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The number of competitors providing pollen on a
stigma strongly influences intraspecific variation
in number of pollen apertures

Irene Till-Bottraud,* Pierre-Henri Gouyon, D. Lawrence Venablet
and Bernard Godelle§

Evolution et Systématique, URA CNRS 2154, Bdtiment 362, Université Paris-Sud,
F-91405 Orsay Cedex, France

ABSTRACT

Variation in the number of pollen apertures has been widely described among and within
angiosperm species. Apertures are weak points of the pollen wall where the pollen tube germi-
nates. Pollen aperture heteromorphism (pollen grains with different numbers of apertures in a
single individual) is common in flowering plants, whereas polymorphism (among-individual
variation) is rare. Previous work on Viola has shown that pollen with few apertures has a
better survival rate, whereas pollen with more apertures germinates faster. Here we develop
game-theoretic models of competition between several pollen donors. These show that hetero-
morphism can be a stable strategy for all finite numbers of competitors per stigma for some
parameter values where one pollen type germinates faster but has lower longevity. In contrast,
polymorphism is not stable in pairwise contests (two pollen donors). When more than two
pollen donors interact on stigmas, polymorphism can be stable for certain parameter values.

In both heteromorphism and polymorphism, selection operating on the number of pollen
apertures is an example of soft selection if each flower in a population produces a fixed
number of seeds, regardless of the average fitness of the particular pollen composition present
on its stigma. This results in stigma-level and population-level frequency dependence, which
makes stable heteromorphism and polymorphism possible. Selective scenarios vary among
stigmas due to variation in the pollen present. Thus, a particular pollen type may be more fit
than average on some stigmas but less fit on others. As a pollen strategy increases in frequency
in a population, the frequency of different kinds of pollen contests shift. This may result in the
pollen strategy’s fitness advantage being lost at an intermediate frequency, resulting in hetero-
morphism or polymorphism. Low numbers of pollen donors per stigma result in greater
variance in pollen composition among stigmas, resulting in a broader parameter range for
stable heteromorphism or polymorphism. For any number of pollen donors per stigma, the
conditions for polymorphism are a more restrictive subset of those for heteromorphism. We
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show that heteromorphism can invade a polymorphic population, whereas heteromorphism
is stable against polymorphism, thus explaining why polymorphic species are rare.

Keywords: game theory, heteromorphism, pollen competition, polymorphism, soft selection,
two-level frequency dependence.

INTRODUCTION

In higher plants, pollen (the male gametophyte) is extremely diversified and its morphology
can be family-, genus- or even species-specific. Many morphological characters are involved
in this diversity, both for the pollen grain itself (size, shape, ornamentation and pollen wall
structure) and for its apertures (number, size, shape and structure). The apertures have
a crucial role in fertilization as the pollen grain hydrates and the pollen tube is usually
initiated through these apertures. Variation in the number of pollen apertures has been
widely described among and within angiosperm species. Within species, it is more often
found within individual plants (heteromorphism; Till-Bottraud et al., 1994), with the
genetic variation being expressed in morph proportions produced by individuals (Till
et al., 1989; Dajoz et al., 1991; Mignot et al., 1994), rather than among individual plants
(polymorphism, each plant being homomorphic) (Till et al, 1989; Dajoz et al., 1991,
Mignot et al., 1994). The evidence to date shows that the number of apertures is deter-
mined sporophytically (Bateson, in Crane and Lawrence, 1952; Baker, 1966; Ahokas, 1975;
Charlesworth and Charlesworth, 1979; Mignot, 1995).

The functional consequences of aperture number have been investigated in a hetero-
morphic species, Viola diversifolia Gingins (Beck.). A high number of apertures resulted in
more rapid germination but lower longevity (Dajoz et al, 1991, 1993). Such differences
in viability and germination rate are likely to occur in other species (partial evidence in
Viola calcarata; Till-Bottraud et al., 1999) and may help explain the evolution of aperture
number in angiosperms.

To clarify how selection may operate on aperture number, Till-Bottraud ez al. (1994)
developed game-theoretic models of the evolution of pollen aperture number using
the theoretical framework of sexual selection applied to male-male competition. These
models consider how selection operates on a pollen donor that interacts with other
members of its population on a series of flowers to which pollen has been delivered
simultaneously. The most significant result is that selection can result in pure 3-aperturate,
pure 4-aperturate or mixed evolutionarily stable strategies (Maynard Smith, 1982).
The mixed evolutionarily stable strategy corresponds to heteromorphism with all
plants producing both types of pollen. However, selection cannot easily maintain a
standard genetic polymorphism with each pollen morph produced on a different plant
(homomorphism).

In a survey of over 200 plant species, one-third were found to be heteromorphic (Mignot,
1995). Polymorphism was very rare (six species) and was always associated with heterostyly,
where it is one component of the syndrome linked to mating type. Thus, the natural
history of aperture number is consistent with predictions of the published models.

In these models, only pairwise contests were considered: competition occurred between
two donors on a stigma, with each plant participating in a series of such pairwise contests.
However, pairwise contests are not the only possibility, since pollen from more than



two pollen donors can arrive simultaneously on a stigma (see Erickson and Adams, 1989;
Morris et al., 1994). To derive a more realistic model of pollen competition, we relax
the assumption of pairwise contests and study the influence of the number of pollen donors
per stigma on the stability of heteromorphism and polymorphism. Changing the number
of pollen donors per stigma has mostly quantitative effects on the conditions for pollen
heteromorphism. However, increasing the number of pollen donors per stigma qualitatively
alters the prediction for polymorphism: polymorphism cannot evolve in the model with
two donors, but with more than two it can. Moreover, we show that the instability of
polymorphism for two competitors is due to the simplifying assumption that all competitors
provide the same number of pollen grains. Our exploration of the number of pollen donors
per stigma also clarifies how flowers structure male competition into local arenas, giving rise
to multi-level frequency dependence.

THE MODELS

We assume that pollen grains compete with one another on stigmas and styles for access to
ovules and that all ovules are fertilized, whatever the composition of the pollen load on the
stigma. Pollination is assumed to be random. Each pollen donor on a particular stigma is
assumed to supply an equal amount of pollen simultaneously. The age of pollen, and thus
its age-dependent fitness characteristics, are discrete with two possible states. It can be either
‘young’ (from a freshly dehisced anther) with a probability # (0 <7< 1) or ‘old’ (from an
anther that dehisced the previous day) with a probability 1 — ¢. Thus, this model builds on
the discrete time models of Till-Bottraud ez al. (1994). The competitive advantage (relative
fitness) of 3-aperturate pollen is set to 1, regardless of age. The competitive advantage of
4-aperturate pollen relative to 3-aperturate pollen at fertilization is m (> 1). This value not
only includes how much faster 4-aperturate pollen grains germinate, but also what fertiliza-
tion advantage this provides. This fertilization advantage, due to faster germination, is the
benefit gained from a higher number of apertures. The viability of 4-aperturate pollen when
old is v (0 < v < 1) compared to 3-aperturate pollen, which shows no decrease in viability
with age. Thus, the relative success of 4-aperturate pollen is m when young and mv when old
(Table 1). Only the case where m > 1 and mv < 1 is of interest, since if m < 1 the 3-aperturate
grains will always win and if mv > 1 the 4-aperturate grains will always win.

Heteromorphism

In the heteromorphic model, we assume that all plants can produce two types of pollen
simultaneously and that the variation in morph proportions has at least a partially additive

Table 1. Fitness parameters of individual 3- and 4-aperturate pollen grains used in the models (see
The Models section).

Global fitness
Germination Survival
ability when old Young Old
Probability t 1—1
3-aperturate 1 1 1 1

4-aperturate m(1) v(<l) m my




genetic basis. To calculate the conditions for a heteromorphic evolutionarily stable strategy
(ESS), we computed the paternal fitness of a mutant or migrant pollen donor that produces
a proportion p of pollen grains with three apertures, which is poised to invade a population
of plants that produce a proportion p’ of pollen grains with three apertures:

W
W(p.p) =2, aF(p.p)=2. q —’(p)/ (1)
7 7 Wiey(p, ")

Because the mutant genotype is assumed to be initially at very low frequency, it is assumed
to compete always against resident plants, which all produce the proportion p’ of 3-
aperturate pollen grains. However, each competing plant can contribute young or old pollen
to a stigma. The sum in (1) is over the j situations corresponding to the different possible
combinations of ages of the opponent’s pollen and the two possible states of the mutant
pollen (young or old). g, is the probability of each situation occurring on a stigma assuming
random mating.

Fi(p, p') gives the fraction of a flower’s seeds fathered by the mutant genotype for
each possible age combination of pollen. This fraction is given by the ratio of mutant
fertilization success (W;(p)) to total fertilization success, that is mutant plus residents
(= Wio{p, '))- The sum gives the mean success of the mutant in siring seeds in a resident
population as the mean proportion of seeds sired.

Strategy p* is an ESS if an individual with any other strategy p # p* cannot invade the
population. This is true when the value of p that maximizes the fitness of a mutant is
the same as the actual population value, p’. Otherwise, selection would tend to move
the population value towards the fitness-maximizing value, which is itself a function of the
population value. Thus, the necessary condition (ensuring a fitness maximum, minimum or
saddle point) is that:

IW(p,p’)
ap p=p'=p*

This equation gives ESS candidates, p*, implicitly as a function of the model parameters.
The ESS proportion p* was determined for various numbers of competitors and com-
binations of the parameters. Whenever a solution was found where 0 < p* < 1, this value
was also unique. As the function is continuous and differentiable, p* is the fitness maximum
if some p greater than 0 has greater fitness than p = 0 in a population with p’ =0 and some
p less than 1 has greater fitness than p = 1 in a population with p’ = 1. These conditions can
be calculated as:

Condition 1: oW (p,p)opl,-,-o>0
Condition 2: oW (p, p")opl,-, -, <0
Condition 1 ensures that the pure 4-aperturate strategy is not an ESS, thus guaranteeing the
production of at least some 3-aperturate pollen grains (p* > 0). Condition 2 ensures that

the pure 3-aperturate strategy is not an ESS, thus guaranteeing the production of at least
some 4-aperturate pollen grains (p* < 1).



The formulae for two competitors per stigma are given in Till-Bottraud et al. (1994). The
general equations for any number of pollen donors per stigma are given in Appendix 1.
Here we develop the fitness equations for three competitors per stigma as an illustration
(the pollen donor with proportion p of 3-aperturate pollen grains is confronted with two
opponents producing proportion p’ of 3-aperturate pollen):

Wp,p')=
£(p+m(l -p)) £(1=0)(p+m(l -p))
p+m(l—=p)+2(p"+m(l-p")) p+m(l-p)+p" +m(l—-p')+p" +mv(l-p’)
((1-0)t(p+m(l -p)) N t(1 =1 (p+m(l - p))
p+m(l=p)+p' +mv(l =p")+p"+m(l —=p') p+m(l—p)+2(p" +my(l-p")
(1 =0)(p +mv(l = p)) N (1 =)t =0)(p+mv(l -p))
p+mv(l—=p)+2(p'+m(l=p") p+mv(l—-p)+p' +m(l-p")+mv(l —p")
(1—1)t(p + mv(1 - p)) (1—1)'(p +mv(1 - p))

p+mv(l=p)+p +mv(l=p)+p' +m(l=p') p+mv(l—p)+2(p" +mv(l =p'))

Each term corresponds to a different possible permutation of young and old pollen
deposition from each competitor. The permutations of ¢ and 1 —¢ give the probability
of occurrence of each of these permutations (i.e. ¢; from equation 1). Each permutation
has been written separately with the condition of the mutant pollen donor (with morph
proportion p) first, then one opponent and then the other. The remaining ratio in each term
gives Fj, the proportion of ovules fertilized by the pollen donor with morph proportion
p in that type of encounter. The numerator gives the fertilization success of the mutant
donor, whereas the denominator gives the total fertilization success of all three competitors
summed in the same order as the probabilities of young and old pollen. Note that some
permutations have the same outcome and can be combined. The actual number of pollen
grains from each competitor cancels out, since it is assumed to be the same.

The ESS morph proportion, p*, is given implicitly by

t(1 —m) . (1 =1)(1 —mv) }

_ _ £)? *(1 —
orimotrd mv)+2mv][[p*(3—m(2v+1)>+m<2v+1)]2 [3p*(1—mv) + 3

t(1—m) N
[p*(3 = m(v +2)) + m(v + 2)]?

2t(1 - )[p*2 - m(v+ 1)) + m(v + 1)][

(1=1)(1=mvy)
[p*(3 —m(2v+ 1))+ mQ2v + D

IZ[ZP*(l—m)+2m][ =m) (=00 -m) }(2)

[Bp*(1 —m) +3m]*  [p*(3 —m(v +2)) + m(v + 2))?

Condition 1, which guarantees that the ESS involves producing some or all 3-aperturate
pollen grains, is:



2[ t (1—z)} [ t (l—z)} 2[1 (1—;)]
(1 =0 | 5+ S| +H2t(1=-0)(v+1) S+ S| +207| —+ 5
2v+1) (3v) (v+2)y (2v+1) 9 (v+2)

<
ZV(l_f)z[ d +V(l_t)}+2t(1—z)(v+1)[ - v(l_t)]+212[£+w}
QQv+1Y? 3y v+2? Qv+1)? 9 (v+2)

Condition 2, which guarantees that the ESS involves producing some or all 4-aperturate
pollen grains, is:

tm+ (1 —t)mv>1 “4)

For the general equations (Appendix 1), when the number of pollen donors per stigma
(NV) is infinite, condition 1 reduces to the opposite of condition 2 (equation 4). This implies
that heteromorphism cannot exist.

Polymorphism

The conditions for polymorphism can be developed by assuming that a fraction x of the
pollen donors in the population produce only 3-aperturate pollen, while others (1 — x)
produce only 4-aperturate pollen. Aperture number is assumed to exhibit additive genetic
variance. To derive a general formula, we need to write the fitness equation of a mutant
pollen donor that is confronted with pollen from the resident population. The paternal
fitness of a pollen donor that produces 3-aperturate pollen is calculated as the average, over
all pollinations, of the proportion of seeds fathered:

totij

This sum averages over the i different possible combinations of pollen donors (opponents
with 3- or 4-aperturate pollen plus the 3-aperturate pollen donor in question). For a total
of Z pollen donors per stigma, there are Z such combinations and P; is the probability
of each such combination. F;(3) is the fraction of ovules on a flower that are fertilized by
the 3-aperturate pollen donor in question. This fraction depends on the combination
i of 3- and 4-aperturate pollen on a stigma and on the particular combination j of young
and old pollen. The number of ovules per flower is assumed to be equal and thus cancels
out. a; is the probability of the jth age combination for the ith combination of 3- and 4-
aperturate opponents. The paternal fitness of a pollen donor that produces 4-aperturate
pollen is obtained by substituting F;(4) and W;(4) into this equation.

The 4-aperturate strategy can increase when rare in a 3-aperturate population when
the fitness of a 4-aperturate plant with 3-aperturate opponents is greater than that of a
3-aperturate plant with 3-aperturate opponents — that is, when W (4, 3) > W(3, 3), where
W4, 3) and W (3, 3) stand for W, and W, respectively when x =1 (condition 1).

The 3-aperturate strategy can increase when rare in a 4-aperturate population when
W@3, 4)> W(4, 4), where W(3, 4) and W(4, 4) are W, and W, respectively when x =0
(condition 2). A stable polymorphism can evolve only if there are parameter values for
which both of these conditions are satisfied. The evolutionary change in x will have the
same sign as the difference in average paternal fitness between pollen donors producing
3- and 4-aperturate pollen grains (W;— W,) and the value of x at any polymorphic
equilibrium is obtained by equating W5 and W,.



We illustrate this model by developing the fitness equations for three pollen donors
per stigma:

X —t
W3:?+2x(l—x)< >+(1—x)2

+
24m 2+ my

( £ 201 -¢) (1 - 1)2)
+ +

142m l1+m+mv 1+2my

The first term of the equation (x*3) describes all the stigmas on which the 3-aperturate
pollen from the pollen donor in question finds itself in competition with 3-aperturate pollen
from its two opponents assuming random pollination. This occurs with probability P, = x°.
All pollen is 3-aperturate, so age is irrelevant. Since the pollen load is homogeneous,
the donors fertilize equal fractions of the ovules giving the donor in question one-third
of them. The second term describes the case where the 3-aperturate pollen is confronted
with 3-aperturate pollen from one opponent and 4-aperturate pollen from the other. The
probabilities of the different combinations of 3- and 4-aperturate pollen (p;) are given by
the terms x and (1 — x). Here, the age of the 4-aperturate pollen (first young, then old)
matters. The third term describes the cases where the 3-aperturate pollen is confronted with
4-aperturate pollen from its two opponents (where pollen from the two opponents could
both be young, one could be young and one old, or both could be old). The probabilities of
the different age combinations of pollen (a; in equation 5) are given by the powers of 7 and
(1 —1). The fraction Fy(3) of ovules in a flower that are fertilized by 3-aperturate pollen is
given by the terms with m and v. The number of pollen grains landing on each stigma
is assumed to be the same for all donors, so it cancels from the equation.

The paternal fitness of a pollen donor that produces 4-aperturate pollen can be derived
similarly, yielding:

w, =4 ;x) +2x(1 —x)<

’m (A =tyYmv 2t(1 = )(m +my) [ m (1= t)my
+ + +x +
1+2m 1+42mvy 1 +m+mv 24+4m  2+my

t 1-1¢ 1
m +( )mv>_ (6)
24m  2+4+mv 3

Condition 1:

2 2t(1—1)  (1-¢)? 1
+ + >=

Condition 2: 1+42m 1+m+mv 14+2mv 3 @
The value of x at equilibrium is determined by setting W, equal to W,:
x*=

1/3 = /(1 + 2m) = 2t (1 = )/(1 + m + mv) — (1 = t)*/(1 + 2mv) ®)

2602 +m) +2(1 = )2 +mv) — 1/3 — £2/(1 + 2m) = 2t (1 = )/ + m+mv) — (1 — £)*/(1 + 2mv)

The formulae derived for two pollen donors per stigma are developed in Till-Bottraud
et al. (1994). The general equations (for any number of pollen donors per stigma) are given
in Appendix 2. When N is infinite, condition 1 reduces to:

tm+(1—-0mv>1 4)

Condition 2 reduces to the same, with the inequality reversed (see proof in Appendix 2).



Can heteromorphism invade a stable polymorphism?

We computed the paternal fitness of a heteromorphic pollen donor (that produces a pro-
portion p of pollen grains with three apertures) in a polymorphic population (with x
homomorphic 3-aperturate and (1 — x) 4-aperturate individuals) in the case of three pollen
donors per stigma:

W(p,x):f(t prmd=p) ., prm(-p) )
p+m(l—p)+2 p+mv(l—p)+2

+m(l - +m(l -
(- [p—2md=p) g,y ptmd=p)
p+m(l-p)+1+m p+m(l—-p)+1+my

(1-1) +(1-1)

p+mv(l —p) 5 p+mv(l —p)
p+mv(l—-p)+1+m p+mv(l=p)+1+my

(1—x)2<l3 prm=p) e prmd=p)

p+m(l—p)+2m p+m(l —p)+2my
+m(1l - + 1-
21—y —23A=D) g Ao p)
p+m(l —p)+m+my p+nv(l —p)+2m
+ 1- + 1-
ol =y —2Emd=p) e p i Zp) )
p+mv(l —p)+m+my p+mv(l —p)+2my

A heteromorphic strategy p can increase when rare in a polymorphic population if
it provides a higher paternal fitness than the homomorphic strategies (remember that,
when the population has reached the stable polymorphic frequency, the fitness of all
homomorphic individuals is equal to 1/3 for three pollen donors on a stigma). Therefore,
polymorphism is not stable if we can find at least one heteromorphic p strategy, such that
W(p, x*)> W0, x*) = W(1, x*)=1/3.

Can polymorphism invade a stable heteromorphism?

Using equation (1), we can compute the paternal fitness of a homomorphic 3- or 4-
aperturate pollen donor in a population at the evolutionarily stable heteromorphic strategy,
W(1, p*) and W(0, p*) respectively, and compare them to the paternal fitness of a hetero-
morphic pollen donor W(p*, p*). Heteromorphism is stable if W(1, p*) and W(0, p*) <

W(p*, p*).
RESULTS

Heteromorphism

Heteromorphism can be an ESS for any finite number of competitors. Equations (4) and
(3) or (A2) give the threshold values of the parameters between which there is a hetero-
morphic ESS. Note that the protection threshold for the 4-aperturate strategy (equation 4)
remains unchanged with the number of competitors. When the competitive advantage of



4-aperturate pollen (/) is smaller than the threshold value, the ESS is the pure 3-aperturate
strategy; when it is greater, the 4-aperturate strategy is maintained. The threshold values
for the protection of 3-aperturate pollen is represented for two to six competitors in
Figs 1 and 2, and the ESS values (p*) are given in Fig. 3. For values of the competitive
advantage of 4-aperturate pollen (m) greater than the threshold, the pure 4-aperturate
strategy is an ESS. Between these two thresholds, heteromorphism is an ESS. The threshold
curve for the protection of 3-aperturate pollen becomes lower and closer to the threshold
curve for the protection of 4-aperturate pollen as the number of competitors increases.
Thus, the parameter space for which a mixed ESS exists becomes smaller as the number
of competitors increases. The parameter space in which the 4-aperturate strategy is the
ESS gets larger as the number of competitors increases and the parameter space in which
the 3-aperturate strategy is an ESS remains the same. When the number of competitors is
infinite, the thresholds are superposed and there is no heteromorphic ESS.

When the viability of old 4-aperturate pollen grains is high (Fig. 1b), all the thresholds
are very close to each other. Heteromorphism is stable for a large range of competitive
advantage of 4-aperturate pollen (m) values, or of the probability of rapid delivery (¢),
only when the viability of older 4-aperturate pollen is very low (Fig. 1a; note the change in
scale between Fig. 1a and 1b).

Polymorphism

With two pollen donors per stigma, no stable polymorphism is obtained, and the ESS
strategy is either pure 3- or pure 4-aperturate pollen (Till-Bottraud et al., 1994). However,
we show here that, when there are more than two donors, a stable polymorphism is possible
for certain parameter values.

The range of parameter values (competitive advantage of faster germination, nz; survival,
v; and age probability, ) for each strategy was obtained from the conditions for the main-
tenance of a strategy in a population consisting primarily of the other strategy (equations
6 and 7 for three donors; equations Bl and B2 for any number of donors). With two donors,
the two conditions are exactly symmetrical (Fig. 4), but when there is a finite number of
donors greater than two (e.g. 3 in Fig. 4), the threshold values for the protection of each
strategy are different. When the competitive advantage of 4-aperturate pollen (m) is smaller
than the first threshold value (protection of the 4-aperturate), the 3-aperturate strategy is
an ESS; when it is greater than the second value (protection of the 3-aperturate), the
4-aperturate strategy is an ESS; and between the two, a stable polymorphism is possible.
The values of competitive advantage of 4-aperturate pollen for which a polymorphism is
maintained are always smaller than the threshold value of the two strategies in the pairwise
contests (Fig. 4). The parameter space in which the 4-aperturate strategy is an ESS becomes
larger as the number of donors increases, while that of the 3-aperturate strategy becomes
smaller. As the number of donors increases, both threshold values decrease and tend to
the same fixed limit (equation 4, Fig. 4). The polymorphic zone first increases as the number
of donors increases, then becomes smaller, and disappears when the number of donors
approaches infinity.

A comparison with the results of the heteromorphic model shows that, for any number of
donors (shown for three donors in Fig. 5), the polymorphic domain is smaller than, and
included within, the heteromorphic domain. Note that the limit value (when the number of
donors is infinite) is the same in both models.
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Fig. 2. Threshold values of the parameters (m, ¢ and v) for the protection of the 3-aperturate,
4-aperturate and heteromorphic strategies: (a) two pollen donors per stigma; (b) six donors.

20 1

m 10 1

o

0 0.2 0.4 0.6 0.8 1

Fig. 3. Value of the ESS proportion of 3-aperturate pollen grains (p*) as a function of m and ¢ for
two pollen donors per stigma (v =0.01).

Can heteromorphism invade a stable polymorphism?

We numerically computed male fitness of a heteromorphic individual producing a propor-
tion p=x* of 3-aperturate pollen grains in a stable polymorphic population W(p, x*)
(equation 9), using Mathematica (Wolfram, 1996), for v=0.0005, v=0.001, v=0.005,
v=10.01, v=0.05, v=0.1, v=0.5 and v=0.8. Within the range of m and ¢ values where
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line = protection threshold of the 3- and 4-aperturate strategies for an infinite number of donors.
Dashed lines = the protection thresholds of the 3- and 4-aperturate strategies for various numbers

of pollen donors per stigma. The number of dashes grouped together increases with the number of
pollen donors per stigma (1 dash =2 donors; 2 dashes = 3 donors; 5 dashes = 6 donors).

polymorphism is stable, W(p, x*) is always greater than 1/3. As W(p, x*) is continuous for

v, this result should be valid for all values of v. Therefore, heteromorphism can invade a
stable polymorphism in the case of three pollen donors competing on a stigma.

Can polymorphism invade a stable heteromorphism?

w1, p*), W(0, p*) and W(p*, p*) were numerically compared for three, four and six
competitors, and for values of v=0.005, 0.01, 0.05, 0.1 and 0.5, using Mathematica
(Wolfram, 1996). Within the range of m and ¢ values where heteromorphism is stable,
the ESS heteromorphic strategy is always better that the homomorphic strategies, show-

ing that heteromorphism cannot be invaded by pure strategies. Again, as W(p, p*) is
continuous for v, this result should be valid for all values of v.
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Fig. 5. Comparison of the conditions on m and ¢ for a stable polymorphism and heteromorphism
with two and three pollen donors per stigma (v=0.01). Solid line = protection threshold of the 3-
and 4-aperturate strategies for an infinite number of donors in both models, dots = heteromorphism,
dashes = polymorphism.

DISCUSSION

In classical population genetic models with infinite population size, the parameter values for
which a strategy or genotype is favoured are typically found by comparing its fitness to the
population average fitness. In our scenario, this would mean that either 3- or 4-aperturate
grains would win on all stigmas depending on whether tm + (1 — f)mv was less than or
greater than 1. Neither heteromorphism nor polymorphism could evolve. Competing
against the population average is equivalent to having an infinite number of pollen donors
so that each individual stigma reflects the overall composition of the population.

In real pollination systems, however, pollen grains landing on a stigma do not compete
in a completely mixed fashion against the average composition of the whole population.
Rather, individual stigmas act as local arenas structuring competition among subsamples
of pollen donors, much like the case of local mate competition (Hamilton, 1967). To the
extent that the number of seeds produced by each flower is fixed and independent of the



pollen composition on the stigma (as our models assume), pollen competition operates
under soft selection (selection occurring within patches, while the total contribution of
each patch to the metapopulation is independent of the mean fitness of patch residents;
Christiansen, 1975). The outcome of local competition depends on the particular
composition of the pollen arriving on a stigma, which varies from flower to flower. Since
different competitive scenarios will arise on different stigmas due to the local frequency of
3- and 4-aperturate pollen grains and the proportions of those that are young and old,
a pollen type that is inferior on average may be superior on some stigmas. If such stigmas
are frequent enough, this pollen type may be maintained. The fitness benefits accruing to
the locally superior pollen type saturate with increasing frequency on a stigma (stigma-level
frequency dependence). This occurs because, at high frequency, the locally superior strategy
competes more with itself and less with the locally inferior strategy for the fixed number of
ovules. The frequencies at which different pollen types occur on stigmas depend, in part,
on their frequencies in the population at large. There may be parameter values at which
a particular pollen strategy has higher fitness when rare in the population (and thus on
stigmas) but have lower fitness when common. Thus, frequency dependence on stigmas
creates frequency dependence in the population, which can result in heteromorphic or
polymorphic ESSs. The random variation among stigmas in pollen composition, which
creates the opportunities for grains that are inferior on average to win, is greater when the
number of pollen donors is low.

It makes intuitive sense that polymorphism or heteromorphism can evolve under some
subset of conditions for which 4-aperturate grains are better competitors when young, but
worse when old. Such conditions would include the possibility of either morph being better
‘on average’. Yet our results are asymmetric, with polymorphism and heteromorphism only
evolving when 4-aperturate grains are better on average. Strategies involving 3-aperturate
grains can invade when 4-aperturate grains are better on average because, with few pollen
donors, there is high variance in pollen composition on stigmas and there are ‘refuge’
stigmas with mostly inferior old 4-aperturate grains. Since the performance of 3-aperturate
grains does not vary with age, strategies involving 4-aperturate grains can only invade when
4-aperturate grains are better ‘on average’.

Heteromorphism

In the heteromorphism model, all plants can produce both pollen types in various pro-
portions and heteromorphism can be stable for all finite numbers of pollen donors. The
boundary conditions between pure 3-aperture and heteromorphic ESSs do not change with
the number of pollen donors per stigma and correspond to the boundary between pure
3- and pure 4-aperturate pollen for models in which plants compete against the population
average strategy. However, reducing the number of pollen donors from infinity changes
the boundary conditions for pure 4-aperturate pollen and lets heteromorphic plants invade
the domain where the 4-aperturate grains are better on average.

As mentioned above, a finite number of pollen donors per stigma creates variance
in pollen composition among stigmas, which increases as the number of competitors
decreases. However, in the heteromorphic model, the most important aspect of this variance
is in the frequencies of young and old pollen. Because the mutant and resident aperture
number variants can have very similar pollen type ratios, a small number of pollen donors
does not necessarily result in high variance among stigmas in the proportions of 3- and



4-aperturate grains. Thus, it is the variation among stigmas in the proportions of young and
old pollen, not 3- and 4-aperturate grains, that drives the evolution of heteromorphism.

Because we assume that pollen age does not affect the fitness of 3-aperturate grains, the
boundary between the pure 3-aperturate ESS and heteromorphic ESSs does not change
with the number of pollen donors. This is because, in a pure 3-aperturate population,
stigmas that by chance have a high proportion of old 3-aperturate grains do not create
refuges where pollen donors that produce a few 4-aperturate grains can invade. However,
the number of pollen donors does affect the position of the boundary between the pure
4-aperturate ESS and heteromorphic ESSs. This is because stigmas that by chance have a
high proportion of old 4-aperturate grains create refuges where pollen donors that produce
a few 3-aperturate grains can invade, even when their fitness is lower on average.

This co-existence of 3-aperturate grains despite lower mean fitness can be thought of in
terms of a trade-off between mean and variance. The more variable specialist 4-aperturate
grains can only win or co-exist as heteromorphism when they have a higher mean fitness.
However, the generalist 3-aperturate grains can co-exist as part of a heteromorphic strategy
despite lower mean performance, because of their lower variance in performance. Circum-
stances like this are similar to bet-hedging because they involve a trade-off between mean
and variance, but are not considered to be bet-hedging sensu stricto because the variance
is spatial (among stigmas) rather than temporal (among years) (Seger and Brockmann,
1987).

Polymorphism

This model assumes that each plant can produce only one type of pollen. Because mutant
and resident aperture numbers produce totally different pollen types, the variance among
stigmas created by a finite number of pollen donors acts both through the frequencies of
young versus old pollen and the proportions of 3- and 4-aperturate grains. There are two
main types of contests: homogeneous contests between plants that produce the same type
of pollen and heterogeneous contests between plants, some of which produce different
types of pollen. Because seed production per flower is assumed to be independent of
pollen source, pollen types have equal fitness across the different types of homogeneous
contests and these do not affect the evolutionary outcome. The outcome depends only on
what happens in heterogeneous contests and the proportions of the different kinds of
heterogeneous contests.

An important result of this model is that stable polymorphism cannot exist with either
two or an infinite number of pollen donors per stigma, but can exist for any finite number of
donors greater than two. This is due to the lack of variance in the frequency of pollen types
in heterogeneous contests with either two or an infinite number of donors. With only two
donors, all heterogeneous contests consist of 50: 50 mixtures of 3- and 4-aperturate grains,
although age may vary. At this single frequency, either 3- or 4-aperturate grains will win on
average regardless of the frequency of 4- and 3-aperturate morphs in the population.
Whichever wins on average with 50 : 50 mixtures on stigmas will be the ESS for the popula-
tion, because only heterogeneous contests result in differential fitness. Thus, while local
frequency dependence exists in the two-donor model, local frequency does not vary in the
contests that count. With an infinite number of pollen donors, there are only heterogeneous
contests, all of which occur at the population frequency of pollen morphs and at the
population frequency of young and old 4-aperturate pollen. All contests are the same and



will be won by either 4- or 3-aperturate grains depending on which one is better on average,
but not depending on the proportions of the two variants. With three pollen donors or
more, several types of heterogeneous contests occur in frequencies that depend on the
proportions of the different morphs and polymorphism can be stable.

Another noteworthy difference between our two models is in the position of the pure
3-aperturate ESS boundary. In the heteromorphic model, the boundary between conditions
for a pure 3-aperture ESS and a mixed ESS is independent of the number of pollen donors
and is equal to the boundary between the condition under which 3- or 4-aperturate grains
are better on average (Fig. 1). In the polymorphic model, the position of the boundary
between a 3-aperture ESS and a mixed ESS depends on the number of pollen donors.
Furthermore, for numbers of pollen donors less than infinity, the conditions for a pure 3-
aperture ESS extend well into the domain where 4-aperturate grains are better on average
(Fig. 4).

In the heteromorphic model, a heteromorphic strategy can involve the production of
a very small proportion of 4-aperturate grains, which does not provide a refuge for
3-aperturate grains to invade unless they are better on average. However, in the polymorphic
model, a 4-aperturate pollen donor produces all 4-aperturate grains. Even if the proportion
of 4-aperturate plants in the population is very small, 4-aperturate grains will be fairly
common in heterogeneous contests when the number of pollen donors per stigma is small.
Thus, in the polymorphic model, when there are small numbers of pollen donors per
stigma, random high local frequencies of old 4-aperturate grains in heterogeneous contests
will permit 3-aperturate plants to take over under some conditions where pure 4-aperturate
grains are better on average. Similarly, limitations on the values pollen type frequencies can
take on stigmas explains why the conditions for polymorphism are more restrictive than
for heteromorphism at the boundary between the pure 4-aperture ESS and mixed ESSs.

Biological implications

The relevance of the model parameters to pollen aperture evolution in natural systems
was discussed for the two-competitor models in Till-Bottraud et al. (1994). There it was
mentioned that the most relevant issue is the time scale at which pollen viability declines
compared to the speed with which pollen is picked up and delivered. Species for which
pollen longevity is low and the pollination ecology results in long lags between pollen
production and delivery should evolve a low number of pollen apertures. High pollinator
activity with rapid pollination combined with high pollen longevity will favour a high
number of apertures. Variable time from pollen production to delivery, combined with a
high fitness advantage of one morph and low viability of the other, will promote the produc-
tion of more than one pollen type. It was argued that although some of these parameters
are hard to measure and only limited data exist, the conditions favouring the production of
multiple pollen types are likely to be fairly common in nature.

This paper has explored the effects of the number of pollen donors. The general effect
of an increase in pollen donors per stigma is to favour the pure 4-aperturate specialist
strategies, both in heteromorphic and polymorphic models. In the heteromorphic model,
the pure 3-aperture domain remains constant, whereas it decreases in the polymorphic
model. The heteromorphic or polymorphic domains decrease with the number of pollen
donors. Moreover, for a given number of donors, the parameter space in which poly-
morphism is stable is much smaller than that for heteromorphism.



The large qualitative difference between two and three donors in the polymorphic model
is probably not relevant biologically: even with two donors, several types of heterogeneous
contests with different pollen type frequencies are possible if the donors provide variable
amounts of pollen on the stigmas. The number of pollen grains from one plant has been
observed to decrease exponentially in the course of a pollinator’s visits (Thomson and
Plowright, 1980; Thomson et al., 1986; Morris et al., 1994). The last plant visited by the
pollinator provides a large amount of pollen to a given stigma, the second-to-last provides
less, and so on. Each plant, depending on its order in the pollinator’s visits, will provide a
different amount of pollen to different contests. In wind-pollinated species, the nearest
plants usually sire more offspring than plants located further away (Erickson and Adams,
1989), and undoubtedly provide more pollen grains. So even with two pollen donors per
stigma, we expect to find a large array of heterogeneous contests under natural conditions.
Thus polymorphism could theoretically be found for any finite number of donors greater
than one.

The number of pollen donors per stigma can be seen as another parameter related to
pollinator activity, together with the chance of rapid pollen delivery. Indeed, if pollinators
are very active, they will visit many flowers in a short time and deposit viable pollen from
many plants on the same stigma. The result of an increase in pollinator activity is to favour
the specialist 4-aperturate pollen type both through competitor number and the speed of
pollen delivery.

In natural situations, the number of pollen donors on a stigma is difficult to assess
directly, but it can be estimated from pollen carry-over data or from paternity analyses of
single fruits. The former (Table 2) are likely to provide an over-estimate of the number of
donors on a stigma: if pollen from a given plant can be transported up to the xth stigma
of a visitation sequence, most of the intervening plants should also provide pollen to that
stigma. The latter (Table 3), giving the number of successful donors, will usually provide
an under-estimate. Few donors (typically between two and six for insect-pollinated
species, slightly more for hummingbird-pollinated ones) provide a lot of pollen grains to a
single stigma. Thus the infinite pollen donor model, although theoretically revealing,
is unrealistic. Two pollen donors on a stigma are necessary for pollen competition to occur,
but the number of donors is never very high, so that the conditions for heteromorphism
or polymorphism should easily be obtained in nature. This, of course, requires that
the other characteristics of pollen and pollinators be in the range for heteromorphic or
polymorphic ESSs: (i) that the time of pollen collection in relation to that of anther
dehiscence is variable and (ii) that the viability decay of multi-aperturate pollen is much
greater than that of few-aperturate pollen (during the time interval of possible pollen
collection).

Even if the conditions in which we can find polymorphism are much more restricted
than for heteromorphism, our models still predict that polymorphic species could exist. Yet,
in a survey of over 200 species, no purely pollen-polymorphic species were found (Mignot,
1995). In the models, polymorphism is stable in a range of parameters where hetero-
morphism is also a stable strategy. However, we have shown that at least for the case of three
pollen donors on a stigma, polymorphism can be invaded by heteromorphic strategies,
whereas the reverse is not possible. This suggests that polymorphism can always be replaced
by heteromorphism. Heteromorphism can be obtained by slight modifications of the
developmental processes acting during meiosis (Ressayre ez al., 1998) and a large number of
the heteromorphic species in Mignot (1995) have a largely dominant pollen type and small
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proportions of the other. Therefore, heteromorphism is easy to achieve when homomorph-
ism is possible. In such circumstances, it is likely that heteromorphism would systematically
win against polymorphism, explaining why no pollen-polymorphic species were found.
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APPENDIX 1: HETEROMORPHISM

The general formula for N + 1 pollen donors (the mutant plant against N opponents) is:

"N _ 8 i i(1 _ pAN-i t(p+m(l -p))
W)= 2 =0 X[p+m(1—p)+z’<p'+m(1—p'>)+<N—i)(p'+mv(1—p'))+
(1= 1)(p +my(1 = p) ]
p+mv(l=p)+i(p"+m(l =p")) +(N=i)(p"+mv(l - p))

where 7 indicates the number of opponents that provide young pollen.
The ESS p* is obtained from 0 W(BA)/dq|, 0:
N

0= Cht'(1= )" [p*(N = m(u(N = i) + i) + m(u(N - i) + )]

) t(1—m) N
(P*(N+1=m((N=i)+i+1))+m(N—-i)+i+1))

:q’:q*:

(1 =01 —mv) (Al)
(P*(N+1-mO(N—i+ 1)+ i) +mO(N—i+1)+0))



This equation gives ESS candidates, p*, implicitly as a function of the parameters. The conditions for
heteromorphism (0 < p* < 1) to be an ESS (see text) are given by:

Condition 1: oW (p, p")opl,-, >0 (dW(0) > 0)

ST CHI (=0 i+ (N = DN = i) + i+ 12+ (1= (N =i+ 1) + )]
em< (A2)
> CL (=0 i+ V(N = DN = i) + i+ 17+ v(1 = DN = i+ 1) + )]

i=0

Condition 2: oW(p,p")opl,-, -, <0(@W(1)<0) & tm+(1-t)my>1 4)

APPENDIX 2: POLYMORPHISM

The paternal fitness of a pollen donor that produces 3-aperturate pollen when it is confronted with
N opponents from the population is:

N N-i
W= 2, Cx'(1 - )" ZCM»/(l—z)N"”< )

= v l+i+mj+(N—i—j)my

where 7 represents the number of opponents producing 3-aperturate pollen and (N — i) is the number
of opponents producing 4-aperturate pollen. Among these (N — i) opponents, j provide young pollen
and (N — i —) old pollen. As the individual fitness of 3-aperturate pollen is independent of its age, the
numerator is 1.

Similarly, the paternal fitness of a pollen donor that produces 4-aperturate pollen is:

tm (1-tmv )

+
m+i+mj+(N—i—jmv mv+i+mj+(N—i-jmy

% Nei
w,= Z Cix(1 _x)N—i chvﬂ' (- t)Ni/(

i=0 j=0

In this case, the age of the 4-aperturate pollen from the pollen donor in question (numerator) must be
taken into account.

The value of x* can be obtained by equating W5 and W,. The 4-aperturate strategy will increase
in frequency in a 3-aperturate population when W (4, 3) > W(3, 3) (condition 1). That is, when

tm +(1—t)mv> 1 (BI)
m+N mv+N 1+N

The 3-aperturate strategy will increase in frequency in a 4-aperturate population when W(3, 4) >
W (4, 4) (condition 2). That is, when

¥
o , 1 1
> (1 - z)N'-f( T >> ®2)
=0 l+mj+(N—j)mv) N+1

When N is infinite, the limit value of this equation is obtained as follows:
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(equation 4) & >, C} (1~ 1) (1/(N+ 1)+ m(NIN + 1))+ m(1 —v) GICN + 1))) > 1

J=0
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No= /25 mv+m(l—=v)(jIN)) n~oe \mv+m(l—-v)(jIN)
where j/N is the proportion of 1 outcomes following an N times repeated Bernoulli draw. Each trial is
independent and identically distributed, and corresponds to a probability ¢ (the probability of j I's is
thus G4 /(1 — H)V7). Thus, following the law of large numbers,
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