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Invertebrate traits for the biomonitoring of large
European rivers: an initial assessment of trait patterns

in least impacted river reaches

1. Multiple biological invertebrate traits (e.g. body size, body form, dispersal potential)

each described through multiple categories (e.g. small, intermediate or large body size)

could serve as indicators of particular types of human impacts on large rivers. The trait

composition of natural invertebrate communities is scarcely constrained by taxonomic

differences among them, i.e. individual trait categories could be used to discriminate

various types of human impacts across large geographic areas, which would require the

definition of trait patterns for conditions of relatively low human impact.

2. Using large databases to link 14 biological traits (described through 66 categories) of

invertebrate genera to their occurrence in running water reaches with known environ-

mental conditions, we examined the accuracy of various approaches to predict expected

trait variation across least impacted river reaches (LIRRs) of Europe in a stepwise

analytical procedure. This procedure included Monte Carlo simulations and ultimately the

assignment of test-LIRRs (reaches not used in previous analyses) to the previously defined

LIRR conditions.

3. Distance from the source was an integrative variable capturing some (but not all)

landscape features (e.g. altitude) or habitat variables (e.g. reach shear stress). Corre-

spondingly, the relative abundance of many trait categories changed along 13 European

running waters, although particularly the intensity of these changes differed among these

13 running waters.

4. ‘Downstream models’ (using only distance from the source as predictor) provided the least

accurate predictions of expected invertebrate trait patterns when compared with ‘landscape

models’ (using distance from the source in combination with altitude and/or latitude) or

‘habitat models’ (using reach shear stress, mean annual air temperature and/or pH of the

water). Landscape models provided more accurate predictions than habitat models, but the

improvement of predictions of expected invertebrate traits patterns obtained using

landscape models was negligible in comparison with a simpler ‘mean-model’ approach,

suggesting that defining LIRR conditions through simple descriptions of frequency

distributions would be sufficient for the future biomonitoring of large European rivers.

5. To define these LIRR conditions, we used the average of the relative abundance of each

trait category from 68 LIRRs (‡40 m wide) as expected LIRR values, and computed LIRR

frequency distributions that described the deviations of the 68 individual LIRRs from these
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expected values. Computing such deviations from the expected LIRR values for 57 test-

LIRRs (also ‡40 m wide), 57 trait categories correctly assigned >90% of the test-LIRRs to

LIRR conditions if the latter were defined through the entire range of the LIRR frequency

distributions. To the 90%-range enveloped by the LIRR frequency distributions, 42 trait

categories correctly assigned >80% and 12 categories >90% of the test-LIRRs.

6. Using a framework that required no regionalisation of a large geographic area, no

modelling of expected values using environmental information and no standardised

invertebrate sampling, the performance of our trait approach to assign test-LIRRs to LIRR

conditions encourages future assessments of deviations from these defined LIRR

conditions in large European river reaches with different types of human impacts.

Keywords: benthos, downstream trends, habitat relations, landscape relations, modelling

Introduction

Despite a long history of developing biomonitoring

methods (Statzner et al., 2001a), ecologists are being

asked to create new biomonitoring tools in response to

recent trends in environmental policies. First, envi-

ronmental policies are increasingly executed across

large geographic areas (Anonymous, 1999a; Ormerod,

Pienkowski & Watkinson, 1999). As existing biomo-

nitoring tools are typically developed for smaller

geographic areas, this trend requires the redefinition

or rescaling of tool(s) before it/they can be applied to

other regions (Rosenberg & Resh, 1993; Hill et al.,

2000; Wright, Sutcliffe & Furse, 2000). Second, the

scientific debate about biodiversity and related ecolo-

gical functions and management for conservation and

restoration of ecosystems (McGrady-Steed, Harris &

Morin, 1997; Van der Heijden et al., 1998; Ghilarov,

2000) induced reallocations of considerable financial

resources to enhance ecological functions (Anony-

mous, 1998, 1999a). However, most of the existing

biomonitoring tools assess the structural attributes

(i.e. taxonomic composition) of communities, whereas

tools that assess functional community attributes are

rare (Tscharntke, Gathmann & Steffan-Dewenter,

1998). Because relations between structural and

functional community attributes are equivocal (e.g.

Naeem, 2002), it is important to develop biomonitor-

ing tools that assess functional attributes. In addition,

functional community attributes can be compared

across large geographic areas even if the structural

community attributes differ among them (Statzner

et al., 2001a; Bremner, Rogers & Frid, 2003).

For benthic invertebrates of running waters, multi-

metric biomonitoring approaches tried to combine

functional (i.e. functional feeding groups) and struc-

tural community attributes, but current evidence

suggests that the metric ‘functional feeding groups’

of lotic invertebrates is generally a poor indicator of

human disturbances of running waters (e.g. Karr &

Chu, 1999). Therefore, Dolédec, Statzner & Bournaud

(1999) suggested the use of a number of biological

invertebrate traits (e.g. body size, body form, dis-

persal potential), each described through multiple

categories (e.g. small, intermediate or large body size),

as each of the individual traits (or each of the more

numerous individual trait categories) could serve in a

‘multi probe’ approach (i.e. having multiple metrics)

to discriminate various types of human impact on

running waters. Among these biological traits, some

describe obvious (e.g. food and feeding habits) or

more subtle (e.g. size and the correlated ratios of

production/biomass and of production/respiration;

see Statzner, 1987; Benke, 1993) ecological functions of

lotic invertebrates, whereas others describe functional

invertebrate attributes that should be predictably

affected by various human impact types (Table 1).

The idea to apply this multiple biological trait

approach in biomonitoring across large geographical

areas was derived from: (i) predictions from habitat

templet theory on multiple trait responses of lotic

organisms to natural environmental disturbance

(Townsend & Hildrew, 1994) and several confirma-

tions of these predictions (e.g. Statzner, Resh &

Dolédec, 1994; Townsend, Dolédec & Scarsbrook,

1997) and (ii) demonstrations of the possibility to

analyse lotic invertebrate trait patterns in a consistent

way across large spatial scales (Statzner et al., 1997,

2001a; Statzner, Dolédec & Hugueny, 2004).

To develop a biomonitoring tool for large European

rivers (having a width ‡40 m) derived from the

multiple trait approach, previous studies demonstra-
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ted that: (i) the biological trait composition of inver-

tebrate communities reliably discriminated reaches

with increased overall human impact from less

impacted reaches along a large river (French Rhône)

flowing through several ecoregions (Dolédec et al.,

1999), (ii) among alternatives to describe the trait

composition of invertebrate communities, identifica-

tions at the genus level, presence-absence data in the

taxa-weighting and the inclusion of alien taxa provi-

ded significant discriminations of various levels of

human impact across Europe (Gayraud et al., 2003)

and (iii) few sample replicates in space or time (across

seasons or subsequent years) reliably described the

trait composition of invertebrate communities (Bady

et al., 2005). Therefore, the next logical step in this

development would be the definition of trait patterns

at reference conditions of large European rivers, as

biomonitoring tools that relate community character-

istics to the environmental quality of freshwaters (and

other systems) usually use the ‘reference condition

approach’ (through comparisons of stressed sites with

a group of minimally disturbed sites, Rosenberg &

Resh, 1993; Wright et al., 2000). However, reflecting

European reality, the databases used in this study

included few large river reaches that were almost

natural, so our assessment of trait patterns focussed

on conditions in best available or least impacted river

reaches (LIRRs) of Europe.

Defining trait patterns for LIRRs required the

clarification of many questions. For example, a previ-

ous study focussing on smaller European streams

demonstrated that only a few trait categories varied

significantly with altitude, stream size and latitude

(Statzner et al., 2004), suggesting that many of the trait

categories in our LIRRs could perhaps be defined

using a mean European trait profile (here referred to

as the ‘mean-model’ approach) and simple frequency

distributions of deviations of category values from the

mean profile observed in our LIRRs. In contrast, trait

categories that vary significantly with environmental

conditions in our LIRRs may require models that

predict a substantial part of this variation so that LIRR

predictions (i.e. the expected relative abundance of

trait categories) could be compared with observations

from other least impacted or impacted large river

reaches (see Chessman, 1999 or Oberdorff et al., 2002,

for a similar approach predicting invertebrate com-

munity structure or a fish-based index indicating

‘river health’). Given that the relevance of the envi-

ronmental description for invertebrates depends on

the variables used as well as on the scale at which they

are described (see Richards et al., 1997; Hawkins et al.,

2000; Johnson, Goedkoop & Sandin, 2004) and

corresponding to the data availability, we opted for

three environmental regression model types to predict

the expected variation of a trait category using LIRR

data: (i) a ‘downstream model’ using distance from

the source as the independent variable, (ii) in addition

to distance from the source, variables such as altitude

and latitude were used to integrate landscape features

Table 1 Examples of predictions on how global human impact or a particular impact type should increase (�) or decrease (�) the

relative abundance of lotic invertebrate trait categories (see Table 4 in the result section for a detailed description of the traits and

categories used in this study)

Impact type Trait Category Rationale

Global B: Descendants per cycle Many � Increase of resilience capacity

C: Voltinism Short �
Flow increase A: Body size Small � Compensation for action of flow forces

I: Locomotion Attached �
K: Body form Streamlined �

Flow decrease A: Body size Large � Release from action of flow forces

I: Locomotion Swimmer �
K: Body form Spherical �

Siltation I: Locomotion Burrower � Greater penetrability of substrate and

greater food availabilityL: Feeding habits Deposit-feeder �
M: Food Fine detritus �

Heavy metals A: Body size Small � Greater body surface-volume ratio favours metal

uptake per unit volumeN: Respiration Gills �
Organic pollution N: Respiration Aerial � Compensation for O2-deficits in the water

Cargo-ship traffic F: Reproduction Single individual � Facilitation of foundation of new populations through

specimens dispersed by shipsG: Parental care Ovoviviparity �
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(in a ‘landscape model’) that could modify down-

stream trends in the relative abundance of trait

categories and (iii) habitat (i.e. local-scale) variables

characterising temperature, near-bed flow and water

chemistry of the LIRRs were used in a ‘habitat model’.

We had numerous options to test these three

alternative approaches, so we organised this paper

according to insights obtained from a stepwise ana-

lytical procedure. First, we assessed which landscape

features and habitat variables were sufficiently des-

cribed by distance from the source. Second, we

searched for common downstream trends in trait

category patterns across a large variety of European

running waters types. Third, using reaches of inter-

mediate (25 to <40 m wide) to large (‡40 m wide)

rivers, we compared the predictive power of down-

stream, landscape and habitat models to that of our

mean-model approach. Fourth, we repeated the

procedure described in step 3, focussing on the

predictive power of the environmental models and

using data representing LIRR conditions for large

(‡40 m wide) European rivers. Fifth, we defined the

LIRR trait structure. Sixth, addressing the ultimate

task of a biomonitoring tool (see Oberdorff et al.,

2002), we validated our model by assessing how many

reaches of a different data set were correctly assigned

to LIRR conditions using the criteria defined in step 5.

Methods

Following the suggestions of Gayraud et al. (2003)

(see also above) we used genus level identifications,

presence-absence data in the taxa weighting of the

traits (see below) and included alien taxa in the

analyses of this study.

Data availability

For this study, we combined previously described

databases on invertebrate abundances (see Gayraud

et al., 2003; Statzner et al., 2004) and added informa-

tion on the occurrence of invertebrate genera for

reaches such as the Argens (Giudicelli, Dia & Legier,

1980), Dordogne (Anonymous, 1980), Eau d’Olle (Gay,

1982) and the Upper Elbe [data of the Bundesanstalt

für Gewässerkunde (BfG), in charge of the national

survey of large German waterways]. As a result, our

expanded database on invertebrate occurrences had

2087 cases. Typically, a case represented a reach

sampled more than once per annual cycle, or annual

data for a reach sampled more than once in each of

several years. The occurrence of macroinvertebrate

genera available for these cases excluded Oligochaeta

and most Diptera families, because data were not

consistently available at the genus level (Gayraud

et al., 2003; Statzner et al., 2004). The taxonomic

community compositions of the 2087 cases had been

assessed using a variety of methods. Statzner et al.

(2004) showed that the use of different methods

resulted in approximately 20% of the variation in

the raw abundances and approximately 10% of the

variation in ln-transformed abundances of the inver-

tebrates in 384 reaches. In this study, however, this

problem should be less important as we used pres-

ence-absence data of genera for the taxa-weighting of

the traits.

When available, the environmental characteristics of

the cases (required for the downstream, landscape or

habitat models, or for the assessment of human

impacts) were described using the data sources of

the invertebrate occurrences. We expanded this infor-

mation using other sources providing data on geo-

graphical co-ordinates and simple physical reach

characteristics such as altitude, mean reach width

and mean reach slope [ARCVIEW, http://www.

esrifrance.fr; map data, http://www.ign.fr; map

material (1/50 000 or more detailed scales) of the

BfG]. According to Leopold, Wolman & Miller (1964),

reach depth (d, in metres) is typically related to reach

width (w, in metres) by d ¼ 0.041 w0.84. We used this

relation and available data on reach width to calculate

the hydraulic radius (R: cross-sectional area/wetted

perimeter, in metres) of the reaches, and combined

with reach slope (S), gravitational acceleration

(g, m s)2), and water density (q, kg m)3) calculated

the mean shear stress (s0, N m)2) per reach (see

Leopold et al., 1964) as s0¼ qgRS. We used average air

temperature in January and July to characterise reach

temperature (http://www.sage.wisc.edu/atlas, see

also New, Hulme & Jones, 1999) and included basic

water quality parameters such as pH, alkalinity,

nutrients, indicators of organic pollution and heavy

metals to describe reach chemistry (e.g. http://www.

eaufrance.com; Anonymous, 1999b; Löffler, Wolff &

Bergemann, 1999; Braun, 2001). Finally, we expanded

descriptions of reach modifications of discharge and

channel morphology (e.g. dams, canalisation; using a

database of the BfG and http://www.ign.fr) and of
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cargo-ship traffic (indicated by the transported freight

in tons year)1) through the reaches (http://www.

elwis.de; http://www.binnenschiff.de; Anonymous,

2002; and assuming ‘no traffic’ for reaches that were

obviously too shallow for cargo-ships to pass).

Because of inconsistent data availability, the lack of

environmental information was a major constraint for

the analyses of this study. For example, of the 2087

cases in our invertebrate occurrence database, 95.7%

had information on distance from the source, 72.0%

on distance from the source, altitude and latitude, and

59.7% on shear stress, air temperature and pH. In

addition, data were also lacking for variables indicat-

ive of the degree of human impact. Therefore, we

described organic pollution in classes using class

limits defined by the French water authorities (see

Table 2 for ‘very good’ and ‘good’ quality classes)

using the five-day biochemical oxygen demand

(BOD5). If BOD5 data were not available, we used

NHþ
4 concentrations to describe organic pollution,

and if information on BOD5 and NHþ
4 were not

available, we used NO�
3 concentrations (Table 2).

Similarly, we described heavy metal pollution using

classes (Table 2) and used the highest class observed

to describe the overall heavy metal pollution of our

cases. If data describing organic or heavy metal

pollution were not available for a case, but the author

of the invertebrate data rated the studied conditions

as unpolluted, we assigned the case to class 1 for both

organic and heavy metal pollution.

The database on the biological invertebrate traits,

described in detail by Gayraud et al. (2003), contains

affinity scores (ranging from ‘zero’ for no affinity of a

species to a given trait category to ‘three’ for a high

affinity to that trait category, see Chevenet, Dolédec &

Chessel, 1994) for 66 categories of 14 traits (see Table 4

in our result section) of invertebrate species occurring

in large European rivers. These affinity scores of

species were used to derive similar scores for genera

(the taxonomic level considered here) by averaging

the affinity scores of species belonging to a given

genus. The genus scores were then rescaled so that

their sum for a given trait equalled ‘one’. To obtain the

proportion of trait categories in a community requires

that the traits are linked to the taxonomic structure

(e.g. weighting the traits using taxa abundance or

biomass, see Bremner et al., 2003; Johnson et al., 2004).

Hence, we weighted the affinity scores of the genera

for the 66 trait categories by multiplying the affinity

scores of each genus with its presence–absence, and

added these values by trait category. The latter trait

category values were rescaled to sum to ‘one’ for each

trait and each case included in our invertebrate

occurrence database.

Because the biological trait profiles of our inverteb-

rate genera were aggregates of trait profiles of species

occurring in large rivers, it was uncertain if these

genera profiles could be used to describe downstream

trends in trait categories if smaller headwater streams

were included, as other species than those occurring

in large rivers could represent a given genus in the

headwaters. Using 18 categories of five traits (max-

imal size, voltinism, locomotion and attachment to

substrate, feeding habits, respiration technique) and

248 genera of our large river database that were

replicated in a trait database considering biological

information from all types of European freshwaters

(see details in Usseglio-Polatera et al., 2000), co-inertia

analysis (see Dolédec & Chessel, 1994) showed that

the 248 genera were not identically but similarly

described in both databases (RV-coefficient: 0.39;

simulated significance of co-structure: P < 0.001). This

finding suggested that the use of trait profiles of large

river taxa in smaller headwater streams should not

constrain assessments of downstream trends in trait

categories.

Data selection and analyses

The description of data availability in the previous

section indicated that careful data selection was a

prerequisite for our analyses. As a starting point, we

Table 2 Definition of ‘very good’ (class 1) and ‘good’ (class 2)

water quality used by the French water authorities for organic

and heavy metal pollution (Anonymous, 2000) and used by us to

select least impacted river reaches (LIRRs)

Variable Class 1* Class 2*

BOD5 (mg L)1) £3 >3–6

NHþ
4 (mg L)1) £0.1 >0.1–0.5

NO�
3 (mg L)1) £2 >2–10

Cd (lg L)1) £0.05 >0.05–0.44

Cu (lg L)1) £1.29 >1.29–12.90

Hg (lg L)1) £0.07 >0.07–0.70

Ni (lg L)1) £6.90 >6.90–20.00

Pb (lg L)1) £5.77 >5.77–14.33

Zn (lg L)1) £6.86 >6.86–68.67

*Class limits defined according to European and French direc-

tives, literature analyses values and expert opinion.
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decided that in each of the six steps of our analytical

procedure described in Table 3, only one of replicated

annual averages for a given case was used, as the

environmental conditions as well as the trait compo-

sition of the invertebrate communities should vary

little among years (see Bady et al., 2005).

Step 1: relating landscape features and habitat variables to

distance from the source. Our database contained 287

reaches for which all of the information given in

Table 3 was available. We analysed these data using

normalised Principal Component Analysis (PCA) to

assess correlations among the environmental varia-

bles.

Step 2: searching for downstream trends in trait categor-

ies. We selected 13 running waters that were spread

across Europe (Fig. 1), differed in altitude, slope and

Table 3 Selection and characteristics of the data used in our stepwise analyses. Note that selection criteria were often dictated by data

availability (see text)

Step of analyses Data used

Step 1: relating landscape features and habitat

variables to distance from the source

287 reaches; co-ordinates (decimal degrees): 10.0W*–20.9E, 41.0–53.4N;

distance from the source (km): 0.05–1041; altitude (m a.s.l.): 1–1300;

reach width (m): 0.3–800; reach slope ()): 0.00001–0.140;

shear stress (N m)2): 0.3–143.7; January air temperature (�C): )6–7;

July air temperature (�C): 13–23; mean annual air temperature

[0.5 · (January + July); �C]: 3.5–14.5; air temperature range

(July ) January; �C): 9–21; pH: 6.0–9.5

Step 2: searching for downstream trends in

trait categories

13 stream and river systems, see Fig. 1 and text for further details

Step 3: comparing the predictive power of

downstream, landscape and habitat models

to that of the mean-model approach

80 reaches; co-ordinates: 10.0W–20.9E, 42.4–52.3N; distance from

the source: 24–777; altitude: 1–790; reach width: 25–500;

shear stress: 0.7–45.2; mean annual air temperature: 3.5–14.5;

pH: 6.4–9.0; cargo-ship traffic: 0; organic pollution class: 1–2;

heavy metal pollution class: 1–2

Step 4: comparing the predictive power of landscape

models to that of the mean-model approach

using LIRRs

68 reaches (see Fig. 1 for those without the indication of a country) of

the Ain (France; 1 reach), Ardèche (12), Caragh (1), Dordogne (1),

Drome (France; 1), Dunajec (11), Esla (Spain; 2), Gave de Pau (9),

Hérault (3), Lahn (Germany; 8), Loire (France; 3), Meuse (9), Rhône (4),

and Wye (3); co-ordinates: 10.0W–20.9E, 42.4–52.3N; distance from

the source: 24–777; altitude: 10–790; reach width: 40–430;

cargo-ship traffic: 0; organic pollution class: 1–2 (51 reaches in class 1);

heavy metal pollution class: 1–2 (23 reaches in class 1);

genus richness: >10; proportion of genera with alien species: <0.1

Step 5: defining trait patterns for LIRR conditions Data used in step 4

Step 6: assessing test-LIRRs using the criteria

defined in step 5

57 reaches of the Ardèche (4), Gard (France; 1), Gave de Pau (1),

Hérault (3), Lahn (27), Loire (8), Meuse (9), and Rhône (4);

co-ordinates: 0.8W–8.1E, 43.4–50.4N; distance from the source: 60–777;

altitude: 10–230; reach width: 40–500; cargo-ship traffic: 0;

organic pollution class: 1–2 (13 reaches in class 1); heavy metal

pollution class: 1–2 (8 reaches in class 1)

*Western longitude transformed into negative values in the analyses.

Elbe

Wye

Upper 
Rh ne

Caragh

M
eu

se

D
un

aj
ec

G
ave 

de Pau

Ard
che

Dordogne

H
rault

Argens

Eau d'OlleDuero

Fig. 1 The 13 running waters selected to search for downstream

trends in 66 invertebrate trait categories. Note that we over-

emphasised the extension of shorter running waters on this map.
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length and represented a large range of running water

types (e.g. small versus large, alpine versus coastal,

temperate versus Mediterranean). The smaller

streams [e.g. Argens (using only unpolluted reaches),

Caragh, Eau d’Olle] represented almost natural con-

ditions, whereas intermediate running waters (e.g.

Ardèche, Dordogne, Dunajec, Wye) had some human

impact (particularly discharge modifications) but

were considered as natural and regional representa-

tives in our database. The larger rivers were even

more impacted by humans, but we addressed this

problem by selecting data from a period when this

impact was deemed minimal. For example, for the

Upper Rhône, we selected data from the 1970s, when

most of the river was not yet regulated (Perrin, 1978).

Likewise, for the Elbe, we selected data from the late

1990s, when restoration measures planned after

the German re-unification were implemented. Despite

the resulting environmental improvements (Anony-

mous, 2001), the middle and particularly the lower

section of the Elbe remained an important waterway

for cargo-ships, and the lower Meuse also had cargo-

ship traffic.

To describe the downstream trends of trait categ-

ories, we regressed the proportion of a given trait

category in a linear relation to distance from the

source (km), assessed the effects of individual running

waters through the categorical variable river and

included the interaction between them (i.e. km · ri-

ver). We repeated the analyses adding the square of

the distance from the source (km2) to the independent

variables, to check if such polynomials would increase

the variance explained by the models. To illustrate

such relations for some selected trait categories, we

modelled the trait-distance relation individually for

each running water (if km · river – P < 0.05) or by

analysis of covariance (if km · river – P ‡ 0.05).

Step 3: comparing the predictive power of downstream,

landscape and habitat models to that of the mean-model

approach. Steps 1 and 2 of our analyses suggested to

model trait responses in regressions using distance

from the source (downstream models); distance from

the source, altitude and latitude (landscape models);

and shear stress, mean annual air temperature and pH

(habitat models). Thus, for step 3, we needed a set of

reaches having all this environmental information

available and, at the same time, were least impacted

by human activities. Including reaches of intermediate

size (with a reach width between 25–40 m), 80 reaches

satisfied these criteria (Table 3).

We tested the raw data and various transformations

of these environmental variables to identify, for each

variable, the data format that provided the least

skewed and flattest (using kurtosis) distribution of the

variable, which was then consistently used in simu-

lations of their predictive power in regression models.

In addition to appropriate data transformations, we

assessed alternative modelling strategies to assure

that the best predicting alternative was used in

comparisons with the mean-model approach.

The downstream regression models were a priori

defined (through the relation between the trait categ-

ories and distance from the source), whereas the

general form of landscape and habitat regression

models had to be defined for each of the trait

categories. With three potential independent variables

and three potential first-order interactions among

them in each of the landscape and habitat models,

our goal was to build multiple regression models

using the fewest independent variables to predict as

much as possible of the variability of the trait

responses (a strategy recommended by Graham,

2003, as the uncontrolled inclusion of many inde-

pendent variables into multiple regression models

leads to poor predictions, e.g. Gozlan et al., 1999).

Therefore, for each trait category, we used all 80

reaches in an interactive stepwise procedure to select

the fewest and most significant (using partial

P-values) terms to define the general form for simpler

(ignoring interaction terms) and more complex regres-

sions (including interaction terms if these were signi-

ficant, i.e. their partial P-value was <0.05). If none of

the three independent variables was significant

(P ‡ 0.05), we defined the general form of the regres-

sion using the variable that tended to explain most of

the variability of a given trait category. Correspond-

ingly, we also examined downstream regression

models that tended to explain trait responses.

We used Monte Carlo simulations (Manly, 1991) to

test the predictive power of the various model types

by iterating: (i) random assignments of half of the 80

reaches each to a predictor and a test set, (ii)

estimations of the parameters for each previously

defined general regression form as well as calcula-

tions of the mean of each trait category proportion

(corresponding to our mean-model approach) using

the 40 predictor reaches and (iii) predictions for the

7



40 test reaches (using the regression parameters

estimated from the predictor set and inserting the

corresponding independent variables from the test

set, or using the mean of the trait category proportion

in the predictor reaches). Thus, these iterations pro-

vided predictions for the test reaches that could be

compared with the observed trait data. Preliminary

iterations using simpler or more complex regressions

and the mean-model approach indicated that the

mean absolute error (average of |observed ) predic-

ted|) and the variance of this absolute error (i.e. the

two criteria used to assess predictive power) stabilised

after 10–20 iterations. Therefore, we used 100 itera-

tions in the simulations, assigning predictor and test

reaches for all 66 trait categories through one random

draw per iteration.

We regressed mean absolute error and error vari-

ance of simpler versus more complex landscape and

habitat regression models (using all trait categories

having this information available) to compare the

predictive power of simpler and more complex

regressions, and focussed on the type having the

greatest predictive power in subsequent analyses. In

these, we used all trait categories to regress mean

absolute error and error variance obtained by down-

stream, landscape and habitat models on mean

absolute error and error variance obtained by the

mean-model approach (using linear or piecewise

linear regression, see Wilkinson, Blank & Gruber,

1996). The regression slopes provided an overall (for

all trait categories together) assessment of the pre-

dictive power of downstream, landscape and habitat

models in comparison to the mean-model approach.

In addition, outliers in these regressions indicated

trait categories that were better predicted by a given

approach.

Step 4: comparing the predictive power of landscape models to

that of the mean-model approach using LIRRs. Applying

selection criteria on human impact as in step 3,

excluding cases with a reach width <40 m and leaving

enough reaches in this selection for the test-LIRRs

required for step 6, we selected reaches as LIRRs that

were geographically spread across Europe and tried to

balance the weight (i.e. number of reaches) of individ-

ual rivers as much as possible. After these selections, 82

reaches remained as potential candidates for our LIRRs.

For these, we visually inspected the frequency distri-

bution of both genus richness and proportion of genera

with alien species (see Table 2 in Gayraud et al., 2003,

for a list of alien species). The lower tail of the

distribution on genus richness (at £10 genera) and the

upper tail of the distribution on the proportion (at ‡0.1)

of aliens were removed as we assumed that the data in

these tails were the least representative for LIRR

conditions. Consequently, our LIRRs included 68 rea-

ches (see Table 3, step 4). Among these, only 16 had no

cargo-ship traffic and organic/heavy metal pollution in

class 1, thus representing the most natural reaches.

Among these 16 reaches, however, there were still

reaches with discharge modifications. Using these 68

LIRRs, we repeated the analytical procedures described

in step 3 to compare the predictive power of landscape

models to that of the mean-model approach.

Step 5: defining trait patterns for LIRR conditions. Step 4 of

our analyses suggested to use the mean-model

approach for the definition of trait patterns at LIRR

conditions. For this purpose, we used the same data as

in step 4 (Table 3). For individual trait categories, we

defined the LIRR conditions as frequency distributions

of the difference between the observed values in the 68

reaches and an expected value (i.e. the average of all 68

reaches; thus, the distribution of observed ) expected).

Half of the sum of the absolute difference between

observed (pj) and expected (pexp) values for all categor-

ies (i) of a trait provided the dissimilarity per trait for

the j reaches (i.e. 0.5R|pij ) piexp|), and averaged over

all traits, for the overall trait profile (see Spellerberg,

1991, p. 132). These dissimilarities were also described

as frequency distributions. With 66 categories, 14 traits

and the mean of the 14 traits, the 81 LIRR frequency

distributions as expected did not follow a common (e.g.

normal) law. Therefore, we defined these distributions

using both their entire range or, after removal of

extreme values (see step 5 in the result section), the

range enveloping 90% of the reaches.

Step 6: assessing test-LIRRs using the criteria defined in

step 5. Assessing whether test-LIRRs were correctly

assigned to LIRR conditions using the criteria defined

in step 5, we used all reaches not used as LIRRs in

steps 4 and 5. In comparison with the LIRRs, these 57

test-LIRRs were not as widely dispersed across

Europe (Table 3, step 6) and included reaches having

£10 genera or a proportion of genera with alien

species ‡0.1. Constraining the test-LIRRS to >10

genera and <0.1 genera with alien species would

8



have resulted in only 40 test-LIRRs available. For the

57 test-LIRRs, we compared the observed trait

patterns with those expected from the LIRRs to obtain

the test-LIRR frequency distributions for individual

trait categories, traits and all traits together as

described in step 5. Comparing the frequency dis-

tributions of the test-LIRRs with those of the LIRRs

provided a simple measure for the correct assignment

of the test-LIRRs.

Software use. We used ADE-4 (Thioulouse et al., 1997

and ADE-4 release 2001) for the normalised PCA and

R (the free version of S-Plus) for the Monte Carlo

simulations. All other analyses were carried out with

SYSTAT 10.

Results

Step 1: relating landscape features and habitat variables

to distance from the source

The first two axes of the normalised PCA on the

environmental characteristics of 287 smaller, interme-

diate and larger running water reaches explained

63.8% of the data variability. Reach width correlated

positively with distance from the source (Fig. 2).

Altitude, reach slope and shear stress correlated

negatively with distance from the source (Fig. 2).

Therefore, distance from the source promised to be an

integrative variable capturing landscape features such

as altitude or habitat variables such as shear stress. In

contrast, variables such as latitude and air tempera-

ture (mean, January, July) would not be sufficiently

described by distance from the source (Fig. 2). There-

fore, in the next step, we assessed if distance from the

source was able to explain downstream trends in trait

categories along running waters spread across

Europe.

Step 2: searching for downstream trends in trait

categories

The downstream trends in the 66 trait categories along

the 13 running waters that differed considerably in

geographic location (see Fig. 1), altitude, slope, length

and other characteristics (see above) are given in

Table 4.

Comparing the coefficient of determination be-

tween linear (km) and polynomial (km, km2) relations

of the trait categories with distance from the source

suggested that polynomial relations explained a little

more of the variation of trait responses than linear

relations for few categories (B4: >3000 descendants

per cycle; G5: cemented aquatic eggs; H5: dispersal

potential >10 000 m; I4: temporarily attached to the

substrate; J2: low body flexibility; L2: shredder; L6;

passive filter-feeder; M6: feeding on plants >10 mm;

see Table 4). Therefore, we focussed on linear trait

relations here.

Although many of the trait categories tended to

change linearly with km, only 10 changed significantly

with km (G4: cemented terrestrial eggs; H2 and H3:

dispersal potential >10–100 or >100–1000 m; I2:

crawler; K1: streamlined body form; L3: scarper; M2

and M3: feeding on detritus >1–10 or >10 mm; M4:

feeding on plants £1 mm; N3: plastron respiration; see

Table 4). However, for nine of these 10 categories

running water effects (river) were clearly more signi-

ficant than km (all but K1: streamlined body form). In

addition, the interaction km · river was more signifi-

cant than km in half of the 10 categories (H2: dispersal

potential >10–100 m; I2: crawler; M2 and M3: feeding

on detritus >1–10 or >10 mm; N3: plastron respir-

ation; see Table 4). Within most of the traits, the

significance levels for km, river and/or km · river

differed considerably among the trait categories

(Table 4). Thus, although the categories of a given

trait were not independent of each other (they added

 Longitude

Latitude

 Altitude

Distance from the source

 Reach slope

 Reach width 

July
temp. 

Jan. 
temp. 

Mean
temp. Temp. range

 pH

Shear stress

F2 (28.0%)

F1 (35.8%)

Fig. 2 Correlations (illustrated by normalised Principal Com-

ponent Analysis) among environmental characteristics of 287

European running water reaches. F1 and F2 show the variance

explained by the first and second axis, respectively.
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Table 4 Common slope (positive or negative) of the relative abundance of trait categories in relation to distance from the source (km),

partial P-values for distance from the source (km), running water effects (assessed through the categorical variable river) and their

interaction (km · river) and coefficient of determination (R2
1) all for linear distance regressions (km untransformed). The coefficient of

determination (R2
2) for regressions including a squared distance term (km2) in addition to the previous independent variables is also

given. Number of reaches: 165 in 13 running waters (see Fig. 1).

Biological trait/category

Common

slope

km

(P-value)

river

(P-value)

km · river

(P-value) R2
1 R2

2

A: Maximal size (mm)

A1: £5 ) 0.19 <10)7 0.02 0.63 0.63

A2: >5–10 ) 0.66 <10)7 0.11 0.67 0.68

A3: >10–20 + 0.19 0.02 0.02 0.63 0.63

A4: >20–40 + 0.90 <10)4 0.01 0.70 0.71

A5: >40 + 0.68 0.01 0.12 0.52 0.52

B: No. of descendants per reproductive cycle

B1: £100 + 0.92 <10)5 <10)3 0.75 0.75

B2: >100–1000 + 0.43 <10)4 <10)3 0.69 0.69

B3: >1000–3000 ) 0.69 <10)3 0.02 0.64 0.64

B4: >3000 ) 0.19 0.16 0.12 0.47 0.53

C: Voltinism

C1: £Bivoltine ) 0.20 <10)4 <10)3 0.51 0.52

C2: Univoltine ) 0.34 <10)4 <10)2 0.74 0.74

C3: ‡Semivoltine + 0.13 <10)3 <10)2 0.78 0.78

D: No. of reproductive cycles per individual

D1: 1 ) 0.80 <10)6 <10)3 0.79 0.79

D2: 2 ) 0.54 <10)5 <10)2 0.63 0.64

D3: >2 + 0.38 <10)3 <10)2 0.80 0.81

E: Life duration of adults (days)

E1: £1 + 0.26 0.96 0.01 0.68 0.69

E2: >1–10 ) 0.34 0.16 0.02 0.64 0.65

E3: >10–30 ) 0.56 <10)3 <10)2 0.64 0.64

E4: >30–365 ) 0.98 0.19 0.25 0.49 0.50

E5: >365 + 0.38 <10)5 <10)3 0.72 0.72

F: Reproductive method

F1: Single individual ) 0.35 0.29 0.20 0.57 0.57

F2: Hermaphroditism + 0.12 <10)3 <10)3 0.73 0.74

F3: Male and female ) 0.19 <10)3 <10)3 0.73 0.74

G: Parental care

G1: Bud production ) 0.45 0.04 0.15 0.65 0.66

G2: Isolated eggs ) 0.37 <10)5 0.01 0.71 0.72

G3: Eggs in vegetation ) 0.20 0.11 0.81 0.35 0.36

G4: Cemented terrestrial eggs ) <10)3 <10)7 <10)3 0.51 0.51

G5: Cemented aquatic eggs + 0.45 <10)3 <10)3 0.50 0.58

G6: Ovoviviparity + 0.16 0.23 <10)2 0.81 0.83

H: Dispersal potential in the water (m)

H1: £10 + 0.63 0.06 0.08 0.61 0.63

H2: >10–100 + 0.02 <10)6 <10)3 0.69 0.69

H3: >100–1000 ) 0.02 <10)7 0.06 0.78 0.78

H4: >1000–10000 ) 0.69 <10)4 0.03 0.65 0.66

H5: >10000 (also by ships) + 0.85 <10)3 <10)7 0.79 0.89

I: Locomotion and attachment to substrate

I1: Swimmer + 0.68 <10)2 <10)2 0.45 0.48

I2: Crawler ) 0.04 <10)5 <10)3 0.78 0.78

I3: Burrower + 0.32 <10)2 <10)7 0.62 0.63

I4: Temporarily attached + 0.06 <10)5 <10)2 0.55 0.67

I5: Permanently attached + 0.76 0.02 <10)5 0.72 0.78

J: Body flexibility (�)
J1: None (£10) + 0.78 0.02 0.11 0.54 0.55

J2: Low (>10–45) ) 0.38 <10)8 <10)8 0.67 0.75
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to ‘one’ in each reach), they responded almost

independently along and across the rivers included

here, suggesting the use of individual models for each

of the categories of a given trait to predict expected

trait patterns for the definition of LIRR conditions.

For many of the trait categories that were not

significantly related to km, the partial P-values for

river and km · river were highly significant (Table 4).

Thus, many of the trait categories responded signifi-

cantly to km, but the slope of these responses varied

among the running waters.

Four trait categories for which the statistics in

Table 4 indicated different responses were selected to

illustrate the downstream trends along the 13 running

waters (Fig. 3). A voltinism of ‡semivoltine (C3)

tended to increase with km and was significantly

related to river and km · river. Correspondingly, the

increase in the relative abundance of ‡semivoltine

invertebrates with km had a range of slopes in 11 of the

running waters, whereas ‡semivoltine forms even

decreased along two (Upper Rhône and Argens;

Fig. 3). A streamlined body form (K1) decreased

significantly with km, river was significant, but km ·
river was less significant than the former. Correspond-

ingly, the decrease of invertebrates with a streamlined

body form with km had slopes that were more similar

than in the previous example in all but one (Upper

Rhône) running water (Fig. 3). The decrease with km of

shredders (L2) was not significant and a polynomial

relation (km, km2) that varied among the running

waters appeared to be the most appropriate way to

model this category. The resulting downstream pat-

terns varied considerably among the running waters

(Fig. 3), and the overall trend in the data was domin-

ated by one river (Elbe). Finally, scrapers (L3)

decreased significantly with km, river was significant

but km · river was marginally significant (P ¼ 0.05).

Correspondingly, we used analysis of covariance to

indicate one common slope for all 13 running waters

(Fig. 3). The distribution of data, however, suggested

 Table 4 (Continued)

Biological trait/category

Common

slope

km

(P-value)

river

(P-value)

km · river

(P-value) R2
1 R2

2

J3: High (>45) + 0.58 <10)7 <10)3 0.67 0.70

K: Body form

K1: Streamlined ) <10)2 <10)2 0.02 0.70 0.72

K2: Flattened ) 0.18 0.02 <10)3 0.70 0.70

K3: Cylindrical + 0.71 0.05 <10)2 0.71 0.71

K4: Spherical + 0.08 <10)2 <10)5 0.64 0.66

L: Feeding habits

L1: Engulfer + 0.82 <10)2 0.01 0.59 0.61

L2: Shredder ) 0.83 <10)3 <10)2 0.49 0.58

L3: Scraper ) <10)2 <10)7 0.05 0.76 0.76

L4: Deposit-feeder + 0.27 0.06 0.64 0.51 0.51

L5: Filter-feeder, active + 0.31 0.15 0.03 0.67 0.68

L6: Filter-feeder, passive + 0.05 <10)2 0.15 0.63 0.67

L7: Piercer + 0.70 <10)3 0.06 0.52 0.55

M: Food (type and size in mm)

M1: Detritus £1 + 0.31 <10)2 0.57 0.60 0.61

M2: Detritus >1–10 + 0.01 <10)6 <10)5 0.50 0.51

M3: Detritus >10 + 0.04 <10)8 <10)5 0.65 0.67

M4: Plants £1 ) <10)2 <10)10 <10)2 0.73 0.74

M5: Plants >1–10 + 0.46 0.01 0.03 0.31 0.31

M6: Plants >10 ) 0.70 <10)2 0.02 0.46 0.73

M7: Animals £1 + 0.84 0.02 0.15 0.59 0.59

M8: Animals >1–10 ) 0.49 0.01 0.71 0.45 0.47

M9: Animals > 10 + 0.29 <10)6 0.25 0.59 0.59

N: Respiration technique of aquatic stages

N1: Tegument + 0.13 0.01 0.34 0.38 0.38

N2: Gill ) 0.65 0.17 0.61 0.41 0.41

N3: Plastron ) 0.03 <10)10 <10)2 0.78 0.78

N4: Aerial ) 0.53 <10)2 <10)2 0.32 0.33
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that the common slope provided a poor description of

the downstream trends in several of the running

waters (e.g. Ardèche, Hérault and Wye; Fig. 3).

Ignoring the too impacted Lower Elbe and Lower

Meuse and reaches too close to the sources

(<100 km), Fig. 3 shows downstream trends interfer-

ing in the definition of trait patterns under LIRR

conditions for large European rivers. For this subset

of data, the overall downstream trends were less

pronounced than in smaller upstream reaches, i.e.

distance from the source alone could be not sufficient

to explain or predict trait patterns along large rivers

spread across Europe. Therefore, in the next step of

our analyses, we assessed the predictive power of

Fig. 3 Downstream trends in the relative abundance (proportion) of four selected trait categories in 165 reaches of 13 European

running waters (see Fig. 1). These four trait categories represented various types of trait responses indicated by the statistics in Table 4.

Regression lines were drawn beyond the range covered by the data to visualise downstream trends along shorter running waters.
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downstream, landscape, habitat and mean-model 

approaches.

Step 3: comparing the predictive power of downstream,

landscape and habitat models to that of the mean-model

approach

Defining the general form of regression models on

trait responses using landscape features and habitat

variables (see Table 3), alternative choices between

simpler (no interaction among independent variables)

and more complex (including significant first-order

interaction terms) concerned 46 cases (trait categories

in either landscape or habitat models). Using the

results of the Monte Carlo simulations for all 46 cases,

and regressing mean absolute error and the variance

of the absolute error of predictions from simpler

models (y) on predictions from more complex models

(x) resulted in

y ¼ 1:06ð�1SE: 0.01)x (R2 = 0.996)

for the mean absolute error, and

y ¼ 0:99ð�0:01Þx ðR2 ¼ 0:992Þ

for the variance of the absolute error. Thus, simpler

models predicted a mean absolute error that was

greater than the error predicted by the more complex

models, whereas both model types produced a similar

variance of the error. Consequently, we ignored

simpler models if more complex ones were available

in subsequent parts of this section.

Using all 80 reaches (see Table 3), distance from the

source alone significantly (P < 0.05) explained varia-

bility (at the most approximately 25%) in the relative

abundance of approximately 40% of the 66 trait

categories (Fig. 4). In comparison, landscape and

habitat models were significant for approximately

85% of the trait categories and explained up to

approximately 50% of the variability in the relative

abundance of some trait categories (Fig. 4). In the

significant landscape models, 42 trait categories were

significantly related to altitude, 35 to distance from

the source and 18 to latitude. Thus, in the landscape

models, particularly the combination of altitude with

distance from the source increased the explained

variability in trait responses in comparison to the

downstream models. In the significant habitat models,

40 trait categories were significantly related to shear

stress, 36 to mean annual air temperature and 20 to

pH. Thus, in the habitat models, variability of trait

responses was frequently explained through the

combination of shear stress and temperature.

Comparison of the other three model types with the

predictions from the mean-model approach indicated

overall (i.e. for all 66 trait categories) that predictions

from downstream models scarcely decreased the

mean absolute error but scarcely increased the error

variance (see slopes indicated in Fig. 5). In contrast,

landscape and habitat models improved the predic-

tions on the relative abundance of trait categories in

comparison with the mean-model approach (all slopes

in Fig. 5 significantly <1). For trait categories with a

mean absolute error approximately <0.06 in predic-

tions from the mean-model approach, predictions

from landscape and habitat models similarly reduced

the error (slopes: 0.94 versus 0.92). For errors

approximately >0.06 in predictions from the mean-

model approach, however, landscape models pro-

vided a greater error reduction than habitat models

(0.71 versus 0.92). Habitat models (0.79) reduced the

error variance more than landscape models (0.94) for

categories with x-values approximately <0.002 in

Fig. 5. Between approximately 0.002 and 0.006 along
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Fig. 4 Cumulative frequency distribution of the coefficient of

determination (R2) for downstream, landscape and habitat

models on the relative abundance of 66 trait categories using all

80 reaches (see Table 3) and the more complex general model

form (including first-order interaction terms among independ-

ent variables if these were significant at P < 0.05) of landscape

and habitat models.
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the x-axes in Fig. 5, landscape models were better

(0.59) than habitat models (0.79). For x-values approxi-

mately >0.006, predictions from habitat models pro-

duced a gentler slope (0.16) than those from landscape

models (0.59), but the data scatter (and thus the SE of

the slope) was greater (Fig. 5). Thus, the overall

reduction of the error variance was similar for both

landscape and habitat models, whereas previous

considerations of the absolute error suggested that

the predictive power of the landscape models was

greater than that of the habitat models. Accordingly,

we assessed the performance of landscape models in

the next step of our analyses.

Step 4: comparing the predictive power of landscape

models to that of the mean-model approach using LIRRs

Defining the general form of models on trait responses

using landscape features and LIRRs, alternative

choices between simpler (no interaction among inde-

pendent variables) and more complex (including

significant first-order interaction terms) concerned 14

trait categories. Using the results of the Monte Carlo

simulations for all 14 categories and regressing mean

absolute error and the variance of the absolute error of

predictions from simpler models (y) on predictions

from more complex models (x) resulted in

y ¼ 1:01ð�1SE: 0.01)x (R2 = 0.998)

for the mean absolute error, and

y ¼ 0:91ð�0:03Þx ðR2 ¼ 0:983Þ

for the variance of the absolute error. Thus, predic-

tions from both model types had a similar mean

absolute error, whereas predictions from simpler

models had a variance of the absolute error that was

smaller than that obtained by predictions from more

complex models. Correspondingly, we ignored more
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Fig. 5 Comparison of the predictions on the relative abundance of 66 trait categories (mean absolute error of the predictions and the

variance of this error obtained by Monte Carlo simulations using models and the 80 reaches considered in Fig. 4) from downstream,

landscape and habitat models with those from the mean-model approach. In these comparisons, we used simple or, if significant

(P < 0.05), piecewise linear regression and indicated regression slopes ±1 SE and the discontinuity in piecewise regressions by arrows

(there, the slope changed from b1 to b2).
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complex models if these were available and focussed

on simpler ones in subsequent parts of this section.

Using all 68 LIRRs, the simpler landscape models

were significant for approximately 85% of the 66 trait

categories, but explained less variability (all R2 < 0.38,

approximately 85% of the categories with R2 < 0.27)

than the landscape models in the previous step (see

Fig. 4). This reduction in the descriptive power of the

landscape models in comparison with the previous

step had two causes. First, the simpler landscape

models (no interaction terms included) used in this

step would a priori explain less variability in the trait

responses than the more complex models (including

significant interaction terms) used in the previous

step. Second, in contrast to the previous step, we

eliminated reaches with a width <40 m from the

analyses in this step, i.e. the more distinct trait

responses occurring closer to the source (see step 2)

were excluded here. In the significant (P < 0.05)

simpler landscape models, 30 trait categories were

significantly related to altitude, 37 to distance from

the source and 22 to latitude. Thus, in contrast to the

previous step, distance from the source was more

frequently significant than altitude, despite the fact

that the longitudinal trait responses occurring closer

to the source were excluded in this step.

Overall (i.e. for all 66 trait categories), simpler

landscape models using LIRRs improved the predic-

tions on the relative abundance of trait categories in

comparison with the mean-model approach (all slopes

in Fig. 6 significantly <1). This improvement con-

cerned primarily the error variance, which was

particularly reduced for three trait categories (B1:

£100 descendants per reproductive cycle, D1: one

reproductive cycle per individual and E2: life dura-

tion of adults >1–10 days; see Fig. 6). We checked the

raw error of the predictions on these three trait

categories obtained by the Monte Carlo simulations

by comparing the landscape models and the mean-

model approach. A simple illustration of these errors

indicated that the mean-model approach produced

little more error than the landscape models (see the

tails of the distributions in Fig. 7). With such marginal

differences in the three trait categories having the

greatest reduction in error variance if predicted by

landscape models, it would be an inappropriate

expense to use such models to predict expected LIRR

trait patterns in a biomonitoring routine. Therefore,

we defined the expected LIRR conditions using

simpler descriptions of frequency distributions of

traits and trait categories in the next step.

Step 5: defining trait patterns for LIRR conditions

Using the average of the relative abundance of the

trait categories from the 68 LIRRs as expected values

(see Appendix), frequency distributions of the devi-

ations from these expected values of the individual
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Fig. 6 Comparison of the predictions on the relative abundance of 66 trait categories (mean absolute error of the predictions and the

variance of this error obtained by Monte Carlo simulations using 68 LIRRs described in Table 3) from simpler landscape models

(ignoring first-order interaction terms among independent variables if these were significant at P < 0.05) with those from the mean-

model approach. The arrow indicates the discontinuity in the piecewise regression (see Fig. 5 for further details). The landscape

models provided the most important reduction in the error variance for three trait categories further illustrated in Fig. 7 (B1: £100

descendants per reproductive cycle; D1: one reproductive cycle per individual; and E2: life duration of adults >1–10 days).
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LIRRs provided the simplest definition of our LIRR

conditions. Thus, environmental health of other large

European river reaches could be assessed by simple

comparisons of observations from these other reaches

with the distributions obtained for our LIRRs.

The proportion of dissimilarity of the overall trait

profiles (across all 66 categories) of the 68 LIRRs from

the expected trait profile ranged between approxi-

mately 0.05 and 0.2 (Fig. 8), i.e. across all categories,

individual LIRRs differed at the most by approxi-

mately 20% from the mean trait profile of all 68 LIRRs.

The upper end of the distribution (dissimilarity near

0.2) had only a short tail, and the 16 most natural

reaches were spread across the distribution. These

patterns suggested that the upper limit of the distribu-

tion could serve to discriminate LIRR conditions from

human-impacted conditions for the overall trait profile

(i.e. impact would be indicated through one side of the

distribution). For several individual traits, however,

the upper end of the distribution had a relatively long

tail and included none of the most natural reaches (e.g.

F: reproductive method, I: locomotion and attachment

to substrate, K: body form, L: feeding habits, M: food

and N: respiration technique of aquatic stages; see

Fig. 8). For all these traits, cutting off the upper 10% of

the distribution would eliminate a considerable part of

these longer tails (see Fig. 8). For consistency, we cut

off the upper 10% of all trait distributions, which

provided a more conservative alternative to the use of

the upper limit of the entire distributions in the

assessment of test-LIRR data in step 6.

Although a given type of human impact should

shift individual trait categories in a predictable direc-

tion (see Table 1), multiple types of human impact

could shift individual trait categories in either direc-

tion. Therefore, we summarised the frequency distri-

butions of raw observed – expected values for the 68

LIRRs and each trait category by indicating the lower

and upper limit of each distribution (Appendix). To

obtain a more conservative description of these

distributions, we also indicated the lower and upper

limit that enveloped 90% of the LIRRs in these

distributions (see Appendix for cut off rules). Through

comparison with these LIRR frequency distributions,

the last step of our analyses had to assess how test-

LIRRs would be assigned to LIRR conditions.

Step 6: assessing test-LIRRs using the criteria defined

in step 5

Using the overall trait profile (i.e. all traits together),

53 of the 57 test-LIRRs were correctly assigned to

LIRR conditions if the latter were defined through the

entire range of the LIRR frequency distribution

obtained in step 5, and 49 of the test-LIRRs fell within

the 90%-range of the LIRR distribution. Among the

eight incorrectly assigned test-LIRRs, six had a genus

richness £10 and/or a proportion of genera with alien

species ‡0.1, i.e. most of the incorrectly assigned

reaches did not match the more conservative criteria

used to select the LIRR data (see Table 3). Thus,

applying these more conservative criteria to a

Fig. 7 Cumulative frequency distribution of the raw error of predictions from landscape models and the mean-model approach on the

three trait categories for which landscape models provided the most important reduction in the error variance (see Fig. 6).
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test-LIRR in subsequent, independent validations of

impact assessment rules should assign a greater

proportion of test-LIRRs to LIRR conditions.

Using each trait individually, a proportion of 0.87–1

of the 57 test-LIRRs were correctly assigned to LIRR

conditions if the latter were defined through the entire

range of the LIRR frequency distributions obtained in

step 5 (Fig. 9). Not surprisingly, the best assignment

was achieved for traits having a relatively long upper

tail in the LIRR distribution (compare Figs 8 & 9),

such as body form (K), reproductive method (F),

respiration technique of aquatic stages (N), locomo-

tion and substrate attachment (I), life duration of

adults (E) and number of descendants per reproduc-

tive cycle (B). These traits, however, did not system-

atically change their ranks when we used the

90%-range of the values observed for the LIRRs. For

example, most of the test-LIRRs were consistently

assigned correctly with trait B (number of descend-

ants per reproductive cycle), whereas the proportion

of correctly assigned test-LIRRs with trait N (respir-

ation technique of aquatic stages) dropped to 0.7.

These patterns suggested that the upper tail in the

distribution of the test-LIRRs had either less (B) or

more (N) reaches than that of the LIRRs. For the 90%-

range enveloped by the LIRR distributions, eight traits

correctly assigned a proportion of >0.8, and one trait

of >0.9 of the test-LIRRs (Fig. 9).

Using all trait categories individually, a proportion

>0.9 of the test-LIRRs was correctly assigned by 57 of

the 66 categories to the entire range of the LIRR

frequency distributions (Fig. 9). For the 90%-range

enveloped by the LIRR distributions, 42 trait categor-

ies correctly assigned a proportion of >0.8, and 12

categories of >0.9 of the test-LIRRs (Fig. 9). In this

context, trait categories that failed to assign a sub-

stantial proportion of the test-LIRRs to the LIRR

conditions presumably will be less useful in future

Fig. 8 Cumulative frequency distribution of the dissimilarity of all 68 LIRRs in comparison with expected values of the trait categ-

ories (see Appendix) for the overall trait profile (all traits) and each individual trait (see Table 4 for trait labels). The positions of the 16

most natural LIRRs (no cargo-ship traffic; organic and heavy metal pollution in class 1: very good quality) are shown with solid

symbols.
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biomonitoring than categories that provided a sub-

stantial proportion of correct assignments (identified

by the labels added to Fig. 9). Corresponding to the

patterns observed in step 2, individual categories

within a given trait provided almost independent

results in this step, as some categories of a given trait

provided fewer and others more correct assignments

of test-LIRRs.

Discussion

Downstream patterns

Assessing downstream trends in environmental var-

iables, reach width was positively related to distance

from the source, whereas altitude, reach slope and

shear stress were negatively related to distance from

the source (Fig. 2). These correlations reflected obvi-

ous downstream trends occurring in running waters,

with the exception of the shear stress correlation.

Typically, the flow forces acting on the bed of running

waters increase below the spring source in headwater

reaches before they start to drop along downstream

reaches (Statzner, Gore & Resh, 1988; Brummer &

Montgomery, 2003). With the dominance of larger

river reaches in our data, however, these physical

changes in headwaters were underrepresented.

Similarly to these environmental variables, many of

the trait categories responded significantly to distance

from the source (km), but the slope of these responses

Fig. 9 Cumulative frequency distribution of the proportion of correctly assigned test-LIRRs (n ¼ 57) using the two alternative criteria

defining the LIRR conditions in step 5 for the overall trait profile (all traits), each individual trait and each individual trait category (see

Table 4 for trait and trait category labels).
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varied among the running waters. In contrast,

Lamouroux, Dolédec & Gayraud (2004) reported often

similar slopes for two French river basins (Loire and

Rhône) in relations between the proportion of

biological invertebrate trait categories and physical

reach characteristics (particularly the reach Froude

number). These latter results were obtained studying

smaller headwater reaches (distance from the source

ranging between 4 and 30 km). In comparison, our

data covered a larger range of downstream gradients,

geographic extension and running water types, which

explains why we found more interactions between a

variable (km) describing physical reach conditions

(e.g. shear stress, see Fig. 2) and river systems (the

categorical variable river) than Lamouroux et al.

(2004).

Despite the differences among individual running

waters illustrated by Fig. 3 (e.g. between Upper

Rhône and Meuse), the interaction km · river was

often significant in our data. Thus, the common slope

along all running waters (although often not signifi-

cant itself) indicated dominant overall downstream

trends for many of the trait categories (see Table 4).

Among these downstream trends in the trait categor-

ies, several could be reasonably associated with

longitudinally decreasing shear stress (see Fig. 2),

and thus decreasing coarseness of the bottom sub-

strate (or increasing deposition of finer material).

Corresponding to our predictions on trait category

responses to physical habitat changes (flow in- or

decrease, siltation, see Table 1), streamlined body

forms and small-sized invertebrates increased with

decreasing km (i.e. increasing shear stress) (Table 4).

These traits constitute alternatives to reduce drag at

elevated near-bed flow forces (Statzner, 1988; Vogel,

1994). Spherical, large-sized, swimming forms, bur-

rowers in fine sediments and perhaps (P > 0.05 for

both, km and km · river) deposit-feeders of fine det-

ritus increased with km, also correspondingly to our

predictions. In contrast to our predictions (Table 1),

however, invertebrates that were temporarily or

permanently attached to the bottom substrate in-

creased with km.

Discharge variability in streams is also related to

km. Rapidity and height of flood responses to rainfall

in running water reaches decrease with increasing

catchment size and decreasing reach slope (Gordon,

McMahon & Finlayson, 1992). Thus, with decreasing

km, the harshness of flood disturbances increases.

Corresponding to predictions by Townsend & Hil-

drew (1994) on traits conferring resilience or resis-

tance to organisms along an increasing disturbance

gradient, lower km-values were associated with

smaller maximal size, more descendants per repro-

ductive cycle, shorter life cycles, fewer reproductive

cycles per individual, less parental care (such as

ovoviviparity) and more streamlined or flattened

body forms (Table 4). In contrast to predictions of

Townsend & Hildrew (1994), however, higher mobi-

lity or body flexibility were not associated with lower

km-values (Table 4).

Finally, trends in our data corresponded to predic-

tions on downstream trends by Vannote et al. (1980),

e.g. that shredders decreased (although, in our case,

feeders of coarse detritus increased), and forms

feeding on finer detritus increased (Table 4). In

contrast to predictions of Vannote et al. (1980), how-

ever, scrapers of small plants did not change in a

hump-shaped pattern, but monotonously decreased

with km (note the similarity of R2-values of the linear

and polynomial relation for L3 and M4 in Table 4).

Such equivocal support of predictions on trait

responses relates to trade-offs that have been repeat-

edly acknowledged by ecologists since the 1920s:

similar habitats may have taxa with different combi-

nations of biological traits, as there are different

solutions to living under given environmental con-

straints (Statzner, Hildrew & Resh, 2001b). As a

consequence, various studies examining the patterns

of multiple traits of lotic invertebrates in the context of

environmental constraints reported similar responses

in some and different responses in other traits (e.g.

Usseglio-Polatera, 1994; Richards et al., 1997; Town-

send et al., 1997; Snook & Milner, 2002; Lamouroux

et al., 2004; Mérigoux & Dolédec, 2004; Statzner et al.,

2004). This variation would interfere in the definition

of trait patterns at reference conditions beyond that

for European LIRRs.

Ignoring the patterns observed in Lower Elbe and

Lower Meuse, which were more impacted by human

activities than the other reaches included here, Fig. 3

provided the first illustration of relatively natural

downstream trends in trait categories in very different

European running water types. Our findings sugges-

ted that the relative abundance of trait categories

changes gradually along running waters, in contrast

to the distinct changes in the taxonomic composition

of lotic invertebrate communities that are associated
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with sudden downstream changes in physical condi-

tions (e.g. from a steeply sloped mountain channel to

a gently sloped alluvial channel, see Statzner &

Higler, 1986; Grubaugh, Wallace & Houston, 1996).

Downstream, landscape, and habitat models versus the

mean-model approach

Downstream, landscape features and finally habitat

attributes should have increasing influence on lotic

invertebrates (see Richards et al., 1997; Hawkins et al.,

2000; Johnson et al., 2004). Thus, we expected that the

accuracy of these three model types to predict vari-

ation in the trait categories would increase in the same

order (i.e. downstream, landscape and habitat mod-

els). Alternatively, we expected that in comparison

with the relatively low variation of trait patterns

observed in smaller European streams (Statzner et al.,

2001a, 2004), the relative abundance of trait categories

would vary even less among the LIRRs of large

European rivers. This latter expectation addressed the

fact that changes in taxonomic composition are more

pronounced in headwaters than in downstream sec-

tions (Statzner & Higler, 1986), and that the mechan-

isms controlling these patterns differ more among

headwaters than larger rivers (Gomi, Sidle & Richard-

son, 2002). Correspondingly, the data plotted in Fig. 3

suggested that changes in the relative abundance of

trait categories could be greater along headwater

streams than along large rivers. Thus, focussing on

large rivers would result in less variation in trait

patterns, so that simple descriptions of the deviations

of traits from a mean trait profile (i.e. the mean-model

approach) would be sufficient to define LIRR condi-

tions for large European rivers.

Although distance from the source was an integra-

tive variable capturing some (but not all) landscape

features and habitat variables (Fig. 2), and although

the relative abundance of many trait categories

changed along running waters (Table 4), particularly

the intensity (and sometimes the direction of the

slope) of these changes differed among the latter.

Therefore, corresponding to our expectation, down-

stream models provided the worst predictions of

expected invertebrate trait patterns when compared

with landscape or habitat models. In contrast to our

expectation, however, landscape models provided

better predictions of expected invertebrate traits pat-

terns than habitat models. This latter result was

perhaps caused by differences in the data quality, as

information on the variables used in the landscape

models was easier to obtain and more reliable than

information on the variables used in the habitat

models. Typically, invertebrate responses are deter-

mined predominantly by conditions prevailing at the

local scale in natural running waters (e.g. Johnson

et al., 2004).

In a purely statistical context, landscape models

significantly reduced the mean error and the variance

of this error in predictions of expected trait patterns

compared with the alternative mean-model approach.

However, the amount of the reduction of the mean

error and the error variance achieved by these

landscape models was negligible. One could speculate

that inaccurate descriptions of the landscape variables

could have reduced the predictive power of the

landscape models. However, reliable information on

these variables (distance from the source, altitude,

latitude) was easily extracted from our data sources.

Thus, the trait patterns varied so little across our

LIRRs that we could use simple descriptions of

frequency distributions to define LIRR conditions.

This relatively high trait stability observed across

large European LIRRs confirmed results from smaller

natural or almost natural European streams (Statzner

et al., 2001a, 2004). Currently, there are no convincing

explanations for this trait stability across Europe;

perhaps, the latter reflects the uniform action of

stream-system specific, local physical factors that

affect many traits in a similar way across large

geographic areas (Statzner et al., 2004). Whatever the

cause of this trait stability, it will obviously facilitate

the definition of reference conditions for European

running waters.

Assignment of test-LIRRs to LIRR conditions

The correct assignment of cases to predefined condi-

tions (e.g. reference versus impacted) is the ultimate

criterion to assess the performance of a biomonitoring

approach. Focussing our analyses on least impacted

conditions, we evaluated this performance by assign-

ing test-LIRRs to independently defined LIRR condi-

tions. Depending on the definition of the latter, many

traits and their categories correctly assigned >90% of

the test-LIRRs to the entire range of the LIRR

frequency distributions, or >80% of them to the 90%

range enveloped by the LIRR frequency distributions.
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For running waters, reference conditions, and ben-

thic macroinvertebrates, such performances in the

correct assignment of cases to predefined conditions

have been assessed for a variety of biomonitoring

approaches. Multiple studies classified reference rea-

ches with similar taxonomic characteristics of the

invertebrate communities into groups and used envi-

ronmental predictors (local, landscape and/or regio-

nal) to develop predictive models for such reference

groupings. The correctly predicted assignments of

reference reaches to such groupings (often based on

internal validation tests) depended on factors such as

the number of reference reaches used to build the

predictive model, the number of seasons considered

or the environmental predictors included in the model

(Reynoldson & Wright, 2000; Reece et al., 2001).

Although these factors caused some variation, and

natural variation within such groupings interferes

with such assignments, predictions from such models

often achieved approximately 70% of correct reach

assignments to reference groupings in Europe (Moss

et al., 1999; Alba-Tercedor & Pujante, 2000; Wright,

2000; Heino et al., 2002), North America (Reynoldson,

Rosenberg & Resh, 2001), and Australia/New Zeal-

and (Davies, Norris & Thoms, 2000; Simpson &

Norris, 2000; Joy & Death, 2003). Using selected

biological indices developed to indicate acidification

or eutrophication in Swedish streams, Sandin &

Johnson (2000) were able to assign 75–95% of the

reference reaches correctly to a reference (defined by

water chemistry).

In comparison with the performance of these

biomonitoring approaches, our trait approach as-

signed thus as many or even more of our test-LIRRs

to LIRR conditions, and did so within a framework

that required no regionalisation of a large geographic

area, no modelling of expected values using environ-

mental information and no standardised invertebrate

sampling. Two of the possible explanations for this

performance have been already mentioned before:

first, the environmental conditions varied perhaps too

little among our LIRRs to have major effects on trait

patterns, and second, uniform action of stream-system

specific, local physical factors perhaps affect many

traits in a similar way across large geographic areas.

In addition, reducing the taxonomic diversity of

invertebrates (in our LIRRs: approximately 250 gen-

era) to 66 trait categories, each of these typically

shared by more than one genus, reduced the overall

variance in our large-scale data set (Charvet et al.,

2000), which should have facilitated the assignment of

cases to predefined conditions in comparison with

taxonomy-based biomonitoring approaches.

Outlook

For large European rivers, it has been shown that

invertebrate traits: (i) discriminated overall human

impact on river reaches (Dolédec et al., 1999), (ii)

significantly discriminated various levels of human

impacts using relatively simple taxonomic informa-

tion (presence–absence of genera) (Gayraud et al.,

2003), (iii) can be accurately described by few sample

replicates in space or time (Bady et al., 2005) and (iv)

assigned a substantial proportion of test-LIRRs to

LIRR conditions (this study). The ultimate question,

however, is how much the stable trait patterns

observed under reference conditions will change

under human impact. Consequently, the next step in

the development of a biomonitoring tool for large

European rivers using invertebrate traits has to assess

deviations of large river reaches with different types

of human impacts from the here defined LIRR

conditions. If such deviations exist and adequately

discriminate a given type of human impact, it would

require a collective effort of European ecologists

working on large rivers to develop this invertebrate

trait approach towards an operational biomonitoring

tool. From experience we gained assembling informa-

tion in our databases, this task could be achieved by

collectively sharing existing European data on the: (i)

biological traits of invertebrates, (ii) taxonomic struc-

ture of invertebrate communities and (iii) environ-

mental conditions of the large river reaches inhabited

by these communities.
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Usseglio-Polatera P. & Bacchi M. (2003) Invertebrate

traits for the biomonitoring of large European rivers:

an initial assessment of alternative metrics. Freshwater

Biology, 48, 2045–2064.

Ghilarov A.M. (2000) Ecosystem functioning and intrin-

sic value of biodiversity. Oikos, 90, 408–412.

Giudicelli J., Dia A. & Legier P. (1980) Etude hydro-

biologique d’une rivière de région méditerranéenne,
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ten der Elbe – Zahlentafel 1997. Arbeitsgemeinschaft für

die Reinhaltung der Elbe, Hamburg.

Manly B.J.F. (1991) Randomization and Monte Carlo Meth-

ods in Biology. Chapman & Hall, London.

McGrady-Steed J., Harris P.M. & Morin P.J. (1997)

Biodiversity regulates ecosystem predictability. Nature,

390, 162–165.
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Ecology of the Upper Rhône River: a test of habitat

templet theories. Freshwater Biology (Special issue),

31, 253–554.
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Appendix Summary statistics on trait categories defining LIRR conditions based on 68 large European river reaches (see Table 3,

step 4 for reach characteristics). For each (1) trait category (see Table 4 for category labels), we indicated (2) the expected category

value (average proportion in all 68 LIRRs) and (3) the SE of this mean expected value; the (4) lower and (5) upper limit of the entire

frequency distribution of observed minus expected category values for the 68 LIRRs; (6) the number of the 16 most natural LIRRs (no

cargo-ship traffic, organic and heavy metal pollution in class 1) in the lower half (<median) of the frequency distribution of observed

minus expected category values of the 68 LIRRs; and the (7) lower and (8) upper limit of the frequency distribution of observed minus

expected category values that enveloped 90% of the values of the 68 LIRRs. Note that the values enveloping 90% of the reaches were

obtained by cutting off the tails of the entire distributions in relation to the distribution of the 16 most natural LIRRs, i.e. for none or

one of the most natural LIRRs <median, seven reaches were cut off at the lower tail, for two or three of them <median, six were cut off

at the lower and one at the upper tail, and so on; for eight most natural LIRRs <median, we randomly cut off three and four reaches

from both tails of the entire distribution.

(1) (2) (3) (4) (5) (6) (7) (8)

A1 0.201 0.008 )0.177 0.119 5 )0.087 0.095

A2 0.341 0.008 )0.134 0.190 2 )0.087 0.150

A3 0.331 0.006 )0.100 0.123 14 )0.086 0.078

A4 0.097 0.005 )0.089 0.078 8 )0.059 0.062

A5 0.031 0.004 )0.031 0.141 12 )0.031 0.050

B1 0.401 0.017 )0.353 0.305 11 )0.306 0.170

B2 0.402 0.011 )0.186 0.226 8 )0.113 0.177

B3 0.166 0.012 )0.157 0.237 5 )0.138 0.217

B4 0.031 0.003 )0.031 0.112 8 )0.031 0.050

C1 0.070 0.005 )0.065 0.148 9 )0.052 0.073

C2 0.686 0.008 )0.168 0.140 8 )0.111 0.104

C3 0.245 0.007 )0.113 0.099 10 )0.092 0.084

D1 0.700 0.015 )0.290 0.285 5 )0.165 0.244

D2 0.201 0.010 )0.190 0.204 10 )0.145 0.100

D3 0.099 0.008 )0.099 0.184 12 )0.099 0.092

E1 0.065 0.005 )0.065 0.083 4 )0.058 0.066

E2 0.320 0.014 )0.230 0.298 5 )0.133 0.216

E3 0.136 0.005 )0.073 0.111 3 )0.058 0.111

E4 0.313 0.011 )0.226 0.174 10 )0.182 0.114

E5 0.166 0.011 )0.149 0.202 13 )0.148 0.138

F1 0.044 0.002 )0.031 0.082 7 )0.019 0.029

F2 0.195 0.016 )0.195 0.347 14 )0.195 0.205

F3 0.761 0.016 )0.376 0.200 2 )0.187 0.192

G1 0.013 0.002 )0.013 0.061 5 )0.013 0.022

G2 0.216 0.013 )0.167 0.291 5 )0.129 0.219

G3 0.027 0.003 )0.027 0.075 8 )0.027 0.041

G4 0.020 0.002 )0.020 0.070 8 )0.020 0.026

G5 0.615 0.009 )0.167 0.170 7 )0.097 0.112

G6 0.108 0.010 )0.108 0.230 13 )0.108 0.123

H1 0.207 0.007 )0.112 0.159 6 )0.072 0.090

H2 0.318 0.005 )0.102 0.129 13 )0.075 0.065

H3 0.381 0.007 )0.128 0.144 3 )0.077 0.110

H4 0.090 0.003 )0.048 0.095 11 )0.039 0.033

H5 0.004 0.001 )0.004 0.030 6 )0.004 0.012

I1 0.072 0.004 )0.052 0.095 9 )0.044 0.058

I2 0.693 0.008 )0.196 0.126 7 )0.099 0.101

I3 0.099 0.004 )0.069 0.111 5 )0.051 0.074

I4 0.126 0.005 )0.064 0.124 9 )0.054 0.075

I5 0.009 0.001 )0.009 0.038 6 )0.009 0.025

J1 0.160 0.009 )0.160 0.170 10 )0.124 0.116

J2 0.262 0.011 )0.162 0.200 6 )0.111 0.158

J3 0.578 0.011 )0.191 0.163 5 )0.153 0.133

K1 0.073 0.003 )0.073 0.054 3 )0.046 0.045

K2 0.294 0.009 )0.128 0.252 14 )0.116 0.088

K3 0.490 0.013 )0.290 0.168 2 )0.132 0.146

K4 0.143 0.012 )0.143 0.281 12 )0.138 0.132
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Appendix (Continued)

(1) (2) (3) (4) (5) (6) (7) (8)

L1 0.071 0.004 )0.057 0.095 7 )0.050 0.065

L2 0.283 0.008 )0.121 0.126 8 )0.112 0.081

L3 0.294 0.010 )0.252 0.202 8 )0.182 0.111

L4 0.104 0.005 )0.073 0.092 4 )0.052 0.068

L5 0.069 0.006 )0.069 0.126 14 )0.069 0.082

L6 0.069 0.004 )0.057 0.070 4 )0.039 0.045

L7 0.109 0.009 )0.109 0.201 7 )0.089 0.113

M1 0.182 0.004 )0.073 0.066 4 )0.049 0.056

M2 0.094 0.003 )0.045 0.084 9 )0.030 0.036

M3 0.028 0.002 )0.024 0.032 9 )0.018 0.020

M4 0.293 0.008 )0.206 0.137 5 )0.133 0.126

M5 0.091 0.003 )0.047 0.052 8 )0.037 0.036

M6 0.010 0.001 )0.010 0.012 3 )0.008 0.012

M7 0.117 0.005 )0.060 0.107 8 )0.055 0.074

M8 0.131 0.004 )0.061 0.086 11 )0.052 0.067

M9 0.054 0.005 )0.054 0.103 11 )0.054 0.061

N1 0.452 0.009 )0.121 0.224 10 )0.103 0.142

N2 0.461 0.008 )0.157 0.147 8 )0.100 0.089

N3 0.052 0.004 )0.052 0.094 2 )0.052 0.069

N4 0.035 0.004 )0.035 0.082 8 )0.035 0.056
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