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Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions
remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by
exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete
genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of
prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and
tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental
transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous
recombination. Significant transformation frequency differences were observed among these positions tested regardless of
the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the
putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic ‘‘hot spots’’, which
contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than
positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial
cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics
study correlated recombination ‘‘hot-spots’’ to the presence of Chi-like signature sequences with which recombination might
be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign
genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with
homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair
mechanisms in order to generate genetic diversity without losing too much genomic stability.
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Mechanisms. PLoS ONE 2(10): e1055. doi:10.1371/journal.pone.0001055

INTRODUCTION
The fundamental impact of horizontal gene transfer (HGT) in

shaping the structure of bacterial genomes was only recently

demonstrated by the analysis of numerous complete bacterial

genome sequences [1]. The detection of relatively recently acquired

genes is possible because the laterally transferred genes have

compositional features that distinguish them from vertically inherited

genes [2]. However, finding a significant proportion of transferred

genes in a bacterial genome does not mean that the entire gene

transfer process that leads to the stable inheritance of new genes

occurs frequently in the environment. Actually, the frequency of

gene transfer between phylogenetically remote bacteria is expected

to be low due to the requirement for several successive and rare

events including colonization of the same environmental niche by

donor and recipient bacteria, physical contact, compatibility for

conjugation and transduction or DNA persistence and competence

development when DNA is directly taken up by natural trans-

formation [3]. Foreign DNA that has successfully penetrated

a bacterial cell is integrated into the host genome by illegitimate

recombination only if it escapes degradation by the restriction-

modification systems (RM) [4] and the methyl-mismatch repair

(MMR) system [5]. Due to these successive requirements, HGT with

foreign DNA is unpredictable yet a single event occurring even once

during bacterial evolution could fix a new trait in a bacterial lineage

if the overall fitness is increased.

When donor DNA originates from an organism closely related

to the recipient, recombination between similar or partially

divergent (called homeologous [6]) sequences is much more likely.

These transfer events will ensure genetic coherence and slow

diversification when occurring within a group of closely related

bacteria and will also promote environmental adaptation by

sharing point mutations or transposon- and IS- mediated genetic

rearrangements among the bacterial population [7]. However,

bioinformatics methods cannot easily detect this new genetic

information (unless significant numbers of individuals from the

same species were completely sequenced) due to a lack of

compositional features differentiating the donated DNA and the

recipient genome [8]. In this case, the frequency of DNA transfer,

the differences in transfer potential of different genes, and the

potential impact on population fitness can be addressed by

experimental approaches.

In this paper, we combined in silico and experimental

approaches to study differences between these two types of

HGT in bacteria. We used R. solanacearum as a model because of
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the evidence indicating a fundamental role of HGT in this plant

pathogen’s evolution. More than 7% of the genome was found to

be encompassed by regions in which codon usage differed

significantly from codon usage in the rest of the genome. In

addition, most of these regions exhibited a base composition

differing significantly from the G+C content for the entire genome

indicating a foreign origin for these sequences [9]. Other authors

using the Bayesian method estimated that about 16% of the

genome was acquired by HGT [1]. Our first goal was to use

alternate methods, including phylogenetic reconstruction of pro-

karyote homologous gene families and calculation of two codon

usage indices to complete the list of genes acquired by HGT.

These methods would be less biased than intrinsic codon usage-

based approaches, which tend to overestimate the number of

transferred genes, and in addition would identify putative donor

microorganisms. These in silico studies were complemented by

natural transformation experiments (Figure 1) in order to

determine if and how this bacterium regulates acquisition of the

DNA, including the genes detected as recently acquired by the

bioinformatics analyses, that originates from the same or very

closely related strains. R. solanacearum seems particularly appropri-

ate for addressing these evolutionary questions because it is

a naturally transformable bacterium whose cells use natural

transformation to exchange genes at significant frequencies under

in planta conditions [10]. Our hypothesis is that R. solanacearum

bacterial cells are subjected to a constant flux of more or less

homologous DNA in the open environment and that this flux

might have led to the adaptive use of (‘‘spandrel’’) of DNA

acquisition regulation mechanisms in order to generate genetic

diversity without losing too much genomic stability. The term

‘‘spandrel’’ refers to the adaptive use of a function selected for

another purpose [11,12].

RESULTS

Detection and bacterial origin of foreign genes

acquired by R. solanacearum strain GMI1000
In order to identify HGT events in the available R. solanacearum

genome sequence, we used a phylogenetic approach to identify the

putative donors of the newly acquired genes. With this approach,

when R. solanacearum genes were not clustered with the other b-

proteobacteria genes found in the family, and when this was

supported by high probabilities for the Shimodaira-Hasagawa test,

then we considered the possibility of an HGT event (Figure 2).

When only a single b-proteobacteria other than R. solanacearum was

present in a family, and when this bacteria was not clustered with

R. solanacearum, we choose to ignore this family for the HGT count,

since it was not possible to determine in which organism the

transfer took place. We preferred this approach because it is less

biased than codon usage-based methods, which tend to over-

estimate the number of transferred genes [13].

Using the phylogenetic trees, we found 151 inconsistencies in the

1139 phylogenetic trees examined, which represents 13.3% of the

total families studied (the set of corresponding alignments and trees

can be downloaded at ftp://pbil.univ-lyon1.fr/pub/datasets/

PLoS07). However, because horizontally transferred genes tend to

be orphans enriched in A+T nucleotides [14–16], we added to our

list of putatively transferred genes those for which: (i) no available

homologs were detected (and therefore no phylogenetic tree could be

computed) or (ii) an extremely biased codon usage was found.

To do this, we computed the G+C content of the codon third

position (G+C3%) and Codon Adaptation Index (CAI) [17]. The

CAI reference table was built with all the genes coding for ribosomal

proteins in R. solanacearum. After computing G+C3% and CAI

values, we selected the 10% of the genes having the lowest values for

these indices. This left us with 268 genes from the 3.7 Mb

chromosome and 138 genes from the second replicon, the 2.1 Mb

megaplasmid. Then, we performed a BLASTP search using these

genes as templates in order to find those without homologs outside R.

solanacearum. For that purpose, we set the E-value threshold at 0.1.

We found a total of 42 genes from the chromosome and 37 genes

from the megaplasmid matching these criteria. These orphan genes

were also added to the list of putatively transferred genes. Together,

phylogenetic reconstitution and codon usage selected about 15% of

the genes in R. solanacearum genome that could be associated with

HGT events and identified the potential bacterial donors.

All alignments and trees used to detect the transfers, as well as the

list of orphans with high codon usage bias can be downloaded from

the PBIL web server at ftp://pbil.univ-lyon1.fr/pub/datasets/

PloS07.

Selection of DNA positions for natural

transformation experiments
Eighteen DNA positions on the genome encompassing a wide

range of properties were selected to be amplified and cloned

(Table 1). Fifteen of these positions were located on the

Figure 1. Experimental design to measure recombination rate at
different positions of the R. solanacearum chromosome. Target
positions on the chromosome (TCP) and on the megaplasmid (TMP)
were identified and amplified by PCR. PCR products from the different
genomic positions were cloned in appropriate vectors and afterwards,
labeled with the aacC3-IV gene (gentamycin cassette). The pTCP (versus
pTMP) plasmid carrying homologous GMI1000 fragments were
linearized and resulting plasmids were used as donor to transform
naturally the wild type strain GM1000 and recombination rate of each
position designed. Total genomic DNA from R. solanacearum transfor-
mants and carrying aacC3-IV cassette resulting from double crossing-
over were used as exogenous DNA donor to ‘‘re-transform’’ the wild
type strain GM1000 and the CFBP2968, NCPPB332 and CFBP2957 strains
to determine the recombination rate of genomic DNA. (Amp, ampicillin
and Kn, kanamycin).
doi:10.1371/journal.pone.0001055.g001
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chromosome (prefix TCP) and three positions were located on the

megaplasmid (prefix TMP). Five DNA fragments (TCP4, TCP8,

TCP14, TCP15 and TMP1) encompassed the DNA positions that

were identified as being recently acquired by horizontal gene transfer

by the phylogenetic reconstruction method (Table 1) and three DNA

positions (TCP5, TCP14 and TMP2) contain DNA segments in

which codon usage differed significantly from codon usage in the rest

of the genome [9]. The TCP4, TCP8, TCP14, TCP15 and TMP1

positions carried RSc3437 (vsr), RSc0558 (pilA), RSc1815, RSc3252

and RSp0313 (mexC) genes respectively. The vsr gene (HOGENOM

family HBG327419) was among the genes predicted by our

phylogenetic approach as having been horizontally transferred and

exhibits a strong codon usage bias toward A+T. Three others

selected genes (RSp0313 (mexC), RSc0558 (pilA) and RSc1815 were

apparently acquired from the c-proteobacteria, Acinetobacter bauman-

nii, Pseudomonas aeruginosa and Xanthomonas campestris, respectively. The

RSc3252 gene was acquired from the least related organism,

Chlorobium tepidum, which belongs to green sulfurous bacteria.

Four DNA positions (TCP2, TCP10, TCP11 and TCP13) were

selected because they contain well conserved house keeping genes

(ubiE, purD, ftsK and rpsG). In addition, the megaplasmid TMP2

position was part of a 31 kb tandem position and TMP3 position

encompasses a gene (popA) involved in plant pathogenicity. Four

positions (TCP5, TCP9 TCP12 and TCP1) harbored an IS,

a temperate bacteriophage, a transposon (TN) and a putative gene.

Finally, DNA fragments, TCP3, TCP6 and TCP7, encompass genes

whose functions are more or less directly involved in controlling

genomic integrity (recA, mutS) and RSc1120, defined as coding for

a DNA translocation protein which might be necessary for

competence development (comA-like). A 2 kb DNA fragment from

each of the 18 selected positions had the aacC3-IV gene, which

confers resistance to gentamycin, inserted in its middle. The resulting

recombinant plasmids were used as donor DNA in R. solanacearum

natural transformation experiments (Figure 1).

Transformation of R. solanacearum strain GMI1000

with plasmid-borne DNA fragments
The TOPO plasmid vector without an insert did not produce any

Km resistant recombinant R. solanacearum clones. Therefore, this

plasmid was unable to replicate autonomously in R. Solanacearum

GMI1000 strain and the integration frequency by illegitimate

recombination was below the detection level. When plasmids

contained inserts, DNA transformation frequencies varied by more

than two orders of magnitude depending on the target position

(Figure 3). The growth rate of transformants was not significantly

modified in comparison to the wild type strain indicating that the

differences in calculated transformation frequencies were not

affected by differences in cell growth or survival (results not

shown). The lowest frequency, which was found for pTCP2

(4.99+/22.4761028), was 300 times lower than that of the highest

frequency measured (pTCP3 at 1.66+/20.2661025). Plasmids

Figure 2. Two examples of HGT detected on the megaplasmid (a) and on the chromosome (b) through a phylogenetic approach. The two trees
have been built respectively with the sequences from the HOGENOM families HBG007143, corresponding to the Proline imminopeptidase (a), and
HBG225336, corresponding to the transcriptional regulator of Acetoin catabolism (b). The value for the Shimodaira-Hasagawa likelihood ratio test is
given for the internal branches (only when P$0.95). In both cases, the sequence from R. solanacearum is not clustered with the other b-
proteobacterial sequences, this with a significant value for the clustering test.
doi:10.1371/journal.pone.0001055.g002
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pTCP13 and pTMP1 also exhibited relatively low transformation

frequency (1.40+/20.2961027 and 1.38+/20.4461027, respec-

tively; Figure 3) although they were still 3 times higher than that

for pTCP2. Several plasmids transformed R. solanacearum strain

GMI1000 at frequencies between one and two orders of

magnitude higher than pTCP2. These included pTCP1, pTCP4,

pTCP6, pTCP8, pTCP9, pTCP10, pTCP12, pTCP14, pTCP15

and pTMP2. Finally, pTCP5, pTCP7, pTCP11 and pTCP3

yielded transformants at frequencies more than two orders of

magnitude higher than pTCP2. All the gentamycin resistant R.

solanacearum clones tested resulted from double crossing over events

according to their sensitivity to kanamycin and the size of the PCR

products, which were all about 4 kb long as expected for gene

replacement (results not shown).

Transformation of different R. solanacearum strains

with linear chromosomal DNA fragments from R.

solanacearum strain GMI1000
The total genomic DNA (composed of fragments ranging in size

between 40 and 100 kb) from the different plasmid-transformed R.

solanacearum GMI1000 clones was used as donor DNA with

GMI1000, CFBP2968, NCPPB332 and CFBP2957 as recipient

strains. Conditions for homologous recombination were established

when GMI1000 strain was the recipient strain as the only difference

between donor DNA from the same strain and the recipient genome

was the marker gene inserted in the targeted DNA position.

Recombination conditions for other recipient strains varied from

homeologous to heterologous as strains CFBP2968 (phylotype I),

NCPPB332 (phylotype III) and CFBP2957 (phylotype II) have

respectively ,98%, ,81% and ,69% of the GMI1000 genes

conserved in their genomes [18]. In addition, these three strains were

the most efficiently transformed among all strains tested in each

phylotype and PCR carried out with GMI1000 primers for six out of

the 18 positions tested confirmed presence of the corresponding

genes in these isolates (results not shown).

Again, significant differences in transformation frequencies were

detected for different genomic positions. In general, the DNA

positions for the strain GMI1000 that exhibited the lowest

transformation frequencies when recombination was mediated by

plasmid borne DNA fragments also yielded low transformation rates

when genomic DNA was used (Figure 4 and Table S1). This

included gTCP1 and gTCP13 with recombination frequen-

cies,10210 and 3+/20.0661027, respectively (Figure 4 and Table

S1). Similarly, the highest transformation frequencies were observed

when recombination was mediated by DNA positions (e.g., gTCP3

and gTCP7), which also yielded the highest frequency when they

were located on a plasmid. However, comparison of transfer

frequency between plasmids and genomic DNA of the same strain

(GMI1000) for the other targeted DNA positions showed some

discrepancies in spite of a significant (p,0.01) correlation between

the two experiments (correlation coefficient = 0.69; Table 2).

With the other R. solanacearum strains as recipients (Figure 5), the

transformation frequencies were systematically lower than with

GMI1000 whatever the DNA positions tested and higher genomic

divergence between the recipient strain and GMI1000 correlated

with greater decreases in transformation frequencies (Figure 5).

Moreover, the range between the highest and the lowest

Table 1. Origin, properties of Ralstonia solanacearum (GM1000) genes used in this study as plasmid or genomic donor DNA;
plasmid transformation frequencies and number of Chi-like sequences detected within the 2 kb long DNA positions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accession
number

Gene
location

Gene
Acronym Gene function Putative Origin

Plasmid
transformation
frequencies

Number of Chi like
59 cGCCGAAc 39

within 2 Kb DNA
fragment

Acronym for the
targeted genomic
positionsa (TCPb

versus TMP)

RSc3437 3710105 vsr Avirulence Caulobacter crescentus (a-proteobacteria) 1.29+/20.2061026 1 TCP15

RSc3252 3506740 - - Chlorobium .tepidum (green sulfurous
bacteria)

2.40+/20.1561026 3 TCP14

RSc1815 1981107 - - Xanthomonas campestris (c-proteobacteria) 2.60+/20.0961026 3 TCP8

RSc0558 602739 pilA Virulence Pseudomonas aeruginosa (c-proteobacteria) 1.14+/20.2661026 1 TCP4

RSp0313 411136 mexC - Acinetobacter baumannii (c-proteobacteria) 1.38+/20.4461027 0 TMP1

RSc0828 869969 tIS14b IS Element of external origin 6.08+/21.6661026 3 TCP5

RSc1921 2100591 - Phage Element of external origin 3.59+/20.3461026 1 TCP9

RSc2585 2791556 tn Transposon Element of external origin 8.27+/21.0361026 1 TCP12

RSc0458 489163 ubiE House keeping R. solanacearum (b-proteobacteria) 4.99+/22.4761028 0 TCP2

RSc2191 2373410 purD House keeping R. solanacearum (b-proteobacteria) 4.12+/21.4361026 1 TCP10

RSc2341 2538801 ftsK House keeping R. solanacearum (b-proteobacteria) 5.27+/20.1461027 5 TCP11

RSc3023 3244061 rpsG House keeping R. solanacearum (b-proteobacteria) 1.40+/20.2961027 3 TCP13

RSc0551 596177 recA House keeping R. solanacearum (b-proteobacteria) 1.66+/20.2661025 6 TCP3

RSc1120 1176593 comA House keeping R. solanacearum (b-proteobacteria) 6.27+/20.9161027 4 TCP6

RSc1151 1207216 mutS House keeping R. solanacearum (b-proteobacteria) 1.00+/20.2561025 3 TCP7

RSc0171 192394 - Putative gene Putative gene 1.45+/20.2861026 1 TCP1

RSp1328 1678048 - Putative gene Duplication 2.22+/20.6661026 3 TMP2

RSp0877 popA Virulence R. solanacearum (b-proteobacteria) nd nd TMP3

aTOPO recombinant plasmids with R. solanacearum inserts labelled by an aacC3-IV gene-cassette conferring resistance to gentamycin (GmR)
bTargeted Chromosomal Position (versus Megaplasmid)
nd, not determined
doi:10.1371/journal.pone.0001055.t001..
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transformation frequencies also increased with overall genome

divergence reaching more than 4 orders of magnitude for strains

NCPPB332 and CFBP2957 while it was less than two orders of

magnitude for the two most closely related strains (GMI1000 and

CFBP2968).

In spite of the increasing range of transformation frequencies

with increasing genomic divergence, the DNA positions that

yielded the highest transformation frequencies with GMI1000

(TCP3, TCP6, and TCP7) systematically yielded the highest

frequencies for each recipient (Figure 5). The lowest trans-

formation values observed for these strains corresponded to

DNA positions that also yielded the lowest frequencies when

recombination was homologous. In addition, the high frequency

regions were less susceptible to increasing genomic divergence.

Role of Chi-like sequences
Physico-chemical parameters of the seventeen 2 kb long DNA

fragments targeted in this study were calculated. These parame-

ters, including GC%, GC ‘‘skew’’, genome (chromosomal or

plasmid) localization, distance from the origin at replication and

the denaturing free energy (melting point), did not significantly

correlate to recombination frequencies (Table 2).

The 2 kb DNA sequences were examined in order to detect the

presence of the longest repeated motifs, which might significantly

correlate to the recombination frequencies: for each length = L

with L being 7 and 8, we counted the occurrences of all the words

of length L, and for each word we measured the correlation of the

ranks between these numbers of occurrences and the frequencies,

using a Spearman test. For L = 7, the two best words were 59

Figure 3. Recombination frequency variation between 17 R. solanacearum chromosome and megaplasmid borne DNA positions. Fifteen target
positions on the chromosome (TCP) and three on the megaplasmid (TMP) were identified based on gene acquisition and function as described in the
text. Plasmid donors were built following the general experimental design of figure 1. Recombination rate of these different genomic positions
(proportional to red line) were measured after natural transformation and based on insertion of the aacC3-IV cassette by double crossing-over.
doi:10.1371/journal.pone.0001055.g003

Figure 4. Correlation between recombination frequencies obtained
with plasmid DNA and genomic DNA after natural transformation of
R. solanacearum GMI1000 as recipient. Donor DNA belongs to the
same strain and was either plasmid DNA containing 2 kb long R.
solanacearum DNA or genomic DNA from recombinant strains (see the
text). The numbers along the curves refer to the DNA position acronym
with white and black symbols for chromosome and megaplasmid
positions, respectively (TCP2,detection limit, TMP3, not determined).
TF, transformation frequency.
doi:10.1371/journal.pone.0001055.g004
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cGCCGAA 39 (p-value = 1023.73) and 59 GCCGAAc 39 (p-

value = 1023.08) and for L = 8 the best word was 59 cGCCGAAc

39 (p-value = 1023.06). These motifs were detected in 15 of the 17

fragments with 9 of them containing at least 3 copies of these

specific sequences (Table 1). The number of motifs occurring in

a given region correlated (R2 = 0.48) to recombination frequencies

(Figure 6). The three DNA positions that exhibited the highest

transformation frequencies (TCP3, TCP7 and TCP11) contained

two copies each of the consensus sequence (Table 1). The genes

that yielded the lowest transformation values including ubiE

(TCP2), and mexC (TMP1), did not contain any sequence inside

the position associated with the donor plasmids (Table 1).

A whole genome analysis detected that the consensus DNA

sequence, 59 GCCGAA 39, with a ‘‘c’’ located at the beginning

and/or the end of the word was present on the R. solanacearum

genome at a high frequency (average 2080+/267 fold for the two

best words with 7 letters and 751 fold for the consensus word). To

test the uniformity of the repartition of the two consensus

sequences, we used the classical Watson test of goodness of fit

[19]. We found that the distribution of the 59 GCCGAAc 39 motif

is non-uniform on both strands of the chromosome while the

distribution of the 59 cGCCGAA 39 motif is uniform on the

leading strand and non-uniform on the lagging strand. For the

megaplasmid, on the other hand, distribution of both motifs was

found to be uniform (i.e., random) on the two strands (Table 3).

These motifs could be Chi-like sequences with a putative role

similar to that found for Chi sequences in E. coli for the attenuation

of RecBCD exonuclease activity and the promotion of RecABCD-

mediated homologous recombination [20].

DISCUSSION

Detection of laterally transferred genes in the R.

solanacearum GMI1000 genome sequence
Analysis of the complete sequence of the R. solanacearum strain

GMI1000 with the phylogenetic tools presented earlier confirms

that this bacterium has acquired numerous genes from other

Table 2. Correlation coefficients of plasmid DNA
recombination frequencies with the genomic DNA
recombination frequencies and with the main physico-
chemical parameters of the seventeen 2 kb long DNA
fragments targeted in this study.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recombination
frequencies of
genomic DNA

Distance of
Origin GC% GC skew

DNA
helical
stability

Pearson
correlation

0.691a 0.031 0.021 0.062 20.024

P-values 0.003 0.890 0.936 0.813 0.926

aindicated that the correlation is significant (p,0.01).
doi:10.1371/journal.pone.0001055.t002..
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Figure 5. Ratio of recombination frequencies after natural transformation of different distantly R. solanacearum strains. Total genomic DNA of
GMI1000 strain was used as donor with GMI1000, CFBP2968, NCPPB332 and CFBP2957 as recipient strains. These strains CFBP2968, NCPPB332 and
CFBP2957 have respectively 98%, 81% and 69% of the GMI1000 genes conserved in their genomes (TCP2,detection limit). TF, transformation
frequency.
doi:10.1371/journal.pone.0001055.g005

Figure 6. Correlation between plasmid recombination frequencies
and the number of Chi-like motifs within the 2 kb long DNA
fragment. TF, transformation frequency.
doi:10.1371/journal.pone.0001055.g006
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micro-organisms. For example, the vsr-like gene was possibly

acquired from a a-proteobacteria, Caulobacter crescentus providing R.

solanacearum with a mechanism for repairing mismatches in

addition to MMR even if, in the case of vsr, the repair is limited

to very short patches of DNA [21]. In E. coli, MMR and VSP have

complementary effects with efficiencies varying during the

bacterial life cycle [22]. If R. solanacearum behaves similarly, then

MMR could be expressed mainly when the pathogen multiplies

actively in plant tissues and VSP during its less active life in the

soil. If VSP contributes to increased genome stability under

stringent environmental conditions, the overall fitness of the

bacterium would be improved, thus, justifying the fixation of the

vsr gene in the population.

The bio-informatics analysis also detected the putative acqui-

sition of pilA and mexC from Acinetobacter baumannii and Pseudomonas

aeruginosa, respectively. Both belong to the c-class of proteobacteria.

These genes, pilA and mexC, encode for cell envelope components

and are involved in the formation of type IV fimbrial pilin signal

peptide proteins and efflux pump antibiotic resistance proteins,

respectively [23,24]. Apparently, these new genes were sufficiently

beneficial to R. solanacearum that they were fixed in its genome.

Examples of other potentially transferred genes are RSc3252 and

RSc1815 that originated from Chlorobium tepidum (green sulfur

bacteria) and Xanthomonas campestris (c-proteobacteria), respectively,

but these genes have only putative functions. However, all genes

detected as recently acquired are not necessarily beneficial to their

new hosts, because either their presence resulted from co-transfer

events and/or the selection process has not yet deleted the

unnecessary DNA fragments. The half-life of unnecessary DNA in

bacterial genomes is unknown.

R. solanacearum as a realistic and useful model to

study intra and inter-species crosses
The first requirement for HGT to occur is the contact between

donor cells or their DNA and the recipient bacteria. In addition to

soil and rhizosphere environments, the plant pathogen R.

solanacearum colonizes numerous plants [25] leading to the

development of opportunistic soil bacteria in the degraded plant

tissues [26]. The probability of transformation by these foreign

genes is increased further by the competence development of R.

solanacearum in planta as demonstrated by greenhouse experiments

[10]. The ecology of different potential donor bacteria including

Xanthomonas campestris, which is also a pathogen for plants, is

compatible with that of R. solanacearum. The only marked exception

would be the strictly anaerobic and obligate autotrophic C. tepidum,

which is typically found in anoxic and sulfide-rich waters, mud,

sediments, and microbial mats [27]. Other bacteria including human

pathogenic bacteria such as A. baumannii and P. aeruginosa, can live

transiently in soils [28] and the alpha-purple aquatic bacterium C.

crescentus is found in all types of water, including lakes, streams, sea

water and waste water [29,30]. The possibility that most of these

bacteria colonize alternate habitats, such as plant tissues, cannot be

excluded although this was never reported.

Under in planta conditions as evidenced in experiments under

greenhouse [26], competent R. solanacearum cells are subjected to

a flux of exogenous DNA, including plant and opportunistic

bacterial DNA and its own DNA released by dying cells. Foreign

DNA is degraded by the MMR and other systems except in the

rare cases when illegitimate recombination mediates their in-

tegration into the genome. The fate of R. solanacearum DNA is

totally different, inoculation experiments involving two R.

solanacearum strains demonstrate that natural transformation

mediated gene transfer occurs at high frequency under in planta

conditions [10]. Sequence similarity between the incoming DNA

and the recipient genome leads to integration of R. solanacearum

genes by homologous (or homeologous in the case of more than

one infecting strain) recombination at frequencies several orders of

magnitude higher than for heterologous DNA. This combination

of ecological, physiological and genetic conditions including

extensive clonal multiplication, natural release of DNA, compe-

tence development, DNA uptake and genome integration,

demonstrates the interest in R. solanacearum as a model for studying

HGT regulation.

Homologous recombination as the critical step that

regulates gene acquisition
Our hypothesis was that bacteria might regulate acquisition of

homologous genetic material so that some genes accumulate

genetic diversity while other genes maintain a higher stability level.

The strategy used here was to test the frequency of homologous

and homeologous recombination-mediated integration of a marker

gene cloned into different positions of the R. solanacearum GMI1000

genome by using as recipients the same strain, GMI1000 and three

other strains, CFBP2968, NCPPB332 and CFBP2957, that

exhibited an overall genomic divergence relative to GMI1000 of

2, 19 and 31%, respectively [18]. These in vitro transformation tests

simulated the in planta situation where donors and recipients

resulted from the clonal multiplication of bacterial cells belonging

to one or more R. solanacearum strains.

Our results demonstrated that DNA fragments from various

genomic positions of the same strain transformed the recipient

strains at frequencies markedly different even under totally

homologous DNA conditions. The recA- and mutS- gene containing

positions were identified as natural transformation and certainly

homologous recombination ‘‘hot spots’’ (see below). Previous

studies suggest that the uptake of DNA by R. solanacearum would

not require the presence of specific sequences to bind the cell wall

for the donor DNA to be processed into the cell [31]. Although

regulation of this uptake stage cannot be totally excluded,

transformation frequency differences would more likely result

from differences of recombination efficiency between the different

DNA fragments. In addition, DNA uptake control might be linked

in part to nutrient requirements [32]. Whether the mechanism

associated with DNA uptake defines the fate of the DNA once

introduced into the cell is less clear, but the possibility that DNA

uptake began as a nutrient uptake mechanism cannot be

discounted [32]. A recent bioinformatics study suggest that at

Table 3. Results of the Watson uniformity test for the two Chi
motifs on the R. solanacearum chromosome and
megaplasmid.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Replicon Motif Chi-like Strand P-valuea

Chromosome 59 cGCCGAA 39 + P,0.01

2 P,0.01

59 GCCGAAc 39 + 0.05,P,0.10 (ns)

2 P,0.01

Megaplasmid 59 cGCCGAA 39 + P.0.10 (ns)

2 P.0.10 (ns)

59 GCCGAAc 39 + 0.05,P,0.10 (ns)

2 0.05,P,0.10 (ns)

aP-values are given for the different combinations of motifs and strands. All P-
values.0.05 are considered non-significant (ns).

doi:10.1371/journal.pone.0001055.t003..
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least for some classes of short DNA sequences, DNA uptake is

biased by sequence definition, which is not necessarily consistent

with nutrient driven uptake [33].

Transformation-recombination frequency decreased with se-

quence divergence for the three divergent strains, but the decrease

was far from being identical for the various DNA positions tested.

Interestingly, the DNA positions that were classified as ‘‘hot spots’’

with GMI1000 as recipient were also those for which trans-

formation-recombination frequencies remained the highest and

changed the least. Even with the least related strain (CFBP2957),

transformation frequencies at the ‘‘hot spots’’ were only one order

of magnitude lower than those for the homologous GMI1000,

while frequencies decreased by 4 orders of magnitude for the DNA

positions that transformed all strains at the lowest frequency.

Frequency differences are not apparently related to variable

sizes of donor DNA fragments since transformation tests carried

out with the plasmids (2kb in size) provided results consistent with

those obtained with chromosomal fragments. PCR primers were

designed to amplify a 2 kb long DNA fragment that was

subsequently cloned into the plasmids. The resulting 1 kb long

DNA fragments that flanked both sides of the marker gene were

significantly longer than the minimal length necessary for efficient

homologous recombination. Moreover, there was no theoretical

limitation in the length of DNA fragments when chromosomal

DNA with the marker gene inserted in the targeted position was

used to transform the wild strain. Frequency variation could not be

related to DNA physical or chemical parameters either. These results

would indicate that differences in transfer frequency are only related

to the nucleotide sequence of the DNA positions on which

homologous recombination occurs. This would suggest that the

genes present in a bacterial genome do not exhibit the same sensu

stricto potential to be transferred even into a new isogenic host.

Involvement of Chi-like sequences
The sequences in the targeted genomic positions were analyzed

and Chi-like (‘5-cGCCGAAc-3’) sequences were detected that

might explain differences in homologous and homeologous

recombination frequencies. The experimental results obtained

with the four recipient strains were in general agreement, and thus,

strengthened the hypothesis for the involvement of Chi-like

sequences during recombination initiation. The highest transfer

frequencies were found for fragments that contained more than

two Chi-like sequences, thus, indicating that accumulation of these

sequences could create ‘‘hot spots’’ for homologous recombina-

tion. Our results indicate that the Chi-like sequences are not

distributed randomly in the R. solanacearum chromosome confirm-

ing what was already reported in other bacteria (e. g. E. coli,

Bacillus subtilis, Haemophilus influenzae and Lactococcus lactis) [34].

However, distribution of these motifs was found to be uniform on

the R. solanacearum megaplasmid, a surprising (and unexplained)

result that could be related to the involvement of replication

mechanisms that differ between the 2 replicons.

The interest in using recombinant plasmid-borne fragments as

donor DNA was that the sequence analysis was restricted to the

1 kb long DNA fragments flanking the marker gene eliminating

the possible influence of the Chi-like sequences located further

upstream of the targeted fragments even if, on the other hand, the

use of the entire genome extracted from recombinant strains was

ecologically more realistic. Therefore, the reduced differences

found between the lowest and the highest transformation

frequencies with genomic borne fragments could be explained

by the involvement of Chi-like sequences at some unknown

distance upstream.

In E. coli, Chi sequences are recombinational hotspots at which

enzymes bind preferentially to repair DNA damaged by ionizing

radiations or by the collapse of a replication fork when passing

single-strand nicks [35]. The ends of the broken DNA on double

strands are processed by the multi-functional enzyme complex

RecBCD involving successively a helicase activity to split the

duplex into its component strands and a nuclease activity to digest

them. At a Chi site, the nuclease activity is attenuated and the

RecBCD loads RecA onto the 39 tail of the DNA to initiate

recombination. The foreign DNA acquired by HGT could be

perceived by recipient cell as damaged DNA and be processed by

the same enzymes [36] with necessarily a critical role for Chi

sequences as preferential sites to initiate recombination. Our

results indicate that, in addition to a putative implication in the

repair of endogenous damaged DNA like in E. coli, the Chi-like

sequences in R. solanacearum (which possesses addAB genes having

the same functions as recBCD in E. coli) could be key components of

the adaptation potential by permitting the cell to regulate the gene

acquisition process as already proposed in other naturally

transformable bacteria such as B. subtilis and H. influenzae [34].

Chi-like sequences strongly limit the influence of sequence

divergence, which usually decreases recombination efficiency

dramatically [36,37]. For instance, our results demonstrate that

DNA exchange frequency for some DNA positions remains very

high in spite of a significant overall genomic divergence between

strains GMI1000 and CFBP2957 (up to 30%), a level that led to

classifying these strains as two separate genomic species [38].

These results feed the debate on species boundaries in bacteria, on

the strength of biological barriers to regulate DNA exchange, and

confirm the difficulty to adapt a bacterial species concept that

would be based on genomic coherence between members of a same

species sharing an exclusive common gene pool [39].

Transformation ‘‘hot spots’’ in R. solanacearum and

recombination potential of mobile elements and

recently acquired genes
Two of the main transformation ‘‘hot spots’’ detected in this study

were the genomic positions (TCP3 and TCP7) containing the recA

and mutS genes, which are involved in DNA repair and

recombination. This could be justified by the need to maintain

stability and integrity in DNA positions containing important

housekeeping genes [7]. By analogy to E. coli, damaged

endogenous DNA reparation efficiency is certainly increased by

presence of Chi-like sequences to initiate recombination. Howev-

er, genomic stability of these positions could also benefit from their

spread at high frequency among bacteria that reduces the risk of

genetic drift by point mutations in separate lineages. In addition,

a recombination ‘‘hot spot’’ in the mutS gene is in agreement with

the hypothesis involving HGT as a mechanism for mutS negative

mutators to re-acquire a functional mutS copy to return to a more

stable wild type phenotype [40,41].

Surprisingly, the genomic positions containing mobile elements,

such as insertion sequences, prophages and transposons that have

developed specific mechanisms to displace from place to place

within and among genomes exhibited a transformation potential

significantly lower than the hot spots that carry mutS and recA

genes. Our study also included genomic positions with genes

acquired from other phyletically remote bacteria by HGT. These

positions did not exhibit any copy of the specific Chi-like

sequences detected in the recombination ‘‘hot spots’’. Moreover,

transformation frequency of the fragment containing the vsr gene

was respectively 13 and 8 times lower than for those containing

recA or mutS genes indicating that the corresponding positions
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should not be considered as ‘‘hot spots’’ for transformation. These

data would indicate that acquisition of foreign genes might not be

regulated as could be R. solanacearum genes but would rather result

from the combination of several events happening mainly by

chance and at very low frequency including the uptake of

exogenous DNA and its integration and/or by rearrangement in

the genome post-HGT.

The two sides of HGT in bacteria
According to bioinformatics analysis of genome sequences (this

study) and inoculation experiments in plant tissues [10] R.

solanacearum like other bacteria seems to use two complementary

HGT-based strategies to optimize adaptation. The first one is

based on acquisition at high frequency of DNA from more or less

closely related cells. This type of HGT would permit on one hand

to maintain stability and integrity in some important DNA

positions, a constant DNA homogenization reducing the risk of

genetic drift [7], and on another hand to spread potentially

beneficial mutations efficiently among the population. However,

our data demonstrate that the various DNA positions are

transferred at significantly different frequencies indicating a possi-

ble regulation mechanism. As for other functions in bacteria, the

fundamental evolutionary question is whether this property might

have been specifically selected to increase adaptation potential or if

it might be the side effect of cellular mechanisms in charge of DNA

repair. Whatever the response (about the evolutionary process),

bacteria in the open environment are confronted with genes that

do not transfer at the same frequency and thus with evolutionary

implications that cannot yet be precisely evaluated. The high

frequency with which the preferentially transferred DNA

positions are transformed in other strains indicates that such

HGT events must have a strong impact on genome evolution and

must significantly contribute to the adaptation potential of the

bacteria.

The second adaptive strategy of bacteria is to acquire genes

from unrelated bacteria. The in silico analyses of the R. solanacearum

genome sequence detected genes that were laterally transferred

from a wide range of remotely related bacteria. Their fixation

suggests that they also contributed to increase the adaptation

potential of their new host. However, our experimental trans-

formation results do not indicate that these laterally acquired DNA

positions belong to the transformation-recombination ‘‘hot spots’’

detected for other typical R. solanacearum genes. This might mean

that their acquisition resulted from a hypothetical contact with

a donor bacteria and a successful integration by an extremely rare

illegitimate recombination event. The likelihood that this was

directly related to the active Chi-like sequences based mechanism,

which leads to some other genes to be exchanged at high

frequency, seems to be low. However, successful transfer to

genomic ‘‘hot spots’’ and subsequent mobility to more stable

genomic positions through mobile elements such as insertion

sequences cannot be disproved.

MATERIALS AND METHODS

Ralstonia solanacearum strains
The four strains used in this study are classified in the R.

solanacearum species complex and belong to phylotype I (GMI1000,

CFBP2968), phylotype II (CFBP2957) and phylotype III

(NCPPB332) [18]. These strains that exhibit sensitivity to

ampicillin, kanamycin and gentamycin were cultured at 28uC in

the complete B medium [42] and exhibit the same natural

transformation frequency when transformed by their own DNA

(results not shown).

Phylogenetic bioinformatics analysis
For the phylogenetic inference, 2039 homologous gene families

containing at least one sequence from R. solanacearum GMI1000

and from other b-proteobacteria were extracted from the

HOGENOM database (http://pbil.univ-lyon1.fr/databases/

hogenom.html). After excluding eukaryotic sequences, multiple

alignments of the families were computed using MUSCLE [43],

with all default parameters. These alignments were then filtered

with GBLOCKS [44] in order to keep only their reliable parts.

Using these filtered alignments, we kept only families containing

a number of sites equal at least to 1.56 the number of taxa in the

families. Only 1139 families remained after this final selection.

Phylogenetic trees were computed (with 100 bootstrap replicates)

on the remaining alignments with the fast Maximum-Likelihood

method implemented in PHYML [45].

Under PhyML, the WAG amino acid substitution model [46]

was used, and across-site rate variation was modelled by a Gamma

distribution with four classes of substitution rates. Estimation of the

Alpha parameter for Gamma distributions was carried out by

PhyML. Trees were then manually checked to detect those in

which R. solanacearum was not grouped with the other(s) b-

proteobacteria, this with a Shimodaira-Hasegawa likelihood ratio

test$95% [47].

Phylogenetic trees computations were performed on the IN2P3

Linux cluster containing more than 1300 CPUs.

Plasmid construction
Eighteen oligonucleotide pairs (Table S2) were designed according

to the complete nucleotide sequence of R. solanacearum in order to

amplify a 2 kb long DNA fragment for each selected position by

PCR. PCR primers were designed by using the OLIGO 5.1

software (National Biosciences, Inc. NBI) applied to the complete

GMI1000 sequence. The resulting PCR products were ligated to

one of the following plasmids, pUC19, pBluecript or pCRH 2.1-

TOPO vector or pGEMTH-T/Easy vector (InVitrogen France,

Promega, France) depending on the restriction sites available for

further restriction cleavage and cloned in Escherichia coli strain

(DH5a) according to the manufacturer instructions. Recombinant

plasmids were extracted and purified with the QIAprep Mini-prep

Kit (Qiagen SA, Germany) and re-suspended in sterile purified

water. Each plasmid was digested with the appropriate restriction

enzyme (Table S3) that cut the insert once, approximately in the

middle in order to clone the aacC3-IV gene conferring resistance

to gentamycin (GmR) [48]. The resulting plasmids were extracted

and the construction was verified by electrophoresis on agarose gel

after digestion with the appropriate restriction enzymes. PCR

products that were initially cloned in the pGEM-T, pUC19 and

pBluescript vectors were amplified again with the same initial

primers and recombinant plasmids as template before the chimeric

construction was cloned in the pCRH 2.1-TOPO vector. The 18

pCRH 2.1-TOPO-derivative resulting plasmids contained all the

same vector background with the bla and nptII genes conferring

resistance to ampicillin (AmpR) and kanamycin (KnR) respectively

and each contained a specific R. solanacearum 2 kb genomic DNA

fragment in which the aacC3-IV gene conferring resistance to

gentamycin (GmR) had been inserted, approximately in the

middle.

Preparation of transforming DNA
The plasmids were extracted and purified by using the QIAprep

Mini-prep Kit before they were digested with ScaI. The only

exception was plasmid pTCP9 that was treated by CpoI because of

presence of a ScaI site in the insert (Table S3). These 2 enzymes
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ScaI and CpoI cut only once in the bla gene and the nptII gene

respectively, linearizing the plasmid from the vector background

without affecting the R. solanacearum fragments and the marker

gene. Restricted plasmid DNA was subsequently purified with the

GFXTM PCR DNA and gel purification kits (Amersham

Biosciences Germany) before used in transformation tests. R.

solanacearum genomic DNA used in transformation was extracted

from gentamycin resistant and kanamycin sensitive recombinant

strains after they were transformed with the recombinant plasmid

set presented above according to the available protocol [31].

R. solanacearum natural transformation
Natural transformation of the R. solanacearum strains was carried

out according to the procedure described by Bertolla et al. [31].

Briefly, cells of R. solanacearum were grown in minimal medium

(MM) to an O.D. 600 nm = 0.8 (about 56108 cells ml21). Fifty

micro-liters of this cell suspension were incubated with either

100 ng of plasmid DNA or 400 ng of genomic DNA on

polycarbonate membranes (Millipore, Ireland) deposited on the

surface of solid MM (MMG) medium and incubated for 48 h at

30uC. Bacterial cells were then harvested from the membrane

surface and suspended again in 5 ml of sterile water. A 500 ml

aliquot was used to inoculate rich BG agar medium plates

containing respectively gentamycin (12.5 mg ml21) (Euromedex,

France) in transformation tests with genomic or plasmid DNA or

both gentamycin (12.5 mg ml21) and kanamycin (25 mg ml21)

(Euromedex, France) in transformation tests with plasmid DNA.

The recipient population was enumerated by plating appropriate

dilutions on the BG medium without any antibiotics. Recombi-

nant R. solanacearum colonies that exhibited resistance to gentamy-

cin but sensitivity to kanamycin were those in which a double cross

over event replaced the wild type gene by the chimeric

construction while resistance to kanamycin indicated that the

plasmid was totally integrated following a single cross over event

(Figure 1). Integration of the cassette by single or double cross over

events was verified by PCR for 3 randomly selected clones for each

construction. Controls included transformation tests carried out

without DNA that allowed determining spontaneous mutation

frequency. Other control experiments used the plasmid DNA from

non recombinant TOPO vector or the DNA from the wild type

strain GMI1000 as transforming DNA. Each filter experiment was

done at least in triplicate and all calculated transformation

frequencies are given as the mean value. A statistical t student

test was performed to evaluate significance of differing DNA

source used.

Detection of Chi –like sequences
The 2 kb DNA sequences corresponding to R. solanacearum DNA

fragment cloned into plasmids were analyzed by using the R

software (seqinR [49]) to detect the presence of the longest

repeated motifs, which might significantly correlate to the

recombination frequencies. The occurrence of the words in R.

solanacearum whole genome was determined using the Fuzznuc

online program (http://bioweb.pasteur.fr/docs/EMBOSS/fuzz-

nuc.html) which belongs to the EMBOSS package.

SUPPORTING INFORMATION

Table S1

Found at: doi:10.1371/journal.pone.0001055.s001 (0.08 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0001055.s002 (0.07 MB

DOC)

Table S3

Found at: doi:10.1371/journal.pone.0001055.s003 (0.08 MB

DOC)
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