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Abstract
Background: Although the patterns of co-substitutions in RNA is now well characterized,
detection of coevolving positions in proteins remains a difficult task. It has been recognized that the
signal is typically weak, due to the fact that (i) amino-acid are characterized by various biochemical
properties, so that distinct amino acids changes are not functionally equivalent, and (ii) a given
mutation can be compensated by more than one mutation, at more than one position.

Results: We present a new method based on phylogenetic substitution mapping. The two above-
mentioned problems are addressed by (i) the introduction of a weighted mapping, which accounts
for the biochemical effects (volume, polarity, charge) of amino-acid changes, (ii) the use of a
clustering approach to detect groups of coevolving sites of virtually any size, and (iii) the distinction
between biochemical compensation and other coevolutionary mechanisms. We apply this
methodology to a previously studied data set of bacterial ribosomal RNA, and to three protein data
sets (myoglobin of vertebrates, S-locus Receptor Kinase and Methionine Amino-Peptidase).

Conclusion: We succeed in detecting groups of sites which significantly depart the null hypothesis
of independence. Group sizes range from pairs to groups of size � 10, depending on the
substitution weights used. The structural and functional relevance of these groups of sites are
assessed, and the various evolutionary processes potentially generating correlated substitution
patterns are discussed.

Background
Measuring the non-independence (= coevolution) of
positions (= sites) within a molecule – particularly a pro-
tein – is a major challenge of molecular evolution, as wit-
nesses the large methodological effort achieved during the
last decade (reviewed in [1]). Several theoretical and
experimental arguments link the non-independence of
sites to structural and/or functional constraints in pro-
teins. The mechanism most often invoked is the occur-
rence of compensating mutations, either locally or

distantly. Local coevolution may reflect direct residue-res-
idue interaction, whereas distal coevolution is supposed
to be the result of more complex mechanisms like second-
ary structure shifts [2]. But coevolution may also be
defined in a broader sense, as correlated evolution: two
sites are said to be non-independent if they tend to
undergo substitution events in the same branches of the
tree. Such events are called co-substitutions [3].
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The main pitfall in coevolution detection (and more gen-
erally in comparative analysis of biological data) is to dis-
tinguish the functional signal from the phylogenetic
noise. The latter is due to the shared history of all sites,
represented by the underlying phylogenetic tree. Several
methods have been developed to assess the departure
from independent evolution [2-12]. They differ by (i) the
statistic used to measure non-independence (correlation,
mutual information), and especially whether it explicitly
accounts for the compensatory nature of mutations or
not, (ii) the assessment of the level of statistical signifi-
cance (analytical, randomization, simulation) and (iii)
the way they deal with phylogenetic inertia [1]. Global
evidence of non-independent evolution between sites has
been reported. It has been shown that amino acids in
close proximity (see for instance [7,12]) or belonging to
the same proteic domain [8,13] tend to evolve in a more
correlated way than randomly chosen sites. The specific
task of pointing to non-independently evolving sites in a
given data set, however, suffers from methodological
fuzziness and/or deficient software implementation. This
probably explains why coevolution detection methods are
not routinely used in pipelines for genomic annotation.

Here we introduce a new methodology to detect coevolv-
ing groups of sites within a molecule, based on the evolu-
tionary history of these sites. The process is inferred by
probabilistic substitution mapping, as we presented in a
previous work [11], and is now extended to the protein
case. The mapping procedure provides, for each site, an
estimate of the number of substitutions in each branch of
the tree. This procedure is extended to account for the bio-
chemical properties of the amino acids, by weighting sub-
stitution events according to the physico-chemical
distance between amino acids. We then define coevolving
sites either as sites showing correlated substitution histo-
ries, extending the approach of [3], or by sites exhibiting
explicit compensation.

It is likely that in proteins one substitution can be com-
pensated by several other substitutions occurring at differ-
ent positions. Looking for pairs of coevolving sites, as
attempted so far, may therefore underestimate the coevo-
lution signal in proteins. Performing an exhaustive search
of groups of arbitrary size, however, is inefficient, and in
most cases impossible, due to the high number of possi-
ble combinations. Clustering techniques are standard
methods designed to cope with this issue. Surprisingly,
these methods have never been applied to the detection of
coevolution. We present here a hierarchical clustering
approach to detect good candidate groups of coevolving
sites. A statistical procedure is introduced to evaluate the
significance of candidate clusters through parametric
bootstrap. Using four example data sets, each with its own
specificity, we provide evidence that this methodology is

successful in making robust predictions of non-independ-
ently evolving positions.

Results
Algorithm
Given a sequence alignment and a tree, we first define a
statistic measuring coevolution for an arbitrary group of
sites. Then we introduce a method aiming at seeking can-
didate coevolving groups by clustering sites according to
the coevolution statistics. Finally, we develop a statistical
test to assess the significance of candidate groups.

Defining a coevolution statistic
Coevolution, as any evolutionary process, should be stud-
ied in the light of the phylogeny underlying the data, in
order to distinguish functional correlations (resulting
from convergence) from phylogenetic correlations (result-
ing from shared history). Mapping substitution events
onto the phylogeny (substitution mapping) is a way to
fully incorporate the evolutionary history of each site and
has proved to be a powerful approach to infer coevolving
positions [3,5,9,11]. Substitution mapping consists of
estimating, for each site, the number of substitutions that
occurred on each branch of the phylogenetic tree. These
numbers are stored as a substitution vector for the site
(noted V, Figure 1a), and can be computed using an

Substitution mapping and measures of coevolutionFigure 1
Substitution mapping and measures of coevolution. For the sake of 
simplicity, ancestral state uncertainty is not taken into account in this fig-
ure. True substitution vectors are averaged over all possible ancestral 

states. a) Unweighted (V), weighted (V*) and signed, weighted ( ) substi-
tution mapping, according to volume (vol), polarity (pol) and charge (cha). 
b) Coevolution measures for a pair of sites: correlation coefficient on the 
simple vectors, correlation coefficient on the volume-weighted unsigned 
vectors, and compensation index on the volume-weighted signed vectors.

V
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empirical Bayesian approach (see methods and [11]). The
site-specific, branch-specific numbers of substitutions
depend on the set of ancestral states at inner nodes [3,11],
the length of the branch and the rates of substitution
between amino acids (or nucleotides). Since the ancestral
states are inferred, we have to account for the uncertainty
in the reconstruction, by averaging over all possible pairs
of ancestral states. A fast, analytical procedure has been
developed to achieve this calculation [11].

Here we introduce a generalization of this procedure
called "weighted substitution mapping" (see Methods). It
is dedicated to proteins and means weighting the different
types of substitutions according to the resulting change in
a given biochemical property of interest (Figure 1a). In the
following, weighted substitution vectors are noted V*.

Entry k of vector  is then the estimated amount of bio-

chemical change (e.g. change in volume, charge, polarity)
having occurred at site i in branch k.

The amount of coevolution for a pair (i, j) of sites is meas-
ured by the correlation coefficient of the two substitution
vectors (Figure 1b) [11]:

If the two sites tend to undergo substitution events in the
same branches, ρ will be positive and tend toward one.
This measure is generalized to a group of arbitrary size s by
defining the amount of coevolution for the group as the
minimal pairwise correlation between sites in the group:

From a geometrical point of view, the correlation coeffi-
cient is the cosine of the angle between the two substitu-
tion vectors, and the minimum correlation coefficient
corresponds to the cosine of the maximum angle between
the vectors of the group (Figure 2, upper panel).

The ρ statistic evaluates the tendency of sites to undergo
correlated changes, irrespective of the compensatory
nature of these changes. Weighted substitution mapping,
however, offers the possibility to track the direction of

changes, by giving opposite weight to X → Y and Y → X

changes. The resulting signed, weighted vectors (noted 
in the following) can be used to test the compensatory
nature of changes. The underlying assumption is that a
given chemical property of a group of coevolving sites
(global volume, charge, etc) would tend to be conserved,

whereas the properties of individual sites may change. We
hereby define C, the compensation index:

where |V| is the length of vectors, that is the L2-norm:
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Geometric interpretation of coevolution measuresFigure 2
Geometric interpretation of coevolution measures. 
For simplification, vectors are plotted in a 2-coordinates 
space, which would correspond to a tree with only two 
branches.
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In case of perfect compensation (the two vectors are sym-
metric), C equals 1. On the other extreme, if the vectors
are identical, C equals 0. This measure can be generalized
for a group of s sites:

Compensation is high when the normalized length of the
sum vector of all substitution vectors in the group (noted

Σ in Figure 2, bottom) tends to . The correlation (ρ) and
compensation (C) statistics therefore define two distinct
detection methods, to be applied sequentially to a given
data set.

As previously shown in several works, the interpretation
to be given to coevolution statistics highly depends on the
evolutionary rate of the sites under consideration
[6,7,10,11]. Here we measured the variability of a site i by
taking the length Ni of its corresponding substitution vec-

tor (resp.  for weighted substitution vectors):

In the case of unweighted vectors accounting for multiple
substitutions [11], this measure is proportional to the site-
specific substitution rate. For weighted vectors, the N* sta-
tistics provides a new measure of the site-specific rate of
change of a given biochemical property – note that the
scale of N* depends on the weighting scheme used. The
variability of a group of s sites was then defined as the
minimum length of substitution vectors of all sites in the
group, Nmin:

which is a conservative measure since slowly evolving
positions are the less informative. Nmin is a nuisance var-
iable on which the coevolution statistics mechanically
depend.

A clustering approach to select candidate groups
As the size of the tested groups augments, an exhaustive
approach quickly becomes intractable, and heuristics
should be developed. To detect groups (and not only
pairs) of coevolving sites, we performed a cluster analysis
of the substitution vectors. We used a complete linkage
hierarchical clustering procedure, with the pairwise corre-
lation and compensation distances defined as 1 - ρij and 1
- Cij respectively. The clustering procedure starts with the

pairwise distance matrix D, and perform the following
steps:

1. Find the pair (u, v) in D with the lowest distance, and
cluster the two corresponding sites.

2. Remove the two selected sites u and v in the matrix, and
add the new pair (u, v) as a single entry.

Compute all distances between the (u, v) pair and each
remaining group using the formula:

d(w, (u, v)) = max(d(w, u), d(w, v))

3. Go back to 1, until the matrix size reaches 1.

The use of the maximum function defines the 'complete
linkage'. Each step defines a new cluster, and reduces the
matrix size by 1. Every cluster of the resulting bifurcating
tree is considered as a candidate coevolving group of sites.

Assessing the significance of the amount of coevolution
The significance of the clusters was evaluated by paramet-
ric bootstrap. One thousand data sets with the same
number of sites as the one of interest were simulated,
using the estimated tree and parameters. The substitution
vectors were computed and the clustering was performed.
For each group in the resulting trees, we stored the size of
the group, and the corresponding coevolution statistic (ρ
or C) and Nmin values. We hence obtained, for each group
size, the joint distribution of ρ (respectively C) and of
Nmin under the null hypothesis of independence between
sites. We then computed the p-value for a group of sites by
conditioning over Nmin. For instance, for the coevolution
statistic ρ:

p-value = Pr(ρ > ρobs|Nminobs) (8)

where the ρobs is the measured value for statistic ρ. Since
Nmin is a continuous variable, we used a window centered
on Nminobs to evaluate the p-values:

where N2 is the number of simulation points with Nmin ∈
[Nminobs - ω/2, Nminobs + ω/2], and N1 is the number of
simulation points in this range with a correlation greater
or equal to the observed value. ω defines the size of the
window. In this work we set it to 20% of the range of
Nmin values.

One potential problem is the fact that nested clusters are
not independent. Assume for instance that a triplet of sites
actually coevolve. This should result in a significantly high
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ρ for the triplet itself, but perhaps also for pairs within the
triplet, or even for certain n-uplets including the triplet,
thus falsely duplicating the number of significant groups.
To correct for this, the method outputs only one cluster –
the one with the lowest p-value – when a series of nested
clusters is detected. This is a conservative approach, and
an improvement over pairwise methods, which typically
tend to output large networks of residues (i.e. pair (a, b),
pair (b, c), pair (c, d), etc, e.g. [10]).

Controlling the false discovery rate
Since we are performing repeated tests, we need to control
for the global discovery rate. The clustering approach
makes it impossible to rely on classical techniques, due to
the non-independence of the tested groups. Here we
assessed the false discovery rate by simulations: we con-
ducted our analysis on several data sets simulated under
the null hypothesis of independence. As an approxima-
tion, and to save computation time, we used the same
simulated data sets as those used for computing the single
groups p-values: one simulated data set was tested against
the 999 remaining ones, and the p-values of the output
clusters were recorded. This procedure was repeated 10
times. Now we pooled all the candidate clusters from the
10 analyses, and sort them by p-value. Then we sought the
p-value threshold separating the 1% most significant clus-
ters (those with lowest p-values) from the remaining 99%.
This threshold is then applied to the real data set to ensure
a 1% false discovery rate – only groups of the real-data
analysis with a p-value lower than this threshold are con-
sidered significant after correction for multiple tests.

Case studies
To assess its performance, the method was tested on four
data sets, each with distinct properties. We now present
the detailed results of these analyses and check the predic-
tions with respect to substitution patterns and known pro-
tein structure and annotations.

Application to rRNA
We applied the new clustering approach with unweighted
substitution mapping to a previously studied bacterial
rRNA data set, containing 79 large subunit sequences with
2,312 sites [11]. Two hundred and sixty five clusters with
a p-values lower than 1% were detected, containing 256
pairs. Two hundreds and forty nine of these pairs (97%)
match already known structural stem pairs [14]. The pair-
wise approach [11] detected 258 pairs, among which 225
structural pairs (87%). The clustering approach hence has
even lower false-positive rate than the pairwise approach.
The power increase is probably due to the more elabo-
rated p-value computation procedure. Higher order
groups are distributed as this: four triplets, one quadru-
plets, two 5-uplets, one 6-uplets, and one 10-uplet. These
groups may be of biological interest but their study is

beyond the scope of this article. A detailed list of detected
groups is provided as supplementary material.

Application to myoglobin
We applied the clustering approach to a myoglobin data
set, which has been already scanned for coevolving pairs
in previous works [3,6]. This data set contains 100
sequences, and 144 sites without gaps. In addition to the
unweighted mapping, which ignores the nature of the
substitutions, we tested four weighting schemes: volume,
polarity and charge difference, and the synthetic
Grantham chemical distance, a combination of volume,
polarity and atom composition [15]. We ran both the cor-
relation and the compensation tests (see methods).

The correlation test yielded 17 groups with a p-value
lower than 5%, among which 13 remain significant after
correction for multiple testing (see Table 1). Only two
groups with a p-value lower than 1% were found (one
group being detected by the "Grantham", "Volume" and
"Polarity" method), indicating that the coevolution signal
is weak in this data set, consistent with [6]. The compen-
sation method leads to 21 groups at the 5% level (18 after
correction for multiple testing), among which 10 were sig-
nificant at the 1% level, and two at the 0.1% level (Table
2).

Detailed examination of the detected groups revealed
interesting patterns. Several sites were in significantly
close proximity (e.g. sites GLY121 and ASP122, located in
a external loop of the molecule, ALA94 and GLY150
which are in the end of two helices (see Figure 2A), and
sites ARG31 and SER117). Several sites (among the most
significant ones) appeared to be located close to the heme
group (LEU76, GLY65, THR39 and PHE33, LEU69, see
Figure 3a). Finally, we noticed a tendency for sites in helix
ends to coevolve (see Figure 3b), a trend already men-
tioned by [6] and [9].

Application to SRK
The S-locus Receptor Kinase (SRK) is a molecule control-
ling self-incompatibility in various species of Brassicaceae
[16]. The SRK gene is involved in pollen recognition, and
is known to be under balancing selection, which results in
trans-specific polymorphism [17]. The SRK protein is a
transmembrane protein, with a cytoplasmic domain
responsible for the kinase activity, and an ectodomain
involved in receptor recognition. The ectodomain is
highly polymorphic. It includes three hyper-variable
regions (HVR), and several sites reported as undergoing
positive selection [18] (see Figure 4). No three dimen-
sional structure is available for this protein. The data set
we used contains 53 sequences and 386 ungapped sites
from the ectodomain.
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The correlation test yielded 14 groups with a p-value
lower than 5% after correction for multiple testing,
among which 3 were significant at the 1% level (see Table
3 and Figure 4). The compensation test resulted in 24 sig-
nificant groups at the 5% level, among which 23 remain
significant after correction for multiple testing, and seven

groups at the 1% level (see Table 4). The most significant
group is a pair of sites (109, 110), detected using the
unweighted mapping and the volume, polarity and
Grantham weighted mappings with the correlation statis-
tic. The corresponding unweighted mapping, shown in
Figure 5, illustrates how correlated the substitution histo-

Table 2: Compensation analysis results for the myoglobin data set.

PDB Size Weight Stat. Nmin p-value FDR 3D dist. 3D p-value

PHE33, LEU69 2 Volume 1 20.99 2e-04*** yes 16.14 0.1339‡
PHE33, LEU69 2 Grantham 1 21.99 3e-04*** yes 16.14 0.1339‡
PHE33, LEU69 2 Polarity 1 0.3 0.0016** yes 16.14 0.1339‡
LEU11, LYS50, TYR103, ARG118 4 Polarity 0.83 5.63 0.0014** yes 34.22 0.5534
ALA94, GLY150 2 Polarity 0.95 2.54 0.0027** yes 8.78 0.006**†
ALA94, GLY150 2 Grantham 0.93 77.72 0.0074** yes 8.78 0.006**†
PRO37, ALA130 2 Grantham 0.96 94.93 0.0034** yes 27.81 0.6753
ALA94, ILE111 2 Volume 0.87 67.97 0.0079** yes 21.15 0.3866†
THR39, GLY65 2 Volume 0.98 27.63 0.0091** yes 14.29 0.0699.†
ARG31, SER117 2 Volume 0.63 137.41 0.0093** yes 11.89 0.023*‡
ARG31, SER117 2 Grantham 0.57 201.2 0.0253* yes 11.89 0.023*‡
LYS42, ASP60, LYS63, THR70 4 Charge 0.71 1.41 0.0112* yes 20.31 0.008**
GLN26, LYS63, GLU85, TYR103 4 Grantham 0.76 132.11 0.0137* yes 22.9 0.018*
ASP20, LYS96 2 Charge 0.6 2.23 0.0149* yes 29.33 0.7353†
THR95, LYS145, GLU148 3 Polarity 0.63 7.42 0.0194* yes 11.85 0.002**
LEU11, PHE138, GLY150 3 Volume 0.68 41.27 0.0333* yes 33.1 0.6703
LYS78, GLU85, ILE99 3 Volume 0.68 37.79 0.0373* yes 23.37 0.1369
VAL21, GLN26, ASP27, VAL66, ALA74, LYS78 6 Charge 0.72 1.41 0.0415* no 24.79 0.006**
LEU9, GLU52, ALA53 3 Polarity 0.61 7.93 0.0415* yes 33.3 0.6993
GLN8, LYS42, LYS50 3 Grantham 0.65 117.23 0.0455* no 38.66 0.9171
GLY65, LEU76 2 Polarity 0.95 0.89 0.0475* no 16.46 0.1449†

Legends are the same as in table 1.

Table 1: Correlation analysis results for the myoglobin data set.

PDB Size Weight Stat. Nmin p-value FDR 3D dist. 3D p-value

THR39, GLY65, LEU76, GLU148 4 Volume 1 26.62 0.0044** yes 28.21 0.1688†
THR39, GLY65, LEU76 3 Unweighted 1 0.98 0.0136* yes 23.64 0.1409†
LEU11, ALA94, ILE111, ARG118, GLY150 5 Grantham 0.87 78.46 0.0045** yes 38.14 0.7023†
LEU11, ALA94, ARG118, GLY150 4 Polarity 0.96 2.55 0.0065** yes 38.14 0.8252†
LEU11, ALA94, ILE111, MET131, LEU135, 
LEU149, GLY150

7 Volume 0.82 20.89 0.007** yes 33.1 0.1668†

GLY5, GLY23, GLU52, GLN91 4 Unweighted 0.47 2.67 0.0148* yes 37.62 0.7952
LYS56, TYR103 2 Volume 0.96 84.01 0.0189* yes 21.25 0.3506
ARG31, SER117 2 Volume 0.75 137.41 0.0241* yes 11.89 0.023*‡
SER58, GLU85 2 Unweighted 0.72 1.9 0.0245* yes 28.12 0.6853
ALA15, LYS63, ALA84, GLU85, GLN91 5 Grantham 0.5 133.99 0.032* yes 27.7 0.0819.
ALA15, LEU61, ALA84 3 Unweighted 0.53 2.27 0.0346* no 26.43 0.2817
ASP20, PHE33, LEU69, THR95 4 Volume 0.97 20.99 0.0347* yes 31.15 0.3197†
PHE33, LEU69 2 Unweighted 1 1 0.0347* no 16.14 0.1309‡
GLY121, ASP122 2 Unweighted 0.6 3.55 0.0379* no 3.63 0.001***
ASP20, GLY23, ASP60, LYS63, ALA84, GLU85, 
LYS96

7 Charge 0.46 0.99 0.0379* yes 29.33 0.035*†

GLU105, GLU136 2 Unweighted 0.74 1.77 0.0444* no 8.25 0.003**
TRP7, LYS47, LYS62 3 Volume 0.71 87.27 0.045* yes 35.94 0.8052

3D dist.: maximum pairwise 3D distance between alpha carbons (Å). 3D p-value: test if the sites are closer than expected by chance. FDR: tell if the 
group remains significant after a correction for having a global false discovery rate of 5%. ‡ symbols indicate groups detected by both the correlation 
and compensation analyses, † symbols indicate groups overlapping with a detected group in the compensation analysis (i.e. one group is a sub-group 
of the other).
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ries of these two sites have been. These sites had been
reported as being under positive selection by Sainudiin et
al. [18]. They are also detected with the compensation
method and a Grantham weighting scheme, with a higher
p-value. Site 110 is detected as coevolving with site 116
(also known to be under positive selection) for conserving
a global polarity level. Another significant group of inter-
est is the pair (350, 352), detected with the Grantham
weighting, for the compensation test. These two sites are
also reported to be under positive selection and are
located in the second hyper-variable region. Together with
the study of Sainudiin et al. [18], these results suggest a
role for these sites in ligand recognition.

The two tests detected sites that are conserved though all
the alignment, except for the Q6L8R2_RAPSA allele. Sites
54, 394, 407, 132 and 448 for instance show a conserved
polarity throughout the alignment, excepted for the
Q6L8R2_RAPSA allele, which shows polarity change for
the five sites. This allele is however very divergent from the
other alleles (see Figure 3). It belongs to the so-called class
II category, which contains only few alleles that are all
recessive to alleles from the class I category [19]. These
two categories form two distinct clades separated from
each other about 40 millions years ago [20].

Application to MAP
The last example of application is a data set previously
studied for coevolution by Gloor et al. [10]. The coevolu-

Examples of detected groupsFigure 3
Examples of detected groups. a) and b): myoglobin, c) and d): Methionine Amino-Peptidase. All amino acids sharing the same color are detected as 
coevolving. Figures are made with the molscript [43] and raster3d programs [44], using PDB entries 1MBD for myoglobin, and 1C24 for MAP.
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tion signal was higher in this data set, probably at least
partly because of the higher number of sequences (147),
which leads to more powerful tests: a total of 43 groups
with p-value < 1% were detected with the correlation test
(among which 38 remain significant after correction for
multiple testing). Surprisingly, the compensation statistic
led to a lower number of detected groups (13, among
which 10 remain significant after multiple testing correc-
tion). Most of the groups were pairs or triplets of sites in

contact or in significantly close proximity (see Figure 3c
and 3d). Several sites were also located in or close to the
active site. Substitution maps for these groups clearly
pointed to a large number of cosubstitution and compen-
satory events, as illustrated by Figure 6.

The most significant groups were also detected by Gloor et
al. [10]. They found two kinds of coevolving pairs: one
involving sites in close proximity, and a set of intercon-

Table 3: Correlation analysis results for the SRK data set.

Alignment Size Weight Stat. Nmin p-value FDR

109, 110 2 Unweighted 0.75 2.93 1e-04*** yes‡
109, 110 2 Grantham 0.84 242.37 0.0033** yes‡
109, 110 2 Volume 0.79 154.32 0.0088** yes‡
109, 110 2 Polarity 0.76 8.82 0.0237* yes‡
134, 186, 356, 383 4 Grantham 0.47 205.81 0.0115* yes
54, 132, 394, 407, 448 5 Grantham 1 56 0.0121* yes†
54, 55, 132, 248, 394, 407, 410, 429, 448 9 Polarity 0.97 0.7 0.0155* yes†
54, 55, 132, 394, 407, 429, 448 7 Unweighted 0.71 1 0.0166* yes†
130, 279 2 Charge 0.75 2 0.0232* yes‡
120, 127 2 Charge 0.74 2 0.0251* yes‡
25, 49, 70 3 Polarity 0.77 5.61 0.0278* yes†
65, 121 2 Unweighted 0.66 2 0.0362* yes
55, 132, 336, 387, 394, 432 6 Charge 1 1 0.0438* yes†
265, 316, 350 3 Unweighted 0.45 2.22 0.0467* yes

Legends are the same as in table 1. Sites in bold font are reported to be under positive selection by Sainudiin et al. [18].

A subset of the detected groups for the SRK data setFigure 4
A subset of the detected groups for the SRK data set. Sequence of the SRK60 allele. Background colors indicate substitution rates as estimated by 
the Bayesian method [45], from blue (slow) to red (fast). Yellow boxes depict the hyper-variable regions, as defined by [46]. Black boxes underline posi-
tions reported to be under positive selection by [18]. Black lines show some of the most significant coevolving groups (see table 3) for detailed results.
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nected residues belonging to a large cluster. Gloor et al.
[10] used mutual information (MI), after correcting for
slowly evolving sites. Their statistic, however, does not
account for the underlying phylogeny, which may lead to
several false positives. In their study, this problem was
addressed by considering only the most significant corre-
lated sites, assuming that their correlation is above the
background phylogenetic noise. By fully incorporating
the phylogeny, we were able to confirm three of their pre-
dictions and add several new ones. These confirmed pairs
are the three most significant ones according to our corre-
lation method, and appear to be in contact in the three
dimensional structure. A large proportion of our new pre-
dictions also appear to be close in the tertiary structure
(see Tables 5 and 6, and Figure 3c and 3d). We were not
able to confirm the most significant pair of Gloor et al.
[10], neither pairs involved in the large network they
report, with the exception of pair (CYS59, THR99)
detected for volume compensation and which is close to
the ligand. For some of the detected groups no obvious
structural interpretation was found. In some cases, these
apparent false positives corresponded to sites having
undergone correlated changes of evolutionary rate. Figure
7 shows such an example. The five sites in Figure 7 are rea-
sonably variable in general, but invariable in the top-most
clade of the tree – presumably because they are under
strong functional constraint in this group. Since changes
are concentrated in a subset of the branches, the probabil-

ity that these sites undergo co-substitutions by chance is
higher than estimated using a model in which changes
can occur throughout the tree, as in the simulations. This
is a newly-reported mechanism by which correlated evo-
lutionary patterns can appear in the absence of biochem-
ical interaction between sites.

It appears that the coevolution signal is weaker in proteins
than in rRNA. Fewer groups are detected, with higher p-
values and lower correlation statistics. These are groups
for which changes occur more frequently in the same
branches than expected by chance, but the linkage is not
as strong as in rRNA.

Implementation
The mapping procedure is available as dedicated classes in
the Bio++ Phylogenetics library, from version 1.1 [21,22].
The coevolution detection can be reproduced using the
CoMap program, including the pairwise analysis [11] and
the clustering analysis (this article). For the clustering
analysis, CoMap performs the clustering and the simula-
tion part. As an option, it performs maximum likelihood
estimation of model parameters prior to coevolution
analysis, and supports a wide range of commonly used
model of evolution, from Jukes-Cantor to General Time
Reversible for nucleotides, and the Dayhoff and JTT mod-
els for proteins, using the dcmutt implementation [23].
CoMap can also read any user-defined model following

Table 4: Compensation analysis results for the SRK data set.

Alignment Size Weight Statistic Nmin p-value FDR

125, 449 2 Grantham 1 57.93 0.0024 ** yes
125, 449 2 Volume 1 29.97 0.0028 ** yes
125, 449 2 Polarity 1 0.5 0.0047 ** yes
55, 132 2 Polarity 0.97 4 0.0039 ** yes†
132, 448 2 Grantham 0.98 107 0.0061 ** yes†
256, 423 2 Charge 1 1 0.0067 ** yes
120, 127 2 Charge 0.65 2 0.0099 ** yes‡
350, 352 2 Grantham 0.54 314.34 0.0112 * yes
130, 279 2 Charge 0.64 2 0.0118 * yes‡
55, 336 2 Charge 1 1 0.0135 * yes†
410, 448 2 Polarity 0.91 3.01 0.0152 * yes†
25, 49 2 Polarity 0.83 5.61 0.0181 * yes†
236, 375 2 Volume 0.89 62.99 0.0185 * yes
23, 118 2 Grantham 0.84 141.51 0.0234 * yes
23, 118 2 Volume 0.82 74.97 0.0288 * yes
407, 433 2 Grantham 0.89 98.99 0.0256 * yes
110, 116 2 Polarity 0.54 12.87 0.0321 * yes
394, 397 2 Charge 0.59 2 0.0338 * yes
42, 49 2 Volume 0.73 104.95 0.0359 * yes
96, 450 2 Charge 1 1 0.0369 * yes
231, 347, 356 3 Polarity 0.61 10.05 0.0393 * yes
81, 314, 349, 353 4 Volume 0.71 120.73 0.0473 * yes
109, 110 2 Grantham 0.53 240.8 0.048 * yes‡
95, 278, 394, 433 4 Volume 0.77 28.94 0.0495 * no

Legends are the same as in table 1.
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the PAML format [24]. The p-value computation is done
in R, using two scripts distributed along with the program.
CoMap is open source and distributed at [25]. The rRNA
and protein data sets are also available at this address,
together with the results and the scripts used to run the
analysis, which may serve as examples for running the
coevolution analysis on other data sets. Running time,
including the five types of mapping, was between two and
five hours for the four data sets analyzed in this study,
with a Intel(R) Xeon(TM) 3.06 GHz computer.

Discussion
In this article we present a new test for detecting coevolv-
ing groups of sites based on weighted substitution map-
ping and a clustering approach. The method is original in
(i) detecting groups of arbitrary size, (ii) accounting for
the biochemical properties of amino-acid changes, (iii)
distinguishing compensatory evolution from other kinds
of correlated evolution, (iv) providing the substitution
maps corresponding to the detected groups, so that the
user can assess the relevance of the detected signal, and (v)
being available as a user-friendly program with reasonable
running times, easy to integrate into any sequence analy-
sis pipeline.

Compared substitution maps for pairs (56, 57) and (109, 110) of the SRK data set (see table 3)Figure 5
Compared substitution maps for pairs (56, 57) and (109,110) of the SRK data set (see table 3). Black squares indicate an average number of 
substitutions greater than 0.9, gray squares indicate an average number lower than 0.9. Only nodes with at least one black square have been depicted for 
clarity. Two black squares on the same branch indicate a co-substitution event. The map on the left is for pair (56, 57), which is not detected as coevolving. 
The map on the right is for detected pair (109, 110), exhibiting several cosubstitution events.
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Weighted and signed charge substitution mapping for pair (GLN154, GLU158) of the MAP data set (see table 6)Figure 6
Weighted and signed charge substitution mapping for pair (GLN154, GLU158) of the MAP data set (see table 6). Only mappings for 
branches with at least one site with at least ± 0.9 substitution on average have been represented for clarity. Black squares indicate positive change (- → +), 
and gray squares indicate negative changes (+ → -).
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When applied to a benchmark rRNA data set, the method
recovered mostly pairs of sites, as expected, and was more
powerful than the approach of [11], although the latter
method had been specifically designed to detect pairs.
When applied to protein data sets, the method detected
candidate groups of coevolving sites of size two to ten.

Many of these groups appear relevant from a structural or
functional point of view. When applied to the MAP data
set, the method detected a higher number of groups than
the method of Gloor et al.[10], thanks to a more efficient
phylogenetic control strategy, and direct assessment of the
significance of groups of size higher than two. Coevolving

Table 5: Correlation analysis results for the MAP data set.

PDB Size Weight Stat. Nmin p-value FDR 3D dist. 3D p-value

ARG147, ASP187 2 Unweighted 0.57 4.92 0*** yes 6.24 0.001***
ARG147, ASP187 2 Grantham 0.59 517.54 0*** yes 6.24 0.001***
ARG147, ASP187 2 Volume 0.58 384.76 3e-04*** yes 6.24 0.001***
GLN154, GLU158 2 Unweighted 0.65 4.93 0*** yes 5.96 0.001***‡
GLN154, GLU158 2 Charge 0.67 4.1 1e-04*** yes 5.96 0.001***‡
GLY122, LEU230 2 Unweighted 0.6 6.42 1e-04*** yes 7.44 0.002**‡
GLY122, LEU230 2 Grantham 0.6 590.32 1e-04*** yes 7.44 0.002**‡
GLY122, LEU230 2 Polarity 0.61 18.34 1e-04*** yes 7.44 0.002**‡
GLY122, LEU230 2 Volume 0.48 275.16 0.0052** yes 7.44 0.002**‡
ALA21, LEU25, GLY107 3 Unweighted 0.45 4.09 1e-04*** yes 12.07 0.001***
LEU25, GLY107 2 Grantham 0.52 312.81 0.0077** no 12.07 0.031*
THR241, GLY244 2 Unweighted 0.57 3.24 3e-04*** yes 5.11 0.001***
ASN46, SER68 2 Unweighted 0.48 4.67 5e-04*** yes 5.92 0.001***
GLY210, THR225 2 Unweighted 0.56 3.25 5e-04*** yes 8.28 0.004**
ASP219, TRP221, THR222, THR225, 
ASP227, GLU235, ILE238, THR241, 
LEU248

9 Grantham 0.3 68.81 6e-04*** yes 40.12 0.2338†

TRP221, THR222 2 Unweighted 0.57 2.73 0.0014** yes 3.75 0.001***†
TRP221, THR225, 3 Volume 0.56 105.03 0.0092** no 18.13 0.024*†
ASP227
LEU125, THR129 2 Unweighted 0.53 3.21 6e-04*** yes 6.12 0.001***
ASN208, SER231 2 Unweighted 0.48 4.32 7e-04*** yes 4.25 0.001***
TRP221, THR222, ALA232, GLU235, 
ILE238, VAL239, THR241, ILE247, LEU248

9 Polarity 0.28 2.15 0.001*** yes 34.73 0.025*

GLU148, GLU190 2 Unweighted 0.48 5.11 0.0011** yes 11.88 0.03*
GLU148, GLU190 2 Polarity 0.5 13.91 0.006** yes 11.88 0.03*
GLY210, GLY244, GLU246 3 Grantham 0.43 302.15 0.0012** yes 33.45 0.4945
CYS78, ASN95, SER110, GLY150, GLN233 5 Unweighted 0.24 2.48 0.0018** yes 21.37 0.001***
CYS169, GLN182 2 Unweighted 0.45 4.39 0.0018** yes 6.4 0.002**
ILE96, TYR134 2 Unweighted 0.49 5.96 0.002** yes 18.27 0.1768
ILE81, PHE113 2 Unweighted 0.45 4.33 0.0021** yes 16.36 0.1259
ASP227, ALA232, GLU235 3 Unweighted 0.48 1.41 0.0022** yes 23.49 0.0949.
ASP219, VAL223 2 Unweighted 0.46 3.66 0.0024** yes 9.4 0.009**
HIS63, ARG127, GLN130, ALA209 4 Volume 0.33 205.12 0.0032** yes 32.09 0.2527
HIS63, GLN130 2 Charge 0.47 5.36 0.0035** yes 28.75 0.5994
THR222, SER231, ILE238, VAL239 4 Charge 0.71 0.99 0.0039** yes 28.93 0.1199
ARG124, GLU131 2 Grantham 0.48 461.88 0.0043** yes 10.6 0.016*
GLU131, VAL157, VAL164 3 Unweighted 0.36 4.39 0.0045** yes 13.43 0.001***
GLN53, VAL98 2 Grantham 0.48 409.37 0.0049** yes 13.51 0.0579.
GLU29, VAL32, ILE81, PRO82, THR129, 
ALA136, ILE149, GLY150, SER163

9 Polarity 0.21 0.1 0.005** yes 32.31 0.008**

LEU135, PHE156 2 Grantham 0.49 575.88 0.0052** yes 8.71 0.004**
GLN53, GLU160 2 Charge 0.44 5.85 0.0055** yes 39.55 0.9311
VAL56, ILE101 2 Unweighted 0.51 6.53 0.0062** yes 5.28 0.001***
VAL56, ILE101 2 Grantham 0.47 457.69 0.0069** no 5.28 0.001***
LYS117, GLU123, ARG127 3 Grantham 0.4 487.3 0.0076** no 15.43 0.004**
PRO118, THR119 2 Polarity 0.47 18.47 0.0096** no 3.75 0.001***
ALA232, TYR234, GLU235 3 Charge 0.87 1.41 0.0098** yes 10.51 0.002**

Legends are the same as in table 1. Only groups with a p-value lower than 1% are reported. A global false discovery rate (FDR) of 1% was used 
when correcting for multiple testing.
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residues were typically located in close proximity, or at the
ends of helices, or corresponded to positively selected
sites. The method also yielded coevolving groups of sites
showing no obvious structural links. We now discuss in
more details the various newly-introduced methodologi-
cal improvements, and the biological mechanisms poten-
tially underlying correlated evolutionary patterns.

Weighted substitution mapping
A new probabilistic weighted substitution mapping was
developed, thanks to the introduction of a weight matrix.
A similar approach has been used by [8] and [26], without
taking into account ancestral states reconstruction uncer-
tainty. This mapping procedure can have some general
interest beyond coevolution detection. It may converge
toward the sub-alphabet approach (see for [3] and [18]),
by using amino-acid categories (for instance big versus
small, polar versus non-polar, charge versus not charges,
etc) and defining the weight wx,y as equal to one if x and y
do not belong to the same category, zero otherwise. Any
other amino-acid index or distance may be used, as the
ones available in the AAindex database [27]. The mapping
is achieved using a fixed topology, assumed to be known.
We have previously shown that the coevolution analysis is
robust to variations of the underlying tree topology [11].

Clustering
A usual pitfall when trying to detect coevolving sites with-
out a priori knowledge is the high number of putative
groups to be tested. An exhaustive approach is possible
when only pairs of sites are targeted, but not for groups of
arbitrary size: computing 2n - n - 1 p-values proves to be
rapidly unfeasible. One possibility to overcome this issue
is to limit the number of groups to test, thanks to the use
of multivariate analysis (see [8]) or clustering techniques
for instance. Here we used a hierarchical clustering

approach, which outputs n - 1 clusters of size ≥ 2. A con-
venient property is that clusters of a same given size are
independent and do not overlap. The clustering approach
was useful for coevolution detection in drastically reduc-
ing the number of groups to be tested.

Measuring cluster significance
We used two distinct measures of the amount of coevolu-
tion for a group. The first one, ρ, is the minimum pairwise
correlation of sites within the group, and aims at detecting
sites with correlated substitutions (co-substitution
events). For a pair of sites, the ρ statistic is therefore equal
to the correlation between the two (weighted) substitu-
tion vectors, a measure we introduced in a previous work
[11]. The second statistic, C, explicitly accounts for the
compensatory nature of substitutions. In a previous study,
we showed that the coevolution statistic depends on the
evolutionary rate of the sites, since slowly evolving sites
tend to have artificially high correlation ([11], and also
[7,9,13]). It is therefore necessary to include a measure of
the site variability when assessing the significance of the
correlation. We previously used the minimum posterior
rate, a measure which is not easily generalizable to the
case of weighted vectors. We hence used the length of sub-
stitution vectors as a measure of variability in this study.
In the case of unweighted vectors, this measure is highly
correlated to the posterior rate. To assess the variability of
a group of any size, we used the minimum length of the
corresponding substitution vector, Nmin. This is a sum-
mary statistic, since the variability of the group would be
fully described only with the complete set of site-specific
lengths. The Nmin measure is hence an approximation we
employed to reduce the number of required simulations.
Our approach may easily afford additional summary sta-
tistics in order to better account for group variability. We
tried using both Nmin and Nmax. This did not affect the

Table 6: Compensation analysis results for the MAP data set.

PDB Size Weight Stat. Nmin p-value FDR 3D dist. 3D p-value

CYS59, THR99, LYS141, SER231 4 Volume 0.68 147.26 3e-04*** yes 29.66 0.1289
TRP221, ASP227 2 Grantham 0.61 260.63 5e-04*** yes 18.13 0.1688†
LEU20, PRO34, ALA55, ASP90, SER132, 
VAL157, TRP221, ASP227

8 Polarity 0.75 9.96 8e-04*** yes 38.38 0.1548

GLY122, LEU230 2 Charge 0.49 3.78 9e-04*** yes 7.44 0.002**‡
HIS63, TYR134, GLU180, GLU190, 
PRO197, ASP242

6 Charge 0.7 3.89 0.0016** yes 35.58 0.1678

GLN154, GLU158 2 Charge 0.48 4.09 0.0017** yes 5.96 0.001***‡
PHE105, LYS111 2 Volume 0.47 267.57 0.0031** yes 20.61 0.2458
VAL24, LYS67, ILE101 3 Volume 0.58 210.55 0.0033** yes 15.15 0.002**
ASP227, HIS236 2 Charge 0.49 3.15 0.0046** yes 27.22 0.5255
THR225, GLY244 2 Grantham 0.51 258.01 0.0064** no 34.16 0.7802
VAL157, THR202 2 Grantham 0.47 310.7 0.0073** no 18.42 0.1788
ARG19, GLU23, ASN46, VAL50 4 Charge 0.62 5.02 0.0086** yes 16.04 0.001***
ALA17, ILE153, TRP221, THR222 4 Volume 0.66 126.09 0.0088** no 26.58 0.0589.†

Legends are the same as in table 5.
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Unweighted substitution mapping for pair (CYS78, ASN95, SER110, GLY150, GLN233) of the MAP data set (see tables 5), revealing a probable rate shiftFigure 7
Unweighted substitution mapping for pair (CYS78, ASN95, SER110, GLY150, GLN233) of the MAP data set (see tables 5), revealing a 
probable rate shift. Only mappings for nodes with at least one site with at least ± 0.9 substitution on average have been represented for clarity. Same 
legends as in figure 3.
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results, but removed some artificially detected groups of
large size (> 10, results not shown). The results presented
in this paper were obtained by using Nmin only and
restricting the analysis to groups with a reasonable size,
that is, lower than 10.

Mechanisms of non independent evolution
In this work, coevolution has been defined in a broad
sense, i.e. as equivalent to non-independent evolution.
Sites are considered as coevolving when they tend to
undergo (biochemically relevant) substitutions in the
same branches of the tree. Co-evolution is hence seen as a
non-random distribution of substitutions across the tree
and alignment. This non-random distribution, however,
may be due to distinct processes. The most intuitive sce-
nario invokes compensatory mutations: one perturbing
mutation at a site is compensated by one or several muta-
tions at other sites to maintain a higher order structure.
This mechanism corresponds to the definition of coevolu-
tion sensu stricto, used in most previous works. It relates to
(intragenic) epistasis: the selection coefficient of a muta-
tion at one site depends on the states at other sites. Corre-
lated substitution does not necessarily imply
compensation, or this compensation may not be seen at
the single-molecule level. Sites involved in the recognition
of an interacting partner, for instance, may tend to coe-
volve and be compensated by changes in the interacting
molecule. More rarely, sites involved in adaptive process
may also undergo correlated changes. Selection toward a
new optimum requiring more than one substitution
could explain the departure from independence [28]. This
scenario should explain the signal detected in the SRK
gene, where several coevolving sites have been previously
reported to be under positive selection.

Another potential reason for non-independent evolution
is a local relaxation of constraint involving several sites,
the so-called heterotachy/covarion process [29,30]. If a
structural or functional unit, generally required for proper
functioning of the molecule, becomes useless in a specific
lineage, then the sites forming this unit will accumulate
changes in this lineage. This results in a correlation of
rates, which may lead to correlated substitution mappings
(see Figure 7). This correlation appears significant if a con-
stant rate among sites is assumed when performing simu-
lations. This may be corrected by using a covarion model
as the one proposed by [31]. The two tests we introduce
should help distinguishing between correlated states and
correlated rates. In agreement with recent work by Hakes
et al. [32], our analyses suggest that the former mecha-
nism, neglected up to now, could explain a substantial
fraction of the detectable correlated patterns.

Conclusion
The flexible coevolution analysis we propose may provide
powerful insight for understanding the evolutionary his-
tory of specific genes, similarly to positive selection detec-
tion analyses. Another open issue is the importance of
coevolutionary processes in protein evolution in general
[33]. Systematically applying our approach to a large
number of data sets for which structural information is
available could help making progress with this respect.

Methods
The method analyses a set of aligned sequences (D) using
a phylogeny (assumed to be known), a Markov substitu-
tion model and a discrete rate distribution across sites.
The set of parameters Θ, including branch lengths, entries
in the substitution matrix and rate distribution parame-
ters are estimated using the maximum likelihood (ML)
method prior to the co-substitution analysis.

Substitution mapping
Let Di be the ith site of the data set, i.e. a column of the
alignment. Let vi,b be the expected number of substitutions
that occurred on branch b for site i. vi,b is computed as fol-
low [11]:

where xp and xq are the states at the top and bottom node

of the branch for this site.  is the expected number

of substitutions on a branch of length t knowing its initial
state xp and final state xq. We previously showed that the

exact computation of this number does not improve the
coevolution detection [11], and may be approximated by
taking:

Equation 10 can be generalized to account for rate across
site variation:

where the cth rate class has relative rate rc.

The first factor in the summation in equation 12 is the
posterior probability of having state xp at bottom node,
state xq at top node, and rate class c given the data and
parameters. It can be computed using the formula:
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where the first factor of the numerator is the likelihood for
site i conditional on states xp and xq at top and bottom
nodes and rate equal to rc. This likelihood is computed as
described by Felsenstein [34], after having multiplied all
branch lengths by rc [35] and summing over all possible
ancestral states at each node except for the top and bottom
nodes of branch b, for which states xp and xq are fixed. P
(rc) is the prior probability for site i of being in rate class
c, and P (Di|Θ) is the likelihood for site i. We call Vi = (vi,1,
..., vi,b, ..., vi,m) (where m is the total number of branches in
the tree) the substitution vector for site i.

This mapping can be applied to any alphabet type, includ-
ing nucleotide and protein alphabets. We extended this
procedure to account for the biochemical properties of

amino-acid residues. We call  the

weighted substitution vectors, with

where W = {wx,y} is a matrix of substitution weights.

We used the following weights, retrieved from the AAin-
dex database [27]:

• Grantham physico-chemical distance [15], AAindex id:
aax2:GRAR740104;

• Difference of volume (as defined by Grantham), AAin-
dex id: aax1:GRAR740103;

• Difference of polarity (as defined by Grantham), AAin-
dex id: aax1:GRAR740102;

• Difference of charge (K and R have +1, D and E have -1,
0 for the others.), AAindex id: aax1:FAUJ880111 and
aax1:FAUJ880112;

These weights may be signed or unsigned. By setting wx,y =

wy,x, we aim at detecting sites undergoing simultaneous

changes in the given property (i.e. correlated evolution).
Setting wx,y = -wy,x accounts for the direction of change, and

may hence be used to detect compensatory changes.

Signed substitution vectors are noted . The four kinds of
vectors were referred as "Grantham", "Volume", "Polar-
ity" and "Charge" in this article. The unweighted vectors
(equation 12) were also computed.

Testing structure proximity
To assess whether sites of a coevolving group were in close
proximity in a three dimensional structure, we measured
the maximum Cα-to-Cα distance between residues in the
group. We constrained the minimal primary distance
between sites in randomized groups to be higher than five
angstroms, or higher than the minimal primary distance
in the tested group, when the latter was lower than five
angstroms. We evaluated the significance of the obtained
distance by randomization. One thousand groups of the
same size were randomly picked from the structure, and
their maximum distance measured. The p-value was calcu-
lated as the proportion of random groups showing a
shorter maximal distance than the tested group.

Data sets
To compare the clustering approach to the pairwise anal-
ysis, we re-analyzed a previously published 79 species bac-
terial LSU data set [11]. The method was then applied to
three protein data sets: the myoglobin of vertebrates, the
S-locus Receptor Kinase (SRK) gene of Brassicaceae,
involved in sporophytic auto-incompatibility, and the
Methionine Amino-Peptidase (MAP).

A hundred sequences of myoglobin were retrieved from
the Swissprot database and aligned with ClustalX [36]. A
phylogenetic tree was built with the PhyML program [37].
The topology was corrected by hand to match well-known
branching orders, particularly within mammals [38].
Numerical parameters were then re-estimated while keep-
ing the tree topology fixed.

SRK sequences were retrieved from Swissprot and trEMBL
using SRS. Sequences with less than 100 amino acids were
removed. A first alignment was performed using the Mus-
cle program [39]. The alignment was visually inspected;
ambiguously aligned sequences were removed. The Clus-
talX program was finally applied to the resulting data set.
The final alignment included 53 sequences corresponding
to the extra-cellular domain of the protein. A PhyML tree
was constructed.

A data set of 174 aligned protein sequences of the Methio-
nine Amino-Peptidase (MAP) was taken from [10]. Their
structure-based alignment was used, and a phylogenetic
tree was estimated using PhyML. For rRNA data, we used
the HKY85 + Γ [40] substitution model, and for protein
data the JTT92 + Γ model [41], implemented using the
dcmut method [23]. A four-class discretized gamma rate
distribution [42] was used in both cases. These models
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were used for tree building, substitution mapping and
parametric bootstrap simulations.

Availability and requirements
Project name: comap

Project homepage: http://gna.org/projects/comap

Operating systems: Unix, Linux, MacOS and Windows.

Programming languages: C++, R

Other requirements: Bio++ libraries

License: CeCILL Free Software License (GNU GPL compat-
ible, http://www.cecill.info/index.en.html)

Authors' contributions
NG and JD designed the method and wrote the manu-
script. JD implemented the method and performed the
analyses.

Additional material
Acknowledgements
The authors would like to thank Aurélie Cailleau and Sylvain Glémin for 
helping with the SRK analysis, Sylvain Glémin and two anonymous review-
ers for helpful comments on this manuscript. This work was supported by 
Centre National de la Recherche Scientifique and Action Concertée Incita-
tive "Informatique, Mathématiques et Physique pour la Biologie". This pub-
lication is the contribution 2007-143 of the Institut des Sciences de 
l'Évolution de Montpellier (UMR 5554 – CNRS).

References
1. Galtier N, Dutheil J: Gene and protein evolution Volume 3. Issue chap

Basel, Karger. Coevolution within and between genes; 2007:1-12. 
2. Neher E: How frequent are correlated changes in families of

protein sequences?  Proceedings of the National Academy of Sciences
of the United States of America 1994, 91:98-102.

3. Tuff P, Darlu P: Exploring a phylogenetic approach for the
detection of correlated substitutions in proteins.  Mol Biol Evol
2000, 17(11):1753-1759.

4. Göbel U, Sander C, Schneider R, Valencia A: Correlated muta-
tions and residue contacts in proteins.  Proteins 1994,
18:309-317.

5. Shindyalov IN, Kolchanov NA, Sander C: Can three-dimensional
contacts in protein structures be predicted by analysis of
correlated mutations?  Protein Engineering 1994, 7:349-358.

6. Pollock DD, Taylor WR, Goldman N: Coevolving protein resi-
dues: maximum likelihood identification and relationship to
structure.  Journal of Molecular Biology 1999, 287:187-198.

7. Tillier ERM, Lui TWH: Using multiple interdependency to sep-
arate functional from phylogenetic correlations in protein
alignments.  Bioinformatics 2003, 19:750-755.

8. Fleishman SJ, Yifrach O, Ben-Tal N: An evolutionarily conserved
network of amino acids mediates gating in voltage-depend-
ent potassium channels.  Journal of Molecular Biology 2004,
340:307-318.

9. Dimmic MW, Hubisz MJ, Bustamante CD, Nielsen R: Detecting
coevolving amino acid sites using Bayesian mutational map-
ping.  Bioinformatics 2005, 21(Suppl 1):i126-i135.

10. Gloor GB, Martin LC, Wahl LM, Dunn SD: Mutual information in
protein multiple sequence alignments reveals two classes of
coevolving positions.  Biochemistry 2005, 44:7156-7165.

Additional file 1
Correlation analysis detailed results for the myoglobin data set, as an 
Open Document spreadsheet file. 3D distance: maximum pairwise 3D 
distance between alpha carbons (A). Primary distance: °C distance, in 
amino acids, of the two positions on the protein sequence. 3D p-value: test 
if the sites are closer than expected by chance. FDR: tell if the group 
remains significant after a correction for having a global false discovery 
rate of 5%. ‡ symbols indicate groups detected by both the correlation and 
compensation analyses, † symbols indicate groups overlapping with a 
detected group in the compensation analysis (i.e. one group is a sub-group 
of the other).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-242-S1.ods]

Additional file 2
Compensation analysis detailed results for the myoglobin data set. 
Legends are the same as in additional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-242-S2.ods]

Additional file 3
Correlation analysis detailed results for the SRK data set. Legends are 
the same as in additional file 1. Sites in bold font are reported to be under 
positive selection by Sainudiin et al. [18].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-242-S3.ods]

Additional file 4
Compensation analysis detailed results for the SRK data set. Legends 
are the same as in additional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-242-S4.ods]

Additional file 5
Correlation analysis detailed results for the MAP data set. Legends are 
the same as in additional file 1. Only groups with a p-value lower than 
1% are reported. A global false discovery rate (FDR) of 1% was used 
when correcting for multiple testing.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-242-S5.ods]

Additional file 6
Compensation analysis detailed results for the MAP data set. Legends 
are the same as in additional file 5.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-242-S6.ods]
Page 17 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2148-7-242-S1.ods
http://www.biomedcentral.com/content/supplementary/1471-2148-7-242-S2.ods
http://www.biomedcentral.com/content/supplementary/1471-2148-7-242-S3.ods
http://www.biomedcentral.com/content/supplementary/1471-2148-7-242-S4.ods
http://www.biomedcentral.com/content/supplementary/1471-2148-7-242-S5.ods
http://www.biomedcentral.com/content/supplementary/1471-2148-7-242-S6.ods
http://gna.org/projects/comap
http://www.cecill.info/index.en.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8278414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8278414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11070062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11070062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8208723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8208723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8177884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8177884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8177884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10074416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10074416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10074416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15882054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15882054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15882054


BMC Evolutionary Biology 2007, 7:242 http://www.biomedcentral.com/1471-2148/7/242
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

11. Dutheil J, Pupko T, Jean-Marie A, Galtier N: A model-based
approach for detecting coevolving positions in a molecule.
Mol Biol Evol 2005, 22(9):1919-1928.

12. Fares MA, Travers SAA: A novel method for detecting intramo-
lecular coevolution: adding a further dimension to selective
constraints analyses.  Genetics 2006, 173:9-23.

13. Oliveira L, Paiva ACM, Vriend G: Correlated mutation analyses
on very large sequence families.  ChemBioChem 2002,
3:1010-1017.

14. Gutell RR, Lee JC, Cannone JJ: The accuracy of ribosomal RNA
comparative structure models.  Current Opinion in Structural Biol-
ogy 2002, 12:301-310.

15. Grantham R: Amino acid difference formula to help explain
protein evolution.  Science 1974, 185:862-864.

16. Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata
K: The S receptor kinase determines self-incompatibility in
Brassica stigma.  Nature 2000, 403:913-916.

17. Awadalla P, Charlesworth D: Recombination and selection at
Brassica self-incompatibility loci.  Genetics 1999, 152:413-425.

18. Sainudiin R, Wong WSW, Yogeeswaran K, Nasrallah JB, Yang Z,
Nielsen R: Detecting site-specific physicochemical selective
pressures: applications to the Class I HLA of the human
major histocompatibility complex and the SRK of the plant
sporophytic self-incompatibility system.  Journal of Molecular
Evolution 2005, 60:315-326.

19. Nasrallah ME: Developmental regulation of plant gene expression Volume
2. Issue chap Glasgow, UK: Blackie. The molecular basis for sexual
incompatibility; 1991:130-152. 

20. Uyenoyama MK: A generalized least-squares estimate for the
origin of sporophytic self-incompatibility.  Genetics 1995,
139:975-992.

21. Dutheil J, Gaillard S, Bazin E, Glemin S, Ranwez V, Galtier N, Belkhir
K: Bio++: a set of C++ libraries for sequence analysis, phylo-
genetics, molecular evolution and population genetics.  BMC
Bioinformatics 2006, 7:188-188.

22. Bio++: C++ libraries for bioinformatics   [http://kimura.univ-
montp2.fr/BioPP]

23. Kosiol C, Goldman N: Different versions of the Dayhoff rate
matrix.  Mol Biol Evol 2005, 22(2):193-199.

24. Yang Z: PAML 4: phylogenetic analysis by maximum likeli-
hood.  Mol Biol Evol 2007, 24(8):1586-1591.

25. CoMap: a C++ program to detect co-evolving groups of sites
[http://home.gna.org/comap]

26. Woolley S, Johnson J, Smith MJ, Crandall KA, Mcclellan DA: Tree-
SAAP: selection on amino acid properties using phyloge-
netic trees.  Bioinformatics 2003, 19:671-672.

27. Kawashima S, Ogata H, Kanehisa M: AAindex: Amino Acid Index
Database.  Nucleic Acids Research 1999, 27:368-369.

28. Orr HA: The population genetics of adaptation: the adapta-
tion of DNA sequences.  Evolution 2002, 56:1317-1330.

29. Lopez P, Casane D, Philippe H: Heterotachy, an important proc-
ess of protein evolution.  Mol Biol Evol 2002, 19(1):1-7.

30. Pupko T, Galtier N: A covarion-based method for detecting
molecular adaptation: application to the evolution of pri-
mate mitochondrial genomes.  Proc Biol Sci 2002,
269(1498):1313-1316.

31. Galtier N: Maximum-likelihood phylogenetic analysis under a
covarion-like model.  Mol Biol Evol 2001, 18(5):866-873.

32. Hakes L, Lovell SC, Oliver SG, Robertson DL: Specificity in pro-
tein interactions and its relationship with sequence diversity
and coevolution.  Proceedings of the National Academy of Sciences of
the United States of America 2007, 104:7999-8004.

33. Choi SS, Li W, Lahn BT: Robust signals of coevolution of inter-
acting residues in mammalian proteomes identified by phyl-
ogeny-aided structural analysis.  Nature Genetics 2005,
37:1367-1371.

34. Felsenstein J: Evolutionary trees from DNA sequences: a max-
imum likelihood approach.  Journal of Molecular Evolution 1981,
17:368-376.

35. Yang Z: Maximum-likelihood estimation of phylogeny from
DNA sequences when substitution rates differ over sites.
Mol Biol Evol 1993, 10(6):1396-1401.

36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The
CLUSTAL_X windows interface: flexible strategies for mul-
tiple sequence alignment aided by quality analysis tools.
Nucleic Acids Research 1997, 25:4876-4882.

37. Guindon S, Gascuel O: A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood.  Sys-
tematic Biology 2003, 52:696-704.

38. Murphy WJ, Eizirik E, O'brien SJ, Madsen O, Scally M, Douady CJ,
Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS: Res-
olution of the early placental mammal radiation using Baye-
sian phylogenetics.  Science 2001, 294:2348-2351.

39. Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput.  Nucleic Acids Research 2004,
32:1792-1797.

40. Hasegawa M, Kishino H, Yano T: Dating of the human-ape split-
ting by a molecular clock of mitochondrial DNA.  Journal of
Molecular Evolution 1985, 22:160-174.

41. Jones DT, Taylor WR, Thornton JM: The rapid generation of
mutation data matrices from protein sequences.  Computer
Applications In The Biosciences 1992, 8:275-282.

42. Yang Z: Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate
methods.  Journal of Molecular Evolution 1994, 39:306-314.

43. Kraulis PJ: Molscript – a program to produce both detailed and
schematic plots of protein structures.  Journal Of Applied Crystal-
lography 1991, 24:946-950.

44. Merritt EA, Bacon DJ: Raster3d: photorealistic molecular
graphics.  Methods in Enzymology 1997, 277:505-524.

45. Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N: Rate4Site: an
algorithmic tool for the identification of functional regions in
proteins by surface mapping of evolutionary determinants
within their homologues.  Bioinformatics 2002, 18(Suppl
1):S71-S77.

46. Kusaba M, Matsushita M, Okazaki K, Satta Y, Nishio T: Sequence
and structural diversity of the S locus genes from different
lines with the same self-recognition specificities in Brassica
oleracea.  Genetics 2000, 154:413-420.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16547113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12362367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12362367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12127448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12127448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4843792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4843792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10224271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10224271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15871042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15871042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15871042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7713446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7713446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594991
http://kimura.univ-montp2.fr/BioPP
http://kimura.univ-montp2.fr/BioPP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483113
http://home.gna.org/comap
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17468399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17468399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17468399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16282975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16282975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16282975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8277861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8277861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9396791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9396791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3934395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3934395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628999
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Algorithm
	Defining a coevolution statistic
	A clustering approach to select candidate groups
	Assessing the significance of the amount of coevolution
	Controlling the false discovery rate

	Case studies
	Application to rRNA
	Application to myoglobin
	Application to SRK
	Application to MAP

	Implementation

	Discussion
	Weighted substitution mapping
	Clustering
	Measuring cluster significance
	Mechanisms of non independent evolution

	Conclusion
	Methods
	Substitution mapping
	Testing structure proximity
	Data sets

	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

