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Influence of Mutational and Sampling Factors on the Estimation of
Demographic Parameters in a ‘‘Continuous’’ Population Under Isolation
by Distance

Raphaël Leblois,*� Arnaud Estoup,* and François Rousset�
*Laboratoire Modélisation et Biologie Evolutive, CBGP-INRA, Montferrier sur Lez, France; and �Laboratoire Génétique et
Environnement, CNRS-UMR 5554, Montpellier, France

In numerous species, individual dispersal is restricted in space so that ‘‘continuous’’ populations evolve under isolation
by distance. A method based on individual genotypes assuming a lattice population model was recently developed to
estimate the product Dr2, where D is the population density and r2 is the average squared parent-offspring distance. We
evaluated the influence on this method of both mutation rate and mutation model, with a particular reference to
microsatellite markers, as well as that of the spatial scale of sampling. Moreover, we developed and tested a non-
parametric bootstrap procedure allowing the construction of confidence intervals for the estimation of Dr2. These two
objectives prompted us to develop a computer simulation algorithm based on the coalescent theory giving individual
genotypes for a continuous population under isolation by distance. Our results show that the characteristics of mutational
processes at microsatellite loci, namely the allele size homoplasy generated by stepwise mutations, constraints on allele
size, and change of slippage rate with repeat number, have little influence on the estimation of Dr2. In contrast, a high
genetic diversity (»0.7–0.8), as is commonly observed for microsatellite markers, substantially increases the precision of
the estimation. However, very high levels of genetic diversity (.0.85) were found to bias the estimation. We also show
that statistics taking into account allele size differences give unreliable estimations (i.e., high variance of Dr2 estimation)
even under a strict stepwise mutation model. Finally, although we show that this method is reasonably robust with
respect to the sampling scale, sampling individuals at a local geographical scale gives more precise estimations of Dr2.

Introduction

Dispersal rates and population sizes or densities are
important demographic parameters in evolutionary pro-
cesses. Many studies have attempted to estimate such
parameters using either direct methods (e.g., mark-
recapture methods) or indirect methods (e.g., genetic
markers). A number of indirect methods for demographic
parameter estimation using genetic data at neutral loci or
clines of selected markers have been defined (see Slatkin
(1994) and Rousset (2001b) for reviews). Discrepancies be-
tween estimations made with direct and indirect meth-
ods have often been attributed to inadequacies of the
assumptions of the genetic models made in indirect
methods (Hastings and Harrison 1994; Koenig et al. 1996;
Slatkin 1994). The kinds of assumptions usually consid-
ered to be inadequate are those related to (1) the modalities
of dispersal (e.g., the island model), (2) the demographic
stability in space and time, (3) the mutation rates and mu-
tation processes of genetic markers, and (4) the selective
neutrality of genetic markers.

In numerous species, individual dispersal is restricted
in space. This means that there is a higher probability that
individuals mate with individuals born in close proximity
to themselves than to individuals born far away. Several
studies on animals or plants have shown such restricted
dispersal (e.g., for plant data, see Crawford 1984; and for
animal data, Rousset 1997, 2000; Spong and Creel 2001;
Sumner et al. 2001). Isolation by distance models taking
into account this biological feature were introduced by
Wright (1943 and 1946). Under these models the genetic
differentiation at neutral loci is expected to increase with

geographical distance (e.g., Malécot 1950, 1967; Sawyer
1977). Empirical data indicate that such a relationship
holds for many species (Endler 1977; Slatkin 1993). Re-
cently, a method of analysis was developed based on the
increase, at a local scale, of genetic differentiation between
individuals with geographical distance in a ‘‘continuous’’
population evolving under isolation by distance (Rousset
2000). The method makes use of the regression of es-
timators of a parameter analogous to the parameter
FST/(1 2 FST), calculated between individuals, and the
logarithm of the geographical distance, to estimate the
product Dr2, where D is the density of adults and r2 the
average squared axial parent-offspring distance. It is
expected to perform better than previous methods for
several reasons. First, the demographic model on which
the method is based makes weak assumptions about the
shape of the distribution of dispersal distances. In par-
ticular, the method is valid for leptokurtic distributions of
dispersal distance (Rousset 2000), a feature commonly
observed in natural populations (for review and data, see
Endler 1977; Portnoy and Willson 1993; Clark et al.
1999). Second, analysis of genetic differentiation is made
at a small (local) geographical scale so that heterogeneity
of demographic parameters such as dispersal or density is
reduced and hence its influence on genetic differentiation
is also reduced (Slatkin 1993; Rousset 2001b). In a similar
way, influence of non-neutrality of the genetic markers
may be less problematic for studies at local scale because
selection parameters may be less heterogeneous at a small
geographical scale. On the other hand, the theory on which
the method is based shows that only estimations from
analysis over short distances will be accurate (Rousset
1997). These expectations have been confirmed by several
comparisons of direct and indirect estimates of Dr2

(Rousset 1997, 2000; Sumner et al. 2001). Although the
geographical scale at which the sampling has been done is
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expected to influence the quality of the estimation of Dr2,
very few analytical or simulation studies have formally
addressed this question.

Since their discovery in the 1980s, microsatellite loci
have been increasingly used as genetic markers. Rapid
progress in molecular biology technologies, especially the
development of the polymerase chain reaction, and
attractive evolutionary features (e.g., high level of poly-
morphism), explain why this category of markers are
progressively replacing, or at least complementing, classical
markers such as allozymes for numerous applications
in molecular systematics, population genetics, and ecology
(reviewed in Estoup and Angers 1998; Estoup, Jarne, and
Cornuet. 2002). However, the mutation processes (i.e., the
nature of mutations) at microsatellite loci are complex and
not yet well understood (e.g., Estoup and Cornuet 1999).
The effect of the mutation processes on evolutionary
inferences depends in large part on the method, the statistics,
and the evolutionary time scale considered (e.g., Estoup,
Jarne, and Cornuet 2002). Some authors have discussed the
effect of the nature of the mutation on FST values (Slatkin
1995; Rousset 1996). Because a stepwise mutation process
occurs at microsatellite loci, several statistics taking into
account the allele size have been proposed (Goldstein et al.
1995; Slatkin 1995; Michalakis and Excoffier 1996). Their
utility, however, has often been criticized (e.g., Takezaki
and Nei 1996; Gaggiotti et al. 1999). Overall, the potential
interest of the different statistics has never been addressed in
the context of the estimation of demographic parameters
under isolation by distance.

In this study, we developed an original simulation
algorithm based on the coalescent theory in order to study
the sensitivity of the estimation of Dr2 to different fac-
tors: (1) the sampling scale of individuals, (2) the muta-
tion model of markers and (3) their mutation rate, with
particular reference to microsatellite markers for the two
latest points. This algorithm was also used to test
a nonparametric ABC bootstrap procedure allowing the
construction of confidence intervals on the Dr2 estima-
tion. Finally, we draw guidelines that could be useful for
empirical investigators using the individual-based method
of Rousset (2000).

Models and Methods
Demographic Model and Population Cycle

The model that we considered for ‘‘continuous’’
populations is the lattice model with each lattice node
corresponding to one diploid individual. This model
without demic structure is viewed as an approximation
for truly continuous populations with infinite local
competition (Malécot 1975; Rousset 2000). More realistic
continuous models would incorporate the feature that
individuals could settle in any position in a continuous
space. Although such models have been formulated (e.g.,
Malécot 1967; Sawyer 1977), it is known that they do not
follow a well-defined set of biological assumptions
(Maruyama 1972; Felsenstein 1975; see Barton et al.
2002 for an alternative approach for continuous popula-
tions). Individuals are assumed to be diploids by a model

with two independent genes per node. To avoid edge
effects, the lattice is represented on a circle for a one-
dimensional model or a torus for a two-dimensional
model. Edge effects have little influence on local dif-
ferentiation when the habitat area (i.e., the lattice size) is
large when compared to the mean dispersal. Finally, we
considered that dispersal occurs through gametes only.

The life cycle is divided into four steps: (1) at each
reproductive event, each individual gives birth to a great
number of gametes, and then dies; (2) gametes undergo the
effect of mutations; (3) gametes disperse; (4) diploid in-
dividuals are formed, and (5) competition brings back the
number of adults in each deme to one.

Coalescent Algorithm

The genealogical tree of a sample of n genes taken
from a panmictic population of constant size N can be
modeled using a stochastic process known as the n-
coalescent. This process was introduced by Kingman
(1982a, 1982b) as an approximation of a gene genealogy
under the ‘‘Wright-Fisher’’ neutral model (see also Hudson
1990, Tajima 1983). More sophisticated models have since
been developed for analysis of more complex evolutionary
scenarios with recombination, selfing, and variable
population size (reviewed in Nordborg 2001).

The n-coalescent approximation can be used in the
same context as diffusion equations (Nordborg 2001). It is
thus valid for a restricted numbers of models of population
structure, e.g., panmictic populations or the infinite island
model. In the present work, we focused on isolation by
distance. For this category of models, no analytical
treatment of coalescence time or coalescence probabilities
has been done for more than two genes. Algorithms such
as those developed for likelihood estimation by Griffiths
and collaborators (see Nath and Griffiths 1996; Bahlo and
Griffiths 2000) could in principle deal with continuous
models; however, they are not ready for demographic
inferences (De Iorio and Griffiths, personal communica-
tion). The coalescent algorithm we developed is not based
on the n-coalescent theory; rather it is an algorithm for
which coalescence and migration events are considered
‘‘generation by generation’’ until the common ancestor of
the sample has been found. The idea of tracing lineages
back in time generation by generation is fundamental in
the coalescence theory, and is well described in Nordborg
(2001). At least one study already used this simple concept
for simulations (i.e., Pope, Estoup, and Morris 2000).
Although such a generation-by-generation algorithm leads
to less efficient simulations in terms of computation time
than those based on the n-coalescent theory, it is much
more flexible when complex demographic and dispersal
features are considered. The algorithm described below
and the program used in this study were checked at every
step during elaboration by comparison with exact
analytical results for probabilities of identity in models
of isolation by distance on finite lattice (e.g., Malécot 1975
for the lattice model, adapted to different mutation models
following Rousset 1996). These comparisons show that
estimates of identity probabilities from our program and
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analytical expectations differ by less than one per thousand
for sufficiently long runs.

Let us consider, at a given time and on a two-
dimensional lattice, a sample of n(0) genes numbered 1 to
n(0). The position of each gene on this lattice is given by
a pair of coordinates (x,y). The set of coordinates of
sampled genes is given by the two vectors X(0) 5[x1(0),
. . . , xn(0)(0)], Y(0) 5 [y1(0), . . . , yn(0)(0)], where xi(0) and
yi(0) are the coordinates of the gene i at G 5 0, with G
corresponding to the number of generations since
sampling.

This algorithm goes backward in time, generation by
generation (considering discrete generations). At G 5 1,
parents of our n(0) sampled genes have coordinates
xi(1) 5 xi(0) 1 dx, yi(1) 5 yi(0) 1 dy, where dx and dy
are random variables representing dispersal distance in one
dimension, expressed in number of steps on the lattice.
Under a two-dimensional model, the density function of
the random variable (dx,dy) is given by bdx,dy, the
‘‘backward’’ dispersal function. The term backward is
used because the position of the parental gene is de-
termined knowing the position of its descendant gene.
This function is calculated using fdx,dy, the forward dis-
persal density function describing where descendants go.
The dispersal functions are detailed in the next section.
We assume that dispersal is independent in each direction,
so that fdx,dy 5 fdx 3 fdy. Considering that density is
homogenous in space, backward dispersal functions are
equal to forward dispersal functions, so that bdx,dy 5
fdx,dy 5 fdx 3 fdy.

Once the position of the parents on the lattice is
known, the coalescence events occurring at G 5 1 are
assessed. In other words, we determine whether some
genes share a common parent at G 5 1. This step cor-
responds to the idea of ‘‘individuals picking their parents
at random from the previous generation’’ (Nordborg
2001). A coalescence event occurs if genes are both on
the same lattice node and if they originate from the
same parental gene. Multiple coalescences are allowed.
The probability for a coalescence of k genes in a given
parental gene is 1/2k21 under the model with one
individual per lattice node. In this case, the remaining j
genes from the same lattice node coalesce in the other
parental gene. For convenience, we keep the numbering
(i 2 [1, . . . , n(0)]) of descendant genes for their parents
when these genes do not coalesce and attribute new
numbers (i 2 [n(0) 1 1, . . . , n(1)]) for the parents of the
coalesced genes. A gene i at G 5 0 and its parent at G 5 1
have the same number if there was no coalescence event
between the gene i and another gene at G 5 0. Thus our
numbering refers more to the branches of the coalescent
tree than to the genes themselves. This particular num-
bering of branches, nodes, and genes is illustrated in
figure 1. At G 5 1, we have X(1) 5 (x1(1), . , xn(1)(1)),
Y(1) 5 (y1(1), . , yn(1)(1)), the n(1) geographic coordinates
at G 5 1 for each branch corresponding to a lineage of our
sample. We keep in memory the ages of the tree ‘‘nodes’’
(corresponding to coalescence events) and the labels of the
branches descending from this ‘‘node.’’ The entire process
is repeated over generations until the most recent common
ancestor of our entire gene sample has been found.

Dispersal Functions

Biologically realistic dispersal functions often have
a high kurtosis (Endler 1977; Kot, Lewis, and van den
Driessche 1996). Forward dispersal distributions for which
the probability of moving k steps (for 0 , k < Kmax) in
one direction is of the form fk 5 f2k 5 M/kn were
considered, with parameters M and n controlling the total
dispersal rate and the kurtosis, respectively.

By suitable choice of the two parameter values, large
kurtosis can be obtained with high migration rates
(Rousset 2000). For all of our simulations, we used
a dispersal distribution with a moderate r2 value (r2 5 4),
corresponding to a dispersal distribution with parameters:

f1 ¼ f�1 ¼ 0:06; f2 ¼ f�2 ¼ 0:03 and for

2, k , 49; M ¼ 0:802 and n ¼ 2:518: ð1Þ
With such a dispersal distribution the product 4pDr2 is
50.26. This value corresponds to a relatively strong
isolation by distance, which appears biologically reason-
able for many species (see references cited in the
Introduction).

Mutation Processes

One interesting feature of the coalescent-based
approach is that, for neutral loci, genealogical and mu-
tation processes are totally independent, so that the effects
of mutation are simply superimposed on the genealog-
ical tree obtained for the gene sample.

Two theoretical mutation models, the infinite allele
model (IAM: Kimura and Crow 1964) and the K-allele
model (KAM: Crow and Kimura 1970), have sometimes
been used for microsatellite loci. However, the most
widely adopted model for microsatellite mutation is the
stepwise mutation model (SMM: Ohta and Kimura 1973)
in which the mutant allele differs from its parent by one
repeat. Direct and indirect studies have shown that
mutations of several repeats also occurred, indicating that
a strict one-step model is inappropriate (Estoup and
Angers 1998; Gonser et al. 2000; Ellegren 2000). In

FIG. 1.—Numbering of branches, genes, and nodes of a genealogical
tree for a sample of five genes as described by our coalescence algorithm.
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practice, modeling assumptions are commonly limited to
the SMM (e.g., Reich and Goldstein 1998; Wilson and
Balding 1998), and sensitivity of the final inferences to
this assumption may be substantial, although this is rarely
investigated. In several studies (e.g., Pritchard et al. 1999),
a generalization of the SMM was adopted in which the
change in the number of repeat units forms a geometric
random variable. This generalization was named the GSM
(generalized stepwise mutation) model. The geometric
distribution in our GSM model refers to a change ex-
pressed in an (absolute) number of repeat units sub-
sequently added or withdrawn to the mutating allele with
equal probability. Under this model, the large data set of
microsatellite mutations of Dib et al. (1996) in humans
suggests an estimate of the variance of the geometric
distribution near 0.36 (Estoup et al. 2001). The GSM does
not capture all the complexity of the mutation process at
microsatellite loci. In particular, constraints on allele size
occur at some microsatellite loci (reviewed in Amos 1999;
Estoup and Cornuet 1999; Ellegren 2000) and potentially
affect various statistics in population genetics (Estoup et al.
2002). This evolutionary feature, particular to micro-
satellite loci, was thus tested on our method. Allele size
constraints were included in our simulations by imposing
reflecting boundaries to the allele size range (e.g., Feldman
et al. 1997; Estoup et al. 1999). Another outstanding fea-
ture of the microsatellite mutation process is that within-
loci mutation rate increases with allele length (Ellegren
2000; Huang et al. 2002). Whether this increase is linear
with the number of repeats remains subject to further
investigation (Schlötterer 2000; Stumpf and Goldstein
2001; Brohede et al. 2002). In our simulations, we con-
sidered a linear model in which (1) the mutation rate
was fixed to 5 3 1024 for the allelic state of the root of the
tree (fixed at 100 repeats units and considered the ‘‘middle
size allele’’); (2) a decrease in mutation rate with allele size
of 0.1% or 1% per repeat unit for a weak or a strong
variation, respectively is simulated for alleles shorter than
100 repeat units; (3) a similar increase is simulated for
alleles longer than 100 repeat. In other words, this leads to
the linear form: l(L) 5 l0 1 s*L, where l(L) is the muta-
tion rate for an allele of size L, l0 the mutation rate for the
smallest allele, and s the increase per repeats unit. We set
s 5 0.1% or 1% for a weak or a strong variation, res-
pectively, to be close to the value given in Brohede et al.
(2002).

Interlocus variability in the mutation rate potentially
decreases the precision of parameter estimation in
population genetics (Takezaki and Nei 1996; Gonser et
al. 2000). The effect of variable mutation rate was thus
tested as well. Little information is available on the
interlocus variance of the mutation rate at microsatellite
loci. Several pedigree studies show that the mutation rates
can differ across loci in important respects (reviewed in
Schlötterer 2000). Without more information, we modeled
variable mutation rates at microsatellite loci by drawing
single locus mutation rate values in a gamma distribution
with parameters (shape, scale) being (2, 2.5 1024). This
distribution has a mean equal to 5 3 1024, a value con-
sidered as the average mutation rate in many species
(reviewed in Estoup and Angers 1998), and 2.5% and 97.5%

quantiles equal to 6 3 1025 and 1.4 3 1023, respectively.
These values are similar to the mean and 95% confidence
interval values typically considered for autosomal micro-
satellites in humans (Weber and Wong 1993).

The following step-by-step procedure was used to
add mutations to the genealogical tree. Take at random two
genes i, j and their most recent common ancestor, the gene
l, and let statei, statej, statel be their respective allelic
states. The number of mutations that occurred in lineage i
is proportional to the length Li (expressed in number of
generations) of branch i (from l to i) and is given by
a binomial distribution with parameters (l, Li), which can
be approximated by a Poisson process with parameter lLi.
Let mi be the number of mutations that occurred on branch
i. One can easily deduce statei from statel through mi

successive steps, each step corresponding to a mutation
event under the chosen mutation model. The allelic states
of the various genes of the sample were obtained starting
from a given state for the common ancestor of the sample
(root of the genealogical tree) and going forward in time
on each branch.

Method of Analysis

Each simulation iteration gave the genotypes at l
polymorphic loci for (n 3 n) individuals denoted by their
coordinates on the lattice. l independent coalescent trees
were used to simulate multi-locus genotypes. This process
was repeated 1,000 times giving 1,000 multilocus samples
sharing the same demographic conditions. We computed
estimates of the parameter

ar [
Qw � Qr

1 � Qw

for each pair of individuals, where Qw is the probability of
identity in state for two genes taken from the same
individual, and Qr the probability of identity in state for
two genes at geographical distance r (Rousset 2000). The
statistic ar is a parameter analogous to the parameter FST/
(1 2 FST), calculated between individuals (and not
between populations, as in Rousset 1997). An estimator
of ar for a pair p of individuals taken from the P different
possible pairs is:

âa [
SSbðpÞPPP
k¼1 SSwðkÞ

� 1

2

with

SSb½etween�ðpÞ[
X

i;u

ðXi::u � X:::uÞ2

and

SSw½ithin�ðpÞ[
X

i;j;u

ðXij:u � Xi::uÞ2
;

where Xij:u is an indicator variable taking the value 1 if
gene i of individual j is of allelic type u and the value
0 otherwise (Rousset 2000).

To test the effect of using a statistic that takes into
account the allele length differences (and hence the
stepwise mutational process occurring at microsatellite
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loci), we defined another parameter br, equivalent to ar,
except that it is defined in terms of squared differences in
microsatellite allele lengths (SD) instead of probabilities of
non- identity in state (1 2 Q). Thus, we have

br [
SDr � SDw

SDw

;

where SDr is the expectation of the squared length
differences between two genes at geographical distance r
and SDw is the expectation of the squared length
differences between two genes taken in the same in-
dividual. br was estimated for a pair p of individuals taken
from the P different possible pairs in a way similar to ar:

b̂b [
SSDbðpÞPPP
k¼1 SSDwðkÞ

� 1

2

with

SSDb½etween�ðpÞ[
X

i

ðSi: � S::Þ2

and

SSDw½ithin�ðpÞ[
X

i;j

ðSij � Si:Þ2
;

where Sij is a variable representing the size of gene i of
individual j, expressed in number of repeat units.

For each of the 1,000 repetitions, the value of the
slope of the regression line between â (or b̂b) and the
logarithm of geographical distance was computed. In the
limit of low mutation rates, the inverse of the slope is an
estimate of the product 4pDr2, where D is the density of
adults and r2 the average squared axial parent-offspring
distance (Rousset 1997). It is worth noting that high
mutation rates should not result in an asymptotic bias as
long as the focus is on local processes involving distances
between sampled individuals

r � rffiffiffiffiffiffi
2l

p :

Beyond this limit, the linear relationship between ar (or br)
and the logarithm of the distance holds less well (for
details, see Rousset 1997). Thus, if the analysis is done at
a small geographical scale, the use of highly variable loci
such as microsatellite loci should not bias the estimation.
However, the effect of mutation on small sample
properties of the estimator needs to be tested. The quality
of an estimator is usually assessed through the computa-
tion of its bias and its mean square error (MSE). These
measures are suitable when estimates have approximately
a normal distribution but not when the estimate is
sometimes infinite. In the present case, a negative slope
should be interpreted as an infinite estimate of Dr2.
Therefore we chose to work on the slope values and not on
Dr2 estimates. The following statistics were estimated
over all repetitions: (1) the mean relative bias between the
value of the slope and the expected value 1/(4pDr2); (2)
the standard error on this relative bias; and (3) the mean
square error (MSE 5 Bias2 1 var). The bias and the MSE
are relative values, as they are computed from the ratio of
the estimate to the value to be estimated, 1/(4pDr2). We

also computed the proportion of negative slopes found and
the probability that the estimate was within a factor of 2
from 1/4pDr2. Note that the latest measure is strictly
equivalent to the probability that the Dr2 estimate was
within a factor of 2 from the expected Dr2 value.

An accurate estimate of the uncertainty associated
with parameter estimates is important to avoid misleading
inferences. The nonparametric ABC bootstrap procedure
described in DiCiccio and Efron (1996) was adapted to
compute 95% confidence intervals around the regression
slope. ABC bootstrap is a procedure that generates
approximated bootstrap confidence intervals without real
resampling. It is useful for estimation methods with high
computation time needs. In this procedure, we considered
genotypic data at each locus as independent replicates of
the genealogical process. Tests of this procedure were
performed using the same simulation program described
above by calculating probability coverage of the confi-
dence intervals for 1,000 simulated data sets. We choose
arbitrarily a dispersal distribution with r2 5 4 [parameters
given in equation (1)]. For each repetition, 100 individuals
were sampled every two lattice nodes within an area of
(10r 3 10r) on a (100 3 100) lattice. Estimates of ar and
95% confidence intervals were calculated for 7, 13, or 25
loci evolving under a SMM with a mutation rate equal to
5 3 1024.

Results
ABC Bootstrap

Table 1 shows that the non parametric ABC bootstrap
procedure gives inaccurate 95% confidence intervals in
terms of coverage probability even for large number of loci
(e.g., coverage probability is 0.90 instead of 0.95 for 25
loci). The inaccuracy mostly concerns the lower bound of
the confidence intervals for the regression slope (i.e., the
proportion of intervals above the slope value is 0.07
instead of 0.025 for 25 loci; table 1). This may reflect the
asymmetrical shape of the distribution with a long tail for
small values (i.e., large Dr2, data not shown). The effect
of asymmetrical distribution on ABC bootstrap was tested
on a simpler statistical model. ABC confidence intervals
were computed for the mean of a random sample drawn in
a bivariate student distribution with density

PrðrÞ ¼ 2pr
�½1 þ p�
pu�½p� ð1 þ r2=uÞ�1�p

and parameters (p,u) being (1,1). This distribution is
asymmetrical with an infinite kurtosis and an infinite
skewness. Even for very large sample sizes (5000

Table 1
Coverage Probability of 95% Confidence Intervals Around
the Regression Slope Using an ABC Bootstrap Procedure

Bootstrap Sample Size

7 loci 13 loci 25 loci

Coverage probability 0.842 0.885 0.90
Proportion of intervals

below the slope value 0.020 0.030 0.030
Proportion of intervals

above the slope value 0.138 0.085 0.070
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replicates, results not shown), the ABC procedure gives an
inaccurate upper bound, resulting in underestimated
confidence intervals (results not shown). In the case of
the regression slope, the inaccuracy increases for small
sample size (e.g., 0.842 instead of 0.95 for seven loci;
table 1).

Because of the important computation time needed to
construct ABC confidence intervals, this procedure was
not used for evaluating the influence of the sampling scale
and mutational factors on the estimation of Dr2 (see
Models and Methods).

Influence of the Sampling Scale

Previous simulations with two-allele loci suggested
that the regression method would be efficient if one can
sample all individuals within an area of about 10r 3 10r,
giving a sample size of 100Dr2 individuals (Rousset
2000). It is worth noting that if Dr2 is greater than say 5, it
becomes difficult in practice to sample and genotype all
individuals (.500 individuals). Hence, since the number
of individuals to sample is necessarily limited, the method
should be less efficient when Dr2 increases. In practice,
biologists collect samples of a reasonably large number of
individuals (say 100) within an area larger or smaller than
the recommended (10r 3 10r) area when Dr2 is small or
large respectively. In order to assess the effect of such
practical ‘‘non-scaled sampling,’’ we simulated a distri-
bution of dispersal with r2 5 4 [parameters given in
expression (1)] and four different sampling schemes. One
hundred individuals were taken: (1) every lattice node
within an area of (5r3 5r), for the first sampling scheme;
(2) every two lattice nodes within an area of (10r 3 10r),
for the second one; (3) every five lattice nodes within an
area of (25r 3 25r) for the third one; and (4) every ten
lattice nodes within an area of (50r 3 50r) for the last
one. For each repetition the parameter estimated is ar for
13 loci evolving under a SMM with a mutation rate equal
to 5 3 1024. We considered that a set of 13 loci represents
a reasonable number of loci in empirical studies using
microsatellites. A two dimensional lattice of (200 3 200)
individuals was considered for the first three sampling
schemes and of (500 3 500) individuals for the last one, to
avoid edge effects on the estimations when considering
samples larger than half the length of the lattice. Figure 2

shows that lattice size has no major effect on the
estimation, except if it is less than ten times the mean
dispersal distance (simulation parameters are those used in
this paragraph). Unless the lattice size is very small
(50*50), the bias and the MSE do not differ notably from
those for a very large lattice size (1000*1000).

The sampling scale seems to have only a limited
effect on the MSE of the Dr2 estimation (table 2).
Whatever sampling scale is considered (i.e., smaller or
larger than the recommended area) the MSE is low (values
between 5% and 12% in the studied cases). In contrast, the
sampling scale has a great effect on the bias. A sample
taken from an area two times smaller than the recom-
mended area (first column of table 2) gave a large and
positive bias (22%). The bias decreases when the sampling
area increases and becomes negative when the sampling
area is larger than the recommended area, reaching high
values (e.g., 221%, fifth column of table 2). However, it is
worth noting that even for extreme sampling situations,
estimates of Dr2 are not very different from the expected
value, as shown by the large proportion of estimated
values falling within a factor of two from Dr2 (.93%).

Influence of the Mutation Model

The following mutation models were considered: (1)
the infinite allele model (IAM); (2) the K-allele model
(KAM) with an arbitrary choice of K 5 10 possible allelic
states; (3) the stepwise mutation model (SMM); (4) the
generalized stepwise model (GSM) with variance of the
geometric distribution equal to 0.36; and (5) the GSM with
constraints on allele size (bounded GSM). In the bounded
GSM, the number of possible allelic states was equal to 10
or 20, each allelic state being separated by a single repeat
unit.

Simulations were run considering a sample of 100
individuals for 13 loci evolving in a two-dimensional
lattice of (100 3 100) individuals. For each repetition of
the simulation process the parameter estimated is ar. As it
is often not easy in practice to sample most individuals
from a small area, we considered a sample of (10 3 10)
individuals taken every two nodes from an area of (20 3
20) nodes in the lattice. By doing so, we approximated the
sampling scheme typically used in empirical studies. We
also chose a dispersal distribution with a relatively large
r2 value [i.e., r2 5 4, parameters given in equation (1)].
The logic underlying this choice is that the method may be
inaccurate in this case and that it is more relevant to
distinguish differences in efficiency when the method does
not perform extremely well, than when it performs well,
whatever the mutation model.

The mutation rate was first fixed at 5 3 1024 for all
loci for each mutation model. Our results show that the
nature of the mutation model has little influence on the
estimation of the product Dr2 (table 3). Whatever muta-
tion model is considered, the bias is positive and around
10%. Although the precision of the method is maximum
under the IAM (MSE of 6%) and minimum under
the GSM with strong constraints (K 5 10, MSE 5 0.11),
these differences are small. For all mutation models more

FIG. 2.—Influence of the lattice size on the estimation of the product
1/4pDr2. NOTE—Only 500 iteration were done for each case. Vertical
bars represent standard errors on the bias.
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than 97% of the estimations are within a factor 2 from
the expected Dr2 value.

For a given mutation rate, level of genetic diversity
varies according to the mutation model considered.
Because the level of genetic diversity is likely to have an
important effect on the estimation of the product Dr2, we
studied the influence of different mutational models for
the same level of diversity. The genetic diversity can be
expressed in terms of probability of identity by (1 2 Qw),
where Qw is the probability of identity in state of two genes
taken in the same individual. This corresponds to the
fraction of heterozygous individuals in the population.
The influence of mutation models was thus studied with the
same Qw value for all mutation models. The conclusions
are similar to those obtained with a mutation rate fixed at
the same value for all mutation models (table 3). For a given
value of genetic diversity, the bias and the MSE of Dr2

estimates shows little variation among mutational models.

Influence of the Mutation Rate

The influence of the mutation rate (or the genetic
diversity) has been studied for the GSM, a mutation model
considered as more realistic for microsatellite loci than the
SMM, the KAM, or the IAM (e.g., Estoup and Cornuet
1999). All other simulation parameters are those used for
evaluating the influence of the mutation model. Our
simulations showed that the mutation rate has a substantial
effect on the bias and the MSE (fig. 3 and table 4). The
MSE is more strongly influenced by the mutation rate than
the bias. For ‘‘low’’ genetic diversities (i.e., H 5 0.5), the
observed bias is positive and never greater than 12%. In
contrast, for genetic diversity lower than 0.6, the MSE is
greater than 20% and increases relatively rapidly when the
genetic diversity decreases. However, even for a genetic
diversity lower than the mean genetic diversity observed in
most microsatellite studies (e.g., about 0.5), 85% of the
estimations are within a factor of two from Dr2, but 15
negative slopes were found (table 4).

It is worth mentioning that the observed bias may be
of two types: (1) the bias, inherent in the method, that is
due to the effect of high mutation rate on the parameter
value (we will name it the ‘‘parametric bias’’); and (2) the
bias due to the deviation of the estimates in relation to the
parameter value considering a finite sample of individuals
and loci (which we will name ‘‘small sample bias’’). The
method is expected to perform poorly for very high

mutation rates because distances between some pairs of
sampled individuals are then larger than

rffiffiffiffiffiffi
2l

p

(Rousset 1997). In such a case, the parametric bias is
expected to be negative because the slope of the regression
line will be underestimated (for details, see Rousset 1997).
In our simulations, we have r 5 2 and the maximal
distance between individuals equals 20

ffiffiffi
2

p
lattice units,

which is within

rffiffiffiffiffiffi
2l

p

for mutation rates lower than 0.001. However, our results
show that for a genetic diversity of 0.8 (corresponding to
a mutation rate of c. 0.005 in our model) the bias and the
MSE are very low. The low values of the bias and the
MSE in this case are likely to result from some com-
pensatory effects between a positive ‘‘small sample bias’’
and a negative ‘‘parametric bias.’’ When higher genetic
diversity is considered (i.e., H 5 0.85 corresponding
to mutation rates of c. 0.05 in our model), the bias be-
comes large and negative and the MSE rapidly increases
(table 4). This result is in agreement with the above
prediction: for very high mutation rates the ‘‘parametric
bias’’ becomes more important than the ‘‘small sample
bias,’’ so that the global bias observed for high mutation
rates is negative.

It is sometimes considered that the large variation
between loci of the mutation rate decreases the precision of
parameter estimation in population genetics (e.g., Takezaki
and Nei 1996; Gonser et al. 2000). To address this question,
we considered 13 loci evolving under the GSM with
mutation rates drawn for each locus in a gamma distribu-
tion of mean 5 3 1024 (see earlier under Models and
Methods: Mutation Model), all other simulation parameter
values being the same as those used in the previous section.
Our simulation results show that variable mutation rates for
microsatellite loci have little effect on the estimation of
Dr2 (table 4). The bias and the MSE values are 11% and
11%, respectively, which does not differ much from the
values of 10% and 9% obtained with a fixed mutation rate
of 5 3 1024. More than 98% of the estimations are within
a factor of 2 from Dr2 and no negative estimates were
found. Finally, our simulation results show that a linear
increase in mutation rates with allele length has little effect
on the estimation of Dr2 (table 4). Strong or weak

Table 2
Influence of Sampling Scale on the Estimation of 1/4pDs2

Sampling Scale (Sampling Area)

1 (10 3 10) 2 (20 3 20) 5 (50 3 50) 10 (100 3 100)

Bias 0.219 0.130 20.056 20.205
(standard error) (0.0077) (0.0077) (0.0072) (0.0064)

MSE 0.106 0.0763 0.0554 0.082
23 coverage 0.999 0.996 0.967 0.93
Negative slope 0 0 0 0

NOTE—Sampling area is expressed in lattice node unit (see text for details). 23 coverages correspond to the probability that

the estimate was within a factor of 2 from 1/4pDr2 .
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variations give similar results. The bias and the MSE values
are about 10%–11% and 8%, respectively, which again
does not differ much from the values of 10% and 9%
obtained with a fixed mutation rate of 5 3 1024. No
negative estimates were found, and more than 99% of the
estimations are within a factor of 2 from Dr2.

Test for a Statistic Taking into Account Allele Size
Differences

The behavior of the statistic br, an equivalent of ar

based on allele sizes, has been studied under both the
SMM (i.e., the mutation model under which this statistic is
expected to perform optimally) and the GSM with
a mutation rate fixed at 5 3 1024. All other simulation
parameters values are those used in the two previous
sections. Table 5 shows that the method of estimation of
Dr2 performs poorly when br is used. Under both the
SMM and GSM, the increase in MSE as well as the
number of negative slopes is spectacular. For instance the
MSE goes from about 10% when using the classical
measure ar to values greater than 100% when using br. In
contrast, the bias is only slightly increased compared to
estimations using ar. Although slight, the bias increase
appears higher under the GSM than the SMM (1 9%
versus 1 4%).

Discussion

A first general conclusion of this study is that the
mutation model of the markers has little influence on the
efficiency of the method of estimation of Dr2 based on
individual genotypes and allelic identity. Hence, the allele
size homoplasy typically produced under stepwise muta-
tion models (SMM and GSM), and specifically of
microsatellite markers (reviewed in Estoup, Jarne, and
Cornuet 2002 for different population genetics statistics),
is not a feature prejudicial for the method described in this
article. Our results dealing with constraints on allele sizes,
an evolutionary feature also specific to microsatellite
markers and known for substantially increasing size
homoplasy, show that even extremely strong constraints
(e.g., K 5 10) have little effect on the estimation of Dr2.
These results can be interpreted in the context ofT
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FIG. 3.—Influence of the mutation rate on the estimation of the
product 1/4pDr2. The mutation model is a GSM.
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coalescent theory. Values of F-statistics, under the
assumption of low mutation rate, can be deduced from
the comparison between the distributions of coalescence
probability for different pairs of genes (e.g., pairs from the
same deme and pairs from different demes) (Rousset 1996,
2002). These distributions differ essentially by an
‘‘excess’’ of coalescence probability for the most related
genes, this excess being concentrated in a brief period in
the recent past. Under isolation by distance, the more
distant the demes are, the more the ‘‘recent past’’ is
extended to the distant past, permitting more mutations to
act and thus to increase the sensitivity to variation in the
mutation process. By contrast, sensitivity to range
constraints has been observed for statistics that are not
related to differences of distribution of coalescence times
(e.g., genetic distances, Nauta and Weissing 1996) or for
F-statistics when the excess probability of coalescence is
not concentrated in a recent enough past (large sub-
population sizes and low dispersal rates, Gaggiotti et al.
1999). Because the method of Rousset (2000) focuses on
local differentiation and thus on recent evolutionary
processes corresponding to a narrow recent past zone, it
is no surprise that mutation processes (including allele size
constraints) have little influence on the estimation of Dr2.

A second major conclusion of this study is that the
mutation rate, or the genetic diversity (the latest being
largely dependent on the mutation rate), has a strong
influence on the estimation of Dr2. This is in agreement
with previous studies demonstrating that mutation rate is
a more important feature than mutation processes for the
estimation of demographic parameters through F-statistics
(reviewed in Rousset 2001a; Estoup, Jarne, and Cornuet
2002). Interestingly, the heterozygosities at microsatellite
loci are typically between 0.5 and 0.8 (reviewed in Estoup
and Angers 1998), a range of values corresponding to the
level of genetic diversity that was found to maximize
the efficiency of the estimation of Dr2. Moreover, the
potential effect on the estimation of interlocus and
intralocus variability in the mutation rate seems to be
weak. Therefore microsatellites are more appropriate to
estimate the product Dr2 than less polymorphic markers
such as allozymes. The importance of the level of
variability of the loci used to estimate population
parameters has been illustrated by several theoretical and
empirical studies. For example, Robertson and Hill (1984)
showed that precision in estimates of heterozygote

deficiency (Fis) increases with the level of variability of
the markers. Goudet et al. (1996) also showed that the
power of statistical tests of differentiation increases with
the number of alleles. In practice, although precise
information on mutation rate is difficult to obtain, it is
straightforward to calculate a genetic diversity index for
a set of markers from which a level of efficiency can be
inferred for the estimation of Dr2. Our simulations also
indicate that future studies should avoid loci with a very
high level of genetic diversity (higher than, say, 0.85),
because those loci were found to strongly bias negatively
the estimations of Dr2.

Many studies emphasize that traditional FST does not
make use of the additional information provided by the
difference in the number of repeat units at microsatellite
loci. However, statistics developed for this purpose often
have higher variance than statistics based on allele fre-
quencies (e.g., Gaggiotti et al. 1999). In agreement with
this finding, estimates computed using a statistic taking
into account allele size differences increases by at least
a factor of 10 the MSE compared to a statistic based on
identity in state. This result parallels those of Gaggiotti
et al. (1999), which showed that in many cases, especially
when sample size and number of loci are ‘‘small’’ (i.e.,
under the conditions of most empirical studies), population
structure measures based on allele frequencies alone are
more reliable than measures specifically designed for
microsatellite loci. Takezaki and Nei (1996) also showed
that even for loci evolving under a strict SMM, genetic
distances taking into account allele size differences are less
efficient for phylogenetic inference than those based on
identity in state, especially for short to moderate di-
vergence times. The poor efficiency of this category of
statistics appears to be a general feature of studies of
evolutionary events, especially those referring to fine
geographical and temporal scales.

The effects of the mutation processes and high
mutation rates on the estimation of Dr2 are expected to be
more important at large geographical scales (Rousset
1997). In agreement with this expectation, our results
showed that sampling at large distance leads to an
underestimation of the regression slope and thus to an
overestimation of Dr2. Therefore sampling at large
distance makes it less likely to detect a pattern of isolation
by distance. In contrast, sampling from too small an area
leads to an overestimation of the regression slope and thus

Table 4
Influence of the Mutation Rate on the Estimation of the Product 1/4pDs2

Mutation Rate
Interloci

Variability
Intraloci Variability (**)

0.00005 0.00012 0.0005 0.005 0.05 (*) Weak Strong

Genetic diversity 0.56 0.68 0.77 0.82 0.85 0.77 0.77 0.77
Bias 0.0972 0.121 0.104 0.00946 20.390 0.114 0.0965 0.111

(standard error) (0.01609) (0.0120) (0.00863) (0.00616) (0.0055) (0.0096) (0.00846) (0.0081)
MSE 0.268 0.159 0.0852 0.0380 0.182 0.105 0.0808 0.0778
23 coverage 0.844 0.938 0.987 0.996 0.761 0.983 0.991 0.993
Negative slope 0.015 0.001 0 0 0 0 0 0

NOTE.—The mutation model is a GSM. (*) Mutation rate drawn in a gamma (2, 2.5 1024 ) distribution. (**) Variation in mutation rate with allele length is 0.1% and

1% per repeat unit for weak and strong variation, respectively (see text under Influence of Mutation Rate for details).
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to an underestimation of the product Dr2. A possible
explanation for this overestimation is that the linear
relationship between estimates of ar and the logarithm of
the geographical distance is expected to hold less well over
very short distances (Rousset 1997). However, using
a sample not exactly appropriate to the biological case
studied [i.e., a few times larger or smaller than the
recommended area of (10r 3 10r)] still gives reasonably
robust estimations because, in most cases, the estimated
Dr2 fell within a factor of 2 from the expected Dr2 value.

Given our result on bootstrap confidence intervals,
we alert biologists using this method on a standard-sized
data set (10 loci and 150 individuals, e.g., Sumner et al.
2001) that ABC confidence intervals overestimate the
lower bound for the regression slope and thus underesti-
mate the upper bound for Dr2. Construction of reliable
confidence intervals based on the bootstrap is an ongoing
problem for which a satisfactory solution has not yet been
found, especially when the number of replications is
limited computationally (DiCiccio and Efron 1996).
Nevertheless, the ABC bootstrap procedure evaluated here
should give an idea of the uncertainty of the Dr2 estimate,
namely a correct lower bound for Dr2 and a minimal
value for the upper bound. This procedure will be
implemented in the next version of the population genetics
package Genepop (Raymond and Rousset 1995).

Conclusion

Three conclusions inferred from our simulation study
have important consequences for empirical investigations.
First, we recommended using loci with high levels of
polymorphism (genetic diversity around 0.7), although
loci with too high genetic diversity, e.g., more than 0.85,
should be avoided. Because the mutational processes,
specifically size homoplasy and allele size constraints,
have little influence on Dr2 estimations, microsatellite
markers seem to be the best choice at the present time.
Second, using statistics based on allele size differences at
microsatellite loci gives unreliable estimations of Dr2

because of the very high variance of those estimations.
Third, it is important to restrict the sampling design to
a relatively small geographical area in order to work at
a local geographical scale; however, it is necessary to
sample on a relatively large scale when r is high.
Optimizing the method studied here requires a previous

knowledge of r, and we therefore recommended using
a preliminary estimate of r to allow subsequent design of
an appropriate sampling scheme. In the absence of
a preliminary estimate of r, a rough estimate of this
parameter deduced from consideration of known dispersal
mechanisms should be useful to define the minimal scale
of the study (e.g., Leblois et al. 2000). If these aspects are
approximately satisfied, the method should give estimates
of the product Dr2 with low bias and low mean square
error. Finally, the ABC bootstrap procedure, as imple-
mented in the package Genepop (Raymond and Rousset
1995), should be useful to estimate a 95% confidence
interval on Dr2, although the upper bound of this interval
is likely to be underestimated.
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ilité des populations naturelles. Ann. Univ. Lyon A 13:37–60.

———. 1967. Identical loci and relationship. Pp. 317–332 in L.
M. Lecam and J. Neyman, eds. Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, Vol. 4. California University Press, Berkeley.

———. 1975. Heterozygoty and relationship in regularly
subdivided populations. Theor. Popul. Biol. 8:212–241.

Maruyama, T. 1972. Rate of decrease of genetic variability in
a two-dimensional continuous population of finite size.
Genetics 70:639–651.

Michalakis, Y., and L. Excoffier. 1996. A generic estimation of
population subdivision using distances between alleles
with special interest to microsatellite loci. Genetics 142:
1061–1064.

Nath, H. B., and R. C. Griffiths. 1996. Estimation in an island
model using simulation. Theor. Pop. Biol. 50:227–253.

Nauta, M. J., and F. J. Weissing. 1996. Constraints on allele size
at microsatellite loci: implications for genetic differentiation.
Genetics 143:1021–1032.

Nordborg, M. 2001. Coalescent theory. Pp. 179–208 in D.A.
Balding, M. Bishop and C. Cannings, eds. Handbook of
statistical genetics. John Wiley & Sons, Chichester, U.K.

Ohta, T., and M. Kimura. 1973. A model of mutation appropriate
to estimate the number of electrophoretically detectable alleles
in a finite population. Genet. Res. 22:201–204.

Pope, L. C., A. Estoup, and C. Moritz. 2000. Phylogeography
and population structure of an ecotonal marsupial, Bettongia
tropica, determined using mtDNA and microsatellites. Mol.
Ecol. 9:2041–2053.

Portnoy, S., and M. F. Willson. 1993. Seed dispersal curves:
behavior of the tail of the distribution. Evol. Ecol. 7:25–44.

Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun, and M. W.
Feldman. 1999. Population growth of human Y chromosome
microsatellites. Mol. Biol. Evol. 16:1791–1798.

Raymond, M., and F. Rousset. 1995. GENEPOP (version 1.2):
population genetics software for exact tests and ecumenicism.
J. Hered. 86:248–249.

Reich, D. E., and D. B. Goldstein. 1998. Genetic evidence for
a paleolithic human population expansion in Africa. Proc.
Natl. Acad. Sci. USA 95:8119–8123.

Robertson, A., and W. G. Hill. 1984. Deviations from Hardy-
Weinberg proportions: sampling variances and use in
estimation of inbreeding coefficients. Genetics 107:703–718.

Rousset, F. 1996. Equilibrium values of measures of population
subdivision for stepwise mutation processes. Genetics
142:1357–1362.

———. 1997. Genetic differentiation and estimation of gene
flow from F-statistics under isolation by distance. Genetics
145:1219–1228.

———. 2000. Genetic differentiation between individuals. J.
Evol. Biol. 13:58–62.

———. 2001a. Genetic approaches to the estimation of dispersal
rates. Pp. 18–28 in J. Clobert, E. Danchin, A. A. Dhondt, and
J. D. Nichols, eds. Dispersal: individual, population and
community. Oxford University Press, Oxford.

———. 2001b. Inferences from spatial population genetics. Pp.
239–265 in D. A. Balding, M. Bishop, and C. Cannings, eds.
Handbook of statistical genetics. John Wiley & Sons,
Chichester, U.K.

Sawyer, S. 1977. Asymptotic properties of the equilibrium prob-
ability of identity in a geographically structured population.
Adv. Appl. Prob. 9:268–282.

Schlötterer, C. 2000. Evolutionary dynamics of microsatellite
DNA. Chromosoma 109:365–371.

Slatkin, M. 1993. Isolation by distance in equilibrium and non-
equilibrium populations. Evolution 47:264–279.

———. 1994. Gene flow and population structure. Pp. 3–17 in
L. A. Real, ed. Ecological genetics. Princeton University
Press, Princeton, N.J.

———. 1995. A measure of population subdivision based on
microsatellite allele frequencies. Genetics 139:457–462.

Spong, G., and S. Creel. 2001. Deriving dispersal distances from
genetic data. Proc. R. Soc. Lond. Ser. B 268:2571–2574.

Stumpf, M. P. H., and D. B. Goldstein. 2001. Genealogical and
evolutionary inference with the human Y chromosome.
Science 291:1738–1742.

Sumner, J., F. Rousset, A. Estoup, and C. Moritz. 2001.
‘‘Neighborhood’’ size, dispersal and density estimates in the
prickly forest skink (Gnypetoscincus queenslandiae) using
individual genetic and demographic methods. Mol. Ecol.
10:1917–1927.

Tajima, F. 1983. Evolutionary relationship of DNA sequences in
finite populations. Genetics 105:437–460.

Estimation Under Isolation by Distance 501

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/20/4/491/1187724 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 16 June 2021



Takezaki, N., and M. Nei. 1996. Genetic distances and recon-
struction of phylogenetic trees from microsatellites DNA.
Genetics 144:389–399.

Weber, J. L., and C. Wong. 1993. Mutation of human short
tandem repeats. Hum. Mol. Genet. 2:1123–1128.

Wilson, I. J., and D. J. Balding. 1998. Genealogical inference
from microsatellite data. Genetics 150:499–510.

Wright, S. 1943. Isolation by distance. Genetics 28:114–138.
———. 1946. Isolation by distance under diverse systems of

mating. Genetics 31:39–59.

Pierre Capy, Associate Editor

Accepted October 11, 2002

502 Leblois et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/20/4/491/1187724 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 16 June 2021


