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 a b s t r a c t

The growing interdependence among electricity, heat, and gas networks creates significant challenges for achiev-
ing reliable and cost-efficient design and operation in Multi-Energy Microgrids (MEMGs). Conventional opti-
mization approaches often treat these subsystems separately, focus on either design or operational scheduling in 
isolation, and ignore load uncertainty. As a result, it leads to inefficient resource utilization and higher overall 
costs. To address these issues, this study proposes a two-stage robust optimization framework for the design and 
energy management of a MEMG under power-load uncertainties. In the first stage, the framework uses a bi-
objective model to determine the optimal sizes of key components—including the PV panel area, wind turbine 
radius, battery capacity, and gas allocation for the CHP unit—while accounting for uncertainty in power loads. 
The two objectives are: (i) maximizing the use of renewable and CHP resources, and (ii) minimizing the total 
system cost, which includes electricity, gas, emissions, operational, and demand-response costs. In the second 
stage, the optimized components are subsequently applied to an IEEE 14-bus MEMG test system, where a ro-
bust energy-management strategy coordinates power, heat, and gas flows under uncertain conditions using the 
Mixed-Integer Nonlinear Programming (MINLP) model. The results show that the robust strategy ensures all en-
ergy demands are met even under worst-case load variations. However, achieving this higher level of resilience 
increases electricity expenses by 21%, emissions-related costs by 15%, line losses by 0.8%, and overall system 
cost by 6%, while electricity exported to the main grid decreases by 17%.

1.  Introduction

A microgrid is a localized energy system capable of operating au-
tonomously or in conjunction with the main grid, integrating distributed 
energy resources (DERs) such as solar panels, wind turbines, and en-
ergy storage systems. These systems offer numerous benefits, including 
reduced carbon emissions, enhanced energy security, and the capabil-
ity to efficiently manage local energy demand [1]. As the global energy 
landscape shifts towards cleaner and more decentralized power genera-
tion, the deployment of microgrids is gaining significant traction.

Designing a microgrid is a complex and multifaceted task, primarily 
involving two key challenges: siting and sizing. Siting involves identify-
ing the most suitable location for the microgrid, while sizing focuses on 
determining the optimal dimensions of its components, such as power 
capacity, energy storage, and the number of units [2]. Oversizing a mi-
crogrid can result in high costs and surplus energy production, whereas 
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undersizing may lead to insufficient energy supply, causing power short-
ages [3]. To overcome these challenges and fully leverage the potential 
of renewable energy-based microgrids, it is essential to implement op-
timal sizing in conjunction with an effective energy management strat-
egy [4]. The majority of existing approaches in the literature address 
the microgrid sizing problem as an optimization challenge, where the 
objective functions are primarily designed to reduce energy generation 
costs and environmental impact, while improving operational reliabil-
ity [5,6]. As reviewed in [7], numerous methodologies have been pro-
posed to address the sizing problem of hybrid microgrids in a variety of 
applications and scenarios.

Due to the inherently high volatility of renewable energy sources 
such as wind and solar power, their increasing integration introduces 
significant uncertainty into multi-microgrid (MMG) systems. In recent 
years, considerable research has focused on the optimal operation of 
MMG systems under uncertainty [8]. Among the most widely adopted 
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$C_{\textit {Robust}}$


\begin {equation}min \left \{C_{\textit {Robust}} = \sum _{t > 1} \xi ^t_{\textit {load}} + \Gamma _l \cdot \beta _l \right \} \label {eq:robust_term}\end {equation}


\begin {equation}\xi ^t_{\textit {load}} + \beta _l \geq \alpha _l \cdot L^{t,\textit {max}}_{DV} \cdot P^t_{\textit {Uc}}, \quad \forall t > 1 \label {eq:robust_constraint}\end {equation}
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\begin {align}C_e &= \sum _t (\lambda _e(t) \cdot P^{t}_{\textit {Grid}}) \cdot \Delta t \label {eq:ob3} \\ C_g &= \sum _t (\lambda _g \cdot G^{t}) \cdot \Delta t \label {eq:ob2} \\ C_c &= \sum _t \left ( (1 - \beta _e) \cdot P^{t}_{\textit {Grid}} + (1 - \beta _g) \cdot G^{t} \right )\cdot \Delta t \label {eq:ob4} \\ C_{\textit {Dr}} &= \sum _{k}\sum _{t} (\lambda _{\textit {Dr}} \cdot P_c(k,t))\cdot \Delta t \Delta k \label {eq:obdr}\\ C_{Sell} &= \sum _t (\lambda _{Sell} \cdot P^{t}_{\textit {Sell}})\cdot \Delta t \label {eq:ob6} \\ C_o &= \sum _t (OC^t_{s} + OC^t_W + OC^t_{\textit {CHP}} + OC^t_{b})\cdot \Delta t + OC_{th} \label {eq:ob7}\end {align}
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\begin {align}max \Bigg \{ C_2 &= \sum _t P^t_{PV} \cdot \Delta t + \sum _t P^t_{WT}\cdot \Delta t + \sum _t \left ( E^t_{CHP} + H^t_{CHP} \right )\cdot \Delta t \notag \\& + \sum _t \left ( P^t_{b^+} + P^t_{b^-} \right )\cdot \Delta t \Bigg \} \label {eq:ob8}\end {align}
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\begin {equation}d_E^{\textit {weighted}} = \sqrt { w_1 \cdot \left ( \frac {C_1 - C_1^\star }{C_1^{max} - C_1^\star } \right )^2 + w_2 \cdot \left ( \frac {C_2^\star - C_2}{C_2^\star - C_2^{min}} \right )^2 } \label {eq:euclidean}\end {equation}
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Nomenclature

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠
𝐵𝐷𝐶 Battery Degradation Cost
𝐵𝐸𝑆𝑆 Battery Energy Storage Systems
𝐶𝐻𝑃 Combined Heat and Power
𝐶𝑙 Controllable loads
𝐶𝑉 Calorific Value for natural gas
𝐷𝐸𝑅𝑠 Distributed Energy Resources
𝐷𝐻𝑁 District Heating Network
𝐷𝑂𝐷 Depth Of Discharge
𝐷𝑅𝑃𝑠 Demand Response Programs
𝐸𝑆𝑆 Energy Storage Systems
𝐺𝐷𝑆 Gas Distribution System
𝐿𝐶𝐶 Life Cycle Cost
𝐿𝐶𝑂𝐶 Levelized Cost Of Cogeneration
𝐿𝐶𝑂𝐸 Levelized Cost Of Electricity
𝑀𝐸𝑀𝐺 Multi-Energy Microgrid
𝑀𝐼𝑁𝐿𝑃 Mixed-Integer Nonlinear Programming
𝑃𝐷𝑆 Power Distribution System
𝑃𝑂𝐹 Pareto Optimal Front
𝑃𝑆𝑂 Particle Swarm Optimization
𝑆𝐶𝑂𝑃𝐹 Security Constrained Optimal Power Flow
𝑆𝑂𝐶 State Of Charge
𝑆𝑇𝐶 Standard Test Conditions
𝑆𝑉 Residual Value
𝑈𝑐 Uncontrollable loads
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
𝛼𝑙 Uncertainty radius for load uncertainty
𝛽 Temperature coefficient
𝛽𝑒, 𝛽𝑔 Emission factor for electricity and gas generation
𝛽𝑙 Safeguard parameter for load uncertainty impact
𝜒Υ
𝑑 Impact of Depth of Discharge on cycle life

𝜒Υ
𝑇 Impact of temperature on cycle life

𝜒Ξ
𝑇 Temperature-dependent power fading coefficient

𝜂w, 𝜂𝑃𝑉 Efficiency factors for the wind turbine and PV
𝜂+𝑏 , 𝜂−𝑏 Battery charging and discharging efficiency
𝜂𝑒,𝑎𝑝𝑝, 𝜂𝑔,𝑎𝑝𝑝 Efficiency of electrical and heat appliances
𝜂𝑔𝑒, 𝜂𝑔ℎ Gas-to-electricity and heat conversion efficiency
𝜂𝑡ℎ+ , 𝜂𝑡ℎ− Heat storage charging and discharging efficiency
Γ𝑙 Uncertainty budget defining the deviation range
𝜆𝑒(𝑡) Electricity price at time 𝑡
𝜆𝑔 Gas price
𝜆𝐷𝑟 Cost coefficient for demand response
𝜆𝑆𝑒𝑙𝑙 Price for selling electricity back to the grid
𝜌 Air density
𝜎𝑠, 𝜎w Degradation factor for PV and wind
Υref Rated cycle life of the battery
𝐶chpfuel,𝑖 Fuel cost for CHP in year 𝑖
𝐶chpinv Investment cost for CHP system
𝐶chpom,𝑖 Operation and maintenance costs for CHP in year 𝑖
𝐶𝑠
inv, 𝐶winv Investment costs for PV and wind systems

𝐶𝑠
om, 𝐶wom Operation and maintenance costs for PV and wind

𝐶𝑏
inv, 𝐶 𝑡ℎ

inv Investment costs of the battery and heat storage
𝐶𝑏
om, 𝐶 𝑡ℎ

om Operational costs of the battery and heat storage
𝐶CHP Levelized cost of cogeneration
𝐶𝑃𝑉 , 𝐶𝑊 Levelized cost of electricity for PV and wind
𝑑𝑟𝑏, 𝑑𝑟𝑡ℎ Discount rates for the battery and heat storage
𝑑𝑟𝑆 , 𝑑𝑟w Discount rates for the PV and wond systems
𝐸0
𝑏 , 𝐻0

𝑡ℎ Initial state of charge of the battery and heat 
storage

𝐸𝑖
𝐶𝐻𝑃 Electricity output of CHP in year 𝑖

𝐸𝑠
an Annual energy output for PV

𝐸max, Ξ𝑟𝑒𝑓 Reference capacity of battery and thermal storage
𝐺𝑡
𝑑 Household gas demand at time 𝑡

𝐻 i
𝐶𝐻𝑃 Heat output of CHP in year 𝑖

𝐻 𝑡
𝑑 Household heat demand at time 𝑡

𝑙𝑡𝑏+, 𝑙𝑡𝑏− Maximum battery charging and discharging rates
𝑙𝑡𝑡ℎ+, 𝑙𝑡𝑡ℎ− Maximum heat storage charging and discharging 

rates
𝑃 𝑡
𝑈𝑐 Uncontrollable power loads at time 𝑡

𝑅chp𝑖 Revenue from by-products or subsidies in year 𝑖
𝑇𝑁𝑂𝐶 Nominal operating cell temperature
𝑇𝑟𝑒𝑓 Reference temperature of the photovoltaic cell
𝑉 max
𝐶ℎ𝑝 Maximum natural gas input for the CHP

𝑉 min
𝐶ℎ𝑝 Minimum natural gas input for the CHP

𝑉 𝑖
max, 𝑉 𝑖

min Maximum and minimum voltage limit at bus 𝑖
𝑦𝑖𝑗 Admittance between buses 𝑖 and 𝑗
𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
𝐶𝐵 Battery degradation cost
𝐶𝑐 Emission costs
𝐶𝑔 Cost of natural gas purchased from the grid
𝐶𝑆𝑒𝑙𝑙 Selling surplus electricity to the main grid
𝐺𝑡 Gas purchased from the grid at time 𝑡
𝐻 𝑡

𝐶𝐻𝑃 Heat produced by the CHP system at time 𝑡
𝑂𝐶 𝑡

𝑏 Operational cost of the battery at time 𝑡
𝑃 𝑡,Ro
Uc Worst-case uncontrollable load

𝑃𝑐 (𝑘, 𝑡) Load curtailed or shifted via DR
𝑃 𝑖𝑗,𝑡
𝑙𝑜𝑠𝑠 Line losses from bus 𝑖 to bus 𝑗 at time 𝑡

𝑃 𝑡
𝐵𝑜𝑖𝑙𝑒𝑟 Boiler heat generation at time 𝑡

𝑃 𝑡
𝐺𝑟𝑖𝑑 Electricity purchased from the grid at time 𝑡

𝑃 𝑡
𝑃𝑉 PV power generated at time 𝑡

𝑃 𝑡
𝑈𝑐 Uncontrollable power loads at time 𝑡

𝑃 𝑡
𝑏+, 𝑃 𝑡

𝑏− Battery charging and discharging power
𝑅WT Radius of the wind turbine
𝑆𝑂𝐶 𝑡

𝑏 State of charge of the battery at time 𝑡
𝑇 𝑡
𝑎 Ambient temperature at time 𝑡

𝑉 𝑖
𝑡 Voltage at bus 𝑖 at time 𝑡

𝑢𝑡𝑒𝑠, 𝑢𝑡𝑡ℎ Binary variables for battery and heat storage
𝐶𝐷𝑟 Implementation cost of demand response
𝐶𝑒 Cost of electricity purchased from the grid
𝐶𝑜 Operating costs
𝐸𝑡
𝐶𝐻𝑃 Electricity produced by the CHP at time 𝑡

𝐺𝑡
𝐵𝑜𝑖𝑙𝑒𝑟 Gas consumed by the auxiliary boiler

𝐿𝑡,max
𝐷𝑉 Maximum allowable demand variation

𝑂𝐶𝑡ℎ Operational cost of the heat storage
𝑃 𝑘 Total energy consumption of customer 𝑘
𝑃 𝑖
𝑡 Power injected at bus 𝑖 at time 𝑡

𝑃 𝑡
𝑙𝑜𝑠𝑠 Total power loss at time 𝑡

𝑃 𝑡
𝐶𝑙 Controllable power loads at time 𝑡

𝑃 𝑡
𝐼𝑟𝑟 Solar irradiation at time 𝑡

𝑃 𝑡
𝑆𝑒𝑙𝑙 Amount of electricity sold at time 𝑡

𝑃 𝑡
𝑊 𝑇 Wind power generated at time 𝑡

𝑃 𝑡
𝑡ℎ+ , 𝑃 𝑡

𝑡ℎ− Heat charged and discharged into storage
𝑆𝑃𝑉 Surface area of the PV panels
𝑆𝑂𝐶 𝑡

𝑡ℎ State of charge of the heat storage
𝑉 𝑡
𝐶ℎ𝑝 Gas allocation to CHP at time 𝑡

𝑉w(𝑡) Wind speed at time 𝑡
𝜉𝑡load Auxiliary variable capturing potential load 

deviation at time 𝑡
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Fig. 1. Uncertainty management and sizing optimization in Microgrids.

approaches for handling uncertainty are Stochastic Programming (SP) 
and Robust Optimization (RO). SP relies on the assumption that the 
probability distribution of uncertain parameters, such as renewable 
generation and load, is known. However, in practice, obtaining accu-
rate probability distributions is challenging, particularly in microgrids 
where data is limited and the geographic footprint is relatively small. 
In contrast, RO does not require any prior knowledge of probability 
distributions or correlations among uncertain parameters, making it a 
more practical and reliable approach for real-world microgrid applica-
tions [9]. By considering the role of uncertainty in sizing and energy 
management, Fig. 1 presents an overview of the uncertainty manage-
ment frameworks and the methodologies used to address the sizing op-
timization problem.

In [10], the optimal energy management of MMG system was ad-
dressed using a stochastic multi-objective framework, where the uncer-
tainty of renewable energy generation was captured through represen-
tative scenarios. A risk-averse energy management approach for net-
worked microgrids was also formulated based on stochastic linear pro-
gramming. In [11], a two-stage adaptive robust optimization model was 
proposed to handle the energy dispatch problem in multi-microgrid sys-
tems, enabling each microgrid to effectively manage local uncertainties. 
Furthermore, [12] introduced a two-stage robust optimization frame-
work for the coordinated operation of electricity-gas-heat integrated 
multi-energy microgrids under both renewable and load uncertainties. 
By incorporating Power-to-Hydrogen-and-Heat (P2HH) systems along 
with the dynamic characteristics of gas and heat networks, the proposed 
model significantly improves operational flexibility and overall system 
efficiency. In [13], an optimization method is presented for Battery En-
ergy Storage Systems (BESS) sizing in microgrids, solving the Security 
Constrained Optimal Power Flow (SCOPF) problem while accounting 
for stochastic forecasting errors in PV output. In [14], the authors pro-
posed an integrated planning model to evaluate the techno-economic 
performance of a standalone microgrid powered by renewable energy 
sources. This model combines capacity sizing and operational schedul-
ing while incorporating demand-side management strategies across di-
verse design scenarios, including wind turbines, photovoltaic systems, 

diesel generators, and energy storage solutions such as batteries and 
pumped thermal energy storage. The study in [15] focused on opti-
mizing the sizing and allocation of Photovoltaic Distributed Generators 
(PVDG) and Energy Storage Systems (ESS) in islanded microgrids. The 
main objective is to increase energy reliability during disruptions while 
meeting energy demands and minimizing operational costs. In [16], a 
multi-objective optimization algorithm is introduced for the optimal siz-
ing of standalone systems that incorporate PV panels, wind turbines, and 
battery energy storage systems. This algorithm accounts for critical fac-
tors such as power supply reliability, energy stability, energy utilization, 
and economic efficiency, ensuring a balanced and efficient design. In our 
previous work in [17], we investigated the optimal design of a multi-
energy DC microgrid integrating multiple resources. The first objective 
was to determine the optimal PV panel surface area, wind turbine radius, 
and CHP gas allocation to maximize renewable energy utilization while 
minimizing total costs–including electricity, natural gas, emissions, and 
operations. The second objective was to analyze heat and power man-
agement strategies in selected scenarios.

Although recent studies have investigated the sizing of MG system 
components, to the best of the authors’ knowledge, most have primarily 
focused on the integration and operation of solar PV, wind turbines, bat-
tery storage systems, and, in some cases, diesel generators–while largely 
overlooking the optimal sizing of CHP units within multi-energy mi-
crogrids. Additionally, although numerous studies address uncertainty 
at the operational level using robust optimization techniques, compre-
hensive investigations that incorporate uncertainty across both the de-
sign and operational stages of MEMG systems remain largely lacking. 
These gaps highlight the need for more integrated studies that examine 
component interdependencies and assess the impact of uncertainty on 
microgrid planning and resource scheduling. Table 1 offers a compre-
hensive comparison between previous research and the current study, 
emphasizing key distinctions and contributions. Building on this foun-
dation, this work proposes an integrated framework that coordinates the 
power distribution system (PDS), district heating network (DHN), and 
gas distribution system (GDS) to meet multi-energy demands. The main 
contributions are summarized as follows:
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Table 1 
Review of previous studies for comparative analysis with the current research.

 Ref  MEMG  Energy component sizing  Optimal indicators
Optimal scenario
identification  DR  Robust optimisation in:

 PV  Wind  ESS  CHP  Sizing  Operation
 [9] × ✓ × ✓ ×  Economic, Environmental ✓ × ✓ ✓

 [13] × ✓ × ✓ ×  Reliability, Cost, Security ✓ × ✓ ✓

 [14] ✓ ✓ ✓ ✓ ×  Reliability, Environmental, Economic ✓ ✓ × ×
 [15] × ✓ × ✓ ×  Reliability, Environmental, Economic × × ✓ ×
 [17] ✓ ✓ ✓ × ✓  Reliability, Environmental, Economic × × × ×
 [18] × ✓ ✓ ✓ ×  Reliability, Environmental, Economic ✓ ✓ × ×
 [19] × ✓ ✓ × ×  Efficiency, Reliability × × ✓ ×
 [20] × ✓ × ✓ ×  LCOE, LCE, Peak shaving ✓ × ✓ ✓

 [21] × ✓ ✓ ✓ ×  Reliability, Economic ✓ × × ×
 [22] × × ✓ ✓ ×  Economic, Wind curtailment ✓ × × ×
 [23] × × × ✓ ×  Economic × × ✓ ×
 [24] ✓ ✓ ✓ ✓ ×  Economic, Resilience, Environmental ✓ ✓ ✓ ×
 [25] × ✓ ✓ ✓ ×  Economic, Environmental, Reliability ✓ × ✓ ×
 [26] × ✓ ✓ ✓ ×  Economic, Reliability ✓ × ✓ ×
 [27] × ✓ × ✓ ×  Economic, Environmental ✓ × × ×
 [28] × ✓ ✓ ✓ ×  Reliability, Economic × × × ×
 [29] ✓ × × × ✓  Reliability, Economic × ✓ × ×
 [30] × ✓ × ✓ ×  Economic, Peak shaving ✓ × ✓ ✓

 [31] × ✓ ✓ ✓ ×  Economic, Environmental ✓ × × ×
 [32] × ✓ ✓ ✓ ×  Economic, Reliability ✓ ✓ ✓ ✓

 This study ✓ ✓ ✓ ✓ ✓  Reliability, Environmental, Economic ✓ ✓ ✓ ✓

• Comprehensive robust microgrid sizing framework: A bi-objective 
robust optimization framework is developed to determine the opti-
mal sizing of PV surface area, wind turbine radius, battery storage 
capacity, and gas allocation to the CHP unit, while explicitly consid-
ering uncertainties associated with uncontrollable power loads.

• Robust energy management implementation: The optimal sizing of 
the design variables achieved in the previous stage are applied to the 
IEEE 14-bus system. A robust optimization strategy is subsequently 
implemented to ensure reliable energy supply and demand fulfill-
ment under worst-case power load uncertainty scenarios.

• Demand response integration: Price-based and incentive-based de-
mand response programs are incorporated to evaluate their impacts 
on cost reduction, load shifting, and overall system efficiency within 
the IEEE 14-bus framework.

The remainder of this manuscript is structured as follows: Section II 
presents the system architecture and modeling framework. Section III 
discusses the simulation setup and corresponding results. Finally, Sec-
tion IV concludes the paper and outlines potential directions for future 
research.

2.  System architecture and modeling

This paper presents a system architecture that integrates a PDS, a 
DHN, and a GDS, powered by a diverse mix of energy sources and stor-
age systems. The PDS integrates PV panels, wind turbine, batteries, CHP 
unit, and the main electrical grid. On the consumption side, electrical 
loads are categorized as controllable and uncontrollable. In the DHN, 
heat loads are supplied by CHP unit, discharges from thermal storage, 
and direct natural gas supply from the main gas grid, such as through 
a boiler. Excess heat is stored in a thermal storage system and utilized 
during peak demand periods. The GDS is fueled by natural gas from the 
main gas grid, which is used to power CHP unit, operate heat generator 
(e.g., boiler), and address the requirements of gas-based applications ex-
cluding heating. Fig. 2 provides a detailed illustration of the microgrid 
architecture used for sizing.

2.1.  Constraints

The model incorporates detailed constraints for the PV system, wind 
turbines, lithium-ion battery storage, and thermal energy storage. It 

also includes constraints for the CHP unit, along with system reliabil-
ity requirements. Additionally, the model accounts for demand response 
strategies and applies robust optimization to improve performance un-
der uncertainty.

2.1.1.  PV System
The power generated by a PV installation can be calculated based on 

temperature and solar irradiation using the following equation [33]:

𝑃 𝑡
𝑃𝑉 = 𝑆𝑃𝑉 ⋅ 𝜂𝑃𝑉 ⋅ 𝑃 𝑡

𝐼𝑟𝑟 ⋅
(

1 − 𝛽 ⋅
(

𝑇 𝑡
𝑎 − 𝑇𝑟𝑒𝑓 +

𝑇𝑁𝑂𝐶 − 20
800

⋅ 𝑃 𝑡
𝐼𝑟𝑟

))

,

1 ≤ 𝑡 ≤ 24h (1)

Where, 𝑃 𝑡
𝑃𝑉  denotes the power output of the PV system at time 𝑡, 

which is influenced by several factors. 𝑆𝑃𝑉  is the total surface area of 
the PV array, and 𝜂𝑃𝑉  represents the overall system efficiency, account-
ing for both technological performance and power conditioning losses. 
𝑃 𝑡
Irr refers to the solar irradiance at time 𝑡. The parameter 𝛽 is the tem-
perature coefficient, indicating how sensitive the PV output is to tem-
perature variations. 𝑇 𝑡

𝑎 is the ambient temperature at time 𝑡, 𝑇ref is the 
reference temperature of the PV cells, and 𝑇NOC denotes the nominal 
operating cell temperature under standard conditions. The PV system’s 
operational cost, 𝑂𝐶 𝑡

𝑠, is provided by:

𝑂𝐶 𝑡
𝑠 = 𝐶𝑃𝑉 ⋅ 𝑃 𝑡

𝑃𝑉 , 𝑡 ∈ 𝑇 (2)

The Levelized Cost of Electricity (LCOE) is a standard metric used to 
evaluate the cost of electricity generation over a system’s lifespan. For 
PV system, the LCOE, denoted as 𝐶𝑃𝑉 , is calculated using Eq.  (3) [33]:

𝐶pv =
𝐶𝑠
inv +

∑𝑛
𝑖=1 𝐶

𝑠
om(1 + 𝑑𝑟s)−𝑖

∑𝑛
𝑖=1 𝐸

𝑠
an(1 − 𝜎𝑠)𝑖−1(1 + 𝑑𝑟s)−𝑖

(3)

This formulation incorporates the investment cost (𝐶𝑠
inv), which includes 

expenses related to PV modules, converters, installation, land acquisi-
tion, and balance-of-system components, along with the annual mainte-
nance cost (𝐶𝑠

om) and the annual energy output (𝐸𝑠
an). The annual energy 

output is computed by summing the hourly average solar power across 
the year, then discounting it over 𝑛 years at the rate 𝑑𝑟s. To reflect system 
performance degradation over time, a degradation factor 𝜎𝑠 is applied 
to 𝐸𝑠

an starting from the second year.
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Fig. 2. System structure considered for sizing.

2.1.2.  Wind system
The electrical power output of a wind turbine can be expressed 

as [34]:

𝑃 𝑡
𝑊 𝑇 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑉w < 𝑣cut-in
1
2 𝜂w𝜌𝜋𝑅

2
WT𝑉w(𝑡)

3, 𝑣cut-in ≤ 𝑉w ≤ 𝑣r
1
2 𝜂w𝜌𝜋𝑅

2
WT𝑣

3
r , 𝑣r ≤ 𝑉w ≤ 𝑣cut-out

0, 𝑉w > 𝑣cut-out

(4)

Where, 𝑃 𝑡
𝑊 𝑇  is the wind power output at time 𝑡, while 𝜂w is the power 

coefficient representing conversion efficiency. 𝜌 denotes the air density, 
and 𝑅WT is the radius of the wind turbine blades. 𝑉w(𝑡) denotes the wind 
speed at time 𝑡, which directly influences the wind turbine’s power out-
put. The turbine begins operating at the cut-in wind speed, 𝑣cut-in, and 
the output power increases with wind speed up to the rated speed, 𝑣r. 
Beyond this point, as wind speed continues to rise, the power output 
remains constant at its rated value. If the wind speed exceeds the cut-
out threshold, 𝑣cut-out, the turbine automatically shuts down to prevent 
damage and ensure operational safety. The operational cost of the wind 
turbine and the LCOE for wind power are modeled as follows:
𝑂𝐶 𝑡

𝑊 = 𝐶𝑊 ⋅ 𝑃 𝑡
𝑊 𝑇 , 𝑡 ∈ 𝑇 , (5)

𝐶𝑊 =
𝐶winv +

∑𝑛
𝑖=1 𝐶

w
om(1 + 𝑑𝑟w)−𝑖

∑𝑛
𝑖=1 𝐸

w
an(1 − 𝜎w)𝑖−1(1 + 𝑑𝑟w)−𝑖

(6)

Where, 𝑂𝐶 𝑡
𝑊  represents the operational cost at time 𝑡, and 𝐶𝑊  de-

notes the LCOE for wind power. This metric accounts for several com-
ponents, including the investment cost (𝐶winv), maintenance cost (𝐶wom), 
annual energy output (𝐸w

an), discount rate (𝑑𝑟w), and the degradation 
factor of the wind turbine (𝜎w).

2.1.3.  Lithium-ion battery
Due to the unpredictable nature of renewable energy sources and the 

frequent mismatch between demand and supply, incorporating batteries 
and heat storage systems becomes essential. These systems are subject 
to constraints on charging capacity, recharge and discharge rates, and 
State Of Charge (SOC) at each time step 𝑡 [35].
𝑃 𝑡
𝑏+ ≤ 𝑙𝑡𝑏+ ⋅ 𝐸max ⋅ 𝑢

𝑡
es, 𝑡 ∈ 𝑇 (7)

𝑃 𝑡
𝑏− ≤ 𝑙𝑡𝑏− ⋅ 𝐸max ⋅ (1 − 𝑢𝑡es), 𝑡 ∈ 𝑇 (8)

𝑆𝑂𝐶 𝑡
𝑏 =

𝐸0
𝑏

𝐸𝑚𝑎𝑥
+

𝑡
∑

ℎ=1

(

𝜂𝑏+𝑃
ℎ
𝑏+ −

𝑃 ℎ
𝑏−

𝜂𝑏−

)

⋅
Δℎ
𝐸𝑚𝑎𝑥

(9)

Where, 𝑙𝑡𝑏+ and 𝑙𝑡𝑏− represent the maximum charging and discharg-
ing rates of the battery per hour, respectively. The binary variable 𝑢𝑡𝑒𝑠
ensures that charging and discharging do not occur simultaneously. The 
term 𝐸max denotes the reference battery storage capacity. The state of 
charge SOC𝑡𝑏 is determined based on the initial battery energy level at 
the start of the day (𝐸0

𝑏 ) and the cumulative effect of charging (𝑃 𝑡
𝑏+ ) and 

discharging (𝑃 𝑡
𝑏− ) processes up to time 𝑡. The Battery Degradation Cost 

(BDC) model for lithium-ion batteries accounts for the impacts of tem-
perature and Depth of Discharge (DOD) on both the energy capacity and 
the cycle life of the battery. In Eqs.  (10) and (11), 𝑂𝐶 𝑡

𝑏 and 𝐶𝐵 represent 
the operational cost and BDC, respectively [36]:

𝑂𝐶 𝑡
𝑏 = 𝐶𝐵

(

𝜂𝑏+𝑃
𝑡
𝑏+ +

𝑃 𝑡
𝑏−

𝜂𝑏−

)

, 𝑡 ∈ 𝑇 (10)

𝐶𝐵 = 1
2

[

𝐶𝑏
inv +

∑𝑛
𝑡=1 𝐶

𝑏
om(1 + 𝑑𝑟𝑏)−𝑡

]

(1 + 𝑑𝑟𝑏)𝑛 − 𝑆𝑉

(1 + 𝑑𝑟𝑏)𝑛𝜒Ξ
𝑇 𝜒

Υ
𝑇 𝜒

Υ
𝑑 Υref𝐸max

. (11)

Where, 𝜂𝑏+  and 𝜂𝑏−  represent the battery’s charging and discharg-
ing efficiencies, while 𝐶𝑏

inv denotes its investment cost. The parameter 
𝜒Ξ
𝑇  is the normalized temperature-dependent power-fading coefficient, 
and 𝜒Υ

𝑇  and 𝜒Υ
𝑑  capture the effects of temperature and DOD on battery 

cycle life, respectively. The residual value (𝑆𝑉 ) reflects the remaining 
economic value of the battery at the end of its service life [37]. Finally, 
𝐶𝑏
om represents the annual operation and maintenance cost, and 𝑑𝑟𝑏 is 
the discount rate used to compute present-value costs.

2.1.4.  Heat storage system
A heat storage system is a technology used to store thermal energy 

for later use, enabling more efficient energy management in heating and 
cooling applications. These systems can utilize various storage media 
such as water, molten salts, or phase change materials. They are widely 
integrated into renewable energy systems, such as solar thermal or CHP 
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units, to enhance overall efficiency, reduce energy costs, and improve 
grid stability by balancing supply and demand fluctuations [38]. Simi-
lar to battery storage, thermal energy storage is subject to operational 
constraints. The charging and discharging limits, as well as the SOC, are 
defined as follows:
𝑃 𝑡
𝑡ℎ+ ≤ 𝑙𝑡𝑡ℎ+ ⋅ 𝑢𝑡th ⋅ Ξ𝑟𝑒𝑓 (12)

𝑃 𝑡
𝑡ℎ− ≤ 𝑙𝑡𝑡ℎ− ⋅ (1 − 𝑢𝑡th) ⋅ Ξ𝑟𝑒𝑓 (13)

𝑆𝑂𝐶 𝑡
th =

𝐻0
𝑡ℎ

Ξref
+

𝑡
∑

ℎ=1

(

𝑃 ℎ
𝑡ℎ+ ⋅ 𝜂𝑡ℎ+ −

𝑃 ℎ
𝑡ℎ−

𝜂𝑡ℎ−

)

⋅
Δℎ
Ξref

(14)

In these equations, 𝑃 𝑡
𝑡ℎ+  and 𝑃 𝑡

𝑡ℎ−  denote the thermal charging and 
discharging power at time 𝑡, respectively. The parameters 𝑙𝑡𝑡ℎ+ and 𝑙𝑡𝑡ℎ−
represent the maximum allowable charging and discharging rates per 
time step. The binary variable 𝑢𝑡𝑡ℎ determines the operating mode of the 
thermal storage system, ensuring that charging and discharging cannot 
occur simultaneously. Specifically, 𝑢𝑡𝑡ℎ = 1 allows charging, while 𝑢𝑡𝑡ℎ = 0
allows discharging. The term Ξ𝑟𝑒𝑓  is the reference thermal storage capac-
ity used for scaling purposes. The variable 𝑆𝑂𝐶 𝑡

𝑡ℎ indicates the state of 
charge at time 𝑡, with 𝐻0

𝑡ℎ representing the initial SOC. The parameters 
𝜂𝑡ℎ+  and 𝜂𝑡ℎ−  are the thermal charging and discharging efficiencies, re-
spectively. Degradation in thermal energy storage systems is often min-
imal, particularly in sensible heat storage technologies such as molten 
salt systems. These systems are known for their long cycle life and sta-
ble performance over time, so degradation is typically neglected in the 
optimization model [39]. As such, the cost modeling primarily includes 
the initial investment cost 𝐶 𝑡ℎ

inv, the operation and maintenance cost 𝐶 𝑡ℎ
om, 

and a discount rate 𝑑𝑟𝑡ℎ. Over a total planning horizon of 𝑛 time periods, 
the overall operational cost of the thermal storage is expressed as:

𝑂𝐶th = 𝐶 𝑡ℎ
inv +

𝑛
∑

𝑡=1

𝐶 𝑡ℎ
om

(1 + 𝑑𝑟𝑡ℎ)𝑡
(15)

2.1.5.  Network constraints
In a DC microgrid system, monitoring voltage levels at each bus and 

accounting for system losses are crucial for optimizing the scheduling of 
generation sources and implementing demand response strategies. The 
injection of power in each bus 𝑖 is governed by the power flow equation 
in  (16), which describes the relationship between voltage levels and 
line admittances throughout the network. The voltage at each bus is 
constrained within defined lower and upper bounds to ensure stable op-
eration, as presented in Eq.  (17). Additionally, line losses, which depend 
on the voltage differences between connected buses, are determined by 
Eq.  (18). The overall impact of these line losses on the system is rep-
resented as total system losses at time 𝑡, as defined in Eq.  (19). Collec-
tively, these equations establish a comprehensive framework for man-
aging power flow dynamics and loss optimization in DC microgrid [36]. 

𝑃 𝑡
𝑖 =

𝑁
∑

𝑗=1
𝑗≠𝑖

𝑉 𝑖
𝑡

(

𝑉 𝑖
𝑡 − 𝑉 𝑗

𝑡

)

𝑦𝑖𝑗 , 𝑖 ∈  , (16)

𝑉 𝑖
min ≤ 𝑉 𝑖

𝑡 ≤ 𝑉 𝑖
max, 𝑖 ∈  , (17)

𝑃 𝑖𝑗,𝑡
𝑙𝑜𝑠𝑠 =

(

𝑉 𝑖
𝑡 − 𝑉 𝑗

𝑡

)2
𝑦𝑖𝑗 , 𝑗 ≠ 𝑖, (𝑖, 𝑗) ∈  , 𝑡 ∈ 𝑇 , (18)

𝑃 t𝑙𝑜𝑠𝑠 =
𝑁−1
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝑃 𝑖𝑗,𝑡
loss, 𝑡 ∈ 𝑇 . (19)

2.1.6.  Boiler and CHP system
A boiler is a thermal device that converts the chemical energy of 

fuel–typically natural gas–into useful heat for space or water heating 
applications. The thermal output of the boiler at time 𝑡 is calculated as: 
𝑃 𝑡
Boiler = 𝐺𝑡

Boiler ⋅ 𝜂𝑔,app ⋅ CV (20)

Fig. 3. Feasible operating region of a CHP unit.

Where, 𝐺𝑡
Boiler denotes the natural gas consumption at time 𝑡, 𝜂𝑔,app

is the apparent thermal efficiency of the boiler, and CV represents the 
calorific value of the natural gas. Unlike boilers, CHP systems simulta-
neously generate electricity and heat from a single energy source, sig-
nificantly improving overall efficiency by capturing and utilizing waste 
heat that would otherwise be lost. The electricity produced by CHP units 
is supplied to the power grid, while the generated heat is used to meet 
thermal demand [40]. Fig. 3 illustrates the feasible operating region 
of a CHP unit, where the boundaries AD, AB, BC, and CD denote the 
minimum steam injection limit, maximum heat generation rate, upper 
fuel injection limit, and maximum power output limit, respectively [41]. 
Under high thermal demand conditions, the CHP unit operates mainly 
along boundary BC, producing excess electricity as a byproduct of heat 
generation. The feasible region for electricity (𝐸CHP) and heat (𝐻CHP) 
output can be mathematically represented by the following linear in-
equalities:

[

𝐴𝐶𝐻𝑃 𝐵𝐶𝐻𝑃
]

[

𝐸𝐶𝐻𝑃
𝐻𝐶𝐻𝑃

]

≤ 𝐷𝐶𝐻𝑃 (21)

Where, 𝐴𝐶𝐻𝑃  and 𝐵𝐶𝐻𝑃  are coefficients defining the boundary 
slopes, and 𝐷𝐶𝐻𝑃  is a vector of constants characterizing the limits of 
the feasible operating region. The electricity and heat generated by the 
CHP unit at time 𝑡 are modeled as:
𝐸𝑡
CHP = 𝑉 𝑡

Chp ⋅ CV ⋅ 𝜂ge, (22)

𝐻 𝑡
CHP = 𝑉 𝑡

Chp ⋅ CV ⋅ 𝜂gh, (23)

𝑉 𝑚𝑖𝑛
𝐶ℎ𝑝 ≤ 𝑉 𝑡

𝐶ℎ𝑝 ≤ 𝑉 𝑚𝑎𝑥
𝐶ℎ𝑝 , (24)

In Eqs.  (22) and (23), 𝑉 𝑡
Chp denotes the volume of natural gas input to 

the CHP unit at time 𝑡, and 𝜂ge and 𝜂gh are the conversion efficiencies 
from gas to electricity and gas to heat, respectively. The fuel input is con-
strained within an allowable operating range as expressed in Eq.  (24), 
where 𝑉 min

Chp  and 𝑉 max
Chp  indicate the minimum and maximum allowable 

gas input to the CHP system. The operational cost of the CHP unit at 
time 𝑡 is given by:
𝑂𝐶 𝑡

CHP = 𝐶CHP ⋅
(

𝐸𝑡
CHP +𝐻 𝑡

CHP
)

(25)

where, 𝐶CHP denotes the Levelized Cost Of Cogeneration (LCOC), which 
represents the cost per unit of total energy–comprising both electricity 
and heat–produced by the CHP system. The LCOC is defined as [42]:

𝐶CHP =
𝐶chpinv +

∑𝑛
𝑖=1

(

𝐶chpom,𝑖 + 𝐶chpfuel,𝑖 − 𝑅chp𝑖

)

(1 + 𝑑𝑟chp)−𝑖

∑𝑛
𝑖=1

(

𝐸𝑖
CHP +𝐻 𝑖

CHP
)

(1 + 𝑑𝑟chp)−𝑖
(26)

In this expression, 𝐶chpinv  is the initial investment cost of the CHP unit, 
𝐶chpom,𝑖 and 𝐶

chp
fuel,𝑖 are the operation and maintenance and fuel costs in year 
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𝑖, respectively. 𝑅chp𝑖  refers to the revenue from by-products or incentives. 
𝐸𝑖
CHP and 𝐻 𝑖

CHP are the annual electricity and heat outputs, 𝑑𝑟chp is the 
discount rate, and 𝑛 denotes the lifetime of the system in years.

2.1.7.  Meeting power, heat, and gas demands
Stability in a MEMG refers to its ability to continuously and reliably 

supply electricity, heat, and gas under varying conditions. This stability 
is ensured by the power, heat, and gas balance constraints. The power 
balance equation is expressed as follows: 

𝑃 𝑡
Grid + 𝐸𝑡

CHP + 𝑃 𝑡
𝑃𝑉 + 𝑃 𝑡

𝑊 𝑇 + 𝑃 𝑡
𝑏− ⋅ 𝜂𝑏− =

𝑃 𝑡
𝐶𝑙 + 𝑃 𝑡

𝑈𝑐
𝜂𝑒,𝑎𝑝𝑝

+
𝑃 𝑡
𝑏+

𝜂𝑏+
+ 𝑃 𝑡

𝑆𝑒𝑙𝑙 + 𝑃 𝑡
𝑙𝑜𝑠𝑠

(27)

In this equation, 𝑃 𝑡
Grid is the electrical power purchased from the main 

grid, 𝑃 𝑡
𝑃𝑉  and 𝑃 𝑡

𝑊 𝑇  are the generated powers from photovoltaic pan-
els and wind turbines, respectively. 𝑃 𝑡

𝑏−  and 𝑃 𝑡
𝑏+  denote the battery dis-

charging and charging power, with 𝜂𝑏−  and 𝜂𝑏+  as their respective effi-
ciencies. 𝑃 𝑡

𝐶𝑙 and 𝑃 𝑡
𝑈𝑐 represent the power consumption of controllable 

and uncontrollable appliances, scaled by the appliance efficiency 𝜂𝑒,𝑎𝑝𝑝. 
𝑃 𝑡
𝑆𝑒𝑙𝑙 is the power sold to the grid, and 𝑃 𝑡

𝑙𝑜𝑠𝑠 accounts for distribution 
losses. The heat balance is given by: 

𝐻 𝑡
CHP + 𝑃 𝑡

𝑡ℎ− ⋅ 𝜂𝑡ℎ− + 𝑃 𝑡
𝐵𝑜𝑖𝑙𝑒𝑟 = 𝐻 𝑡

𝑑 +
𝑃 𝑡
𝑡ℎ+

𝜂𝑡ℎ+
(28)

Where, 𝐻 𝑡
CHP is the thermal power produced by the CHP system, 

𝑃 𝑡
𝑡ℎ−  and 𝑃 𝑡

𝑡ℎ+  are the discharging and charging powers of the heat stor-
age system, and 𝜂𝑡ℎ−  and 𝜂𝑡ℎ+  are their respective efficiencies. 𝑃 𝑡

𝐵𝑜𝑖𝑙𝑒𝑟 is 
the heat provided by the auxiliary boiler, and 𝐻 𝑡

𝑑 is the total thermal 
demand at time 𝑡. Finally, the gas balance is provided by: 
𝐺𝑡 = 𝐺𝑡

𝑑 + 𝑉 𝑡
chp + 𝐺𝑡

𝐵𝑜𝑖𝑙𝑒𝑟 (29)

In this constraint, 𝐺𝑡 is the gas purchased from the main gas grid, 𝐺𝑡
𝑑 rep-

resents the portion of gas consumption used for non-thermal purposes, 
𝑉 𝑡
Chp is the volume of natural gas consumed by the CHP unit, and 𝐺𝑡

𝐵𝑜𝑖𝑙𝑒𝑟
is the gas used by the auxiliary boiler.

2.1.8.  Demand response programs
Demand Response Programs (DRPs) are typically categorized into 

two main types: incentive-based programs, which offer financial re-
wards to consumers who reduce or shift their electricity usage during 
peak demand periods, and price-based programs, which employ time-
varying electricity tariffs to influence consumption behavior [43]. In 
this study, electrical loads are classified as either controllable or un-
controllable. Controllable loads can be scheduled or shifted to off-peak 
hours, helping to reduce energy costs and ease the burden on the power 
grid. A price-based DRP is implemented by introducing three distinct 
tariff levels over a 24-hours period. Consumers adjust their energy con-
sumption in response to these tariffs. The implementation of demand 
response is subject to certain constraints. Eqs.  (30) and (31) define the 
total controllable electricity consumption of customer 𝑘 over the entire 
time horizon, along with its corresponding upper and lower bounds.
𝑃 𝑘 =

∑

𝑡
𝑃𝑐 (𝑘, 𝑡), (30)

𝑃 𝑘
min ≤ 𝑃 𝑘 ≤ 𝑃 𝑘

max, (31)

where, 𝑃𝑐 (𝑘, 𝑡) represents the controllable power demand of customer 𝑘
at time 𝑡, which may be curtailed or shifted in response to the price sig-
nals. The bounds 𝑃 𝑘

min and 𝑃 𝑘
max define the acceptable daily consumption 

limits for customer 𝑘. The total controllable power demand across all 
customers at each time 𝑡 is computed as:
𝑃 𝑡
𝐶𝑙 =

∑

𝑘
𝑃𝑐 (𝑘, 𝑡), (32)

𝑃 𝑡,min
𝐶𝑙 ≤ 𝑃 𝑡

𝐶𝑙 ≤ 𝑃 𝑡,max
𝐶𝑙 , (33)

where, 𝑃 𝑡
𝐶𝑙 is the aggregate controllable load at time 𝑡, and 𝑃

𝑡,min
𝐶𝑙  and 

𝑃 𝑡,max
𝐶𝑙  represent the lower and upper bounds of allowable controllable 

demand at that time. This formulation ensures that demand shifts occur 
within realistic and predefined flexibility ranges while contributing to 
system-level optimization.

2.1.9.  Robust optimization formulation for load uncertainty
The robust optimization framework used to manage power-load un-

certainty is presented in Fig. 4. This framework combines various pre-
diction techniques–including historical load data, weather conditions, 
electricity prices, and occupancy profiles–to construct an uncertainty 
set that reflects potential variations in system parameters. The feasible 
solution space is divided into two regions: a secure zone, where solutions 
remain feasible under all scenarios, and a risky zone, where violations 
may occur. The robust optimization approach ensures that operational 
decisions stay feasible and cost-efficient even under the worst-case de-
viations.

In this study, we focus specifically on the uncertainty associated with 
uncontrollable loads. We define 𝛼𝑙 as the uncertainty radius, 𝐿𝑡,max

𝐷𝑉  as 
the maximum allowable demand variation at time 𝑡, and 𝑃 𝑡

Uc as the de-
terministic load component unaffected by uncertainty. Based on these 
parameters, the possible range for the uncertain load 𝑃 𝑡,new

Uc  is defined 
as:

𝑃 𝑡
Uc −

(

𝛼𝑙 ⋅ 𝐿
𝑡,max
𝐷𝑉 ⋅ 𝑃 𝑡

Uc
)

≤ 𝑃 𝑡,new
Uc ≤ 𝑃 𝑡

Uc +
(

𝛼𝑙 ⋅ 𝐿
𝑡,max
𝐷𝑉 ⋅ 𝑃 𝑡

Uc
)

(34)

Since robust optimization accounts for the worst-case scenario, the un-
controllable load under uncertainty, denoted by 𝑃 𝑡,Ro

Uc , is defined as:

𝑃 𝑡,Ro
Uc = 𝑃 𝑡

Uc + 𝛼𝑙 ⋅ 𝐿
𝑡,max
𝐷𝑉 ⋅ 𝑃 𝑡

Uc (35)

To quantify the cost associated with incorporating robustness into the 
model, we introduce the additional term 𝐶Robust, which captures the ex-
pense of protecting against potential load deviations:

𝑚𝑖𝑛

{

𝐶Robust =
∑

𝑡>1
𝜉𝑡load + Γ𝑙 ⋅ 𝛽𝑙

}

(36)

Subject to:
𝜉𝑡load + 𝛽𝑙 ≥ 𝛼𝑙 ⋅ 𝐿

𝑡,max
𝐷𝑉 ⋅ 𝑃 𝑡

Uc, ∀𝑡 > 1 (37)

Where, the variable 𝜉𝑡load serves as an auxiliary term capturing the 
potential deviation in load at time 𝑡. The parameter Γ𝑙 defines the uncer-
tainty budget, restricting the number of time periods subject to worst-
case deviations. Additionally, the variable 𝛽𝑙 serves as a safeguard by 
bounding the overall impact of load uncertainty.

2.2.  Objective functions

Considering that the objectives of this research include both system 
sizing and energy management, two sets of objective functions are for-
mulated.

2.2.1.  Objective functions for optimal components
sizing Two objective functions are defined to determine the optimal 

sizing of the system components. The first objective, denoted as 𝐶1, aims 
to minimize the total system cost, which comprises electricity and natu-
ral gas expenses, emissions cost, operational cost, and demand response 
program cost. Eq.  (38) presents the formulation of 𝐶1 and its compo-
nents. 
𝑚𝑖𝑛

{

𝐶1 = 𝐶𝑒 + 𝐶𝑔 + 𝐶𝑐 + 𝐶𝑜 + 𝐶𝐷𝑟 − 𝐶Sell
}

(38)

Where, 𝐶𝑒 represents the cost of electricity imported from the main 
power grid, and 𝐶𝑔 denotes the cost of natural gas purchased from the 
main gas network. The term 𝐶𝑐 accounts for emissions-related costs aris-
ing from both electricity and gas consumption. 𝐶𝑜 refers to operating 
costs, including the expenses associated with the operation of the PV 
system, wind turbine, CHP unit, battery, and thermal energy storage 
system. The cost related to participation in demand response programs 
is represented by 𝐶Dr, while 𝐶Sell captures the revenue generated from 
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Fig. 4. Foundations and Conceptual Framework of Robust Optimization.

selling excess electricity back to the grid. Each of these cost components 
is defined as follows:  [44,45]:

𝐶𝑒 =
∑

𝑡
(𝜆𝑒(𝑡) ⋅ 𝑃 𝑡

Grid) ⋅ Δ𝑡 (39)

𝐶𝑔 =
∑

𝑡
(𝜆𝑔 ⋅ 𝐺𝑡) ⋅ Δ𝑡 (40)

𝐶𝑐 =
∑

𝑡

(

(1 − 𝛽𝑒) ⋅ 𝑃 𝑡
Grid + (1 − 𝛽𝑔) ⋅ 𝐺𝑡

)

⋅ Δ𝑡 (41)

𝐶Dr =
∑

𝑘

∑

𝑡
(𝜆Dr ⋅ 𝑃𝑐 (𝑘, 𝑡)) ⋅ Δ𝑡Δ𝑘 (42)

𝐶𝑆𝑒𝑙𝑙 =
∑

𝑡
(𝜆𝑆𝑒𝑙𝑙 ⋅ 𝑃 𝑡

Sell) ⋅ Δ𝑡 (43)

𝐶𝑜 =
∑

𝑡
(𝑂𝐶 𝑡

𝑠 + 𝑂𝐶 𝑡
𝑊 + 𝑂𝐶 𝑡

CHP + 𝑂𝐶 𝑡
𝑏) ⋅ Δ𝑡 + 𝑂𝐶𝑡ℎ (44)

The second objective, denoted as 𝐶2, aims to maximize the contribu-
tion of distributed energy resources, including PV, wind power, battery 
storage, and CHP system, as formulated in Eq.  (45).

𝑚𝑎𝑥

{

𝐶2 =
∑

𝑡
𝑃 𝑡
𝑃𝑉 ⋅ Δ𝑡 +

∑

𝑡
𝑃 𝑡
𝑊 𝑇 ⋅ Δ𝑡 +

∑

𝑡

(

𝐸𝑡
𝐶𝐻𝑃 +𝐻 𝑡

𝐶𝐻𝑃
)

⋅ Δ𝑡

+
∑

𝑡

(

𝑃 𝑡
𝑏+ + 𝑃 𝑡

𝑏−
)

⋅ Δ𝑡

}

(45)

To achieve these objectives, the optimal sizing of critical components–
including the surface area of PV panels (𝑆𝑃𝑉 ), the radius of wind turbine 
(𝑅𝑊 𝑇 ), the battery storage capacity (𝐸max), and the allocation of natural 
gas for the CHP system (∑𝑉 𝑡

Chp)– is determined.

2.2.2.  Objective functions for energy management
After determining the optimal system sizing, the energy management 

strategy is applied to the IEEE 14-bus configuration, where line losses 
are also taken into account. As a result, the objective function, presented 
in Eq.  (46), is formulated to be minimized. 

𝑚𝑖𝑛
{

𝐶1 = 𝐶𝑒 + 𝐶𝑔 + 𝐶𝑐 + 𝐶𝑜 + 𝐶Dr + 𝐶Loss − 𝐶Sell
}

(46)

Where, 𝐶Loss represents the total losses in the power distribution sys-
tem, which is defined as follows: 

𝐶Loss =
∑

𝑡
𝑃 𝑡
loss ⋅ Δ𝑡 (47)

3.  Numerical simulations

Based on the objective functions and constraints defined in the pre-
ceding section, and using the subsequent data, this section presents the 
simulation results and analyzes the performance of the proposed opti-
mization framework.

3.1.  Input data for sizing and energy management system

Table 2(a) summarizes the forecasted daily profiles of temperature, 
solar irradiation, and wind speed for a representative day. The techni-
cal specifications of the PV and wind systems, CHP unit, battery storage, 
heat storage, and both the gas and electricity networks are provided in 
Table 2(b). Additionally, Fig. 5 illustrates the daily variations in house-
hold energy demands. Fig. 5(a) presents the heat and gas load profiles, 
while Fig. 5(b) shows the uncontrollable and controllable loads, where 
the shaded area indicates the flexible range available for demand-side 
management.

3.2.  Simulation results

The primary goals of the simulations are categorized into three main 
areas:

• Determining the robust optimal sizing of 𝑆PV, 𝑅WT, 𝐸max, and 
∑

𝑉 𝑡
Chp

across various scenarios, while accounting for the uncertainty asso-
ciated with uncontrollable power loads. This optimization is con-
ducted based on the system architecture presented in Fig. 2 and gov-
erned by Eqs.  (38) to (45).

• Implementing integrated management strategies for power, heat, 
and gas in the IEEE 14-bus system, which relies on the optimal values 
of 𝑆PV, 𝑅WT, 𝐸max, and 

∑

𝑉 𝑡
Chp. Power load uncertainty is addressed 

through robust optimization to ensure all energy demands are reli-
ably met, even under worst-case scenarios.

• Assessing the effectiveness of demand response programs in reducing 
costs and shifting loads.

3.2.1.  Sizing and identifying the optimal scenario
The goal is to optimize the microgrid sizing by achieving two objec-

tives: minimizing 𝐶1 and maximizing 𝐶2, simultaneously. Unlike single-
objective optimization, which provides a single optimal solution, multi-
objective optimization generates a set of optimized solutions. Each solu-
tion represents a specific scenario, collectively forming the pareto front, 
which illustrates the trade-offs between competing objectives. Fig. 6 il-
lustrates the pareto front for the studied optimization problem.

Figs. 7(a) and (b) effectively illustrate the impact of variations in 
decision variables on the objective functions. The results show that in-
creasing the values of 𝑆PV, 𝑅WT, 𝐸max, and 

∑

𝑉 𝑡
Chp leads to an increase 

in both 𝐶1 and 𝐶2. However, the growth rate of 𝐶2 exceeds that of 𝐶1, 
reflecting the stronger impact of these variables on the second objective. 
Furthermore, the results indicate that, given the problem’s constraints, 
the CHP unit is utilized first, followed by the activation of the PV system 
starting from scenario 4. Battery storage (𝐸max) and wind power (𝑅WT) 
begin to contribute from scenario 10 onward.

As previously mentioned, 𝐶1 comprises several cost components, in-
cluding 𝐶𝑒, 𝐶𝑔 , 𝐶𝑐 , 𝐶𝑜, 𝐶Dr, and 𝐶Sell. Variations in 𝑆PV, 𝑅WT, 𝐸max, 
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Table 2 
Practical data for simulation scenarios.
 (a) Forecasted data [46].
 Time (h)  Wind speed (m/s)  Temperature (𝑇𝑎(𝑡)) (◦C)  Irradiation (𝑃𝐼𝑟𝑟) (kW/m2)

 1  10.5  24.7  0.00000
 2  13.5  24.5  0.00000
 3  14.9  24.3  0.00000
 4  15.6  24.4  0.00000
 5  17.5  24.5  0.00000
 6  18.6  26.5  0.00000
 7  14.4  27.5  0.03000
 8  14.1  28.0  0.06357
 9  11.3  28.5  0.11000
 10  9.7  28.8  0.28320
 11  7.0  29.0  0.55040
 12  5.9  29.7  0.78621
 13  8.9  29.8  0.96207
 14  9.5  30.0  1.02000
 15  10.4  29.8  1.02000
 16  8.8  29.5  1.00000
 17  7.1  29.0  0.85256
 18  8.3  27.7  0.63306
 19  9.9  26.5  0.21191
 20  7.5  24.8  0.00000
 21  8.8  25.0  0.00000
 22  9.8  24.8  0.00000
 23  9.2  24.6  0.00000
 24  8.4  24.8  0.00000
 (b) Technical data [47–50].
 Gas and Electricity Grids
𝜆𝑒 (e/kWh)  0.2, 0.25, 0.29 𝜆𝑔 (e/kWh)  0.1
𝛽𝑒  0.3 𝛽𝑔  0.8
𝜆𝐷𝑟(e/kWh)  0.13 𝜆𝑆𝑒𝑙𝑙(e/kWh)  0.12
𝑉 max
𝑖 (V)  240 𝑉 min

𝑖 (V)  190
 CHP System
𝜂𝑔𝑒  0.30 𝜂𝑔ℎ  0.40
𝑉 𝑚𝑎𝑥
𝐶ℎ𝑝  20m3 𝑉 𝑚𝑖𝑛

𝐶ℎ𝑝  0m3

𝐶𝑉 (kWh/m3)  9.8 𝑑𝑟chp  0.05
𝐶chp
inv  (e/kwh)  550 𝐶chp

om,𝑖 (e/year)  10
𝐶chp
fuel,𝑖 (e/year)  4 𝑅chp

𝑖  (e/year)  5
𝐸𝑖

𝐶𝐻𝑃  (kWh/year)  2000 𝐻 𝑖
𝐶𝐻𝑃  (kWh/year)  3000

 PV and wind systems
𝜂𝑃𝑉  0.117 𝛽  0.004
𝑇𝑟𝑒𝑓  (◦ C)  25 𝑇𝑁𝑂𝐶 (◦ C)  40
𝜌 (kg/m3)  1.225 𝜂w  0.4
𝑣𝑐𝑢𝑡−𝑖𝑛(m/s)  5 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡(m/s)  35
𝑑𝑟w  0.05 𝐶𝑠

inv (e/kW)  1930
𝐶𝑠
om (e/kw-year)  20 𝐸𝑠

an (kWh/year)  1400
𝜎𝑠  0.01 𝑑𝑟s  0.05
𝑛 (years)  25 𝐶𝑤

inv (e/kW)  3500
𝐶𝑤
om (e/Kw-year)  110 𝐸𝑤

an (kWh/year)  2000
𝜎𝑤  0.01
 Li-ion Battery
𝐶𝑏
𝑖𝑛𝑣(kWhe)  147 𝐶𝑏

𝑜𝑚(e/kW-year)  5
𝑢es  0 , 1 𝑑𝑟𝑏 (%)  1
𝜂𝑏+ , 𝜂𝑏−  0.9  SV(e/kWh)  10
𝑙𝑡𝑏+ , 𝑙

𝑡
𝑏−  1.4 𝜂𝑒,𝑎𝑝𝑝  0.8

𝐸max (kWh)  200
 Thermal Storage
𝐶 𝑡ℎ
𝑖𝑛𝑣 (e/kWh)  18 𝐶 𝑡ℎ

𝑜𝑚(e/kW-year)  3
𝜂𝑡ℎ+ , 𝜂𝑡ℎ−  0.95 𝑑𝑟𝑡ℎ(%)  5
𝑢th  0 , 1 𝑙𝑡𝑠+ , 𝑙

𝑡
𝑠−  0.7

Ξ𝑟𝑒𝑓 (kWh)  110

and ∑𝑉 𝑡
Chp influence each of these components. Figs. 7(c) to (f) illus-

trate the individual impacts of increasing these variables on each cost 
component. These figures show that greater utilization of PV, wind, bat-
tery system, and CHP results in a reduction in electricity costs (𝐶𝑒) and 
emission costs (𝐶𝑐), while leading to an increase in natural gas costs 

(𝐶𝑔) and operational costs (𝐶𝑜). Fig. 7(g) shows the amount of electric-
ity sold to the main grid. In the initial scenarios (up to scenario 15), 
the microgrid consumes all of its generated power to meet internal de-
mand, resulting in no energy exports. As the capacities of 𝑆PV, 𝑅WT, 
𝐸max, and 

∑

𝑉 𝑡
Chp increase, the system begins to generate surplus en-
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Fig. 5. Various household load types.

Fig. 6. Pareto front for C1 and C2.

ergy starting from scenario 16, which can then be exported to the main
grid.

Gas allocation across the different scenarios is illustrated in Fig. 8. 
Initially, natural gas is primarily used for direct heating (e.g., through 
boilers). Up to scenario 10, boiler usage gradually decreases, while gas 
consumption by the CHP units increases. Eventually, in the later scenar-
ios, all allocated gas is fully utilized by the CHP system. The algorithm 
operates in a continuous update manner and ultimately identifies the 
utopia point, which serves as a theoretical ideal representing the best 
attainable values for each objective function. This point is used as a 
reference to evaluate and select the optimal scenario. The optimal set 
of decision variables is obtained by minimizing the euclidean distance 
from each scenario to the utopia point, as formulated in the optimiza-
tion Eq.  (48) [51]. To reflect the relative importance of each objec-
tive in the decision-making process, appropriate weights are assigned. 
In this study, greater importance is attributed to 𝐶2 compared to 𝐶1. 
Accordingly, the weights are set to 𝑤1 = 0.3 and 𝑤2 = 0.7, emphasizing 
the priority of maximizing 𝐶2 over minimizing 𝐶1 in the multi-objective 
optimization process.

𝑑weighted𝐸 =

√

√

√

√

√𝑤1 ⋅

(

𝐶1 − 𝐶⋆
1

𝐶𝑚𝑎𝑥
1 − 𝐶⋆

1

)2

+𝑤2 ⋅

(

𝐶⋆
2 − 𝐶2

𝐶⋆
2 − 𝐶𝑚𝑖𝑛

2

)2

(48)

Where, 𝐶⋆
1  and 𝐶⋆

2  denote the coordinates of the utopia point cor-
responding to the objective functions, as illustrated in Fig. 6. The op-
timization problem, formulated using Eq.  (48), identifies the optimal 
scenario in the vicinity of scenario 20. The bounds imposed on the sizing 

variables 𝑆𝑃𝑉 , 𝑅𝑊 𝑇 , 𝐸𝑚𝑎𝑥, and 
∑

𝑉 𝑡
𝐶ℎ𝑝, along with their corresponding 

optimal values, are summarized in Table 3.

3.2.2.  Heat and power management under power load uncertainty
Once the optimal values for 𝑆𝑃𝑉 , 𝑅𝑊 𝑇 , 𝐸𝑚𝑎𝑥, and 

∑

𝑉 𝑦𝑡𝐶ℎ𝑝 are de-
termined, they are integrated into the 14-bus IEEE test system, as de-
picted in Fig. 9. The objective is to develop a robust energy manage-
ment strategy that ensures cost-effective scheduling of energy resources. 
The proposed robust optimization framework addresses uncertainties 
from uncontrollable power loads and enables reliable planning to meet 
electricity, heat, and gas demands across various scenarios. The conver-
gence behavior of the optimization process illustrated in Fig. 10 clearly 
demonstrates the numerical stability and computational efficiency of the 
proposed MINLP formulation. Within the BARON global optimization 
framework, the model consistently attains the global optimum while 
strictly satisfying the predefined optimality tolerances.

Figs. 11 and 12 illustrate the impact of robust optimization on power-
related variables and overall system costs. Fig. 11(a) illustrates the vari-
ability of uncontrollable demand loads under risk-neutral and robust op-
timization strategies. The robust approach maintains higher load values 
during peak periods to account for potential uncertainty deviations, en-
suring system reliability. Fig. 11(b) demonstrates how robust optimiza-
tion reshapes the scheduling of controllable (demand-response) loads, 
effectively flattening their profile and reducing sudden demand vari-
ations. This adjustment enhances system stability and prevents opera-
tional stress during uncertain conditions. Fig. 11(c) shows the impact of 
these uncertainties on electricity transactions with the main grid. Com-
pared to the risk-neutral case, the robust optimization strategy results 
in higher electricity purchases during critical hours and fewer exports, 
reflecting a conservative behavior aimed at mitigating the effects of fore-
cast errors and ensuring supply adequacy. Fig. 12 presents a compara-
tive analysis of the main cost components under the robust optimization 
and risk-neutral approaches, highlighting the influence of uncertainty 
management on overall system economics. As shown, implementing ro-
bust optimization results in an increase in electricity cost, emission cost, 
and total system cost by approximately 21%, 15%, and 6%, respec-
tively. This increase reflects the conservative nature of the robust strat-
egy, which prioritizes system reliability and feasibility under worst-case 
uncertainty scenarios. In contrast, the amount of electricity sold to the 
main grid decreases by nearly 17%, indicating a shift toward reduced 
grid dependency and a more secure internal energy balance. Meanwhile, 
both the gas cost and operational cost remain nearly constant across the 
two strategies, demonstrating that the impact of uncertainty is primarily 
concentrated in the electricity-related components.

To assess the influence of the uncertainty radius (𝛼1) on system per-
formance, three complementary sensitivity analyses were performed: 
linear, normalized, and elasticity-based analysis, as shown in Fig. 13. 
Fig. 13(a) shows the linear sensitivity of each cost component, indi-
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Fig. 7. Impact of sizing variables on various cost components.

Table 3 
Bounding and optimal values of decision variables.
 Variables  Symbol  Min  Max  Optimal Values
 Gas allocation to CHP ∑

𝑉 𝑡
Chp (m3)  0  20  0.39

 Surface area of PV panels 𝑆PV (m2)  0  1100  1030
 Radius of wind turbine 𝑅WT (m)  0  10  7.46
 Capacity of battery storage 𝐸max (kWh)  0  230  205
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Fig. 8. Impact of 𝑆𝑃𝑉 , 𝑅𝑊 𝑇 , ∑𝑉 𝑡
𝐶ℎ𝑝, and 𝐸𝑚𝑎𝑥 on gas allocation and direct gas from the grid to heating.

Fig. 9. The 14-bus IEEE microgrid, along with the GDS and DHN.

Fig. 10. Convergence analysis (a) Evolution of upper and lower bounds across iterations. (b) Reduction of the optimality gap demonstrating global convergence.
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Fig. 11. Impact of uncertainty in uncontrollable loads and electricity transactions with the main grid.

Fig. 12. Comparison of costs under robust optimization strategy and risk-neutral approach.

Fig. 13. Sensitivity analysis of cost components with respect to the uncertainty radius 𝛼1: (a) Absolute variation of cost components vs. 𝛼1., (b) Normalized relative 
evolution, and (c) Elasticity-based percentage responsiveness.

Fig. 14. Power management under risk-neutral and robust optimization approaches.
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Fig. 15. Heat, and gas management in a 14-bus IEEE configuration under robust optimization strategy.

Fig. 16. Voltages at the buses and losses in the transmission lines.

Fig. 17. Voltage deviation percentages for 14 buses over 24 hours.

cating their absolute variation with 𝛼1. Both 𝐶1 and 𝐶𝑒 increase al-
most linearly as uncertainty grows, while 𝐶𝑠𝑒𝑙𝑙 decreases, reflecting a 
more conservative operating strategy. Cost 𝐶𝑜 and losses remain nearly 
constant, showing minimal dependency on uncertainty. Fig. 13(b) 
presents the normalized sensitivity (0-1 scaling), enabling comparison of
relative trends. The results confirm that 𝐶1 and 𝐶𝑒 grow consistently 
with 𝛼1, while 𝐶𝑠𝑒𝑙𝑙 declines, illustrating the trade-off between higher 
costs and reduced revenues. Operating cost (𝐶𝑜), gas cost (𝐶𝑔), and 
losses cost show weak sensitivity. Fig. 13(c) illustrates the local elas-

ticity, which represents the percentage change in each cost for a 1% 
change in 𝛼1, and is defined as follows:

𝐸(𝑌 , 𝛼1) =
Δ𝑌 ∕𝑌
Δ𝛼1∕𝛼1

.

A positive 𝐸(𝑌 , 𝛼1) indicates that the component increases with uncer-
tainty, while a negative value represents an inverse trend. Costs 𝐶1 and 
𝐶𝑒 exhibit the highest positive elasticities, meaning they are the most 
sensitive to uncertainty expansion. This implies that as uncertainty in-
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Fig. 18. The process of optimizing system sizing and energy management.

Fig. 19. Impact of demand response on costs and load shifting.

creases, the system adopts a more conservative strategy by purchas-
ing additional electricity from the grid and operating more internal re-
sources to ensure reliability, which in turn raises total costs. Grid elec-
tricity selling (𝐶𝑠𝑒𝑙𝑙) shows a negative elasticity, reflecting the system’s 
tendency to reduce grid exports under uncertain conditions to maintain 
sufficient internal reserves. Both 𝐶𝑜 and loss components remain nearly 
inelastic, indicating limited responsiveness to uncertainty within the ex-
amined range.

Figs. 14 and 15 illustrate the impact of robust optimization on power 
and heat–gas scheduling within the MEMG system, comparing the risk-
neutral and robust optimization approaches. In Fig. 14, both cases show 
that the optimal sizing of 𝑆PV, 𝑅WT, 𝐸max, and 

∑

𝑉 𝑡
Chp ensures that 

all power demands are satisfied throughout the scheduling horizon. 
However, notable differences arise in the interaction with the main 
grid and in resource scheduling patterns. Under the robust optimiza-
tion approach, the system purchases more electricity from the main 
grid while selling less compared to the risk-neutral case. This behav-
ior reflects a conservative scheduling strategy that prioritizes reliability 

and resilience under uncertainty, ensuring sufficient power availabil-
ity even in worst-case scenarios. Additionally, the robust strategy leads 
to different controllable load adjustments compared to the risk-neutral 
approach. Overall, the results confirm that the robust optimization 
framework enhances operational security and system reliability, at the
expense of slightly higher energy imports, thereby achieving a more 
resilient and uncertainty-tolerant power management strategy. Fig. 15 
illustrates that, with optimal sizing, all heat and gas demands are fully 
met. Moreover, the figure shows that power load uncertainty has a min-
imal impact on the scheduling of gas and heat resources.

Although this study focuses on hierarchical microgrid control at the 
tertiary level, where voltage regulation (handled by the primary and 
secondary levels) is not directly managed, the network constraints are 
still taken into account. Accordingly, Fig. 16 illustrates the voltage de-
viations of all buses throughout the 24-hour operating period. Bus 1, 
acting as the slack bus, maintains a reference voltage of 220V, while 
the remaining buses operate within the acceptable range of approxi-
mately 218V-222V. As shown in Fig. 17, the percentage voltage de-
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viations across the network remain minimal, demonstrating that the 
proposed robust scheduling and power-flow management strategy effec-
tively maintains voltage stability under uncertain operating conditions.

Fig. 18 illustrates the process of resource sizing and the scheduling 
of power and heating resources. The flowchart is divided into two core 
components: robust sizing and robust operation. The robust operation 
component is further divided into electricity and heat management. It 
provides a clear and concise summary of the key steps carried out in this 
research.

3.2.3.  Demand response implementation
The implementation of demand response programs enables load 

shifting, which helps reduce electricity costs and enhances grid reli-
ability. In this study, two DR programs are considered: price-based 
and incentive-based. The price-based DR includes three tariff levels, 
while the incentive-based program adjusts controllable electrical loads–
shifting them forward or backward based on network conditions–to 
achieve peak shaving. Fig. 19 shows the impact of DR on system costs 
and load shifting. As illustrated in Fig. 19(a), the implementation of DR 
results in a 6% reduction in electricity costs and a 0.6% decrease in total 
costs (𝐶1). Meanwhile, gas costs, emission costs, operational costs, and 
electricity exports to the grid remain nearly unchanged, while line losses 
increase slightly by 0.7%. This strategy not only reduces electricity ex-
penses for consumers but also enhances grid stability and contributes 
to overall system sustainability. Fig. 19(b) demonstrates how control-
lable loads shift in response to dynamic pricing. During high-tariff pe-
riods (8:00-12:00 and 20:00-23:00), consumption decreases, whereas it 
increases during low-tariff periods (1:00-8:00). However, since control-
lable loads account for only 2.4% of total demand, the overall impact 
of DR implementation is relatively limited.

4.  Conclusion and future prospects

This study presented a comprehensive sizing and energy manage-
ment framework for a DC microgrid integrating a DHN and a GDS un-
der power load uncertainty. In the sizing stage, a bi-objective robust 
optimization model was developed to determine the optimal PV sur-
face area, wind turbine radius, battery storage capacity, and gas alloca-
tion to the CHP unit. In the second stage, the optimal design parame-
ters obtained from the sizing process were applied to the IEEE 14-bus 
test system, where a robust energy management strategy was imple-
mented. The results confirmed that the system can operate reliably and 
efficiently under varying demand conditions. Although the incorpora-
tion of robustness led to moderate increases in electricity cost (21%), 
emission cost (15%), and total cost (6%), it also resulted in a 17% re-
duction in electricity exported to the main grid, thereby improving local 
energy utilization. The sensitivity analysis revealed that 𝐶1 and 𝐶𝑒 are 
the most responsive components to uncertainty expansion. In contrast, 
𝐶𝑠𝑒𝑙𝑙 exhibited negative elasticity, indicating the system’s tendency to 
reduce grid exports under uncertain conditions. Both 𝐶𝑜 and loss compo-
nents remained nearly inelastic, demonstrating limited responsiveness 
to variations in uncertainty. Furthermore, the integration of DR pro-
grams yielded a 6% reduction in electricity costs and a 0.6% decrease 
in total costs, while gas costs, emission costs, and operational costs re-
mained nearly unchanged, and line losses increased slightly by only 
0.7%. Overall, the proposed approach offers valuable insights into the 
design and operation of cost-effective, resilient, and sustainable multi-
energy microgrids, capable of maintaining reliable performance under 
power load uncertainty.

Future research can further advance this work in several meaning-
ful directions. While the present study primarily addresses load uncer-
tainty, future investigations should incorporate renewable generation 
and market price uncertainties to provide a more comprehensive rep-
resentation of system variability. In addition, consumer behavior in de-
mand response programs–modeled deterministically in this study–can 

be enhanced through stochastic elasticity modeling to better capture re-
alistic behavioral and market dynamics. To ensure scalability and prac-
tical relevance, the proposed framework should be tested on larger and 
real-world networks beyond the IEEE 14-bus system. Furthermore, to 
strengthen experimental validation, future work will explore real-time 
hardware-in-the-Loop (HiL) implementation using OPAL-RT, enabling 
verification of the proposed model under practical operating condi-
tions. Finally, integrating artificial intelligence (AI) and machine learn-
ing (ML) methods offers promising avenues for improving predictive 
modeling, fault detection, and adaptive control, thereby increasing sys-
tem resilience, reliability, and efficiency [52]. Expanding the framework 
to encompass power-to-gas (P2G) and gas-to-power (G2P) technologies–
such as electrolyzers and fuel cells–could also enhance energy flexibility, 
decarbonization, and economic viability in future multi-energy micro-
grid applications.
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