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Testing evolutionary hypotheses in a phylogenetic context becomes more reliable 

as reconstruction methods based on more realistic models of molecular evolution are 

available. However, computing time burden limits the application of model-based 

methods such as Maximum Likelihood (ML) when many taxa and/or assessment of 

reliability via standard—non parametric—bootstrap methods are involved (Felsenstein 

1985). Time savings thus account in part for the increasing popularity of Bayesian 

inference methods (e.g., Karol et al. 2001; Lutzoni, Pagel and Reeb 2001; Murphy et al. 

2001), as implemented in programs like MrBayes (Huelsenbeck and Ronquist 2001). 

These methods promise computational tractability with large data sets and complex 

evolutionary models (Larget and Simon 1999; Huelsenbeck et al. 2001). 

Bayesian inference of phylogeny combines the prior probability of a phylogeny 

with the tree likelihood to produce a posterior probability distribution on trees 

(Huelsenbeck et al. 2001). The best estimate of the phylogeny can be selected as the tree 

with the highest posterior probability, i.e. the MAximum Posterior probability (MAP) 

tree (Rannala and Yang 1996). Topologies and branch lengths are not treated as 

parameters—as in ML methods (Felsenstein 1981)—but as random variables. Because 

posterior probabilities cannot be obtained analytically, they are approximated by 

numerical methods known as Markov chain Monte Carlo (MCMC) or Metropolis 

coupled MCMC (MCMCMC). These chains are designed to explore the posterior 

probability surface by integration over the space of model parameters. Trees are sampled 

at fixed intervals and the posterior probability of a given tree is approximated by the 

proportion of time that the chains visited it (Yang and Rannala 1997). A consensus tree 

can be obtained from these sampled trees, and Bayesian posterior probabilities of 
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individual clades (PP), as expressed by the consensus indices, may be viewed as clade 

credibility values. Thus, Bayesian analysis of the initial matrix of taxa and characters 

produces both a MAP tree and estimates of uncertainty of its nodes, directly assessing 

substitution model, branch length and topological variables, as well as clade reliability 

values, all in a reasonable computation time. 

Reliability of nodes in phylogenetic trees is classically evaluated in two ways. 

First, from the initial matrix of characters, a strength of grouping value is measured, i.e. 

the least decrease in log-likelihood associated with the breaking of the clade defined by 

that node (e.g. Meireles et al. 1999). The statistical significance of this decrease can be 

estimated with non-parametric or parametric tests (Goldman, Anderson and Rodrigo 

2000). With Bayesian methods, reliability of MAP tree nodes derives directly from 

corresponding posterior probabilities. In the second way, the initial character matrix is 

redrawn with replacement, and bootstrap percentages (BP) are calculated, for example 

under the ML criterion (BPML), and interpreted as a measure of experiment repeatability 

(Felsenstein 1985) or phylogenetic accuracy (Felsenstein and Kishino 1993). 

The Bayesian approach is presumed to perform roughly as bootstrapped ML 

(Huelsenbeck et al. 2001) but runs much faster (Larget and Simon 1999; Huelsenbeck et 

al. 2001). Recent analyses have aimed at comparing Bayesian and ML supports by 

studying the correlation between posterior probabilities (PP) and bootstrap percentages 

(BPML) (Leaché and Reeder 2002; Whittingham et al. 2002). A compilation of literature 

values (Karol et al. 2001; Murphy et al. 2001; Buckley et al. 2002; Leaché and Reeder 

2002; Whittingham et al. 2002; Wilcox et al. in press) reveals that plotting PP as a 

function of BPML can show significant correlation (P-values < 0.02), but that the strength 
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of this correlation is highly variable and sometime very low (correlation coefficient r2 

between 0.29 and 0.99, median at 0.71). Moreover, the slope (S) of the regression line (S 

between 0.29 and 1.08, median at 0.79) indicates that BPML are generally lower than PP. 

This trend has already been noticed by Rannala and Yang (1996) in their pioneering work 

where PP appeared systematically higher than resampling estimated log-likelihood 

(RELL) bootstrap support values. 

As more phylogenetic results relying strictly on Bayesian analyses are published 

(Arkhipova and Morrison 2001; Henze et al. 2001; Lutzoni, Pagel and Reeb 2001), a 

better understanding of the relation between PP and BPML becomes essential. In a work to 

be published, Wilcox et al. explored this relation by performing simulations on their 

original data set. They conclude that, under the condition of their study, PP and BP are 

both overconservative measures of phylogenetic accuracy, but that Bayesian support 

values provide closer estimates of the true probabilities of recovering clades. Thus they 

advocate the preferential use of PP rather than BP (Wilcox et al. in press). However, 

cases where conflicting hypotheses are supported by high posterior probabilities have 

been reported (Buckley et al. 2002; Douady et al., in press). This suggests that at least in 

certain cases PP put overconfidence on a given phylogenetic hypothesis and drawing 

conclusions from this sole measure of support might be misleading. 

To better understand the relationship between PP and BP, we applied standard 

bootstrap resampling procedures to the Bayesian approach, studying the correlation 

between PP, BPML, and BPBay—i.e. posterior probabilities estimated after bootstrapping 

of the data—for eight empirical data sets spanning different kind of characters, types of 

sequences, genomic compartments, and taxonomic groups. Even when the correlation 
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between PP and BPML was weak (r
2
 < 0.52), it became very strong (r2 > 0.96) when 

Bayesian posterior probabilities are computed on bootstrapped data matrices. Moreover, 

albeit less clearly, simulation seems to confirm this trend. These simulations also tend to 

predict that PP overcome BP support for both true and false nodes. We discuss the effect 

of the bootstrapped approach in the case of apparent conflicts between data sets, and 

consider its practical implications for measuring phylogenetic reliability. 

Eight highly diverse empirical data sets were chosen (see details in 

Supplementary Material at MBE web site: http://www.molbiolevol.org), including two 

pairs showing conflict (i.e., PP strongly supporting mutually exclusive nodes): 

mitochondrial versus nuclear markers for 14 cicadas (Buckley et al. 2002), and 

mitochondrial rRNA markers for either 21 or 23 sharks (Douady et al. in press). The 

model of sequence evolution that best fits each DNA data set and the corresponding GTR 

substitution rate parameters, shape of the four-categories gamma distribution (Γ4) and 

fraction of invariable sites (INV) were estimated by Modeltest 3.06 (Posada and Crandall 

1998), and then used in PAUP* 4b10 (Swofford 2002) to compute ML bootstrap 

percentages (BPML) after 100 pseudo-replications with NJ starting trees and TBR branch 

swapping. For the HMGR amino acid data set, BPML were obtained using PROML version 

3.6a2.1 of the PHYLIP package (Felsenstein 2001) with a JTT substitution matrix provided 

by E. Tillier (pers. comm.) combined to a Γ4 + INV model, and parameters optimized by 

PUZZLE 4.0.2 (Strimmer and von Haeseler 1996). Bayesian posterior probabilities (PP) 

were computed under the same ML models with MrBayes 2.01 (Huelsenbeck and 

Ronquist 2001) by running four chains for 100,000 MCMCMC generations using the 

program default priors on model parameters. For bootstrapped Bayesian analyses we 



 6 

generated 100 bootstrap pseudo-replicates for each data set using the program SEQBOOT 

3.6a2.1 (Felsenstein 2001), and estimated Bayesian posterior probabilities as previously 

described for each pseudo-replicate. For all analyses, 1,000 trees were sampled from the 

posterior probability distribution (one every 100 generations) and a conservative 50% of 

the trees (500) was systematically discarded as “burn-in” to ensure that the chains have 

reached stationarity. Bayesian bootstrap percentages (BPBay) were computed for each 

node into three ways: i) the consensus of the 500 x 100 = 50,000 trees generated from the 

100 bootstrapped pseudo-replicates, ii) the average of each nodes PP for the 100 MAP 

trees, and iii) the consensus of the 100 MAP trees (“consensus of consensus”). Given the 

tedious aspect of preparing files for bootstrapped Bayesian analyses, a Perl script was 

custom-made and is available upon request. 

We also explored the relation between PP and BP using a simulation design. 

Monte Carlo simulation of 100 data sets of 1,000 characters for seven taxa each was 

performed using SEQ-GEN 1.2.5 (Rambaut and Grassly 1997), under a model topology 

and associated branch lengths taken from the armadillo subset of VWF xenarthran data 

(Supplementary Material). The K2P model of nucleotide substitution (Kimura, 1980) was 

chosen with a transition : transversion ratio of 2.00 and a Γ8 distribution with α = 1.00. 

BPML and PP supports were obtained for these 100 simulated data sets following the same 

procedure as described above. For computing time reasons, i.e. running 2,500 times 

MrBayes, BPBay were only computed for the 25 data sets showing the greatest contrast 

between BPML and PP. 

For all eight data sets the scatter plots of PP and BPBay versus BPML were very 

similar. In all cases, PP versus BPML are characterized by a moderate dispersion but a 
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flattened slope (S column in Supplementary Material: 0.18-0.93) while BPBay vs. BPML 

have very little unexplained variation, slopes of correlation lines appearing much steeper 

and being always very close to 1 (0.93-1.22). Figure 1 illustrates this trend for three 

individual data sets showing that the results are independent of the nature of the data 

analyzed: nucleotide versus amino acid characters, nuclear versus mitochondrial 

compartments, protein coding versus non-coding markers and different taxonomic groups 

and levels (Fig. 1A-C). Because empirical observations suffer from the difficulty of 

drawing general conclusions from a limited number of observations, we combined the six 

strictly independent data sets and confirmed our observations (Fig. 1D; Supplementary 

Material). Therefore, we are confident that, in empirical data sets, PP and BPML will 

prove only moderately correlated (r2 = 0.27-0.93; S = 0.18-0.93; P-values < 0.02), 

whereas the BPBay and BPML are strongly correlated (r
2
 = 0.95-0.99; S = 0.93-1.22; P-

values < 10-6). 

Such a correlation between BPML and BPBay seems expectable since the use of 

uniform priors in the Bayesian analyses involves that the posterior probability density is 

strongly dependent upon the likelihood function. However, this correlation is not trivial 

either because the ML and the MAP trees obtained from each bootstrap pseudo-replicate 

are not always identical. For example, in the case of the 21-shark and xenarthran data 

sets, ML and MAP trees are different in 38% and 27% of the replicates, respectively. 

Therefore, the very high quality correlation between BPBay and BPML (r
2>0.95) cannot be 

expected a priori. We also tested several of the assumptions leading to the strong 

correlation between BPBay and BPML. First, the possibility that the quality of the 

correlations observed could depend upon random error occurring between independent 
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runs seems to be discarded by the minimal PP variance observed on MCMCMC 

repeatability plots (Huelsenbeck et al. 2001). It is thus unlikely that the low correlation 

between PP and BPML reflects a problem of repeatability between independent runs. 

Second, we a priori removed 50% of the sampled trees as MCMCMC “burn-in”. This 

was done to ensure that all trees sampled before stationarity were discarded, without 

actually checking Bayesian results of each individual bootstrap pseudo-replicate. To 

check for potential biases at this stage, we recomputed BPBay, keeping 90% of all 

sampled trees (i.e., removing 100 instead of 500 trees for each pseudo-replicate). Results 

indicate that bias is quite unlikely as the level of BPBay variation is very low (e.g., 1% for 

the ITS data set). Therefore, “burn-in” threshold seems to be of modest importance as 

long as it is kept realistic, probably because of the rapid convergence towards stationarity 

of our data. Third, we looked at the effect of making an overall consensus (i.e., consensus 

of all 50,000 trees sampled over all 100 pseudo-replicates and after a 50% burn-in) versus 

making the consensus of the 100 MAP trees or the average of the PP. Compilation of 

node supports—for example for both ITS and Buckley et al. (2002) nuclear data sets—

yields high correlations (r2 > 0.95) between BPML and BPBay, "PP average" or "MAP trees 

consensus". However, it seems that BPBay and "PP average" are closer to Bayesian 

philosophy whereas "MAP tree consensus" values are closer to the ML bootstrap 

approach. Indeed, in the two first cases, the complete collection of trees is considered 

while in the last case a single optimal tree is kept to represent each pseudo-replicate. 

Given the likely loss of information during the consensus iteration, it seems that using an 

overall consensus was a better option. 
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Non-parametric bootstrapping may be an over-conservative estimator of node 

reliability (Hillis and Bull 1993; Wilcox et al. in press; but see Felsenstein and Kishino 

1993; Efron, Halloran and Holmes 1996). However, it remains the most commonly used 

way to characterize it. From the statistical point of view, posterior probabilities have the 

advantage of straightforwardness but, as we just showed, they are not tightly correlated 

with ML bootstrap percentages. These estimators seem rather different, as PP needs to be 

calculated on bootstrapped data to behave like BPML supports. Recently, Wilcox et al. (in 

press), based on a simulation study, conclude that PP and BP are both over-conservative 

measures of node support, but that PP provided closer estimates of the true probabilities 

of recovering clades. Results from our simulations seem to confirm the fact that PP is less 

conservative than BP. Indeed, when considering true nodes—those that were present in 

the model topology—PP are generally higher than BPML and BPBay (Fig. 2A: upper right 

quarter). However, PP is also higher when looking at strong support for false nodes—

those that were absent of the model tree (Fig. 2B: upper right quarter). Below 50% of PP 

and BP (Fig. 2B: lower left quarter), i.e. for values that are usually not interpreted for 

phylogenetic inference, there is a large dispersion of points with a trend of low BP to 

overestimate accuracy as noted by Hillis and Bull (1993). As a whole these simulation 

results imply that, at least in certain cases, high PP falsely interpret signal and may end 

up strongly supporting incorrect phylogenetic relationships. Thus, the more conservative 

BPML and BPBay seem less subject to the behavior of strongly supporting a node when it 

is actually false. 

Furthermore, the existence of strong conflicts in empirical data using Bayesian 

inference seems to argue that this approach may be sensitive to small model 
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misspecifications as theoretically anticipated by Waddell, Kishino and Ota (2001) and 

subsequently shown by Buckley et al. (2002) and Buckley (2002). Bayesian analyses on 

bootstrapped data were able to eliminate apparent conflicts. Two nodes opposed by PP = 

0.93/0.94 (Rhodopsalta sister to either Maoricicada or Kikihia depending on the choice 

of mitochondrial or nuclear markers: Buckley et al. 2002) and 0.98/0.99 (relative position 

of Hexanchiformes in sharks’ inter-ordinal tree depending on the choice of the outgroup: 

Douady et al. in press) respectively, then received BPBay = 59/65 and 57/47 after 

bootstrap resampling. Evidently, certain conflicts diagnosed by PP could be biologically 

explained by differences between gene trees and species trees introduced by horizontal 

transfer, lineage sorting, and gene duplication and extinction (review in Maddison 1997). 

In particular, hybridization between taxa might alternatively account for the conflict 

observed between mitochondrial and nuclear genes in Cicadas. However, in the case of 

sharks, the conflict arose when taxa are added to the outgroup (for the same gene). It 

appears more than likely that this spurious conflict was the result of the overestimation of 

node support based on PP and that conclusions based solely on this estimator would have 

been positively misleading. 

Drawing general conclusions from empirical studies could be problematic 

because we do not know how representative our example data sets are of phylogenetic 

problems. However, using “real” data sets does have the advantage of avoiding the 

simplifying assumptions inherent in simulating DNA data under a given model (Buckley 

2002; Buckley and Cunningham 2002). Furthermore, in our case analyses based on both 

empirical and simulated data seem to corroborate each other in suggesting that, being 

more conservative, BPML and BPBay might be less prone to strongly supporting a false 
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phylogenetic hypothesis, thus reinforcing concerns regarding PP sensitivity to model 

misspecifications. 

Nevertheless, Bayesian inference (with or without bootstrap) remains a very 

efficient way to simultaneously estimate substitution model parameters, branch lengths 

and topology under complex models of evolutionary change (Huelsenbeck 2002). If we 

take our shark 12S-16S data set with 23 taxa as an example, a regular PP (or one BPBay 

replicate) requires roughly 1.5 hour of computing time on a Pentium 4 running at 1.80 

GHz, against 120 hours for a single replicate of BPML with simultaneous estimation of all 

parameters. Bayesian search on bootstrap data is much faster than ML if the user wants 

parameters to be estimated as the search goes, and gives very similar results. However, in 

the wide majority of cases, a ML (or BPML) search with simultaneous estimation of the 

parameters is not necessary and a priori approximations allow the identification of the 

optimal trees and bootstrap supports. The Bayesian approach also provides a unique way 

to analyze amino acid data with simultaneous parameters estimation (in popular 

phylogenetic packages such as PAUP or PHYLIP this option is only available for DNA). 

Both PP and Bootstrap supports are of great interest to phylogeny as potential upper and 

lower bound of node support accuracy, but they are surely not interchangeable and cannot 

be directly compared. In that context, users may prefer computing PP and BPBay or BPML 

to better explore the range of node support estimates, especially when potential conflicts 

between data sets are explored. 
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FIGURE LEGENDS 

 

FIG. 1. Linear correlation between maximum likelihood bootstrap percentages (BPML) 

and Bayesian posterior probabilities (PP, open circles) or bootstrapped Bayesian posterior 

probabilities (BPBay, black triangles) for empirical data sets. The dotted line represents a 

slope of 1—with equality of BPML and PP or BPBay—while dashed and plain lines 

represent PP = f(BPML) and BPBay = f(BPML) regression lines, respectively. All axes 

represent node support as percentages. See Supplementary Material for further 

information regarding data sets. 

 

FIG. 2. Linear correlation between maximum likelihood bootstrap percentages (BPML) 

and Bayesian posterior probabilities (PP, open circles) or bootstrapped Bayesian posterior 

probabilities (BPBay, black triangles) in 25 simulated data sets. “True nodes” are nodes 

that were present in the model topology used to simulate the data sets and “False nodes” 

are nodes that were not in the model topology. The dotted line represents a slope of 1—

with equality of BPML and PP or BPBay—while dashed and plain lines represent PP = 

f(BPML) and BPBay = f(BPML) regression lines, respectively. All axes represent node 

support as percentages. Topology and parameters used for the simulation: 

(A:0.043143,((B:0.027559,(C:0.018247,D:0.024211):0.003601):0.011055,(E:0.005704,(

F:0.010024,G:0.006528):0.000708):0.021913):0.003809) with branch lengths issued 

from the xenarthran data set; 1000 nucleotides; K2P with Ti/Tv = 2.00; Γ8 with α = 1.00. 
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SUPPLEMENTARY MATERIAL 

 

Linear Correlation between ML Bootstrap Percentages and Bayesian support for 

Eight Highly Diverse Empirical Data Sets 

 X axis: BPML  X axis: BPML 

 Y axis: PP  Y axis: BPBay 

Data r2 S B  r2 S B 

Orchids, ITS 1 0.85 0.59 44.09  0.99 1.22 -21.47 

Mammals, VWF 2 0.93 0.74 27.29  0.99 1.07 -8.13 

Insects, EF1α 3 0.75 0.36 64.33  0.99 1.07 -6.97 

Insects, Mitochondrial 4 0.75 0.93 12.05  0.99 1.10 -9.95 

3 domains, HMGR 5 0.73 0.59 43.89  0.98 0.98 1.77 

Sharks, 12S-16S (23 taxa) 6 0.52 0.18 83.48  0.96 0.95 2.81 

Sharks, 12S-16S (21 taxa) 7 0.49 0.38 64.70  0.99 0.98 1.19 

Snakes, 12S-16S 8 0.27 0.25 73.37  0.95 0.93 4.85 

Combination of 6 data sets 9 0.54 0.47 55.64  0.96 1.01 -1.85 

Combination of 8 data sets 0.54 0.45 57.40  0.97 1.01 -1.38 

 

NOTE.—S and B are respectively the slope and the intercept of the linear correlation Y = 

S x BPML + B. 

1: Subset of nuclear ribosomal ITS (682 aligned nucleotides, nt) for 23 Diseae orchids 

including 10 Satyriinae, 12 Disiinae and one Brownleeinae species (Douzery et al. 1999); 

highest likelihood tree: (Brownleea,(((Disa uniflora,(Disa racemosa,Disa pillansii,(Disa 

cardinalis,Disa tripetaloides))),(Disa glandulosa,Disa longicornis)),((Monadenia,(Disa 
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chrysostachya,Herschelia)),(Disa rosea,Disa sagittalis))),(((Satyrium 

membranaceum,(Satyrium humile,(Satyrium stenopetalum,(Satyrium 

acuminatum,(Satyrium carneum,Satyrium ligulatum))))),(Satyrium nepalense,Satyrium 

odorum)),(Satyrium bicallosum,Satyrium rhynchanthum))). 

2: Nuclear protein coding gene vWF (1161 nt) for 13 xenarthran mammals (Delsuc et al. 

in press); highest likelihood tree: (((Dasypus novemcinctus,Dasypus 

kappleri),((Euphractus sexcinctus,(Chaetophractus villosus,Zaedyus pichiy)),(Tolypeutes 

matacus,(Priodontes maximus,Cabassous unicinctus)))),(Cyclopes didactylus,(Tamandua 

tetradactyla,Myrmecopha tridactyla)),(Choloepus didactylus,Bradypus tridactylus)). 

Seven armadillo genera are underlined and were used to provide the model tree for 

simulations. 

3: EF1α protein coding gene (2033 nt) of Buckley et al. (2002) for 14 cicada insects; 

highest likelihood tree: (Diemeniana frenchi,Diemeniana tillyardi,(((Amphipsalta 

cingulata,Notopsalta sericea),(Cicadetta celis,Cicadetta puer)),(Pauropsalta 

johanae,(Myersalna depicta,((Maoricicada cassiope,Maoricicada hamiltoni),((Kikihia 

scutellaris,Kikihia cauta),(Rhodopsalta cruentata,Rhodopsalta leptomera))))). 

4: Mitochondrial (12S-16S ribosomal RNA [rRNA] + COI + COII) markers (2249 nt) of 

Buckley et al. (2002) for 14 cicadas; highest likelihood tree: (Diemeniana 

frenchi,Diemeniana tillyardi,(((Amphipsalta cingulata,Notopsalta sericea),(Cicadetta 

celis,Cicadetta puer)),(Pauropsalta johanae,(Myersalna depicta,((Kikihia 

scutellaris,Kikihia cauta),((Maoricicada cassiope,Maoricicada hamiltoni),(Rhodopsalta 

cruentata,Rhodopsalta leptomera))))). 
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5: 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, 258 amino acids) for 15 

taxa representing all three domains of life (Eukarya-Bacteria-Archea; Boucher et al. 

2001); highest likelihood tree: (((Archaeoglobus profundus,(Archaeoglobus 

fulgidus,(Streptococcus pyogenes,Pseudomonas mevalonii))),((Saccharomyces 

cerevisiae,Homo sapiens),(Arabidopsis thaliana,Zea mays))),((Methanothermobacter 

thermautotrophicus,(Vibrio cholerae,Haloferax volcanii)), (((Pyrococcus 

abyssi,Pyrococcus horikoshii), Streptomyces aeriouvifer ), Aeropyrum pernix))) 

6: Shark mitochondrial 12S-16S rRNA for 23 taxa (1880 nt, Douady et al., in press); 

highest likelihood tree: (Petromyzon marinus,(Polymixia japonica,((((((Centrophorus 

granulosus,Squalus acanthias),(Squatina californica,Pristiophorus 

nudipinnis)),((Heterodontus francisci,Ginglymostoma cirratum),(((((Isurus 

oxyrinchus,Isurus paucus),Lamna nasus),Carcharodon carcharias),(Carcharias 

taurus,Alopias vulpinus)),((Carcharhinus porosus,Mustelus manazo),Scyliorhinus 

canicula)))),(Hexanchus griseus,Heptranchias perlo)),(Raja radiata,Urobatis 

jamaicensis)),Hydrolagus colliei)),Siren intermedia). 

7: Shark mitochondrial 12S-16S rRNA for 21 taxa (1963 nt, Douady et al., in press); 

highest likelihood tree: (Polymixia japonica,(((((((Centrophorus granulosus,Squalus 

acanthias),(Squatina californica,Pristiophorus nudipinnis)),(Hexanchus 

griseus,Heptranchias perlo)),((((((Isurus oxyrinchus,Isurus paucus),Lamna 

nasus),Carcharodon carcharias),Carcharias taurus),Alopias vulpinus),((Carcharhinus 

porosus,Mustelus manazo),Scyliorhinus canicula))),Heterodontus 

francisci),Ginglymostoma cirratum),(Raja radiata,Urobatis jamaicensis)),Hydrolagus 

barbouri). 
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8: Snake mitochondrial 12S-16S rRNA for 23 taxa (1545 nt, Wilcox et al., in press); 

highest likelihood tree: ((Leptotyphlops dulcis,(Typhlops jamaicensis,Typhlops 

ruber)),(Anilius scytale,((Trachyboa boulengeri,(Tropidophis greenwayi,(Tropidophis 

pardalis,(Tropidophis feicki,Tropidophis melanurus)))),((Xenopeltis unicolor,(Morelia 

boeleni,Loxocemus bicolor)),((Cylindrophis ruffus,(Uropeltis melanogaster,Rhinophis 

philippinus)),(((Ungaliophis continentalis,Exiliboa placata),Eryx conicus),(Boa 

constrictor,(Acrochordus javanicus,(Pituophis lineaticolis,(Crotalus polysticus,Azemiops 

feae)))))))))). 

9: Six strictly independent data sets (Sharks 12S-16S [21 taxa] and Insects EF1α data sets 

excluded). 
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Figure 2 
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Figure 3 
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