are 

indicated and the position of each exon on the Smp_scaff001984. Primer sets R1 to R8 are 

shown (see supplementary table 1 for starting positions). Primers set R7 was used for 
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determination of the transcription level and spans exon 6 to 7, all other primers sets are for 

qPCR of immunoprecipitated DNA.  

Below: Chromatin immunoprecipitation was performed with antibodies against H3K9Ac on 

chromatin extracted from adults, miracidia, and cercariae. Immunoprecipitated DNA was 

analyzed by high throughput sequencing analysis on an Illumina/Solexa 1G analyzer (full 

line) or by qPCR (dotted line). For high throughput sequencing analysis, U0, U1 and U2 peak 

values for the regions corresponding to each amplicon (R1 to R8) were summed and 

normalized to the amplicon size. qPCR was performed with primer sets R1 to R8, the percent 

input recovery of each target sequence was normalized with the recovery of -tubulin. qPCR 

results are the average of three independent experiments. All data were normalized to the R1 

region. Connecting lines do not represent experimental data but are there to guide the eye. 
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