
HAL Id: halsde-00324005
https://hal.science/halsde-00324005v1

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The evolutionary radiation of Arvicolinae rodents (voles
and lemmings): relative contribution of nuclear and

mitochondrial DNA phylogenies
Thomas Galewski, Marie-Ka Tilak, Sophie Sanchez, Pascale Chevret,

Emmanuel Paradis, Emmanuel J.P. Douzery

To cite this version:
Thomas Galewski, Marie-Ka Tilak, Sophie Sanchez, Pascale Chevret, Emmanuel Paradis, et al.. The
evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear
and mitochondrial DNA phylogenies. BMC Evolutionary Biology, 2006, 6, pp.80. �10.1186/1471-2148-
6-80�. �halsde-00324005�

https://hal.science/halsde-00324005v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


BioMed CentralBMC Evolutionary Biology

ss
Open AcceResearch article
The evolutionary radiation of Arvicolinae rodents (voles and 
lemmings): relative contribution of nuclear and mitochondrial DNA 
phylogenies
Thomas Galewski*1, Marie-ka Tilak1, Sophie Sanchez2, Pascale Chevret1, 
Emmanuel Paradis1,3 and Emmanuel JP Douzery1

Address: 1Laboratoire de Paléontologie, Phylogénie et Paléobiologie – CC064, Institut des Sciences de l'Evolution UMR 5554/CNRS, Université 
Montpellier II; Place E. Bataillon, 34 095 Montpellier Cedex 05 –, France, 2Ecophysiologie : évolution et adaptation moléculaires, Station 
Biologique, Place Georges Teissier – BP 7429 680 Roscoff –, France and 3Institut de Recherche pour le Développement, UR175 CAVIAR, GAMET 
– BP 5095, 361 rue Jean François Breton, 34196 Montpellier Cedex 5 –, France

Email: Thomas Galewski* - galewski@isem.univ-montp2.fr; Marie-ka Tilak - marika@isem.univ-montp2.fr; Sophie Sanchez - sanchez@sb-
roscoff.fr; Pascale Chevret - chevret@isem.univ-montp2.fr; Emmanuel Paradis - Emmanuel.Paradis@mpl.ird.fr; 
Emmanuel JP Douzery - douzery@isem.univ-montp2.fr

* Corresponding author    

Abstract
Background: Mitochondrial and nuclear genes have generally been employed for different purposes in molecular
systematics, the former to resolve relationships within recently evolved groups and the latter to investigate phylogenies
at a deeper level. In the case of rapid and recent evolutionary radiations, mitochondrial genes like cytochrome b (CYB)
are often inefficient for resolving phylogenetic relationships. One of the best examples is illustrated by Arvicolinae
rodents (Rodentia; Muridae), the most impressive mammalian radiation of the Northern Hemisphere which produced
voles, lemmings and muskrats. Here, we compare the relative contribution of a nuclear marker – the exon 10 of the
growth hormone receptor (GHR) gene – to the one of the mitochondrial CYB for inferring phylogenetic relationships
among the major lineages of arvicoline rodents.

Results: The analysis of GHR sequences improves the overall resolution of the Arvicolinae phylogeny. Our results show
that the Caucasian long-clawed vole (Prometheomys schaposnikowi) is one of the basalmost arvicolines, and confirm that
true lemmings (Lemmus) and collared lemmings (Dicrostonyx) are not closely related as suggested by morphology. Red-
backed voles (Myodini) are found as the sister-group of a clade encompassing water vole (Arvicola), snow vole
(Chionomys), and meadow voles (Microtus and allies). Within the latter, no support is recovered for the generic
recognition of Blanfordimys, Lasiopodomys, Neodon, and Phaiomys as suggested by morphology. Comparisons of parameter
estimates for branch lengths, base composition, among sites rate heterogeneity, and GTR relative substitution rates
indicate that CYB sequences consistently exhibit more heterogeneity among codon positions than GHR. By analyzing the
contribution of each codon position to node resolution, we show that the apparent higher efficiency of GHR is due to
their third positions. Although we focus on speciation events spanning the last 10 million years (Myr), CYB sequences
display highly saturated codon positions contrary to the nuclear exon. Lastly, variable length bootstrap predicts a
significant increase in resolution of arvicoline phylogeny through the sequencing of nuclear data in an order of magnitude
three to five times greater than the size of GHR exon 10.

Conclusion: Our survey provides a first resolved gene tree for Arvicolinae. The comparison of CYB and GHR
phylogenetic efficiency supports recent assertions that nuclear genes are useful for resolving relationships of recently
evolved animals. The superiority of nuclear exons may reside both in (i) less heterogeneity among sites, and (ii) the
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presence of highly informative sites in third codon positions, that evolve rapidly enough to accumulate synapomorphies,
but slow enough to avoid substitutional saturation.

Background
During the last decade, molecular phylogenetics based on
the comparative analysis of markers from mitochondrial
and nuclear genomes allowed for the revision of mamma-
lian systematics [1,2]. Sequencing efforts initially focused
on mitochondrial DNA (mtDNA) due to the availability
of conserved primers, the presence of rapidly evolving
sites, and a reduced effective population size inducing the
rapid fixation of variants between subsequent speciation
events. Some protein-coding genes such as cytochrome b
[CYB] have emerged as central tools in investigating
intraspecific [e.g. [3-6]] to ordinal-level [e.g. [7-9,6]] evo-
lutionary relationships. To date (January 2006), ca. 5,000
complete CYB entries are available for mammals in public
data bases, and furthermore, another mitochondrial gene
– the cytochrome c oxidase I – has been proposed as the
marker for animal DNA barcoding [10]. However, the
strong nucleotide saturation encountered at third codon
positions as well as a high sensitivity to taxon sampling
soon caused the questioning of the utility of mitochon-
drial protein-coding genes in general, and CYB in particu-
lar for resolving deep phylogenies [11,12]. Owing to their
different evolutionary patterns – a less biased base com-
position and lower saturation than mitochondrial genes
[13,14] – nuclear genes have represented a reasonable
alternative to mtDNA for reconstructing deep-level mam-
malian phylogenies [[15-21]; but see [22]]. By providing
complementary information, mitochondrial and nuclear
genes are thus generally employed at different levels, low-
level phylogeny and taxonomy for the former, and
deeper-level for the latter.

Several mtDNA-based studies of mammalian systematics
have shed light on the difficulties experienced in using
CYB to resolve phylogenies at lower taxonomic levels.
Several works at the family level recovered multifurcations
among genera or even species, which led to the conclu-
sion of rapid, near-simultaneous divergences of multiple
lineages (= star-phylogeny), without any time left for
synapomorphies to accumulate in mtDNA. This interpre-
tation has been put forward for some speciose clades of
rodents, such as Ctenomyidae [23], Echimyidae [24], or
Sigmodontinae [25]. The star-phylogeny hypothesis was
also supported by the lack of resolution for relationships
among genera, contrasting with well-defined nodes above
and below multifurcations [23,24,26]. However, an alter-
native hypothesis suggests that CYB sequences have
undergone substitution saturation throughout the course
of speciation events, leading to a loss of the original phy-
logenetic signal, and producing a soft-polytomy [27]. In

this case, the use of slower-evolving nuclear DNA
(nuDNA) might represent a better choice for resolving
such recent radiations. Supporting this hypothesis,
sequences from such markers, either exons or introns,
have recently improved among-families [28-30], or even
among-genera [31,32] phylogenetics of spiny rats, squir-
rels, whales, weasels, and spiral-horn antelopes.

In the present study, we focused on the evolutionary his-
tory of voles, lemmings, and muskrats. These animals
belong to the Arvicolinae, one of the six Cricetidae sub-
families of the highly-diverse Muroidea, which encom-
passes one third of all rodent species. The Arvicolinae
represent themselves one of the most impressive placental
radiations in the Northern Hemisphere, consisting of 151
species and 28 genera [33]. As stated by [33], the explo-
siveness and recency of arvicoline evolution can be dra-
matically highlighted by the more than 60 species of
Microtus and the inconsistency of their systematic treat-
ment. Phylogenetic reconstructions based on mitochon-
drial sequences (CYB and NADH-dehydrogenase 4
[ND4]) provided unresolved topologies at two different
levels: (1) among arvicoline genera, and (2) among spe-
cies of Microtus [34-36]. These results reinforced observa-
tions previously made by paleontologists [37,38] who
concluded that two successive pulses of speciation
occurred during the evolutionary course of arvicoline
rodents over the last 10 million years (Myr).

Following the encouraging results from recent studies [28-
32], we thus compared the relative contribution of a
nuclear marker – exon 10 of the growth hormone receptor
(GHR) gene – to one of the mitochondrial CYB for infer-
ring phylogenetic relationships among major Arvicolinae
lineages. We performed analyses in a probability frame-
work because (i) maximum likelihood (ML) and Bayesian
methods are indeed based upon explicit models of
sequence evolution, (ii) they allow the definition of inde-
pendent models to reflect the contrasting substitution pat-
terns among the three codon positions of GHR and CYB,
and (iii) they have proven to be robust to a number of sys-
tematic biases during phylogenetic reconstruction [39-
41]. In addition to such inter-sites comparisons, we eval-
uated the amount of saturation at each codon position.
Using the variable-length bootstrap method, we also esti-
mated the amount of sites required by mitochondrial,
CYB-like, and nuclear, GHR-like data to resolve recent and
deeper nodes of the evolution of voles and lemmings.
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Results and discussion
1. Mitochondrial and nuclear phylogenies of the 
Arvicolinae
(i) Contribution of CYB
Both Bayesian and ML DNA analyses provide poorly
resolved phylogenies, with most of arvicoline genera and
most of Microtus species arising from a polytomy (Figure
1A). Only three nodes benefit from strong support (BPML
> 70 and PP > 0.95), four are moderately supported (BPML
> 50 or PP > 0.95), whereas the 18 remaining nodes do
not receive significant support. The three clades unambig-
uously identified (Figure 1A) involve: (i) both Myodes spe-
cies included in our analysis: M. glareolus and M.
andersoni; (ii) Neodon irene + Phaiomys leucurus; and (iii)
Microtus (Microtus) arvalis + M. (Microtus) guentheri. At the
amino acids level, only 12 % of the CYB sites are parsi-
mony informative among arvicolines, and, as already
observed by [34], the corresponding topology is not
resolved (a single node is supported by BPML > 70).

(ii) Contribution of GHR exon 10
Branching patterns recovered with ML and Bayesian
methods are identical. GHR sequences provide much
more resolved topologies (Figure 1B) than those based
upon CYB sequences, with eight strongly and four moder-
ately supported nodes. All clades previously identified in
the CYB tree are recovered with higher support, excepted
for the sister-clade relationship between Microtus arvalis
and M. guentheri not found in GHR trees. A better resolu-
tion involves all taxonomic levels from internal suprage-
neric relationships to intra-Microtus nodes (Figure 1B).
New, well-supported clades include: (i) the monophyly of
the subgenus Alexandromys (Microtus kikuchii, M.
oeconomus, and M. middendorffi); (ii) the monophyly of a
Microtus sensu lato clade (Neodon, Phaiomys, Blanfordimys,
Lasiopodomys, and Microtus) but excluding Chionomys; (iii)
the grouping of Arvicola + Chionomys + Microtus s.l.; (iv)
the association of Eothenomys with Myodes (= Myodini);
and (v) a sister-clade relationship between Myodini and
Arvicolini. At the amino acids level, 16 % of the GHR sites
are parsimony informative among arvicolines, and the

Maximum posterior probability trees reconstructed from the mitochondrial CYB (left, A) and nuclear GHR (right, B) sequencesFigure 1
Maximum posterior probability trees reconstructed from the mitochondrial CYB (left, A) and nuclear GHR 
(right, B) sequences. Two reliability indices are given on nodes: the Bayesian posterior probabilities/the maximum likelihood 
bootstrap percentages. Note the difference of scale (expressed as substitutions per sites [s.p.s.]).
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corresponding topology is poorly resolved (three nodes
are supported by BPML > 70).

We also scanned the GHR alignment for potential indel
signatures. A 3-bp deletion at position 1,925 of the GHR
sequence of Rattus norvegicus (Accession number
NM_017094) is diagnostic for the monophyly of Arvicol-
inae. A 3-bp in-frame insertion – a direct AGC repeat – at
position 1,778 of Rattus norvegicus (Accession number
NM_017094) is shared by Neodon + Phaiomys, and inde-
pendently by Blanfordimys + Lasiopodomys.

Independent paleontological and molecular studies
respectively estimated that divergence times among some
arvicoline genera occurred 3–5 Myr ago (Mya) [37] to 5–
9 Mya [30,34,42]. The adaptive radiation of Microtus has
been dated to approximately 2 Myr by most paleontolo-
gists [37,43] but there is molecular evidence for splits
between 2.6 to 4.4 Mya [34]. The GHR topology is here
more resolved than the CYB one for intergeneric specia-

tion events, corresponding to mean uncorrected pairwise
divergences of 3.8 % ± 0.9 (GHR) versus 14.2 % ± 1.6
(CYB). For the 2–5 Myr old Microtus radiation, corre-
sponding to divergences of 2.2% ± 0.6 (GHR) and 11.7 %
± 1.2 (CYB), the GHR topology is at least as resolved as the
CYB one. These results emphasize previous conclusions
[44] that highlighted the superiority of nuclear genes over
mitochondrial genes even for divergences spanning the
last 5–10 Myr.

(iii) Combination of CYB and GHR genes
Bayesian and ML analyses of the concatenation of mito-
chondrial and nuclear data sets provide highly congruent
and globally well-resolved topologies, very similar to the
ones based upon GHR alone. Nevertheless, increased sup-
port values are generally recorded. Thus, nine nodes are
strongly supported and six are moderately supported. The
newly recovered associations involve nodes labeled H, B,
C, P, and Q (Figure 2): (i) Chionomys sister-group of Micro-
tus s.l. with Arvicola placed at the base of Arvicolini; (ii)

Maximum posterior probability tree reconstructed from the combination of the mitochondrial CYB and nuclear GHR sequencesFigure 2
Maximum posterior probability tree reconstructed from the combination of the mitochondrial CYB and 
nuclear GHR sequences. Three reliability indices are given on nodes: the Bayesian posterior probabilities/the bootstrapped 
Bayesian posterior probabilities/the maximum likelihood percentages. Letters (from A to Q) refer to nodes recovered both in 
ML and Bayesian inferences (see Table 2).
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Prometheomys emerging first within Arvicolinae; (iii)
Dicrostonyx + Phenacomys; (iv) a clade, only supported in
the Bayesian analysis (PP = 0.97; BPbay = 0.60), and unit-
ing five Microtus species: M. (Pedomys) ochrogaster, M.
(Aulacomys) richardsoni, M. chrotorrhinus, M. (Mynomes)
pennsylvanicus, and M. longicaudus; (v) Microtus (Mynomes)
pennsylvanicus sister-group of Microtus longicaudus.

Clades moderately to strongly supported in the GHR tree
data benefit from similar support values after the combi-
nation of GHR and CYB sequences. Actually, a substantial
increase of support is found for nodes defining the basal
position of Prometheomys, and the monophyly of Microtus
s.l. is reinforced. On the opposite, the sister-clade relation-
ship recovered between Myodini and Arvicolini is less
supported in the combined tree than in the GHR one.
Expectedly, the M. arvalis + M. guentheri clade, recovered
by CYB data, is similarly supported in the combination.

To summarize, the combination of CYB and GHR
sequences provides a phylogeny where two-third of the
nodes benefit from a medium to high support (Figure 2).
The addition of nuclear sequences also allows the division
of a single, multi-taxa polytomy into two noticeably
smaller multifurcations. The first includes Arvicolini,
Ondatra, Lemmus, Dicrostonyx, and Phenacomys, although
the latter two genera are consistently found as sister-group
across the different reconstructions performed. The sec-
ond multifurcation includes phylogenetic relationships
among Microtus s.l. subclades with evidence for a deeper
divergence of the Neodon + Phaiomys lineage.

2. Systematics of voles, lemmings, and muskrats
(i) Interrelationships of major genera
For the first time, and contrary to phylogenies based on
mitochondrial data alone [34], the use of a nuclear DNA
exon sheds light on the systematics of arvicoline rodents.
The validation of the Arvicolini tribe is one of the most
striking results. The molecular evidence for a clade includ-
ing Arvicola, Chionomys, and Microtus s.l. (Figure 2) – with
the water vole emerging at first – agrees with paleontol-
ogy. Actually, the genera Microtus and Chionomys are sup-
posed to be linked to Allophaiomys which represents an
early split from the lineage Mimomys that led to Arvicola
[37]. Our results concur with other research [45,46] that
red-backed voles form a complex of closely related species
as suggested by the strong support recovered for the
grouping of Myodes, (i.e., Clethrionomys and Phaulomys
sensu [47]) with Eothenomys.

In addition, a first molecular evidence is here provided for
the phylogenetic position of enigmatic genera suspected
to have differentiated early within the arvicoline radia-
tion. The long-clawed mole-vole, Prometheomys, currently
localised in the Caucasus Mountains, was considered as a

relic of an archaic lineage formerly widespread through-
out most of Eurasia [33,48-51]. This view is corroborated
by its first emergence in the GHR and combined phyloge-
netic trees (Figures 1B and 2). The collared lemming,
Dicrostonyx as well as the heather vole, Phenacomys, exhibit
plesiomorphic morphological traits which have compro-
mised their systematic affiliation to other arvicolines.
Dicrostonyx was initially grouped with true lemmings
whereas Phenacomys was included in either Arvicolini or
Myodini [33]. By obtaining a moderately supported sister-
taxa relationship between Dicrostonyx and Phenacomys, our
study is in accordance with previous result from the anal-
ysis of highly repetitive DNA (LINE-1) elements [52].
Although unexpected, this clade might find a biogeo-
graphical explanation as these two taxa are primarily
known – from a palaeontological viewpoint – in the Arctic
region of Eurasia and North America [37,53,54].

To summarize our results from a taxonomic standpoint,
the phylogenetic relationships discussed above agree with
the tribal recognition of Lemmini (Lemmus), Ondatrini
(Ondatra), Dicrostonychini (Dicrostonyx), Phenacomyini
(Phenacomys), Prometheomyini (Prometheomys), Myodini
(Myodes and Eothenomys) and Arvicolini (Arvicola, Chiono-
mys, Microtus, Neodon, Phaiomys, Blanfordimys, and Lasiopo-
domys) [33].

(ii) Systematics of Microtus
Thanks to the sampling of new taxa and nuclear DNA
data, our phylograms helped to test the accuracy of sys-
tematic treatment of Microtus taxa and close genera. Some
taxa – Blanfordimys, Chionomys, Lasiopodomys, Neodon,
Phaiomys – have indeed been split from Microtus because
they retain distinctive and plesiomorphic morphological/
caryological traits [33]. However, except for Chionomys
(snow voles), other taxa are interspersed among "true"
Microtus lineages in our nuclear or combined topologies,
giving no support to their generic recognition.

Actually, three lineages are clearly identified within Micro-
tus. Firstly, strong evidence is provided for a Neodon +
Phaiomys subgenera clade, contradicting former studies
[33] which, using molar and other external and cranial
contrasts, rejected any close phylogenetic affinity between
them. Secondly, Microtus kikuchii, M. oeconomus, and M.
middendorffi form a well-supported association. Inde-
pendent source of phylogenetic data – here nuclear GHR
sequences – thus confirm the "Asian lineage" recently
identified on the basis of mitochondrial phylogenies and
chromosomal data [35,36,55], as well as the monophyly
of the subgenus Alexandromys, as redefined in [33]. The
five nearctic species included in our analysis and repre-
sentatives of various subgenera (Aulacomys, Mynomes,
Pedomys, as well as Microtus longicaudus and M. chrotorrhi-
nus whose systematic status is unclear) are associated with
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Table 1: Bayesian estimates of DNA substitution model parameters for CYB, GHR, and their codon positions.

CYT B GHR

1 2 3 1 2 3

Sites 381 381 381 307 307 307

% A 36.0
33.7–38.4

28.2
25.6–31.0

30.5 20.9 42.7 27.7 34.3 20.2
26.4–34.6 17.1–25.0 38.5–46.4 23.2–32.3 29.5–39.2 16.5–24.2

% C 33.3
31.4–35.3

27.4
24.8–30.1

28.8 25.7 33.6 21.8 30.4 30.9
24.9–32.9 21.8–29.9 30.7–36.4 17.8–26.1 25.9–35.1 26.7–35.3

% G 9.2
7.8–10.6

23.0
20.5–25.1

22.2 11.7 3.8 33.4 14.6 21.2
18.4–26.1 8.8–14.9 3.1–4.7 28.7–38.4 10.9–18.4 17.4–25.3

% T 21.5
20.0–23.0

21.8
19.5–24.3

18.5 41.6 19.9 17.1 20.7 27.7
15.6–21.8 37.1–46.3 17.8–22.4 13.6–21.2 16.8–24.8 23.5–32.1

r AG 6.8
4.0–11.7

5.8
3.5–9.3

4.3 1.0 22.1 7.3 17.9 13.5
2.0–8.4 0.1–3.5 4.2–83.7 2.4–19.5 2.8–68.7 6.1–29.0

r CT 19.9
11.2–37.6

6.5
4.0–10.4

37.2 40.2 19.0 6.2 20.2 5.4
12.3–78.2 7.7–93.7 3.8–76.0 2.0–16.2 2.9–72.0 2.6–10.4

r AC 0.7
0.4–1.4

1.06
0.6–1.8

0.6 0.3 1.1 2.5 2.7 1.0
0.2–1.4 0–1.7 0.2–4.4 0.7–7.3 0.4–10.7 0.4–2.3

r AT 1.6
0.8–3.1

0.9
0.4–1.5

1.8 0.4 2.2 2.2 2.9 0.8
0.6–4.0 0.1–1.4 0.4–8.4 0.6–6.4 0.2–13.0 0.3–1.8

r CG 0.3
0.1–0.7

1.5
0.8–2.6

0.2 14.4 2.4 2.1 6.4 1.3
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some support in the combined analysis. The recognition
of an American clade within Microtus strengthens previous
results from biochemical analyses [37] and mitochondrial
phylogenies [35,36]. Third, some support for a Terricola +
Microtus clade is recovered, suggesting close phylogenetic
affinities among Western Palaearctic taxa, and reinforcing
the conclusions of [36].

3. Compared molecular evolution of CYB and GHR in 
arvicolines
(i) Characteristics of substitution patterns
Nucleotide substitutions appear to accumulate in CYB
and GHR according to contrasted patterns. CYB evolves at
a high rate, 11.6 times faster than GHR does as indicated
by the total branch length of ML phylograms. Moreover,
as expected for a mitochondrial protein-coding gene [7],
Table 1 indicates that CYB: (i) has a base composition that
greatly deviates from uniformity due to an important def-
icit of G (< 10%) and an excess of C and A (ca. 35%) ; (ii)
is characterized by strong biases in relative substitution
rates, with an excess of transitions over transversions,
notably due to a higher frequency of C-T changes ; (iii)
shows a stronger rate heterogeneity among sites, with a Γ
shape parameter (α = 0.17) lower than the one of GHR (α
= 0.48). These patterns reflect the fact that most of CYB
substitutions occur on third codon positions and are gen-
erally synonymous.

(ii) Contrasted substitution patterns among codon positions
As generally pointed out for nuclear genes relative to
mitochondrial ones, GHR exhibited a less contrasted sub-
stitution pattern during its evolutionary course. For
instance, more heterogeneity among codon partitions is
observed for CYB relative to GHR for two parameter sets.
(i) Evolutionary rates – as measured by total branch
lengths (TBL) on ML phylograms – are highly heterogene-
ous among CYB codon positions, with CYB3 (TBL =
58.20) evolving respectively about 24 and 166 times faster
than CYB1 (TBL = 2.39), and CYB2 (TBL = 0.35). On the
contrary, evolutionary rates are moderately contrasted
among GHR codon positions, with GHR3 (TBL = 1.17)
evolving three times faster than GHR1 (TBL = 0.41) and
GHR2 (TBL = 0.34). (ii) Base composition also appears
more heterogeneous among CYB codon positions (Table

1), with 11.7% and 3.8% of G for CYB2 and CYB3 respec-
tively. By contrast, only GHR2 shows such a low value of
G (14.6%). An excess of T in CYB2 (41.4%) and A in CYB3
(43.2%) is also noticed. Moreover, all GHR codon posi-
tions pass the 1% chi-square test that compares the nucle-
otide composition of each sequence to the frequency
distribution assumed in the ML model, whereas Microtus
oeconomus and M.middendorffi CYB third codon positions
violate it.

(iii) Partitioned likelihood analyses
The marked differences of base composition and evolu-
tionary dynamics observed among CYB and GHR codon
positions led us to apply the partitioned likelihood
approach [56] in order to evaluate their impact on model
fit (Table 2). For both CYB and GHR, the AICs for parti-
tioned models are the lowest, confirming a gain in log-
likelihood when an independent set of parameters is
attributed to each codon position. Actually, AICs indicate
that all sets of parameters for CYB are contrasted enough
among codon positions to have an impact on model fit
(Table 2). More precisely, the greater increase of log-like-
lihood values is due, in decreasing order of impact, to var-
iable rates between sites (Γ), to variable evolutionary rates
along branches (BL), to variable base compositions (BC),
and to variable GTR substitution rates (GTR). By contrast,
for GHR sequences, AICs indicate that only BC and Γ have
a significant impact on model fit, whereas the incorpora-
tion of free GTR and BL parameters for each of the three
codon positions induces the over-parametrization of such
models (Table 2). These analyses confirm that there is
more heterogeneity among CYB codon partitions than
among GHR partitions.

4. Identification of promising nucleotide sites for arvicoline 
phylogenetics
Although some studies have elucidated the limited phylo-
genetic utility of individual nuclear genes at low taxo-
nomic level because of their low variability [29,32,57], we
provide here a well-resolved GHR tree among Arvicolinae.
We will now explore why GHR performs better than CYB
for deeper nodes – the inter-generic arvicoline radiation –
, and also provides increased support to more recent
nodes – the Microtus sublineages.

0–0.7 1.6–49.5 0.1–10.9 0.6–5.6 1.0–24.3 0.5–2.7

α (Γ 8) 0.17
0.16–0.19

0.48
0.41–0.53

0.14 0.05 1.22 0.05 0.05 0.22
0.12–0.17 0.05–0.06 0.96–1.54 0.05–0.05 0.05–0.06 0.18–0.27

Number of sites, base composition (%A, C, G, and T), relative GTR substitution rate parameters (r AG, CT, AC, AT, CG, standardized to r GT = 
1.0), and Gamma shape parameter (Γ) are given, with mean values on first sublines, and 95% credibility intervals, italicized on second sublines. 
Parameter estimates are also measured for each codon position, and are recapitulated in columns 1 (first), 2 (second), and 3 (third positions).

Table 1: Bayesian estimates of DNA substitution model parameters for CYB, GHR, and their codon positions. (Continued)
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(i) Localization of the phylogenetic signal among codon positions
The analysis of the contribution of each codon partition
to node resolution reveals that GHR3 holds the most
informative sites (Table 3). GHR3 sites recover most of the
nodes with strong support, especially within the interge-
neric radiation. Although its phylogenetic signal generally
appears slightly lower for the last 2 Myr divergences (e.g.,
intra-Microtus nodes), globally, GHR3 remains the most
informative partition. GHR1 and CYB3 contribute much
less than GHR3 to overall resolution but hold some sup-
port (BP > 40) for ca. one-third of the nodes. On the con-
trary, other partitions – CYB1 and, especially, CYB2 and
GHR2 – are not informative for intra-Arvicolinae relation-
ships as reflected by exceedingly low bootstrap scores (BP
< 28: Table 2). With respect to nodes that are revealed or
are more strongly supported by the combination of CYB
and GHR (e.g. nodes H and P), we notice that no partition
is superior in resolution ability with a weak signal being
shared by all codon positions.

(ii) Substitution saturation through time
The lack of phylogenetic signal at high taxon level often
recorded by mitochondrial sequences has been consid-
ered as a direct consequence of substitution saturation
[e.g. [27,58]]. We thus evaluated the saturation level of
each codon partition by plotting the pairwise observed
substitutions between the 28 sequences as a function of
the pairwise number of substitutions inferred on the ML
tree (Figure 3). Under this graphical representation, CYB3
appears extremely saturated (slope S = 0.02), suggesting
that high levels of nucleotidic saturation may be reached
for speciation events more recent than 5–10 Ma. This
trend is perhaps here exaggerated by the fast evolutionary
rate of muroid rodent sequences [44]. Multiple substitu-
tions also occur at CYB1 (S = 0.17) whereas analyses for
CYB2 (S = 0.47) and all GHR codon positions (0.69 < S <
0.99) do not reveal significant saturation as detected by
ML. Codon partitions can thus be categorized into three
classes corresponding to (i) highly saturated and weakly
informative sites (CYB1 and CYB3); (ii) less saturated and

weakly informative sites (CYB2, GHR1, and GHR2); (iii)
less saturated and strongly informative sites (GHR3).

(iii) The efficiency of GHR third codon positions
By comparing contribution to node resolution, saturation
level, and evolutionary patterns inherent to each codon
partition, it becomes possible to determine the character-
istics of informative versus uninformative molecular sites.
We thus realize that GHR3 differed from uninformative
CYB2, GHR1, and GHR2 partitions by a faster evolution
rate (see above, section 3). In contrast, CYB3 and CYB1
partitions are much less informative than GHR3 despite
higher evolutionary rates that would have allowed the
accumulation of a larger number of synapomorphies. A
high substitution rate thus appears detrimental too, hav-
ing been more likely to have led to saturation (Figure 3).
Moreover, strong biases in base composition and GTR
substitutions could also favour substitutional saturation.
For instance, although CYB1 and GHR3 share similar evo-
lutionary properties (GC levels, Γ shape, GTR rates: Table
1) – CYB1 is more affected by multiple substitutions
because of either a slightly higher evolutionary rate or an
excess of C-T over A-G transitions. Our study therefore
suggests that third codon positions of GHR are the most
suitable sites for resolving the recent evolutionary radia-
tion of arvicoline rodents. The higher efficiency of GHR3
is a result of the trade-off in evolutionary rate, rapid
enough to accumulate synapomorphies, yet slow enough
to remain unaffected by saturation.

5. Perspectives: Which markers to be used for resolving
the arvicoline radiation?

The resolved GHR tree is perhaps a first step in challeng-
ing the hypothesis of a hard-polytomy for Arvicolinae
genera. As shown for other placental taxa – spiral-horn
antelopes [32], hares [57], or bears [59] – our results sug-
gest that phylogenetic signal has been progressively oblit-
erated by higher mtDNA rates whereas it has persisted in
at least one slower-evolving nuclear gene. However, the

Table 2: Akaike Information Criterion (AIC) sensitivity analyses about the effect of model parameters on log-likelihood gains provided 
by codon partitions.

Model of DNA evolution

No codon partition BC effect GTR effect Γ effect BL effect BC + GTR + Γ + BL effect

CYB 23,021.0 22,742.4 22,954.8 22,509.1 22,689.3 21,901.9
GHR 8,352.0 8,306.1 8,347.7 8,346.2 8,434.3 8,388.3

In the simplest model – without codon partition–, a single set of base composition (BC), substitution rate (GTR), among-sites rate heterogeneity 
(Γ), and branch length (BL) parameters is used, irrespective of the CYB and GHR codon positions. In the most complex model, one independent 
set of BC, GTR, Γ, and BL parameters is attributed to each codon position of either CYB or GHR. For intermediate models, the effect of giving a 
set of either BC, GTR, Γ, or BL parameters to each codon partition is measured through the AIC (= -2 × log-likelihood of the reference topology 
[Figure 2] + 2 × number of free parameters). The best, i.e., lowest, AIC are in bold for each gene.
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GHR gene tree is based on a single nuclear locus (GHR),
and it does not necessarily reflect the organismal history
of arvicoline rodents. Actually, the resolution of the poly-
tomy is further complicated by the eventual incongruence
of individual gene trees with species trees due to incom-
plete lineage sorting [60]. Consequently, the comparison
of multiple gene trees is the only way to get a central ten-
dency which could be interpreted as the species tree [61-
63]. If multiple gene trees agree on a phylogenetic struc-
ture, we could then definitively dismiss the star-phylog-
eny hypothesis for the Arvicolinae. In addition to
allowing us to make predictions on the amount of CYB/
GHR data required to decipher the phylogeny of the Arvi-
colinae, variable length bootstrap analyses help us to
identify which kind of markers should be considered for
further sequencing.

(i) The not-so-evil mitochondrial DNA
Four examples of VLB curves are provided on Figure 4: two
represent deeper (intergeneric) nodes, moderately (node
C) to strongly (node G) supported in the GHR + CYB tree,
and two others correspond to more recent (intra Microtus)
nodes, moderately (node P) to strongly (node L) sup-
ported in the combined topology. For most nodes
(including nodes C, G, L, P; Figure 4), the resampling of
more CYB sites does not induce an increase of bootstrap
support. Despite using a ML model for VLB analyses
which better accommodates base composition bias and
among-site rate heterogeneity, CYB sequences do not

appear more efficient than in other studies focusing on
comparable taxonomic levels [29]. Thus, the analysis of
more data holding the same evolutionary properties as
CYB might not bring more overall resolution.

The lack of phylogenetic signal as well as strong saturation
and large among-sites heterogeneity questions the utility
of CYB sequences for investigating phylogenetic relation-
ships among taxa, like voles and lemmings, which have
experienced relatively recent and rapid radiations. Actu-
ally, we concur with others [64,65] on the usefulness of
CYB sequences – including third codon positions – when
they are combined with less saturated sequences. Firstly,
we have shown that CYB sometimes holds phylogenetic
signal for specific nodes where GHR is non-informative
(node O, see Results & Discussion, paragraph 1).
Although our study mainly focuses on intergeneric phylo-
genetic relationships, we could expect that CYB contribu-
tion would increase with nodes younger than 2 Myr.
Secondly, VLB curves clearly indicate that data combina-
tion (CYB + GHR) provides slightly higher bootstrap sup-
port than does GHR alone, especially when the number of
resampled sites is higher than 2,000 (e.g., nodes L and P:
Figure 4). Results of VLB analysis and comparisons of
GHR and combined topologies show that the CYB signal
does not contradict the GHR one. Moreover, the incorpo-
ration of CYB data to nuclear data does not lead to the
degradation of phylogenetic signal but slightly improves
it, revealing the existence of weak and initially hidden

Table 3: Maximum likelihood bootstrap support for a selection of nodes, computed according to codon positions 1, 2, or 3 of CYB and 
GHR.

Nodes CYB 1 CYB 2 CYB 3 GHR 1 GHR 2 GHR 3

Intergeneric relationships
Phyllotis + Mesocricetus + Arvicolinae 70 32 * 63 40 66

A * 63 * 88 35 99
B * * * 44 * 21
C 28 * 11 * 28 34
D * * * * 14 90
E * * 45 * * 91
F 55 * 50 43 * 98
G * * * 20 * 87
H * 20 33 20 * *
I * 22 33 * * 81

Intra-"Microtus" relationships
J 14 18 79 52 22 92
K * * * * * 41
L 8 * 47 55 * 82
M 40 10 14 * 28 34
N * * 11 * * 15
O 26 * 42 * * 31
P * * * * * 27
Q 44 * * * * 29

Node lettering refers to Figure 2. Stars correspond to bootstrap scores inferior to 5% for the corresponding node under the codon partition 
analyzed.
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information within CYB. Because complete mitochon-
drial genomes include sequences undergoing various evo-
lutionary pressures (e.g. CYB, but also COX1, or rRNAs),
and are available for an increasing number of taxa, partic-
ularly among mammals, we suggest the evaluation of
their ability to resolve rapid radiations at low taxonomic
level [66], and a comparison of their efficiency to that of
nuclear loci.

(ii) The virtues of nuclear DNA
As exemplified in Figure 4, GHR performs better than CYB
for most nodes, irrespective of the age of the node. More
generally, VLB curves indicate a higher efficiency of GHR
relative to CYB sequences for nearly all nodes, i.e., they
recover nodes with higher bootstrap support with a lower

number of resampled sites. Even for weakly supported
nodes in our initial analyses of ca. 1000 GHR sites, only
2,000 to 4,000 GHR additional sites are needed to
increase BP values up to 70% or more. We may thus
expect a significant improvement in nodal support
through the sequencing of nuclear data in an order of
magnitude three to five times greater than the size of GHR
exon 10. As VLB applies the resampling of sites holding
the same phylogenetic signal as GHR, this method may
provide conservative predictions on the impact of further
sequencing on the overall resolution of the arvicoline
phylogenetic tree. By adding nuclear data sampled from
different loci, we could expect an improvement in node
resolution [67], in particular for nodes not well-supported
by GHR data alone (e.g. nodes P, G). Since genetically

Saturation plots of the number of observed differences as a function of the numbers of inferred substitutions for each pair of sequences at each codon position of CYB and GHR genesFigure 3
Saturation plots of the number of observed differences as a function of the numbers of inferred substitutions 
for each pair of sequences at each codon position of CYB and GHR genes. The Y = X straight line corresponds to 
the situation where there is no homoplasy detected in the data. Note that the scale of the X-axis is four-fold the scale of the 
other partitions for CYB1, and 60-fold for CYB3. The scale of the Y-axis is 10-fold the scale of the other partitions for CYB3.
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independent loci have undergone different substitutional
pressures, they may provide complementary resolution of
the species tree, and increase the chance of finding molec-
ular synapomorphies that resolve every node
[13,29,57,64]. Furthermore, we predict that introns might
be equally as efficient for retracing the phylogeny of voles
and lemmings – as recently shown for similar recent evo-
lutionary radiations [14,29,59] – because of their relaxed
substitution constraints and their potentially greater
number of informative sites.

Conclusion
The nuclear exon 10 of the GHR performs better than the
mitochondrial CYB for resolving Arvicolinae phylogenetic
relationships. Support is found for a sister-group relation-
ship between red-backed voles (Myodini) and a clade
including water (Arvicola), snow (Chionomys), and
meadow voles (Microtus and allies). Lemmings (Lemmus
and Dicrostonyx) are found polyphyletic while the Cauca-

sian long-clawed vole (Prometheomys) is among the basal-
most arvicoline genera. Contrary to recent taxonomic
suggestions, we do not obtain support for splitting Blan-
fordimys, Lasiopodomys, Neodon, and Phaiomys from Micro-
tus. We concur with others [68-70] that the higher quality
of nuclear genes resides in higher values of gamma param-
eter, uniform and stationary base compositions, and more
uniform nucleotide substitution probabilities. The useful-
ness of nuclear exons for investigating 2–10 Myr old evo-
lutionary histories is probably due to highly informative
third codon positions, which keep a good compromise in
their evolutionary rate: rapid enough to accumulate
synapomorphies, yet slow enough to be not affected by
substitutional saturation. The sequencing of nuclear DNA
data in an order of magnitude three to five times greater
than the size of GHR exon 10 might resolve most nodes of
the Arvicolinae phylogeny provided that multiple geneti-
cally independent gene trees agree on the phylogenetic
structure.

Plots of the variable-length bootstrap percentages for CYB (filled circles), GHR (filled triangles), and combined data (open squares) for four nodes recovered in Bayesian and ML analyses (see Fig. 2)Figure 4
Plots of the variable-length bootstrap percentages for CYB (filled circles), GHR (filled triangles), and com-
bined data (open squares) for four nodes recovered in Bayesian and ML analyses (see Fig. 2). The X-axis is the 
number of sites resampled (in 250-bp increments from 0 to 5000-bp), and the Y-axis is the maximum likelihhod BP percentage 
(out of 100 pseudoreplicates).
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Methods
Taxonomic sampling and molecular biological methods
Our study is based on a total of 25 arvicoline species rep-
resenting 14 of the 28 genera and 7 of the 10 tribes accord-

ing to [33]. For the genus Microtus, we included 12
specimens belonging to different subgenera or species
whose taxonomic status is questionable [35,36] (see Table
1). We used as outgroups, representatives of two lineages

Table 4: Genera and species of Arvicolinae, with cytochrome b (CYB) and Growth Hormon Receptor (GHR) accession numbers and 
references.

Subfamily 
(Genus)

(Subgenus) 
Species

Common name CYB CYB GHR GHR Source

Accession Reference Accession Reference

Gerbillinae Meriones shawi Shaw's jird - - AF332021 [90]
Meriones 
unguiculatus

Mongolian jird AF159405 [91] - -

Murinae Rattus norvegicus Brown Rat VO1556 [92] X16726 [93]
Sigmodontinae Phyllotis darwini Darwin's leaf-eared mouse U86819 [94] AF332023 [90]
Cricetinae Mesocricetus 

auratus
Golden Hamster AF119265 [34] AF540632 [95]

Arvicolinae
Arvicola A. terrestris European water vole AF119269 [34] AM392380 This study ISEM T-3054
Blanfordimys B. bucharicus Bucharian vole AM392369 This study AM392392 This study ISEM T-1060
Chionomys C. nivalis European snow vole AM392367 This study AM392378 This study ISEM T-523
Dicrostonyx D. torquatus Arctic Lemming AF119275 [34] AM392381 This study ISEM T-1337
Eothenomys E. melanogaster Père David's vole AM392374 This study AM392399 This study ISEM T-4338
Lasiopodomys L. mandarinus Mandarin vole AM392373 This study AM392396 This study ISEM T-1066
Lemmus L. sibiricus Brown Lemming AJ012671 [96] AM392398 This study ISEM T-1336
Microtus M. (Microtus) 

arvalis
Common vole U54488 [97] AM392386 This study ISEM T-3047

M. (Aulacomys) 
chrotorrhinus

Rock vole AF163893 [98] AM392383 This study ISEM T-603

M. (Aulacomys) 
richardsoni

Water vole AF163905 [98] AM392387 This study ISEM T-598

M. (Terricola) 
duodecimcostatu
s

Mediterranean pine vole AM392375 This study AM392400 This study ISEM T-4456

M. (Microtus) 
guentheri

Gunther's vole AY513804 [36] AM392397 This study ISEM T-4179

M. 
(Alexandromys) 
kikuchii

Taiwan vole AF163896 [98] AM392385 This study ISEM T-276

M. (?) 
longicaudus

Long-tailed vole AF119267 [34] AM392379 This study ISEM T-136

M. 
(Alexandromys) 
middendorffi

Middendorf's vole AF163898 [98] AM392390 This study ISEM T-3509

M. (Pedomys) 
ochrogaster

Prairie vole AF163901 [98] AM392389 This study ISEM T-130

M. 
(Alexandromys) 
oeconomus

Tundra vole AF163902 [98] AM392388 This study J.R. Michaux

M. (Mynomes) 
pennsylvanicus

Meadow vole AF119279 [34] AM392376 This study ISEM T-140

Myodes M. andersoni Japanese red-backed vole AB037281 [99] AM392391 This study ISEM T-1341
M. glareolus Bank vole AM392368 This study AM392384 This study ISEM T-1389

Neodon N. irene Chinese scrub vole AM392370 This study AM392393 This study P. Giraudoux & J.-P. 
Quéré

Ondatra O. zibethicus Muskrat AF119277 [34] AM392382 This study P.-A. Crochet
Phaiomys P. leucurus Blyth's vole AM392371 This study AM392394 This study P. Giraudoux & J.-P. 

Quéré
Phenacomys P. intermedius Western heather vole AF119260 [34] AM392377 This study ISEM T-672
Prometheomys P. 

schaposchnikowi
Long-clawed mole-vole AM392372 This study AM392395 This study ISEM T-377

When sequences are new for this study, accession numbers are in bold, and the source of the tissue is mentioned.
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phylogenetically close to the Arvicolinae, Mesocricetus
auratus (Cricetinae), and Phyllotis darwinii (Sigmodonti-
nae) [42,71,30]. Two other taxa belonging to different
subfamilies of Muridae, Rattus norvegicus (Murinae) and
Meriones sp. (M. shawi + M. unguiculatus; Gerbillinae),
were chosen as more distant outgroups.

All ethanol-preserved arvicoline samples were stored in
the mammalian tissue collection of the Institut des Sci-
ences de l'Evolution de Montpellier [72]. Total DNA was
extracted using the QIAamp DNA mini kit (Qiagen). Part
of the GHR exon 10 was amplified and sequenced using
the primers GHR5 forward (5' GGCRTTCATGAYAACTA-
CAAACCTGACYTC 3') and GHR6 reverse (5' GAGGA-
GAGGAACCTTCTTTTTWTCAGGC 3'), and GHR3
forward (5' GACTTTATGCYCARGTRAG 3') and GHR4
reverse (5'-CTYACYTGRGCATAAAAGTC 3'). PCR condi-
tions were 95°C 5 min, followed by 95°C 30 sec, 61°C 30
sec, 72°C 1 min (5 times), then 95°C 30 sec, 59°C 30 sec,
72°C 1 min (5 times), followed by 95°C 30 sec, 57°C 30
sec, 72°C 1 min (5 times), then 95°C 30 sec, 55°C 30 sec,
72°C 1 min (5 times), and then 95°C 30 sec, 53°C 30 sec,
72°C 1 min (20 times), with a final extension at 72°C 5
min.

The amplification and sequencing of the CYB were con-
ducted using primers MVZ05 and MVZ14 [73] and addi-
tional internal ones MVZ16 [73] and H8 [74]. PCR
products for GHR and CYB were purified from 1% agarose
gels using Amicon Ultrafree-DNA columns (Millipore)
and sequenced on both strands using automatic sequenc-
ing (Big Dye Terminator cycle kit) on an ABI 310 (PE
Applied Biosystems).

All taxa included in our study were represented by both
CYB and GHR sequences. A 921 bp segment of the exon
10 of GHR was sequenced for 22 specimens and the com-
plete CYB (1140 bp) for 7 specimens. The arvicoline
sequences new to this study have been deposited in the
EMBL data bank, and we also used previously published
sequences when available (see Table 1).

Sequence alignment and phylogenetic analyses
Sequences were manually aligned with the ED editor of
the MUST package [75]. Non-sequenced positions as well
as introduced gaps were treated as missing data in subse-
quent analyses. Heterozygotic bases found in GHR
sequences were coded following the IUPAC nucleotide
ambiguity code.

Phylogenetic analyses of CYB and GHR alignments were
conducted under the maximum likelihood (ML) and
Bayesian methods, using PAUP* [76] version 4b10,
PHYML [77] version 2.4.4, and MrBayes version 3.04
[78]. Moreover, MrBayes provided the opportunity to run

analyses assuming different models of sequence evolution
for each predefined partition, thus permitting the param-
eters estimated for each model of sequence evolution to
be directly compared among codon positions and
between genes. When CYB and GHR sequences were com-
bined, sequences from different specimens of the same
species were sometimes used. We assumed that the phyl-
ogeographic structure detected in some arvicoline species
[45,79] was negligible as compared to the level of genetic
divergence between the distinct Microtus subgenera and
even arvicoline tribes here compared.

The program Modeltest [80] version 3.06, was used to
determine the sequence evolution model that best fits our
data using the Akaike Information Criterion (AIC). This
program examined the fit of 56 models, with either a pro-
portion of invariable sites (I), a gamma distribution of
among-sites variation of substitution rates (Γ), or both (I
+ Γ). The best-fitting substitution models were TrN93 + Γ
+ I [81] for the GHR data set, and GTR + Γ + I [82] for the
CYB data set. However, to run the same model of
sequence evolution under PHYML and MrBayes, GTR was
chosen for all phylogenetic analyses (the optimal GHR
topology was not model-dependent, as it appeared that
both GTR and TrN93 topologies were identical). To allow
a fair comparison of α estimates of Γ-shape among genes
and partitions, we did not use a proportion of invariable
sites, but rather assigned eight discrete Γ categories (Γ8).
The Γ distribution allows some sites to evolve at a very low
rate, and the incorporation of a fraction of invariable sites
does not necessarily lead to a significant increase in likeli-
hood [83].

To avoid excessive calculation times, our PAUP* ML anal-
yses were conducted in two steps. First, we estimated ML
parameters on a neighbor-joining (NJ) starting tree. Sec-
ond, a ML heuristic search was conducted by Tree Bisec-
tion Reconnection (TBR) branch swapping to identify the
optimal tree under these constrained GTR + Γ8 parameter
estimates. This tree was re-used for a new round of param-
eter estimation/branch swapping, and the procedure was
repeated until there was a stabilization of both topologies
and parameters. The stability of nodes was estimated by
ML bootstrap percentages (BPML) [84], computed by
PHYML after 100 replicates of site resampling, with BioNJ
starting trees. Because of its rapidity, PHYML was pre-
ferred over PAUP* for bootstrap analyses. To assess the
amount of phylogenetic signal contained within an indi-
vidual partition (each codon position of each gene), 500
replications of ML bootstrapping were also independently
performed for each partition.

Bayesian analyses were performed with one distinct GTR
+ Γ8 model per gene and codon position, with unlinking
base frequencies, GTR, and Γ parameters. Metropolis-
Page 13 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:80 http://www.biomedcentral.com/1471-2148/6/80
Coupled Markov chain Monte Carlo (MCMCMC) sam-
pling was conducted during 10,000,000 generations with
five incrementally heated chains. We used Dirichlet priors
for base frequencies (1,1,1,1) and for GTR parameters
(1,1,1,1,1) scaled to the G-T rate, a Uniform(0.05,50.00)
prior for the Γ shape, and an Exponential(10.0) prior for
branch lengths. Bayesian posterior probabilities (PP) were
computed from trees sampled every 100 generations, after
removing the 50,000 first trees as the "burn-in" stage. In
order to discriminate between moderately and strongly
supported nodes – for which initial PP were superior to
0.95 – we also calculated bootstrapped Bayesian posterior
probabilities (BPbay) as suggested by [85] and [86]. Due to
computing time limitations, BPbay were only computed
for the combined data set (GHR + CYB). First, 100 boot-
strap pseudo-replicates were independently generated
from each of the six partitions (the three CYB and the
three GHR codon positions) using the SEQBOOT pro-
gram 3.6a2.1 [87] of the PHYLIP package. Second, for
each of the 100 concatenated bootstrap data sets, MCM-
CMC sampling of trees was performed as previously
described for the original data under the six GTR + Γ8 par-
titioned model, except that trees were sampled every 100
generations for only 500,000 generations. To maximize
the probability that the chains reached stationarity in each
bootstrap replicate, one-half of the 5,000 trees sampled
from the posterior probability distribution was systemati-
cally removed as the burnin [86]. BPbay resulted from the
overall 50% majority rule consensus of the 500,000 saved
trees.

Following [34], sequences were also analyzed at the
amino-acid level. We respectively used the JTT + Γ + I and
mtREV + Γ + I ML models of protein evolution for GHR
and CYB sequences as implemented in PHYML.

Sensitivity analyses
We performed sensitivity analyses using PAUP* to assess
the relative contribution of the various model parameters
to the log-likelihood increase when more complex mod-
els are considered. To take the evolutionary properties of
each codon position into account, nucleotide sites were
categorized into each of the three codon positions. The
procedure was conducted separately for CYB and GHR
sequences. All sets of parameters – base composition
(BC), substitution rate matrix (GTR), heterogeneity of
substitution rate among sites (Γ), and branch lengths (BL)
– were estimated independently for each codon partition.
AIC values were compared to assess the significance of
likelihood variation between global and partitioned mod-
els. For instance, to test the contribution of BC, only BC
parameters were computed for each partition whereas
other parameter values (GTR, Γ, BL) were fixed for the
whole gene.

Evaluation of the saturation of nucleotide substitutions
The nucleotide saturation of the phylogenetic markers
was assessed graphically according to the procedure of
[88], by plotting the number of observed differences as a
function of the ML inferred number of substitutions for
all 351 pairwise comparisons for 27 sequences (the partial
CYB sequence of Lasiopodomys mandarinus was removed).
The inferred number of substitutions was estimated from
the ML tree as the sum of the branch lengths linking two
terminals. The level of saturation was estimated by the
slope (S) of the linear regression between the observed
and inferred substitutions. Substitutions saturation is evi-
denced when the number of inferred substitutions
increased, whereas the number of observed differences
remained constant. We performed saturation analyses
independently for each phylogenetic marker and for each
codon position. ML branch lengths were obtained for
each partition using PAUP* and by enforcing the topol-
ogy as identical to the combined CYB + GHR tree.

Variable Length Bootstrap
To compare the phylogenetic resolving power of GHR and
CYB at varying taxonomic levels, we used the variable-
length bootstrap (VLB). In this method, bootstrap support
is estimated as a function of a variable number of resam-
pled characters [89]. For each data set, nucleotide sites
were resampled to generate bootstrap pseudomatrices of
100, 250, and until 5000 characters with increasing steps
of 250 sites. All bootstrap searches were then performed
using ML analyses with PAUP*.
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