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ABSTRACT

Population structure and history have similar e�ects on the genetic diversity

at all neutral loci. However, some marker loci may also have been strongly

in�uenced by natural selection. Selection shapes genetic diversity in a locus-

speci�c manner. If we could identify those loci that have responded to se-

lection during the divergence of populations, then we may obtain better

estimates of the parameters of population history, by excluding these loci.

Previous attempts have been made to identify outlier loci from the distribu-

tion of sample statistics under neutral models of population structure and

history. Unfortunately these methods depend on assumptions about popu-

lation structure and history, and these are usually unknown. In this paper,

we de�ne new population-speci�c parameters of population divergence, and

construct sample statistics which are estimators of these parameters. We

then use the joint distribution of these estimators to identify outlier loci that

may be subject to selection. We found that outlier loci are easier to recog-

nize when this joint distribution is conditioned on the total number of allelic

states in the pooled sample, at each locus. This is because the conditional

distribution is less sensitive to the values of nuisance parameters.
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INTRODUCTION

P
resumed neutral polymorphic loci are commonly used in making in-

ferences about patterns of di�erentiation within or among populations

of the same or closely related species. For this purpose, genetic distances

(see, e.g., Nei, 1972) or Wright's (1951) F -statistics are estimated from

allele-frequency data. Under particular models of population structure, these

parameters are related to demographic or historical parameters, such as the

e�ective population size, the rate of migration between populations or the

time since the populations diverge from their common ancestral population.

However, misinterpretations can occur, if one is not able to clearly distin-

guish between the patterns generated by random genetic drift or by natural

selection. The problem is that selective processes can also a�ect neutral loci.

A locus which is neutral will respond to selection whenever it is in link-

age disequilibrium (statistical association among allelic states at di�erent

loci) with other loci which are subject to selection. Such associations may

arise by chance in small populations (Hill and Robertson, 1966, 1968;

Ohta and Kimura, 1969). For example, stabilizing or balancing selection

operating at a locus tends to maintain an elevated level of variation at closely

linked neutral loci (Hudson and Kaplan, 1988; Strobeck, 1983). Selec-

tion acting on any locus has an e�ect on loosely linked loci, which resembles

a reduction of e�ective population size (Barton, 1995, 1998; Robertson,

1961). Local adaptation tends to increase population di�erentiation at loci

where selection acts, and very high FST values may be found at closely linked

neutral loci (Charlesworth et al., 1997). The substitution of advanta-

geous mutations at a locus may also reduce neutral variation at linked loci
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(Kaplan et al., 1989; Maynard Smith and Haigh, 1974). Similarly, �

background selection �, caused by the selection against deleterious muta-

tions (Charlesworth et al., 1993) results in a reduced e�ective population

size for neutral genes in the region of the chromosome where this selection

is acting. Background selection may also increase the apparent population

di�erentiation (Charlesworth et al., 1997).

Therefore, it is of prime interest to identify loci that are responding to

selection in order to exclude them from the genetic analysis of population

structure or history. It was recognized early on by Cavalli-Sforza (1966)

that any form of selection will a�ect some regions of the genome more than

others, whereas population history, demography, migration and the mating

system will a�ect the whole genome in the same way. Accordingly, Lewon-

tin and Krakauer (1973) proposed two tests of selective neutrality. Both

tests are based on the sampling distribution of a statistic bF , the standard-
ized variance of gene frequency, which is an estimator of the parameter FST .

Their �rst test is a goodness of �t test comparing the observed distribution ofbF estimates (one estimate from each locus) to a �2 distribution with (n� 1)

degrees of freedom, where n is the number of populations sampled. The sec-

ond test is based on the comparison of the observed variance of bF (across

loci) noted s2F , with the theoretical variance approximated as

�2 =
kF 2

n� 1
(1)

where F is the mean value of bF averaged across loci, and k is a constant

which, according to Lewontin and Krakauer (1973), should not exceed

2 whatever the underlying distribution of allelic frequency. The ratio s2F=�
2,
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should be distributed approximately as a �2=d:f:, the number of degrees of

freedom d:f: being determined by the number of bi-allelic loci.

However, since populations of the same species share, to a certain ex-

tent, a common history and since populations are connected through the

dispersal of individuals, bF values will be correlated across loci. For exam-

ple, the geographic and historical relationships between populations may

have a hierarchical structure if populations have derived from a common

ancestral population as a sequence of successive splits. This is the pattern

expected when the fragmentation of a species range occurred as a sequence

of population subdivisions. The e�ect of such a population history is al-

ways to increase the expected variance of bF (Robertson, 1975a,b). More-

over, even simple models of divergence by drift (Nei and Chakravarti,

1977), island models (Nei et al., 1977), or stepping stone models of dispersal

(Nei andMaryuyama, 1975) in�ate the expected variance, making Lewon-

tin and Krakauer's (1973) test unreliable in most cases (Lewontin and

Krakauer, 1975).

More recently, Bowcock et al. (1991) studied the world-wide human ge-

netic di�erentiation based on DNA polymorphism. Simulating a reasonably

well supported evolutionary scenario of divergence, they evaluated the the-

oretical distribution of FST conditional on initial gene frequencies. Among

100 nuclear RFLP markers a number of genes exhibited lower or, more of-

ten, higher variation than expected under neutrality. In an important paper,

Beaumont and Nichols (1996) proposed a method based on the analysis

of the expected distribution of FST conditional on heterozygosity rather than

allele frequency. The conditional distribution, built under an island model
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of population structure, is remarkably robust to a wide range of alternative

models (colonisation, stepping-stone). Interestingly, departures from equi-

librium do not alter much the expected distribution, whenever FST is less

than 0.5. Yet, unequal numbers of immigrants per generation over the whole

population generated some discrepancies with the symmetric island model

for heterozygosities in the range [0.1, 0.5] (see Figure 3d in Beaumont and

Nichols, 1996).

Thus, their approach might be �awed whenever the true population his-

tory consists of repeated branching events, or when the connectivity of pop-

ulations is uneven. However, we can not infer patterns of migration or his-

torical branching, and test for the homogeneity of the markers with the same

data. This is what Felsenstein (1982) described as the � in�nitely many

parameters � problem. A solution to this problem is to restrict attention to

simple but realistic scenarios which may apply to any pair of populations

(Robertson, 1975b; Tsakas and Krimbas, 1976). This reduces the num-

ber of parameters in the model. Here, we develop a model of population

divergence. We de�ne population-speci�c parameters, as functions of prob-

abilities of identity for pairs of genes taken within or among populations.

These parameters are simply related to the ratio of divergence time over ef-

fective population size. We construct simple estimators of these population-

speci�c parameters. We then examine the expected joint distribution of these

estimators, under a wide range of neutral scenarios of divergence. This sug-

gests a new method to assess the homogeneity of response of genetic markers

from empirical data. Finally, we apply our new method to a data set of al-

lozyme loci from Drosophila simulans populations, and compare our results
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to those obtained by using Beaumont and Nichols's (1996) method.

THE MODEL

We consider two haploid populations of constant sizes N1 and N2, which

completely separated � generations ago, from a single population of station-

ary size N0. By complete separation, we mean that the populations did not

exchange any migrants between the time of the split and the present. We do

not assume that the common ancestral population was at equilibrium when

it split. Instead, we allow the ancestral population to have gone through

a bottleneck, �0 generations before present (with �0 > �). Before this, the

ancestral population was at mutation-drift equilibrium, with constant size

Ne. Generations do not overlap. New mutations arise at a rate �, and fol-

low the in�nite allele model (IAM). This model of population divergence is

illustrated in Figure 1.

[Figure 1 about here.]

Let Qw;i be the probability that two genes sampled at random within

population i are identical by descent (IBD) and Qa, the probability that a

gene sampled at random from population 1 is IBD to a gene sampled at

random from population 2. IBD probabilities are de�ned as the probabilities

that two genes have not mutated since their most recent common ancestor

(Malécot, 1975). The probability that a pair of genes are IBD is equal

to the probability that these genes are identical in state (IIS), whenever the

mutation process follows the IAM.

More generally, let Qh denote the IBD probability of any pair of genes:

h = (w; i) when two genes are sampled within population i, or h = a when
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one gene is sampled from each population. It is possible to give an expression

for Qh, as a function of the coalescence time (Slatkin, 1991). Under a

continuous time approximation (Hudson, 1990)

Qh =

Z
1

0


tch(t)dt (2)

where ch(t) is the probability of coalescence at t for a pair of genes of type h,

and 
 = (1� �)2. The waiting time for a coalescent event in a population of

size Ni has an exponential distribution with mean Ni. The IBD probability

for a pair of genes in population i reduces to

Qw;i =

Z �

0


t

Ni

e�t=Nidt + (1� Ci)Q0 (3)

where Q0 is the IBD probability for two genes sampled at random from the

common ancestral population at time � (just before the split), and (1�Ci) =


� � e��=Ni is the probability that the two genes neither coalesce nor mutate

in the ith population, in the time-interval 0 < t 6 � . The �rst term on the

right-hand side of equation (3) is the probability that the two genes coalesce

in the time-period 0 < t 6 � , and are IBD. Following equation (2), the IBD

probability for a pair of genes sample at random from the common ancestral

population just before the split at time � is given by

Q0 =

Z �0

�


t��

N0

e�(t��)=N0dt+ (1� C0)

Z
1

�0


t��0

Ne

e�(t��0)=Nedt (4)

where (1 � C0) = 
�0�� � e�(�0��)=N0 is the probability that the two genes

neither coalesce nor mutate in the time-interval � < t 6 �0. The �rst term
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on the right-hand side of equation (4) averages over the coalescent events

occurring during the population bottleneck. During this time-interval (� <

t 6 �0) the waiting time for a coalescent event is exponentially distributed

with mean N0. The last term in equation (4) averages over coalescent events

occurring in the ancestral population, at mutation-drift equilibrium. This

last term represents the IBD probability for two randomly sampled genes in

a stationary population of size Ne, which is 1=(1+�), with � = 2Ne�. Solving

the integrals in the low-mutation limit (where 
t � e�2�t), we �nd that the

solution of equation (3) is

Qw;i �
1

�i + 1

�
1� e�Ti(�i+1)

�
+ e�Ti(�i+1) �Q0 (5)

where �i = 2Ni� and Ti = �=Ni. The value of Q0 is given by the solution of

equation (4)

Q0 �
1

�0 + 1

�
1� e�T0(�0+1)

�
+ e�T0(�0+1)

�
1

� + 1

�
(6)

where �0 = 2N0� and T0 = (�0 � �)=N0. The probability for a gene in

population 1 to be IBD with a gene in population 2 is just given by

Qa = 
�Q0 (7)

Obviously, two such genes can not coalesce during the � generations between

the moment of divergence and the present. They are IBD only if their respec-

tive ancestors are IBD when populations 1 and 2 diverge, and furthermore,

if they do not undergo mutation during the divergence. Now, it is useful to

consider the parameter
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Fi =
Qw;i �Qa

1�Qa

(8)

It is worth noting that the weighted sum of Fi over the two populations

gives the intraclass correlation for the probability of identity by descent for

genes within populations, relatively to genes between populations. This is of

particular interest, because the properties of the intraclass correlations for

the probability of identity in state (� IIS correlations �) (Cockerham and

Weir, 1987) can be deduced from the properties of the corresponding intra-

class IBD correlations, in the low-mutation limit (Rousset, 1996). Indeed,

such ratios of identity probabilities of the form of equation (8) give the same

low-mutation limit, whether one considers the in�nite allele model or other

mutation models (Rousset, 1996, 1997).

If we neglect new mutations arising during the divergence process, Qa

reduces to Q0 and Qw;i = Ci(1�Q0) +Q0. Thus

Fi � 1� e�Ti (9)

Note that equation (9) gives a well known result when both daughter popula-

tions are assumed to have the same size N , so that F1 = F2 = F � 1� e��=N

(see, e.g., Reynolds et al., 1983). Hereafter, the parameter Ti will be re-

ferred to as a the � branch length � of population i. An important result

is that, in the low-mutation limit, the new parameters F1 and F2 do not

depend on the � nuisance parameters � � or T0. This suggests that a simple

moment-based estimator bTi of branch length can be derived as
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bTi = � ln(1� bFi) (10)

where bFi is an estimator of Fi (see Appendix for details).

PROPERTIES

Simulation procedure: For each set of parameter values, a sequence of

arti�cial data sets was generated using standard coalescent simulations, as

described by, e.g., Hudson (1990). The simulations were performed as fol-

lows (see Figure 1 for an illustrated example of one simulated genealogy).

For each population, the genealogy of a sample of ni genes is generated for a

period of time ranging from present to � generations in the past. During this

period, all the coalescent events are separated by exponentially distributed

time-intervals, with means N1=
�
n1
2

�
in population 1 and N2=

�
n2
2

�
in popula-

tion 2 (See Equation 3). At time � , the number n0 of lineages that remain

represents the ancestors of all the genes sampled in populations 1 and 2.

The genealogy of these lineages is generated for the time-period [�; �0], and

all the coalescence events are separated by exponentially distributed time-

intervals, with mean N0=
�
n0
2

�
(see the �rst term in the right-hand side of

equation 4). At time �0, the lineages that remain are the ancestors of all

the genes sampled in populations 1 and 2. The genealogy of these ne genes

is generated for the period [�0;+1], with all coalescent events separated by

exponentially distributed time-intervals with mean Ne=
�
ne

2

�
(see the second

term in the right-hand side of equation 4). Once the complete genealogy

is obtained, the mutation events are superimposed on the coalescent tree of

lineages. In the results which follow, each arti�cial data set consisted of two
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(haploid) samples of size n = 100, one from population 1 and the other from

population 2.

Simulation results: By calculating the estimators bF1 and bF2 for each of

these arti�cial data sets, it was possible to obtain a close approximation

to the expected distribution of these estimators (see Appendix for details).

Figure 2 shows this expected joint distribution of bF1 and bF2, for various

combinations of the nuisance parameters � and T0. In this case, the � true �

branch lengths were T1 = T2 = 0:1 (hence F1 = F2 � 0:0953). The expected

value of the estimator bF1 (resp. bF2) was always close to the value of the

parameter F1 (resp. F2). One can show that, by construction, the points� bF1; bF2

�
lie within the upper-right triangle with vertices (1,1), (-1,1) and (1,-

1). The joint distribution of these two statistics has a negative correlation.

Most importantly, it is clear from this �gure that the joint distribution ofbF1 and bF2 depends strongly on the nuisance parameters, even though their

expectations remain close to the true values of F1 and F2.

[Figure 2 about here.]

It can be seen that, for smaller values of T0, the joint distribution be-

comes tighter as � increases. On the other hand, for larger values of �, the

distribution is found to widen as T0 increases. In both cases, it is the level

of variation that remains before divergence which is crucial in shaping the

joint distribution. With small � and large T0, the lineages coalesce rapidly

before the divergence, and the number of distinct mutations (allelic states)

that can be maintained is small. In this case, the variance of the estimates of

populations branch lengths is large, as illustrated by the wide joint distribu-
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tion of bF1 and bF2. Therefore, the joint distribution of bF1 and bF2 is not ideal

for investigating the homogeneity of results of a set of molecular markers.

Indeed, other factors such as heterogeneous mutation rates across loci may

be invoked to explain disparities of branch length estimates among markers.

Fortunately, this problem can be overcome by considering the joint distribu-

tion of bF1 and bF2, conditional upon the total number k of allelic states in the

pooled sample at each locus. Figure 3 shows the estimated joint distribution

for T1 = T2 = 0:1 (hence F1 = F2 � 0:0953), conditioned on k = 4. The

combinations of nuisance parameter values are the same as in Figure 2.

[Figure 3 about here.]

The expected joint conditional distribution appears to be almost inde-

pendent on the nuisance parameters. So, given the observed values for the

parameters F1 and F2, and given the number of alleles in the sample, one can

obtain the conditional joint distribution, and then a high probability region,

that should contain 95% of the observed measures of pairwise bFi's values.

This result provides the justi�cation for using the conditional distributions

to analyze the homogeneity in the patterns of genetic di�erentiation revealed

by a (large) set of markers.

APPLICATIONS

In this section, we present a methodology for identifying outlier loci by a pair-

wise analysis of populations. For each pair of populations (i; j), we suggest

the following protocol:

1. For all loci, the statistics bFi and bFj are computed (see Appendix).
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2. The parameters Fi and Fj are estimated as the averages among loci

weighted by the heterozygosities (1 � bQi) and (1 � bQj), respectively (see

Appendix). This corresponds to the weighting of loci suggested byWeir and

Cockerham (1984) for the multilocus estimator of FST .

3. The expected joint distribution of bFi and bFj is generated by performing

10000 coalescent simulations for a given set of nuisance parameters values.

This is repeated using a wide range of values for the nuisance parameters. In

the Drosophila simulans data set discussed below, all the pairwise combina-

tions for � and T0 where performed, with � = 1, 5 or 10, and T0 = 0:01, 0:1

or 1. Thus, a total of 90000 coalescent simulations were performed in this

example. The simulated sample size are chosen to be representative of those

actually realized in the real data set.

4. For each expected joint distribution of bFi and bFj, we construct all

the distributions, conditional on the number of allelic states k in the pooled

sample, for k = 2; 3; : : : (The pooled sample is the sample obtained by pooling

the samples from populations i and j). Remember, there is one expected

distribution for each set of nuisance parameters values. For each conditional

distribution, we identify the � high probability � or � high density � region,

in the range of the points bFi and bFj, where 95% of the data is expected to

lie (see Appendix for the construction of this high probability region).

5. For each value of the number of allelic states in the pooled sample,

we superimpose a scatter plot of the observed data points (pairs of bF1 andbF2 values) over an outline of the 95% high probability region, in order to

identify outlier loci.
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Drosophila simulans data set: We applied this method to a Drosophila

simulans data set, described in Singh et al. (1987) and Choudhary et al.

(1992). The raw data set was kindly provided by R. S. Singh and R. A.

Morton. Among 111 allozyme loci, 43 were found to be polymorphic in

the 5 populations studied in Europe and Africa. The samples consisted in

isofemale lines maintained in the laboratory. The haploid sample sizes ranged

from n = 26 to n = 55. Figure 4 shows the analysis performed on a particular

pair of populations (France and Tunisia). The multilocus estimates of the

parameters F1 (French population) and F2 (Tunisian population) were 0.0064

and 0.0617, respectively. The expected distributions with these averaged

values, conditioned on the number of alleles in the pooled sample, are plotted

with the actual monolocus pairwise ( bF1; bF2) estimates.

[Figure 4 about here.]

In the great majority of cases, the points fall within the 95% con�dence

region. With 43 loci we would expect two (0:05� 43 � 2) to lie outside the

region by chance. But considering the joint distributions for loci with 3 or

more alleles, we found 4 loci that clearly lie outside. Caution is required in

the case of loci which lie on the borders of the possible range (Figure 4B).

These correspond to loci that have an allele �xed in one population. Slight

variations in the nuisance parameters can increase or decrease the relative

proportion of loci that may �x one allele in a population. Indeed, we found

some conditions under which the 95% envelope contained these two loci.

This problem can remain even when we condition on the observed number

of alleles. On the other hand, two other loci (coding for Glutamate Pyruvate

Transaminase and Carbonic Anhydrase-3) are clear outliers of the expected
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distributions (Figures 4C and 4D). In all pairwise comparisons which included

the French population, these two loci fell either ourside, or on the edges of

the 95% high probability region.

[Figure 5 about here.]

In all the pairs which included the population from Congo, two loci coding

respectively for the Larval Protein-10 (Pt-10) and the Phosphoglucomutase

(PGM) were found to lie outside or on the limit of the 95% high probability

region (Figure 5). The locus coding for the Larval Protein-10 systemati-

cally gives a longer estimated branch length for this African population than

do all other loci, while it gives similar branch lengths to other loci for the

other populations. This suggests that genetic variation has been severely

reduced by a factor other than genetic drift in this African population. The

locus coding for Phosphoglucomutase gives a longer branch length estimate

than the other loci in three cases (Figures 5A-C), and a shorter one in one

case (Figure 5D). The locus coding for Phosphoglucomutase was also found

to lie outside the limit of the 95% high probability region, in all the pairs

which included the population from Seychelle Island (Figure 6). In order to

strengthen our presumption that these loci were outside the limit allowed by

a neutral model, we checked whether these loci also lie outside the limit of

the 99% high probability region. The same results were obtained. For these

loci, we did not �nd any plausible neutral scenario of divergence by drift

which could provide such a scatter of points. We thus conclude that natural

selection may have acted on these loci, or on closely linked regions within

the genome.

[Figure 6 about here.]
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We are more cautious about claiming that the loci coding for Glutamate

Pyruvate Transaminase and Carbonic Anhydrase-3 have been or are subject

to selection. These loci are clear outliers in some pairwise comparisons in-

volving the French population, but only fall in the limits of the con�dence

region in other comparisons. Moreover, when considering 99% con�dence

regions instead of 95% con�dence regions, some loci were no longer detected

as outliers, but rather as lying on the edges of the con�dence limit. The lo-

cus coding for isocitrate dehydrogenase-1 was found to be an outlier in three

(out of four) pairs which included the population from Seychelle Island. Over-

all, six more loci were detected as outliers, in single pairwise comparisons.

Therefore, we should be very careful in considering those latter loci as being

under selection. Indeed, if a locus has responded to selection in one partic-

ular contemporary population since it became isolated, then we expect this

locus to show up as an outlier in all (or most) comparisons involving this

population. This pattern is exactly what we found for the two loci coding

for Larval Protein-10 and Phosphoglucomutase in the Congo and Seychelle

Island populations.

Evaluating the robustness of this method to the assumptions of the

model: In the data set discussed above, it is likely that the populations of

D. simulans have exchanged migrants after divergence. More generally, one

can wonder whether complete isolation and divergence by random drift ac-

curately describes natural situations. An alternative approach would be to

develop a new model of population divergence, that allows subsequent mi-

gration after separation. But if we want to make inferences about a more

realistic (and hence a more complex) model of divergence, then we need to
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distinguish between the pattern of genetic di�erentiation which results from

(i) recent separation followed by very little migration or (ii) ancient sepa-

ration followed by a moderate amount of migration. This is a di�cult task,

that would require more powerful methods for inferring parameter values

(e.g., maximum likelihood; see Nielsen and Slatkin, 2000) that would be

much more time consuming. Further note that Nielsen and Slatkin (2000)

assume that the mutation rate is zero.

So, we are interested in testing if our method (which assumes evolu-

tion in complete isolation after divergence) is undermined when applied to

pairs of populations that still exchange genes after divergence. It should be

borne in mind that gene �ow, like genetic drift, a�ects the whole genome

in the same way. We generated arti�cial datasets under neutral models of

population divergence, including high mutation rates and moderate levels

of migration between populations. We used a modi�ed version of the al-

gorithm described by Hudson (1990), that accounts for symmetric migra-

tion between populations. Considering populations 1 and 2 altogether, all

events (coalescence and migration) are exponentially distributed with mean

N1N2=
�
N2

�
n1
2

�
�N1

�
n2
2

�
+m(n1 + n2)N1N2

�
, where m is the backward mi-

gration rate (Nordborg, 2001). Conditionally on the occurrence of one

event, two genes coalesce in population 1 (resp. population 2) with proba-

bility N2

�
n1
2

�
=
�
N2

�
n1
2

�
�N1

�
n2
2

�
+m(n1 + n2)N1N2

�
(resp. N1

�
n2
2

�
=
�
N2

�
n1
2

�
�N1

�
n2
2

�
+m(n1 + n2)N1N2

�
) or one gene migrate

from population 2 to population 1 (resp. from population 1 to population

2) with probability m � n1=
�
N2

�
n1
2

�
�N1

�
n2
2

�
+m(n1 + n2)N1N2

�
(resp. m �

n2=
�
N2

�
n1
2

�
�N1

�
n2
2

�
+m(n1 + n2)N1N2

�
) (seeNordborg, 2001; Strobeck,
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1987; Takahata, 1988).

For each set of parameters, we generated 20 datasets composed of two

samples (n1 = n2 = 50) of 50 loci each. The parameter values are given in

Table 1. For each dataset, we applied our method as described above. We

generated joint distributions, conditional on the number of alleles, according

to the actual numbers of alleles in each sample. For all sets of parameters,

we grouped loci with 8 alleles and more in a single class. The number of joint

conditional distributions generated per arti�cial dataset (i.e., the number of

classes for di�erent numbers of alleles) ranged from 3 to 7. For each dataset,

over all the joint conditional distributions taken together, we expected to

detect 0:05� 50 = 2:5 outlier loci, just by chance. We performed Wilcoxon's

signed-rank tests (see, e.g., Mendenhall et al., 1990) to determine if the

distribution of the number of detected outlier loci was shifted to the right of

2.5 (one-tailed test).

[TABLE 1 about here.]

Table 1 shows the total observed number of outlier loci (mean and median

over 20 independent simulated datasets) detected for a range of nuisance

parameter values (low and high mutation rates, short or long divergence by

random drift, with or without migration). In no case could we reject the

null hypothesis that the number of detected outlier loci was equal to 2.5

(against the alternative hypothesis that the number of detected outlier was

greater than 2.5). Thus, our approach is conservative in the sense that the

95% con�dence region contains at least 95% of the loci generated by a truly

neutral model. At the level of 5% we do not (falsely) detect outlier loci in a

sample of neutral markers (type I error).
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Comparison with Beaumont and Nichols's (1996) method: We also

applied Beaumont and Nichols's (1996) procedure to the D. simulans

data set. Based on a preliminary examination of the data, 3 loci (coding for �-

Fucosidase, Dipeptidase-1 and Mannose Phosphatase Isomerase) were found

to lie outside the 95% con�dence region of the conditional joint distribution ofbFST and mean heterozygosity. The percentiles were determined as described

in Beaumont and Nichols (1996). Surprisingly, none of these 3 loci were

detected as outliers using our method. There may be several reasons for this:

We suspect that, in the present case, the inclusion of a very distant insular

population (Seychelle Island) may bias their analysis. Indeed, populations

heterogeneous with respect to their demographic parameters (e�ective pop-

ulation sizes and migration rates) have been shown to strongly a�ect their

method (Beaumont and Nichols, 1996). Isolation (low migration rates)

together with population bottlenecks, can introduce a further bias. Con-

sider as an extreme case, the �xation of a private allele at some locus in one

population. This may be unexpected for a polymorphic locus in a mutation-

migration-drift equilibrium model, unless there is a strong asymmetry, with

some populations being smaller and receiving less immigrants than others.

However, this is not unexpected for a model of separation and isolation,

where there has been population bottlenecks. This may boost the FST esti-

mate at some locus, and thus exclude it from the 95% high probability region.

So, isolated populations should probably be excluded from Beaumont and

Nichols's (1996) analysis.

Moreover, in general, the loci which were outliers in our analysis gave

small values of (global) FST . But from the shape of the joint distribution
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of FST and heterozygosity, it seems that Beaumont and Nichols's (1996)

analysis is likely to detect outlier loci which exhibit unusually large FST

values. However, a process which would cause an apparent decrease of ge-

netic variation at one locus in a single local population, without leading to a

decrease of the variation over all populations, would not be detected Beau-

mont and Nichols's (1996) procedure. In other words, if selection acts on

one locus at a local scale, pairwise comparisons of populations is more likely

to be e�cient for detecting outlier loci.

DISCUSSION

Using population-speci�c estimators of branch lengths: Conven-

tional pairwise genetic distances or pairwise measures of population di�eren-

tiation are based on the assumption that the sizes of populations are equal

and constant through time or that dispersal, if any, is symmetric. For exam-

ple, the pairwise FST parameter is de�ned as a ratio of identity probabilities

within and among populations. But the within-population term is taken as

an average over the pair of populations. Thus, the de�nition of the param-

eter implicitly assumes that both populations share the same demographic

parameters. Weir and Cockerham's (1984) estimator � of FST is con-

structed to have low bias and variance, assuming that the populations are

independent replicates of the same stochastic process. This means that pop-

ulations are supposed to have the same size, and that they do not exchange

migrants. Without these assumptions, � would be a complex function of

unequal (within-population) identity probabilities.

In contrast, the Fi parameters de�ned here make sense even when the
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populations are of unequal size. The only assumption we make is that when

the two populations have separated, they remain completely isolated. From

the estimation of Fi's for a pair of populations, we can infer the branch

lengths. The ratio of these branch length estimates is inversely proportional

to the ratio of e�ective population sizes. Thus, these estimates may be seen as

measures of the intensity of genetic drift that has occurred since population

divergence. The main drawback to this approach is that when estimates of

IIS probabilities are smaller within populations than among (i.e., bQw;i < bQa),bFi becomes negative, and the moment-based estimator of branch length fails.

Although this can arise just by chance for some loci, averaging bQ estimates

over loci reduces the problem.

Provided that we obtain good estimates of branch lengths for a pair of

populations (which requires the pooling of information from many indepen-

dent loci) we may be able to evaluate the consistency of locus-speci�c esti-

mates. Indeed, the joint distribution of branch length estimates, conditioned

on the number of alleles in the pooled sample, depends only weakly on nui-

sance parameters of the simple model of divergence by drift. In particular,

this conditional distribution is not sensitive to departures frommutation-drift

equilibrium before isolation, or to di�erences in mutation rates.

Detection of selection acting on genetic markers: We saw from the

analysis of the D. simulans data set that the great majority of loci always fall

in the con�dence region of the conditional pairwise distributions of branch

length estimates, while some loci do not. Overall, we identi�ed two loci that

were probably subject to selection in the population from Congo. We con-

cluded that the distribution of variability at these loci may be shaped by
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other forces than mutation and drift. Furthermore, we identi�ed two other

loci that either lie on the edges, or fall just outside the high probability region

of the expected conditional distribution in the French population, although

we should be cautious about these latter loci. It is noteworthy that our es-

timation of the density of Fi parameters (see Appendix) is discontinuous,

because of the discrete nature of the data (the allele counts). This is particu-

larly true when the number of alleles on which the distribution is conditioned

is small (for a given set of parameters, the lower the number of allelic states,

the more discontinuous the null distribution: see Figure 4). Using discrete

distributions is clearly preferable to using some (unnecessary) continuous ap-

proximations to it. Moreover, whenever the null distribution is based on the

same number of allelic states and the same number of genes as in the sample,

there is no tendency for loci to show up as outlier just because of the discrete

nature of the distribution (i.e., a locus can not, by construction, shows up

between arc-shaped areas, located at the edge of some distributions). Yet,

when an apparent outlier lie very close to the 95% high probability region, it

is highly advisable to check whether this locus also lie outside the 99% high

probability region.

The main criticisms of Lewontin and Krakauer's (1973) attempts to

interpret across-loci heterogeneity of FST values arose from their failure to

consider allele frequencies as random variables, whose distribution depends

on the underlying model of population structure and history. Indeed, un-

even patterns of dispersal among populations (Nei and Maryuyama, 1975)

or sequences of population splits within the species (Robertson, 1975a,b)

may strongly undermine the approach. Lewontin and Krakauer (1975)
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acknowledged that their tests might be limited to situations were the true

population structure did not depart too much from the island model.

However, conditioning the distribution of FST on the heterozygosity (Beau-

mont and Nichols, 1996) or on gene frequency for biallelic loci (Bow-

cock et al., 1991) has been shown to give surprisingly robust results, in the

sense that strong departures from the model assumptions do not alter very

much the distribution. The strongest e�ect on the joint expected distribution

of FST and heterozygosity occurs when populations are heterogeneous with

respect to their demographic parameters (Beaumont and Nichols, 1996),

for example when populations are founded by very di�erent numbers of in-

dividuals, or when populations are arranged in an irregular stepping-stone

lattice. However, Beaumont and Nichols (1996) considered a large num-

ber d of subpopulations in the metapopulation (d = 100) and this parameter

strongly in�uences the expected heterozygosity [He � 4Nd�= (1 + 4Nd�),

for diploids]. In addition, at a local scale, FST is only weakly in�uenced

by the total population size Nd (Rousset, 2001). The number of popula-

tions has a stronger role than acknowledged by Beaumont and Nichols

(1996) in determining whether mutation has an e�ect on FST or not. It

has been shown that, considering smaller numbers of populations, FST es-

timates may be reduced by mutation, especially with a stepwise mutation

model (see Flint et al., 1999). With d = 100 islands, the sets of parameters

used in Beaumont and Nichols (1996) did not account for any case where

mutation may depress FST .

As already suggested by Tsakas andKrimbas (1976), restricting Lewon-

tin and Krakauer's (1973) tests to pairs of populations removes all kinds
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of dependence on the unknown population structure. Indeed, whatever their

history, two populations ultimately descend from a single ancestral one in the

past. Still, nuisance parameters may broaden the joint distribution of pair-

wise Fi's (Figure 2). However, conditioning on the number of alleles (Figure

3) also gives distributions that are robust enough to variations in the values of

nuisance parameters. It is obvious that for each analysis of a pair of popula-

tions, we deliberately discard the information brought by other populations,

which may decrease the power of the method (Tsakas and Krimbas, 1976).

But we believe that this enables us to explain a wider range of patterns than

any symmetrical model, such as the island model. In this respect, our ap-

proach is conservative. Moreover, we found that low or moderate gene �ow

did not undermine our approach, in the sense that we did not falsely detect

outlier loci, when they were neutral (Table 1). We compared and discussed

the performance of our method to that of Beaumont and Nichols's 1996

using the empirical data from Singh et al. (1987) and Choudhary et al.

(1992). We further tested whether our method would falsely rejected neutral

loci (type I error), under a wide range of nuisance parameter values (see Ta-

ble 1). In particular, since the method assumes that the mutations arising

after divergence can be neglected, we checked that high mutation rates do

not weaken the approach.

We have found that patterns such as those identi�ed in the Tunisia vs

Congo data set as evidence of selection, can be produced by � neutral models

� where the coalescent process occurs independently at each locus. Indeed,

similar scatters of points could be obtained whenever the parameters F1 and

F2 vary across loci, having particularly high values at certain loci (results
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not shown). Models of this type provide a rough approximation to models

of unlinked neutral loci, some of which having been strongly in�uenced by

selection (remind that the e�ect of selection resembles a reduction in the

e�ective population size experienced by these loci, as described by Barton,

1995, 1998; Robertson, 1961). So, it is certainly plausible that the patterns

which we have identi�ed in the Tunisia vs Congo data set were produced by

selection. A thorough investigation of the conditions under which our method

fails to identify selected loci (type II error) would be desirable. However, this

is not feasible, as the range of models which incorporate selection is very large.

An important task for the future is to consider a more general neutral

model of the divergence of two populations, where gene �ow may continue af-

ter the moment of � separation �. It is also desirable to extend this approach

to more elaborate neutral models, incorporating recombination. More so-

phisticated estimators of the divergence parameters (branch lengths) would

then be required. We assumed that the mutation process follows the IAM

and we allowed a wide range of possible mutation rates. In the IAM, genes

that are identical in state are also identical by descent. This may not be the

case with other mutation models such as with the K allele or stepwise muta-

tion processes, which can produce IIS genes that are not IBD (homoplasy).

The IAM is probably an adequate model for allozyme data. It is certainly

not so appropriate for potentially more variable markers, such as microsatel-

lites. Recent studies reveal that the processes of mutation of microsatellite

markers may be more complex than previously thought and may vary greatly

among loci (Estoup and Angers, 1998). Furthermore, the e�ect of homo-

plasy on measures of population subdivisions is not simple (Rousset, 1996).
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Therefore, further studies should be conducted to test the application of our

method across di�erent classes of nuclear markers that di�er in processes of

mutation. Clearly, if a whole class of marker loci, which are known to have

a very distinct mutation process, are identi�ed as outliers by our analysis,

then this class of markers should be interpreted with caution.

If we could identify those marker loci that have responded to selection

during the process of divergence, then we may be able to obtain improved

estimates of the parameters of population structure and history, by exclud-

ing these loci (Ross et al., 1999). Our method di�ers from previous ones in

allowing selection to be detected in particular populations, and in some pair-

wise comparisons but not others. This opens up the possibility that markers

may be discarded only in the analysis of those populations where there is

evidence that they have responded to selection. It is also of interest to use

this approach to screen the genome for regions that have responded to strong

selection in the recent past. If populations have diverged phenotypically and

if this has been caused by selection, then it may even be possible to iden-

tify candidate regions for the Quantitative Trait Loci (QTL) underlying this

adaptive divergence.
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APPENDIX

Parameters estimation: For any given allele u, we use the indicator vari-

able xiju for describing the state of the jth gene in the ith population, with

i = (1; 2). xiju = 1 if the allelic type is u, xiju = 0, otherwise. Let piu

be the frequency of allele u in the ith population. Then piu = E(xijuj p),

where E ( j p) denotes the expectation, conditional on the array p of all the

allele frequencies. Considering the second moments of the random variable

xiju, it follows that E(x
2
ijuj p) = piu and, since individuals are sampled in-

dependently from the ith population, E(xijuxij0uj p) = p2iu for j 0 6= j. Then,

summing over all alleles gives the probability for two genes in population i

to be identical in state (IIS)

Qw;i = E

 
kX

u=1

p2iu

!
(A 1)

where E denotes now the expectation over the distribution of allele frequen-

cies p and k is the number of alleles in the population. The IIS probability

for two genes respectively taken in population 1 and 2 is given by

Qa = E

"
kX

u=1

(p1up2u)

#
(A 2)

An unbiased estimator of the frequency of allele u among ni sampled in-

dividuals from the ith population is simply given by bpiu =
Pn

j=1 xiju=ni.

Expanding the square of this expression, and then taking expectation, gives

E(bp2iuj p) = [piu + ni(ni � 1)p2iu] =ni. Therefore,
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bQw;i =
kX

u=1

[bpiu (nibpiu � 1)] =(ni � 1) (A 3)

is an unbiased estimator of the probability for two genes in population j to be

identical in state, with k being the number of alleles in the sample. Similarly

bQa =
kX

u=1

(bp1ubp2u) (A 4)

is an unbiased estimator of the IIS probability of two genes taken in the

ancestral population, before divergence. Approximating the expectation of a

ratio by the ratio of expectations, an estimator of Fi is given by

bFi =

Pk
u=1 [bpiu (nibpiu � 1) =(ni � 1)� bp1ubp2u]

1�
Pk

u=1 (bp1ubp2u) (A 5)

When combining the information brought by all alleles at more than one lo-

cus, a multilocus estimator is de�ned as the ratio of the sum of locus-speci�c

numerators over the sum of locus-speci�c denominators (see, e.g.,Weir and

Cockerham, 1984). It is worth noting that, when daughter population sizes

are equal, this simple way to estimate parameters (i.e., equating Qs to bQs
in equation (8) to get bF ) directly yields Cockerham's estimators (Cocker-

ham, 1973; Weir and Cockerham, 1984) developed with the methods of

analysis of variance (see Rousset, 2001, for a thorough demonstration of

the equivalence between estimator formulas based on analyses of variance

and expressions in terms of frequency of identical genes). Our estimator dif-

fers from previous ones (e.g., Reynolds et al., 1983) in allowing separate

parameters Fis for each population.
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Estimation of the density of Fi parameters: For each set of parame-

ter values, coalescent simulations were performed, thus generating � arti�cial

data sets �. Each arti�cial data set yields a pair of estimates bF1 and bF2. An

approximation to the expected joint distribution was obtained as follows.

First, a 2-dimensional histogram was constructed. Recall that the points� bF1; bF2

�
are constrained to lie within the upper-right triangle of a square

with vertices (-1,-1), (1,-1), (-1,1) and (1,1). The whole square region was

covered by a 2-Dimensional array (or mesh) of 100� 100 square cells. Each

cell has thus sides of length 0.02. Each observation
� bF1; bF2

�
was binned in the

appropriate cell. The cell counts were divided by the total number of obser-

vations, to obtain a discrete probability distribution over the 2-dimensional

array. This discrete distribution is a close approximation to the expected

joint distribution of the estimators
� bF1; bF2

�
. The q-level � high probability

region � (q = 95%, or any other value) is constructed as follows. The cells

are sorted in order of decreasing probability. Finally, starting from the cells

with the highest associated probabilities, cells are sequentially added to the

con�dence region, until the cumulative probability of the whole set of cells

obtained is equal to (or just exceeds) the chosen q-value.

From this procedure, we obtain for each simulation a region within which

a proportion q of the data lies. Notice that this con�dence region is not

necessarily continuous. Constructing the high probability region using the

discrete distribution is clearly preferable to using some (unnecessary) contin-

uous approximation to it.
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TABLE 1

Results from applications to various divergence scenarios

Detected outliers

� � T0 mean median p value

No migration: m = 0

10
�5

1 1 1.85 2.0 0.98

10
�5

10 10
�2

1.15 1.0 1.00

10
�3

1 1 2.60 3.0 0.28

10
�3

10 10
�2

1.75 2.0 0.76

Low migration: m = 0:01

10
�5

1 1 2.30 2.5 0.79

10
�5

10 10
�2

2.25 2.0 0.77

10
�3

1 1 2.00 2.0 0.99

10
�3

10 10
�2

1.20 1.0 1.00

Moderate migration: m = 0:1

10
�5

1 1 2.30 2.0 0.87

10
�5

10 10
�2

2.05 2.0 0.96

10
�3

1 1 2.25 2.0 0.89

10
�3

10 10
�2

1.85 2.0 0.98

For all sets of parameters, 50 loci were scored among 100 haploid sampled

individuals (50 in each population). The mean number of detected outlier loci

is given, as well as the median of the distribution of that number. We provide

the p value of Wilcoxon's signed-rank tests, performed on the distributions

of detected outliers, to determine whether this distribution was shifted to the

right of 2.5 (one-tailed test).

39



FIGURE CAPTIONS

Figure 1. A gene genealogy under our model, for n = 10 genes sampled in

each population. In this example, the parameters values are N1 = N2 = 100,

N0 = 500, Ne = 1000, � = 50, �0 = 150 and � = 10�3.

Figure 2. Expected distribution of pairs of bF1 and bF2 estimates, for wide

ranges of values of the nuisance parameters � = 2Ne� and T0. Ti = �=Ni

is 0.10 for both daughter populations (with � = 50 and N1 = N2 = 500),

giving an expected value Fi � 0:0953, as indicated by the dotted lines. For

all parameter sets, � = 10�4 and N0 = 1000. One hundred individuals are

sampled in each daughter population. The light gray area de�nes a region

in which 95% of the simulated points are expected to lie (see Appendix for

details).

Figure 3. Expected distribution of pairs of bF1 and bF2 estimates conditioned

on a number of alleles in the sample equal to 4. As in Figure 1, wide ranges of

values have been used for the nuisance parameters. The dotted lines indicate

the expected values for F1 and F2.

Figure 4. bF1 and bF2 values estimated from 43 loci in Drosophila simulans for

the pairwise comparison of the populations from France (n = 55) and Tunisia

(n = 52). n is the number of isofemale lines typed for each enzymatic system

(haploid sample size). Each locus is represented with a black dot. The

averaged values are bF1 = 0:0064 and bF2 = 0:0617 as indicated by the dotted

lines. Thin lines enclose a region in which 95% of the simulated data points

are expected to lie. Four distributions are shown, conditioned on the number

of allelic states in the whole sample. A. Expected distribution of pairwise Fi
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estimates conditioned on a number k of allelic states equal to 2. B. idem with

k = 3. C. idem with k = 4. D. idem with k = 5. Black arrows indicate outlier

loci. The loci coding for the Glutamate Pyruvate Transaminase (GPT) and

Carbonic Anhydrase-3 (Ca-3) are shown respectively in C and D.

Figure 5. bF1 and bF2 values estimated from 43 loci in Drosophila simulans for

all the pairwise comparisons involving the population from Congo (n = 45).

A. Expected distribution for the populations from France (n = 55) and

Congo. B. Tunisia (n = 52) vs Congo. C. Congo vs Cape Town, South

Africa (n = 32). D. Congo vs Seychelle Island (n = 26). All distributions

are conditioned on k = 4. Each locus is represented with a black dot. Dotted

lines give the expected values for bF1 and bF2. For each expected conditional

distribution, black arrows indicate the loci coding for the Larval Protein-10

(Pt-10) and Phosphoglucomutase (PGM).

Figure 6. bF1 and bF2 values estimated from 43 loci in Drosophila simulans for

all the pairwise comparisons involving the population from Seychelle Island

(n = 26). A. Expected distribution for the populations from France (n = 55)

and Seychelle Island. B. Tunisia (n = 52) vs Seychelle Island. C. Congo

(n = 45) vs Seychelle Island. D. Cape Town, South Africa (n = 32) vs

Seychelle Island. Distributions in A and C are conditioned on k = 4 and

distributions in B and D are conditioned on k = 3. Each locus is represented

with a black dot. Dotted lines give the expected values for bF1 and bF2. For

each expected conditional distribution, black arrows indicate the locus coding

for Phosphoglucomutase (PGM).
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