
HAL Id: halsde-00323971
https://hal.science/halsde-00323971

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bio++: a set of C++ libraries for sequence analysis,
phylogenetics, molecular evolution and population

genetics
Julien Dutheil, Sylvain Gaillard, Eric Bazin, Sylvain Glémin, Vincent Ranwez,

Nicolas Galtier, Khalid Belkhir

To cite this version:
Julien Dutheil, Sylvain Gaillard, Eric Bazin, Sylvain Glémin, Vincent Ranwez, et al.. Bio++: a set
of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics.
BMC Bioinformatics, 2006, 7, pp.188. �10.1186/1471-2105-7-188�. �halsde-00323971�

https://hal.science/halsde-00323971
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Bio++: a set of C++ libraries for sequence analysis, phylogenetics,
molecular evolution and population genetics
Julien Dutheil*1, Sylvain Gaillard1, Eric Bazin1, Sylvain Glémin1,
Vincent Ranwez2, Nicolas Galtier1 and Khalid Belkhir1

Address: 1CNRS UMR 5171 – Génome, Populations, Interactions, Adaptation (GPIA), Université Montpellier 2, France and 2CNRS UMR 5554 –
Institut des Sciences de I'Evolution de Montpellier (ISE-M), Université Montpellier 2, France

Email: Julien Dutheil* - Julien.Dutheil@univ-montp2.fr; Sylvain Gaillard - syl.gaillard@gmail.com; Eric Bazin - bazin@univ-montp2.fr;
Sylvain Glémin - glemin@univ-montp2.fr; Vincent Ranwez - ranwez@isem.univ-montp2.fr; Nicolas Galtier - galtier@univ-montp2.fr;
Khalid Belkhir - belkhir@univ-montp2.fr

* Corresponding author

Abstract
Background: A large number of bioinformatics applications in the fields of bio-sequence analysis,
molecular evolution and population genetics typically share input/ouput methods, data storage
requirements and data analysis algorithms. Such common features may be conveniently bundled
into re-usable libraries, which enable the rapid development of new methods and robust
applications.

Results: We present Bio++, a set of Object Oriented libraries written in C++. Available
components include classes for data storage and handling (nucleotide/amino-acid/codon sequences,
trees, distance matrices, population genetics datasets), various input/output formats, basic
sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis
(maximum parsimony, markov models, distance methods, likelihood computation and
maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-
locus analyses) and various algorithms for numerical calculus.

Conclusion: Implementation of methods aims at being both efficient and user-friendly. A special
concern was given to the library design to enable easy extension and new methods development.
We defined a general hierarchy of classes that allow the developer to implement its own algorithms
while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of
charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/
BioPP.

Background
The design of re-usable software components into librar-
ies has proved to be useful to the rapid development of
bioinformatics applications, as witnesses the success of
the ever growing open source libraries known as the
Bio{*} projects. These libraries cover many fields of bio-

informatics, but rarely offer tools for intensive calculus, as
required for phylogenetic analyses for instance. Such com-
puter-expensive applications are usually written in C, a
compiled low-level language. Programming time-con-
suming tasks often requires the implementation of spe-
cific algorithms optimized for each particular problem.

Published: 04 April 2006

BMC Bioinformatics 2006, 7:188 doi:10.1186/1471-2105-7-188

Received: 06 December 2005
Accepted: 04 April 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/188

© 2006 Dutheil et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/188
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594991
http://kimura.univ-montp2.fr/BioPP
http://kimura.univ-montp2.fr/BioPP
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:188 http://www.biomedcentral.com/1471-2105/7/188
However, despite these specifities, there are some com-
mon points (e.g. likelihood calculation, minimization),
and developers will appreciate to use modules pre-pro-
grammed in a flexible manner.

The use of the C++ language combines both the computer
efficiency of the C language and the convenience of a
Object-Oriented (OO) approach. We present Bio++, a set
of C++ libraries dedicated to sequence analysis, molecular
evolution and population genetics. Other libraries taking
these advantages of C++ have been developed, including
the libsequence library [1] for population genetics analy-
sis (single nucleotides polymorphism and coalescent),
PDBlib for manipulating tridimensional structures [2] or
libcov [3] for protein phylogenetics and molecular evolu-
tion. The Bioinformatics Template Library [4] also pro-
vides algorithms for manipulating and analysing three
dimensional structures, using a generic programming
approach.

Implementation
We did a collaborative effort to design a hierarchy of use-
ful classes for the rapid development of efficient applica-
tions in the fields of sequence analysis, phylogenetics,
molecular evolution and population genetics. These
libraries combine tools for data handling and numerical
calculations, providing an easy-to-use, powerful and gen-
eral development environment. The three main objectives
of Bio++ are (i) to speed up the implementation of a new
method in order to test it, (ii) to make easier the develop-
ment of robust applications for distribution and (iii) to
provide a high level programming language for biologists.

Library design
We used object-oriented programming paradigms to
develop Bio++. We defined for each class an abstract basal
class that contains a number of purely virtual functions
(dummy functions with an empty boddy). Such a basal
class is called an interface and can be seen has a kind of
contract that a class must follow in order to be used by
other methods. Such a contract only specifies what an
object is at least able to do, and not how it does it. Most
classes in Bio++ are derived from interfaces, and some
common instanciations are proposed for each interface.
The user may, however, write its own implementation of
a given method, and still remain compatible with the rest
of the library. For instance, one may easily design a new
alphabet to handle a new kind of sequences, or write a
new substitution model and perform likelihood calcula-
tion without writing any likelihood computation func-
tion. Conversely, one may implement a new likelihood
computation algorithm without re-developping substitu-
tion model classes. Several interfaces and abstract classes
(partial implementations) linked by inheritance specify
different levels of specialization. Depending on their

objectives and programming level, users might simply use
fully-specified objects, re-implement specific methods, or
even design new classes.

The sequence container hierarchy is a representative
example of the class hierarchies defined in Bio++ (see fig-
ure 1). The SequenceContainer basal interface only speci-
fies that sequences can be accessed by their name. The
OrderedSequenceContainer has the additional require-
ment that sequences can be accessed by index, which is
generally the case, even if ordering has no biological
meaning. The SiteContainer interface requires that
sequences have the same length (i.e. are aligned) and
hence may also be accessed by site (= column in the align-
ment). Several implementations are proposed: in the Vec-
torSequenceContainer class, data are stored as a vector of
sequences. Each sequence can hence be accessed in O(1).
If there are N sequences, they are hence accessed in O(N).
The AlignedSequenceContainer is derived from the Vec-
torSequenceContainer class, and adds site access. Since
data are stored as sequences, the access time for a site is in
O(N) and the complete set of L sites is acessed in O(N ×
L). The VectorSiteContainer proposes an alternative
implementation by storing sequences as sites instead of
sequence objects. The sequence access is hence achieved
in O(L), and the site access in O(1). All methods working
on containers only deal with the SequenceContainer or
the OrderedSequenceContainer interface, whith no
assumption about the implementation. The execution
time, however, may vary depending on the implementa-
tion used.

Development is facilitated by the use of the code docu-
mentation generated by the doxygen program [5]. Full
class documentation can be consulted online or down-
loaded in navigable HTML format. A short tutorial is also
available.

Library content
We split Bio++ classes into five libraries: three main bio-
logical libraries (SeqLib, PhylLib and PopGen-Lib) and
two utility libraries (Utils and NumCalc), see table 1 for
there content and dependencies:

• the Utils library contains core classes and utilitary
functions;

• the NumCalc library contains classes for numerical cal-
culus, including several optimization tools, random
number generators, probability distributions and statisti-
cal functions;

• the SeqLib library is dedicated to sequence analysis:
sequence storage and manipulation, input/output toward
several file formats, alphabet translation, etc.
Page 2 of 6
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:188 http://www.biomedcentral.com/1471-2105/7/188
• the PhylLib library deals with phylogenetic trees:
Markov models, likelihood calculation, etc. The library is
more focused on molecular evolution (model fitting,
ancestral state reconstruction, across-site rate variation)
than pure phylogenetic reconstruction, although several
topology reconstruction methods are implemented (dis-
tance methods, nearest-neighbor interchanges (NNI)
search for maximum likelihood (ML) and parsimony
scores);

• the PopGenLib library is dedicated to population genet-
ics, with particular sequence and codominant markers
storage. Methods are provided for polymorphism analy-
sis, population divergence estimation and neutrality tests.

Results
Figure 2 shows a full program example. This application
builds a Neighbor-Joining tree from a sequence file in
Phylip format, and re-estimates parameters (branch
lengths and shape of the rate across-site distribution)
using maximum likelihood. The final tree is then written
to a file in Newick format. Additional output files are also
created, providing detailed information about the estima-

tion procedure. The program begins with the creation of a
ProteicAlphabet object (line 3):

const ProteicAlphabet * alphabet = new
ProteicAlphabet();

This object specifies the type of sequence the program will
use. The Alphabet object family contains classes for
nucleic alphabets (DNA and RNA), proteins or codons
(nuclear and mitochondrial, for vertebrates, echino-
derms/nematodes and other invertebrates). A dataset is
then readed from a Phylip sequence file. A sequence
reader is created using

Phylip * seqReader = new Phylip(false,
false);

Other file formats for reading and writing are supported,
including the commonly used Fasta and Clustal.
Sequences are then read and stored in a container:

SiteContainer * sites = seqReader-
>read("Myoglobin.phy", alphabet);

Class hierarchy for the sequence container familyFigure 1
Class hierarchy for the sequence container family. "Interfaces" are classes with only pure virtual methods. "Abstract"
classes are partial implementations of interfaces. Full arrows indicate inheritence links and dashed arrows represent implemen-
tation links.
Page 3 of 6
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:188 http://www.biomedcentral.com/1471-2105/7/188
Since sequences are aligned, they are actually stored in a
SiteContainer object (see figure 1). Line 7 to 10 display on
screen some properties of the container, namely the
number of sequences and sites. In this example we need
to restrict our analysis to sites without any gap, so at line
11 a new container called "completeSites" is created from
the former:

SiteContainer * completeSites = SiteCon
tainerTools: :getSitesWithoutGaps(sites);

Several {*}Tools classes providing utilitary functions are
available. For instance, the SiteContainerTools class con-
tains static functions that work on SiteContainer objects.

A JTT proteic SubstitutionModel object is created [6,7]:

SubstitutionModel * model = new
JTT92(alphabet);

Here again, several commonly used models are available.
We also use a discrete gamma rate across sites distribution
with 4 rate classes and a shape parameter of 0.5 [8]:

DiscreteDistribution * rateDist = new Gam
maDiscreteDistribution(4, 0.5);

This model is used first to estimate the distance matrix
from the data. A DistanceEstimation object is then cre-
ated, by giving the model and data as parameters:

DistanceEstimation distEstimation(model,
rateDist, completeSites);

DistanceMatrix * matrix =
distEstimation.getMatrix();

Distances will be estimated using a maximum likelihood
(ML) procedure. The NumCalc library provides an object-
oriented implementation of several general optimization
procedures (Optimizer objects). For phylogenetic optimi-
zation, specific optimizers are also available. The program

then computes a neighbor-joining tree [9]. A Neighbor
Joining object is instantiated and the resulting tree stored
in a variable:

NeighborJoining nj(* matrix, false);

Tree<Node> * tree = nj.getTree();

This variable is passed to a TreeLikelihood object, together
with the data set, model and rate distribution. An addi-
tional parameter tells the object to display a few informa-
tions. The DRHomogeneousTreeLikelihood object is for
homogeneous models, with rate across sites variations.

DiscreteRatesAcrossSitesTreeLikelihook-
Function = new DRHomogeneousTreeLikeli
hood(*tree, *completeSites, model, ratest,
true);

Several TreeLikelihood implementations are available.
The DRHomogeneousTreeLikelihood object uses one
'view' by neighbor node for each node, i.e. three views by
node in case of bifurcating trees [10]. This implementa-
tion saves computational time during NNI-mediated
topology search, and is also more convenient to compute
branch-lengths derivatives. An alternative implementa-
tion is proposed: HomogeneousTreeLikelihood, and oth-
ers could be easily added if required. For parameter
optimization, we used a utilitary function from the Opti-
mizationTools class. This function automatically instanci-
ates the appropriate optimizer object. It receives as
argument a pointer toward the likelihood function, a tol-
erance number and a maximum number of function eval-
uations. Two optional log-files are provided to monitor
the optimization process ("profiler" and "messenger",
which contain several detailed informations, like for
instance all parameters and function values at each step of
the process), and the last parameter specifies the verbose
level:

Table 1: Libraries available and dependencies.

Library Utils NumCalc SeqLib Content

Utils Basal classes and utilities. Exceptions, text and file manipulation.
NumCalc Numerical calculus. Vector and matrix manipulation, optimization, algebra,

probability distribution and statistics, random number generation.
SeqLib Sequence manipulation, alphabets, chemical properties and distances,

input/output in various formats (Fasta, Phylip, Clustal, etc.).
PhylLib Phylogenetics. Tree reconstruction by maximum parsimony, distance methods or maximum likelihood,

parameter estimations, ancestral states reconstruction, etc.
PopGenLib Population genetics. Polymorphism statistics,

linkage desequilibrium, neutrality tests and recombination.
Page 4 of 6
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:188 http://www.biomedcentral.com/1471-2105/7/188
OptimizationTools:: optimizeNumericalPa
rameters(likFunction, 0.000001,
1000000messenger, profiler, 3);

Finally, the optimized tree is writen to a file named out-
put. dnd in Newick file format:

Newick newick;

newick.write(*tree, "output.dnd");

This program creates three files: two for the ML tree esti-
mation and one for the final tree.

Conclusion
Bio++ is a mature project which has been used in previous
works like molecular coevolution analysis [11] or codon
analysis [12]. However it is an active project still receiving
new methods and improvements.

Development snapshots may be accessed by anonymous
CVS on the library website. The website also provides on-
line documentation of classes, tutorial and several code

examples. Several programs have been developped with
the Bio++ libraries, including bppML for ML likelihood
tree estimation and bppSG for sequence generation by
simulation under different kinds of models. Any contribu-
tion will be welcome, as specific functions or as additional
libraries compatible with the present ones.

Availability and requirements
C++ libraries are not organized in a tree-like hierarchy as
java packages or perl modules. They are bundled in a non-
nested way, and may be compiled in two flavours, either
static or shared (= dynamic). Dynamic libraries are loaded
during the program execution and hence can be shared by
several applications, while static libraries are hard-coded
into the executable, which no longer requires the library
to be installed.

Each Bio++ library is complient with the GNU standards
and uses the autotools suite for compilation and installa-
tion. Bio++ can hence be built with these GNU tools on
any unix-like system. Alternatively, sources can be
imported and compiled in any C++ development environ-
ment (IDE). It has been successfully installed on Linux,

Code exampleFigure 2
Code example. Lines numbered in red are referenced in the text.
Page 5 of 6
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:188 http://www.biomedcentral.com/1471-2105/7/188
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

MacOS X and Windows using the Cygwin port and
MinGW. Bio++ is distributed freely under the CeCILL
public license (the French free software license, compati-
ble with the GNU General Public License). It is available
from its website at http://kimura.univ-montp2.fr/BioPP.

Authors' contributions
JD developped the Utils, NumCalc, SeqLib and PhylLib
libraries and drafted the manuscript. SGa developped the
PopGenLib library, provided algorithms for the NumCalc
library and helped with the GNU configuration tools. EB
developped tools for the PopGenLib library. SG1 pro-
vided tools for the PopGenLib and SeqLib libraries. VR
helped in the development of the PhylLib library. NG par-
ticipated in the design of the library. KB suppervised the
whole project. SG1, VR, NG and KB helped to draft the
manuscript. All authors read and approved the final
manuscript.

Additional material

Acknowledgements
JD would like to thank Tal Pupko for providing help with C++ in the early
development of this project. Some code in the NumCalc library have been
adapted from the SEMPHY library [13], Ziheng Yang's PAML package [14]
and the C++ port of the Java Matrix (JAMA) package http://math.nist.gov/
tnt. This work was supported by French Ministére de la Recherche ACI
IMPBio.

References
1. Thornton K: Libsequence: a C++ class library for evolutionary

genetic analysis. Bioinformatics 2003, 19:2325-7.
2. Chang W, Shindyalov IN, Pu C, Bourne PE: Design and application

of PDBlib, a C++ macromolecular class library. Computer Appli-
cations In The Biosciences 1994, 10:575-86.

3. Butt D, Roger AJ, Blouin C: libcov: a C++ bioinformatic library
to manipulate protein structures, sequence alignments and
phylogeny. BMC Bioinformatics 2005, 6:138-138.

4. Pitt WR, Williams MA, Steven M, Sweeney B, Bleasby AJ, Moss DS:
The Bioinformatics Template Library – generic components
for biocomputing. Bioinformatics 2001, 17:729-37.

5. van Heesch D: Doxygen, a documentation system for C++.
2005 [http://www.stack.nl/~dimitri/doxygen/].

6. Jones DT, Taylor WR, Thornton JM: The rapid generation of
mutation data matrices from protein sequences. Computer
Applications In The Biosciences 1992, 8:275-82.

7. Kosiol C, Goldman N: Different versions of the Day-hoff rate
matrix. Molecular Biology And Evolution 2005, 22:193-9.

8. Yang Z: Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates oversites: approximate
methods. Journal Of Molecular Evolution 1994, 39:306-14.

9. Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology And
Evolution 1987, 4:406-25.

10. Felsenstein J: Inferring Phylogenies Sunderland, Massachusetts: Sinauer
Associates; 2004.

11. Dutheil J, Pupko T, Jean-Marie A, Galtier N: A model-based
approach for detecting coevolving positions in a molecule.
Molecular Biology And Evolution 2005, 22:1919-28.

12. Galtier N, Bazin E, Bierne N: GC-biased segregation of non-cod-
ing polymorphisms in Drosophila. Genetics 2005, 172:221-8.

13. Friedman N, Ninio M, Pe'er I, Pupko T: A structural EM algorithm
for phylogenetic inference. Journal Of Computational Biology 2002,
9:331-53.

14. Yang Z: PAML: a program package for phylogenetic analysis
by maximum likelihood. Computer Applications In The Biosciences
1997, 13:555-6.

Additional File 1
Sources and data files of the example as a zipped archive.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-188-S1.zip]
Page 6 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-188-S1.zip
http://kimura.univ-montp2.fr/BioPP
http://math.nist.gov/tnt
http://math.nist.gov/tnt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.stack.nl/~dimitri/doxygen/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7932792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Library design
	Library content

	Results
	Conclusion
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

