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ARTICLE INFO ABSTRACT

Keywords: The growing interdependence among electricity, heat, and gas networks creates significant challenges for achiev-
Multi-Energy microgrids ing reliable and cost-efficient design and operation in Multi-Energy Microgrids (MEMGs). Conventional opti-
Sizing

mization approaches often treat these subsystems separately, focus on either design or operational scheduling in

Energy management system . . . . . . . . T s .

o isolation, and ignore load uncertainty. As a result, it leads to inefficient resource utilization and higher overall
Robsut optimization . . . .
CHP costs. To address these issues, this study proposes a two-stage robust optimization framework for the design and
energy management of a MEMG under power-load uncertainties. In the first stage, the framework uses a bi-
objective model to determine the optimal sizes of key components—including the PV panel area, wind turbine
radius, battery capacity, and gas allocation for the CHP unit—while accounting for uncertainty in power loads.
The two objectives are: (i) maximizing the use of renewable and CHP resources, and (ii) minimizing the total
system cost, which includes electricity, gas, emissions, operational, and demand-response costs. In the second
stage, the optimized components are subsequently applied to an IEEE 14-bus MEMG test system, where a ro-
bust energy-management strategy coordinates power, heat, and gas flows under uncertain conditions using the
Mixed-Integer Nonlinear Programming (MINLP) model. The results show that the robust strategy ensures all en-
ergy demands are met even under worst-case load variations. However, achieving this higher level of resilience
increases electricity expenses by 21 %, emissions-related costs by 15 %, line losses by 0.8 %, and overall system
cost by 6 %, while electricity exported to the main grid decreases by 17 %.

Demand response.

1. Introduction undersizing may lead to insufficient energy supply, causing power short-

ages [3]. To overcome these challenges and fully leverage the potential

A microgrid is a localized energy system capable of operating au-
tonomously or in conjunction with the main grid, integrating distributed
energy resources (DERs) such as solar panels, wind turbines, and en-
ergy storage systems. These systems offer numerous benefits, including
reduced carbon emissions, enhanced energy security, and the capabil-
ity to efficiently manage local energy demand [1]. As the global energy
landscape shifts towards cleaner and more decentralized power genera-
tion, the deployment of microgrids is gaining significant traction.

Designing a microgrid is a complex and multifaceted task, primarily
involving two key challenges: siting and sizing. Siting involves identify-
ing the most suitable location for the microgrid, while sizing focuses on
determining the optimal dimensions of its components, such as power
capacity, energy storage, and the number of units [2]. Oversizing a mi-
crogrid can result in high costs and surplus energy production, whereas

* Corresponding authors.

of renewable energy-based microgrids, it is essential to implement op-
timal sizing in conjunction with an effective energy management strat-
egy [4]. The majority of existing approaches in the literature address
the microgrid sizing problem as an optimization challenge, where the
objective functions are primarily designed to reduce energy generation
costs and environmental impact, while improving operational reliabil-
ity [5,6]. As reviewed in [7], numerous methodologies have been pro-
posed to address the sizing problem of hybrid microgrids in a variety of
applications and scenarios.

Due to the inherently high volatility of renewable energy sources
such as wind and solar power, their increasing integration introduces
significant uncertainty into multi-microgrid (MMG) systems. In recent
years, considerable research has focused on the optimal operation of
MMG systems under uncertainty [8]. Among the most widely adopted
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Nomenclature E’C up Electricity output of CHP in year i
E} Annual energy output for PV
Abbreviations Epnaes Brey Reference capacity of battery and thermal storage
BDC Battery Degradation Cost G, Household gas demand at time ¢
BESS Battery Energy Storage Systems an up Heat output of CHP in year i
CHP Combined Heat and Power H), Household heat demand at time ¢
cl Controllable loads Il Maximum battery charging and discharging rates
cv Calorific Value for natural gas Bys 1y Maximum heat storage charging and discharging
DERs Distributed Energy Resources rates
DHN District Hez%ting Network Pl Uncontrollable power loads at time ¢
bob Depth Of Discharge RP Revenue from by-products or subsidies in year i
DRPs Demand Response Programs ! . :
ESS Energy Storage Systems Tnoc Nominal operating cell temperature .
e T,or Reference temperature of the photovoltaic cell

GDS Gas Distribution System y/max Maximum natural gas input for the CHP
LCcC Life Cycle Cost Chp . .
LCOC Levelized Cost Of Cogeneration VC“}:; ' Minimum natural gas input for the CHP
LCOE Levelized Cost Of Electricity Viao Voo Maximum and minimum voltage limit at bus i
MEMG Multi-Energy Microgrid Yij Admittance between buses i and j
MINLP Mixed-Integer Nonlinear Programming Variables 4 4
PDS Power Distribution System Cpg Battery degradation cost
POF Pareto Optimal Front C. Emission costs
PSO Particle Swarm Optimization C, Cost of natural gas purchased from the grid
SCOPF Security Constrained Optimal Power Flow Csell Selling surplus electricity to the main grid
socC State Of Charge G Gas purchased from the grid at time ¢
STC Standard Test Conditions H (’j Hp Heat produced by the CHP system at time ¢
SV Residual Value OCL Operational cost of the battery at time ¢
Uc Uncontrollable loads PpiRo Worst-case uncontrollable load
Parameters i’f.j(ck, 1) Load curtailed or shifted via DR
@ Uncertainty radius for load uncertainty PI';S'S Line losses from bus i to bus ; at time ¢
p Temperature coefficient P Boiler heat generation at time ¢
B> By Emission factor for electricity and gas generation Pg:ijr Electricity purchased from the grid at time ¢
b Safeguard parameter for load uncertainty impact P, PV power generated at time ¢
;(; Impact of Depth of Discharge on cycle life P, Uncontrollable power loads at time ¢
;(; Impact of temperature on cycle life PP Battery charging and discharging power
;(? Temperature-dependent power fading coefficient Ryt Radius of the wind turbine
N> Npy Efficiency factors for the wind turbine and PV s0C; State of charge of the battery at time ¢
77;, n, Battery charging and discharging efficiency Ta" Ambient temperature at time ¢
Ne.apps Me.app  Eificiency of electrical and heat appliances v/ Voltage at bus i at time ¢
Nges Ngh Gas-to-electricity and heat conversion efficiency o, ul, Binary variables for battery and heat storage
Nt s Men- Heat storage charging and discharging efficiency Cp, Implementation cost of demand response
T, Uncertainty budget defining the deviation range C, Cost of electricity purchased from the grid
Ae(®) Electricity price at time 7 C, Operating costs
A Gas price E! Electricity produced by the CHP at time ¢
/12, Cost coefficient for demand response GEZII; Gas consumed by the auxiliary boiler
ASell Price for selling electricity back to the grid L’l’)";‘”{ Maximum allowable demand variation
P Air density ocC,, Operational cost of the heat storage
%, oW Degradation factor for PV and wind Pk Total energy consumption of customer k
Yo Rated cycle life of the battery p! Power injected at bus i at time ¢
C;EJ Fuel cost for CHP in year i P{m Total power loss at time ¢ .
cehp Investment cost for CHP system P?’ Contrs)llab%e power lf)ads attimer

lcﬂ}x) ) ] ) ' P Solar irradiation at time ¢

om.i Operation and maintenance costs for CHP in year i P Amount of electricity sold at time 7
G G Investment costs for PV and wind systems Pl Wind power generated at time ¢
C%m, C%Zm Operation and maintenance costs for PV and wind PP Heat charged and discharged into storage

i iy Investr1.1ent costs of the battery and heat storage Spy Surface area of the PV panels

o Co Operational costs of the battery and heat storage soct, State of charge of the heat storage
Ccup Levelized cost of cogeneration i Gas allocation to CHP at time ¢
Cpy, Cyr Levelized cost of electricity for PV and wind Vw(i) Wind speed at time ¢
dry, dry, Discount rates for the battery and heat storage ‘fltoad Auxiliary variable capturing potential load
drg, dry, Discount rates for the PV and wond systems deviation at time ¢
E), H, Initial state of charge of the battery and heat

storage
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Fig. 1. Uncertainty management and sizing optimization in Microgrids.

approaches for handling uncertainty are Stochastic Programming (SP)
and Robust Optimization (RO). SP relies on the assumption that the
probability distribution of uncertain parameters, such as renewable
generation and load, is known. However, in practice, obtaining accu-
rate probability distributions is challenging, particularly in microgrids
where data is limited and the geographic footprint is relatively small.
In contrast, RO does not require any prior knowledge of probability
distributions or correlations among uncertain parameters, making it a
more practical and reliable approach for real-world microgrid applica-
tions [9]. By considering the role of uncertainty in sizing and energy
management, Fig. 1 presents an overview of the uncertainty manage-
ment frameworks and the methodologies used to address the sizing op-
timization problem.

In [10], the optimal energy management of MMG system was ad-
dressed using a stochastic multi-objective framework, where the uncer-
tainty of renewable energy generation was captured through represen-
tative scenarios. A risk-averse energy management approach for net-
worked microgrids was also formulated based on stochastic linear pro-
gramming. In [11], a two-stage adaptive robust optimization model was
proposed to handle the energy dispatch problem in multi-microgrid sys-
tems, enabling each microgrid to effectively manage local uncertainties.
Furthermore, [12] introduced a two-stage robust optimization frame-
work for the coordinated operation of electricity-gas-heat integrated
multi-energy microgrids under both renewable and load uncertainties.
By incorporating Power-to-Hydrogen-and-Heat (P2HH) systems along
with the dynamic characteristics of gas and heat networks, the proposed
model significantly improves operational flexibility and overall system
efficiency. In [13], an optimization method is presented for Battery En-
ergy Storage Systems (BESS) sizing in microgrids, solving the Security
Constrained Optimal Power Flow (SCOPF) problem while accounting
for stochastic forecasting errors in PV output. In [14], the authors pro-
posed an integrated planning model to evaluate the techno-economic
performance of a standalone microgrid powered by renewable energy
sources. This model combines capacity sizing and operational schedul-
ing while incorporating demand-side management strategies across di-
verse design scenarios, including wind turbines, photovoltaic systems,

diesel generators, and energy storage solutions such as batteries and
pumped thermal energy storage. The study in [15] focused on opti-
mizing the sizing and allocation of Photovoltaic Distributed Generators
(PVDG) and Energy Storage Systems (ESS) in islanded microgrids. The
main objective is to increase energy reliability during disruptions while
meeting energy demands and minimizing operational costs. In [16], a
multi-objective optimization algorithm is introduced for the optimal siz-
ing of standalone systems that incorporate PV panels, wind turbines, and
battery energy storage systems. This algorithm accounts for critical fac-
tors such as power supply reliability, energy stability, energy utilization,
and economic efficiency, ensuring a balanced and efficient design. In our
previous work in [17], we investigated the optimal design of a multi-
energy DC microgrid integrating multiple resources. The first objective
was to determine the optimal PV panel surface area, wind turbine radius,
and CHP gas allocation to maximize renewable energy utilization while
minimizing total costs-including electricity, natural gas, emissions, and
operations. The second objective was to analyze heat and power man-
agement strategies in selected scenarios.

Although recent studies have investigated the sizing of MG system
components, to the best of the authors’ knowledge, most have primarily
focused on the integration and operation of solar PV, wind turbines, bat-
tery storage systems, and, in some cases, diesel generators—while largely
overlooking the optimal sizing of CHP units within multi-energy mi-
crogrids. Additionally, although numerous studies address uncertainty
at the operational level using robust optimization techniques, compre-
hensive investigations that incorporate uncertainty across both the de-
sign and operational stages of MEMG systems remain largely lacking.
These gaps highlight the need for more integrated studies that examine
component interdependencies and assess the impact of uncertainty on
microgrid planning and resource scheduling. Table 1 offers a compre-
hensive comparison between previous research and the current study,
emphasizing key distinctions and contributions. Building on this foun-
dation, this work proposes an integrated framework that coordinates the
power distribution system (PDS), district heating network (DHN), and
gas distribution system (GDS) to meet multi-energy demands. The main
contributions are summarized as follows:
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Review of previous studies for comparative analysis with the current research.

Optimal scenario

Ref MEMG Energy component sizing Optimal indicators identification DR Robust optimisation in:
PV Wind ESS CHP Sizing Operation
[9] X v X v X Economic, Environmental v X v v
[13] X v X v X Reliability, Cost, Security v X v v
[14] v v v v X Reliability, Environmental, Economic v v X X
[15] X v X v X Reliability, Environmental, Economic X X v X
[17] v v v X v Reliability, Environmental, Economic X X X X
[18] X v v v X Reliability, Environmental, Economic v v X X
[19] X v v X X Efficiency, Reliability X X v X
[20] X v X v X LCOE, LCE, Peak shaving v X v v
[21] X v v v X Reliability, Economic v X X X
[22] X X v v X Economic, Wind curtailment v X X X
[23] X X X v X Economic X X v X
[24] v v v v X Economic, Resilience, Environmental v v v X
[25] X v v v X Economic, Environmental, Reliability v X v X
[26] X v v v X Economic, Reliability v X v X
[27] X v X v X Economic, Environmental v X X X
[28] X v v v X Reliability, Economic X X X X
[29] v X X x v Reliability, Economic X v X x
[30] X v X v X Economic, Peak shaving v X v v
[31] X v v v X Economic, Environmental v X X X
[32] X v v v X Economic, Reliability v v v v
This study v v v v v Reliability, Environmental, Economic v v v v

¢ Comprehensive robust microgrid sizing framework: A bi-objective
robust optimization framework is developed to determine the opti-
mal sizing of PV surface area, wind turbine radius, battery storage
capacity, and gas allocation to the CHP unit, while explicitly consid-
ering uncertainties associated with uncontrollable power loads.

e Robust energy management implementation: The optimal sizing of
the design variables achieved in the previous stage are applied to the
IEEE 14-bus system. A robust optimization strategy is subsequently
implemented to ensure reliable energy supply and demand fulfill-
ment under worst-case power load uncertainty scenarios.

e Demand response integration: Price-based and incentive-based de-
mand response programs are incorporated to evaluate their impacts
on cost reduction, load shifting, and overall system efficiency within
the IEEE 14-bus framework.

The remainder of this manuscript is structured as follows: Section II
presents the system architecture and modeling framework. Section III
discusses the simulation setup and corresponding results. Finally, Sec-
tion IV concludes the paper and outlines potential directions for future
research.

2. System architecture and modeling

This paper presents a system architecture that integrates a PDS, a
DHN, and a GDS, powered by a diverse mix of energy sources and stor-
age systems. The PDS integrates PV panels, wind turbine, batteries, CHP
unit, and the main electrical grid. On the consumption side, electrical
loads are categorized as controllable and uncontrollable. In the DHN,
heat loads are supplied by CHP unit, discharges from thermal storage,
and direct natural gas supply from the main gas grid, such as through
a boiler. Excess heat is stored in a thermal storage system and utilized
during peak demand periods. The GDS is fueled by natural gas from the
main gas grid, which is used to power CHP unit, operate heat generator
(e.g., boiler), and address the requirements of gas-based applications ex-
cluding heating. Fig. 2 provides a detailed illustration of the microgrid
architecture used for sizing.

2.1. Constraints

The model incorporates detailed constraints for the PV system, wind
turbines, lithium-ion battery storage, and thermal energy storage. It

also includes constraints for the CHP unit, along with system reliabil-
ity requirements. Additionally, the model accounts for demand response
strategies and applies robust optimization to improve performance un-
der uncertainty.

2.1.1. PV System
The power generated by a PV installation can be calculated based on
temperature and solar irradiation using the following equation [33]:

Tnoc —20
PﬁV:SPV'rIPV'P}rr.<1_ﬂ'<Tat_Tref+T-P;rr s

1 <t<24h (@]

Where, P, denotes the power output of the PV system at time 1,
which is influenced by several factors. Sp, is the total surface area of
the PV array, and #p; represents the overall system efficiency, account-
ing for both technological performance and power conditioning losses.
Py refers to the solar irradiance at time ¢. The parameter § is the tem-
perature coefficient, indicating how sensitive the PV output is to tem-
perature variations. T, is the ambient temperature at time ¢, T, is the
reference temperature of the PV cells, and Ty denotes the nominal
operating cell temperature under standard conditions. The PV system’s
operational cost, OC!, is provided by:

OC! = Cpy - P!

pys 1ET (@3]

The Levelized Cost of Electricity (LCOE) is a standard metric used to

evaluate the cost of electricity generation over a system’s lifespan. For

PV system, the LCOE, denoted as Cpy,, is calculated using Eq. (3) [33]:
C: 4+ C (L+dry)™

ny

C,, =
S ES (1= 68yl (1 + drg)

3

This formulation incorporates the investment cost (Cl:iw), which includes
expenses related to PV modules, converters, installation, land acquisi-
tion, and balance-of-system components, along with the annual mainte-
nance cost (C; ) and the annual energy output (E;,). The annual energy
output is computed by summing the hourly average solar power across
the year, then discounting it over n years at the rate dr,. To reflect system
performance degradation over time, a degradation factor ¢° is applied
to E;, starting from the second year.
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Fig. 2. System structure considered for sizing.

2.1.2. Wind system
The electrical power output of a wind turbine can be expressed
as [34]:

0, V < Ucut-in
1 2 3
P znwpﬂR Vw@?, Veuin < Vg S 0y )
wT —
ZWWP”RWT o r < Vi < Ucut-our
O’ VW > UCH[—OH[

Where, P}, is the wind power output at time 7, while #,, is the power
coefficient representing conversion efficiency. p denotes the air density,
and Ry is the radius of the wind turbine blades. V,,(r) denotes the wind
speed at time 7, which directly influences the wind turbine’s power out-
put. The turbine begins operating at the cut-in wind speed, v,.;;, and
the output power increases with wind speed up to the rated speed, v,.
Beyond this point, as wind speed continues to rise, the power output
remains constant at its rated value. If the wind speed exceeds the cut-
out threshold, vy the turbine automatically shuts down to prevent
damage and ensure operational safety. The operational cost of the wind
turbine and the LCOE for wind power are modeled as follows:

oCy, =Cy - Py, teT, (5)
cr o+ c¥ (1+dr,)™
CW _ inv Z om w (6)

Y
Where, OC}, represents the operational cost at time #, and Cy, de-
notes the LCOE for wind power. This metric accounts for several com-
ponents, including the investment cost (CW ), maintenance cost (Cy ),
annual energy output (Ey ), discount rate (drw), and the degradation
factor of the wind turbine (¢%).

EY,(1—oWy—1(1 +dr,)~

2.1.3. Lithium-ion battery

Due to the unpredictable nature of renewable energy sources and the
frequent mismatch between demand and supply, incorporating batteries
and heat storage systems becomes essential. These systems are subject
to constraints on charging capacity, recharge and discharge rates, and
State Of Charge (SOC) at each time step ¢ [35].

b+§l max~uzs, teT )

P_<i ~Emax-(1 —-u,), teT ®
ph
- Ah
S0C! = + T L . 9)
b Emax 2 ( b Emax
Where, /;, and /{_ represent the maximum charging and discharg-

ing rates of the battery per hour, respectively. The binary variable u!_
ensures that charging and discharging do not occur simultaneously. The
term E,,, denotes the reference battery storage capacity. The state of
charge SOC; is determined based on the initial battery energy level at
the start of the day (Eg) and the cumulative effect of charging (P}; ) and
discharging (P;_) processes up to time ¢. The Battery Degradation Cost
(BDC) model for lithium-ion batteries accounts for the impacts of tem-
perature and Depth of Discharge (DOD) on both the energy capacity and
the cycle life of the battery. In Eqs. (10) and (11), OCIZ and Cp represent
the operational cost and BDC, respectively [36]:

P
oc! = c3<n,,+P;+ + L) teT
Np-

b
[Cmv + Zt 1
Cp=-=

2 (A +dry) w2 2y ) YrefEmax

(10)

cho(1+ drb)"] (+dry)y — S
11)

Where, #,+ and 5,- represent the battery’s charging and discharg-
ing efficiencies, while Ci’; , denotes its investment cost. The parameter
%y is the normalized temperature-dependent power-fading coefficient,
and )(} and )(3 capture the effects of temperature and DOD on battery
cycle life, respectively. The residual value (SV) reflects the remaining
economic value of the battery at the end of its service life [37]. Finally,
C!  represents the annual operation and maintenance cost, and dr, is
the discount rate used to compute present-value costs.

2.1.4. Heat storage system

A heat storage system is a technology used to store thermal energy
for later use, enabling more efficient energy management in heating and
cooling applications. These systems can utilize various storage media
such as water, molten salts, or phase change materials. They are widely
integrated into renewable energy systems, such as solar thermal or CHP
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units, to enhance overall efficiency, reduce energy costs, and improve
grid stability by balancing supply and demand fluctuations [38]. Simi-
lar to battery storage, thermal energy storage is subject to operational
constraints. The charging and discharging limits, as well as the SOC, are
defined as follows:

Pls Sy -ty Brey (12)

P_<i - —u;h).a,ef 13)
P\ An

soct, = Hy < R o — i) e (14)
—'ref h= Nin- =ref

In these equations, P’h . and P/,_ denote the thermal charging and
discharging power at time 1, respectively. The parameters /}, and I}, _
represent the maximum allowable charging and discharging rates per
time step. The binary variable ], determines the operating mode of the
thermal storage system, ensuring that charging and discharging cannot
occur simultaneously. Specifically, u}, = 1 allows charging, while 4!, =0
allows discharging. The term E,,  is the reference thermal storage capac-
ity used for scaling purposes. The variable SOC], indicates the state of
charge at time 7, with Hgl representing the initial SOC. The parameters
i+ and - are the thermal charging and discharging efficiencies, re-
spectively. Degradation in thermal energy storage systems is often min-
imal, particularly in sensible heat storage technologies such as molten
salt systems. These systems are known for their long cycle life and sta-
ble performance over time, so degradation is typically neglected in the
optimization model [39]. As such, the cost modeling primarily includes
the initial investment cost C** , the operation and maintenance cost C(’)ﬁl,
and a discount rate dr,;,. Over a total planning horizon of » time periods,
the overall operational cost of the thermal storage is expressed as:

n Cth
0Cy, =Cih 4

nv Z (] +drfh)t (15)

2.1.5. Network constraints

In a DC microgrid system, monitoring voltage levels at each bus and
accounting for system losses are crucial for optimizing the scheduling of
generation sources and implementing demand response strategies. The
injection of power in each bus i is governed by the power flow equation
in (16), which describes the relationship between voltage levels and
line admittances throughout the network. The voltage at each bus is
constrained within defined lower and upper bounds to ensure stable op-
eration, as presented in Eq. (17). Additionally, line losses, which depend
on the voltage differences between connected buses, are determined by
Eq. (18). The overall impact of these line losses on the system is rep-
resented as total system losses at time ¢, as defined in Eq. (19). Collec-
tively, these equations establish a comprehensive framework for man-
aging power flow dynamics and loss optimization in DC microgrid [36].

N
Pir=zl/ti<‘/ti_‘/tl)yij’ iEJ\/, (16)
j=1
J#i
vi<VI<VI, ieN, a7
B = (Vi-Vi Yy J#i GhEN. teT as)
loss — \ 't i) Yijs JFL LJ s s

/0:: Z 2 llojs; T. )

i=1 j=i+l

2.1.6. Boiler and CHP system

A boiler is a thermal device that converts the chemical energy of
fuel-typically natural gas-into useful heat for space or water heating
applications. The thermal output of the boiler at time 7 is calculated as:

11 — t
Ppoiter = Opoiter * g.app * €V (20)
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Fig. 3. Feasible operating region of a CHP unit.

Where, G;gm.ler denotes the natural gas consumption at time , 7, 4,
is the apparent thermal efficiency of the boiler, and CV represents the
calorific value of the natural gas. Unlike boilers, CHP systems simulta-
neously generate electricity and heat from a single energy source, sig-
nificantly improving overall efficiency by capturing and utilizing waste
heat that would otherwise be lost. The electricity produced by CHP units
is supplied to the power grid, while the generated heat is used to meet
thermal demand [40]. Fig. 3 illustrates the feasible operating region
of a CHP unit, where the boundaries AD, AB, BC, and CD denote the
minimum steam injection limit, maximum heat generation rate, upper
fuel injection limit, and maximum power output limit, respectively [41].
Under high thermal demand conditions, the CHP unit operates mainly
along boundary BC, producing excess electricity as a byproduct of heat
generation. The feasible region for electricity (Ecyp) and heat (Hcyp)
output can be mathematically represented by the following linear in-
equalities:

E,
[ACHP BCHP] [HZZ};] <Dcpp @1n

Where, A-yp and Bqyp are coefficients defining the boundary
slopes, and Dy p is a vector of constants characterizing the limits of
the feasible operating region. The electricity and heat generated by the
CHP unit at time ¢ are modeled as:

Ecip = Vi CV - figes (22)
Hlyp = VChp CV - ngy. (23)
yain <yl <y 24

Chp = "Chp — "Chp”’
In Egs. (22) and (23), V’
the CHP unit at time ¢, and fge and g, are the conversion efficiencies
from gas to electricity and gas to heat, respectively. The fuel input is con-
strained within an allowable operating range as expressed in Eq. (24),
where VC"}‘;J" and Vc‘“h;x indicate the minimum and maximum allowable

denotes the volume of natural gas input to

gas input to the CHP system. The operational cost of the CHP unit at
time ¢ is given by:
OCqpp = Cenp - (E’CHP + HCHP) (25)

where, Ccpp denotes the Levelized Cost Of Cogeneration (LCOC), which
represents the cost per unit of total energy—comprising both electricity
and heat-produced by the CHP system. The LCOC is defined as [42]:

chp c chp chp —i
oy (omz+Cful ~ R )(1+drchp)

Yt (Egyp + Hogp) (1 + drgy)™

In this expression, C;’V'p is the initial investment cost of the CHP unit,

Cenp = (26)

h . . .
(Snf ; and C h‘" , are the operation and maintenance and fuel costs in year
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i, respectively. th‘" refers to the revenue from by-products or incentives.
E¢yp and H,, are the annual electricity and heat outputs, drp, is the

discount rate, and »n denotes the lifetime of the system in years.

2.1.7. Meeting power, heat, and gas demands

Stability in a MEMG refers to its ability to continuously and reliably
supply electricity, heat, and gas under varying conditions. This stability
is ensured by the power, heat, and gas balance constraints. The power
balance equation is expressed as follows:
14

bt 1
+ + PSCH

t 13
PCI + PUc + Pl

loss

(27)

P. +E

! 14 ! —
Gria T Ecup t+ Ppy + Py + Py 11y =

Ne.app Np+

In this equation, P(’m 418 the electrical power purchased from the main
grid, P, and Py, are the generated powers from photovoltaic pan-
els and wind turbines, respectively. P’_ and P/, denote the battery dis-
charging and charging power, with 5,- and #,+ as their respective effi-
ciencies. P(, and P/, represent the power consumption of controllable
and uncontrollable appliances, scaled by the appliance efficiency 7, ;-
Pg,,; is the power sold to the grid, and P/ accounts for distribution
losses. The heat balance is given by:

!

t t t _ gt tht
Hepp + Py Min= + Ppoige, = Hy + (28)
Nin+
Where, H{,,, is the thermal power produced by the CHP system,

P!, and P/, are the discharging and charging powers of the heat stor-
age system, and 7,,- and 5+ are their respective efficiencies. P , is
the heat provided by the auxiliary boiler, and H, is the total thermal
demand at time ¢. Finally, the gas balance is provided by:

G' =G, +V, +G

chp Boiler (29)

In this constraint, G' is the gas purchased from the main gas grid, G, rep-
resents the portion of gas consumption used for non-thermal purposes,
Vc’hp is the volume of natural gas consumed by the CHP unit, and G, ,
is the gas used by the auxiliary boiler.

2.1.8. Demand response programs

Demand Response Programs (DRPs) are typically categorized into
two main types: incentive-based programs, which offer financial re-
wards to consumers who reduce or shift their electricity usage during
peak demand periods, and price-based programs, which employ time-
varying electricity tariffs to influence consumption behavior [43]. In
this study, electrical loads are classified as either controllable or un-
controllable. Controllable loads can be scheduled or shifted to off-peak
hours, helping to reduce energy costs and ease the burden on the power
grid. A price-based DRP is implemented by introducing three distinct
tariff levels over a 24-hours period. Consumers adjust their energy con-
sumption in response to these tariffs. The implementation of demand
response is subject to certain constraints. Eqs. (30) and (31) define the
total controllable electricity consumption of customer k over the entire
time horizon, along with its corresponding upper and lower bounds.

P =3 P.(k,1), (30)
t
k k k
Pmin <P < Pmax’ 81

where, P,(k,1) represents the controllable power demand of customer k
at time ¢, which may be curtailed or shifted in response to the price sig-
nals. The bounds Prﬁm and Pt define the acceptable daily consumption
limits for customer k. The total controllable power demand across all
customers at each time 7 is computed as:

PLo= Y Puk,D), (32)
k
P < L < P (39

where, P/, is the aggregate controllable load at time 7, and Pé;“i“ and

Pé;“ax represent the lower and upper bounds of allowable controllable
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demand at that time. This formulation ensures that demand shifts occur
within realistic and predefined flexibility ranges while contributing to
system-level optimization.

2.1.9. Robust optimization formulation for load uncertainty

The robust optimization framework used to manage power-load un-
certainty is presented in Fig. 4. This framework combines various pre-
diction techniques—-including historical load data, weather conditions,
electricity prices, and occupancy profiles—to construct an uncertainty
set that reflects potential variations in system parameters. The feasible
solution space is divided into two regions: a secure zone, where solutions
remain feasible under all scenarios, and a risky zone, where violations
may occur. The robust optimization approach ensures that operational
decisions stay feasible and cost-efficient even under the worst-case de-
viations.

In this study, we focus specifically on the uncertainty associated with
Lt,max

uncontrollable loads. We define ¢, as the uncertainty radius, L7;” as
the maximum allowable demand variation at time ¢, and P{JE as the de-

terministic load component unaffected by uncertainty. Based on these
parameters, the possible range for the uncertain load P;®" is defined
as:

! t,max ' 1,new i1 t,max 1
Ph = (- Lipp™ - Pye) < Pii™ < Py + (o - L™ - P ) (€2))
Since robust optimization accounts for the worst-case scenario, the un-

controllable load under uncertainty, denoted by P{;f", is defined as:

1,Ro _ pt t,max t
PUc =Py ta- LDV “Pye (%)

To quantify the cost associated with incorporating robustness into the
model, we introduce the additional term Cgp,, Which captures the ex-
pense of protecting against potential load deviations:

min { Crobust = 2 &hoaa 11 Bi } (36)

>1

Subject to:

t t,max 1
gload-'_ﬂ’ZaI'LDV Py

V> 1 (37)

Where, the variable cjl’oa 4 Serves as an auxiliary term capturing the
potential deviation in load at time z. The parameter I'; defines the uncer-
tainty budget, restricting the number of time periods subject to worst-
case deviations. Additionally, the variable g, serves as a safeguard by

bounding the overall impact of load uncertainty.
2.2. Objective functions

Considering that the objectives of this research include both system
sizing and energy management, two sets of objective functions are for-
mulated.

2.2.1. Objective functions for optimal components

sizing Two objective functions are defined to determine the optimal
sizing of the system components. The first objective, denoted as C,, aims
to minimize the total system cost, which comprises electricity and natu-
ral gas expenses, emissions cost, operational cost, and demand response
program cost. Eq. (38) presents the formulation of C, and its compo-
nents.

min{C; = C,+Cy +C, +C, + Cp, — Cs} (38)

Where, C, represents the cost of electricity imported from the main
power grid, and C, denotes the cost of natural gas purchased from the
main gas network. The term C, accounts for emissions-related costs aris-
ing from both electricity and gas consumption. C, refers to operating
costs, including the expenses associated with the operation of the PV
system, wind turbine, CHP unit, battery, and thermal energy storage
system. The cost related to participation in demand response programs
is represented by Cp,, while Cg,; captures the revenue generated from
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Fig. 4. Foundations and Conceptual Framework of Robust Optimization.

selling excess electricity back to the grid. Each of these cost components

is defined as follows: [44,45]:
C,= Z(Ae(t) CPL o)A (39)
t
Cy= Y4, - G- At (40)
t
CC=Z((1 B Pl + (1= )+ G') - Ar “1)
or= D, 2 Upy - P.lk,1) - AtAk (42)
k t
Csen = Zt‘,(/lsal <Py - At 43
C, = Y.(OCL+0Cy, + OCly, + OC}) - At + OCy, (44)
t

The second objective, denoted as C,, aims to maximize the contribu-
tion of distributed energy resources, including PV, wind power, battery
storage, and CHP system, as formulated in Eq. (45).

ax{C2=ZP;,V~At+ZP{V At+2 Cup+ Hepyp) - A
1 1
Z (Pl +Py) A}

To achieve these objectives, the optimal sizing of critical components—
including the surface area of PV panels (Sp ), the radius of wind turbine
(Ry 1), the battery storage capacity (E,,,,), and the allocation of natural
gas for the CHP system (3 V' )-is determined.

(45)

2.2.2. Objective functions for energy management

After determining the optimal system sizing, the energy management
strategy is applied to the IEEE 14-bus configuration, where line losses
are also taken into account. As a result, the objective function, presented
in Eq. (46), is formulated to be minimized.

mm{cl = Ce + Cg + Cc + Co + CDr + CLuss - CSell} (46)

Where, C;,, represents the total losses in the power distribution sys-
tem, which is defined as follows:

Closs = Z loss ~

(47)

3. Numerical simulations

Based on the objective functions and constraints defined in the pre-
ceding section, and using the subsequent data, this section presents the
simulation results and analyzes the performance of the proposed opti-
mization framework.

3.1. Input data for sizing and energy management system

Table 2(a) summarizes the forecasted daily profiles of temperature,
solar irradiation, and wind speed for a representative day. The techni-
cal specifications of the PV and wind systems, CHP unit, battery storage,
heat storage, and both the gas and electricity networks are provided in
Table 2(b). Additionally, Fig. 5 illustrates the daily variations in house-
hold energy demands. Fig. 5(a) presents the heat and gas load profiles,
while Fig. 5(b) shows the uncontrollable and controllable loads, where
the shaded area indicates the flexible range available for demand-side
management.

3.2. Simulation results

The primary goals of the simulations are categorized into three main
areas:

* Determining the robust optimal sizing of Spy, Ry, Emay, and X V.
across various scenarios, while accounting for the uncertainty asso-
ciated with uncontrollable power loads. This optimization is con-
ducted based on the system architecture presented in Fig. 2 and gov-
erned by Egs. (38) to (45).

e Implementing integrated management strategies for power, heat,
and gas in the IEEE 14-bus system, which relies on the optimal values
of Spy, Rywr> Emax> and Y, V(’?hp' Power load uncertainty is addressed
through robust optimization to ensure all energy demands are reli-
ably met, even under worst-case scenarios.

o Assessing the effectiveness of demand response programs in reducing
costs and shifting loads.

3.2.1. Sizing and identifying the optimal scenario

The goal is to optimize the microgrid sizing by achieving two objec-
tives: minimizing C; and maximizing C,, simultaneously. Unlike single-
objective optimization, which provides a single optimal solution, multi-
objective optimization generates a set of optimized solutions. Each solu-
tion represents a specific scenario, collectively forming the pareto front,
which illustrates the trade-offs between competing objectives. Fig. 6 il-
lustrates the pareto front for the studied optimization problem.

Figs. 7(a) and (b) effectively illustrate the impact of variations in
decision variables on the objective functions. The results show that in-
creasing the values of Spy, Ry, Eney, and ), Vé leads to an increase
in both C; and C,. However, the growth rate of C, exceeds that of C|,
reflecting the stronger impact of these variables on the second objective.
Furthermore, the results indicate that, given the problem’s constraints,
the CHP unit is utilized first, followed by the activation of the PV system
starting from scenario 4. Battery storage (E,,q,) and wind power (Ryt)
begin to contribute from scenario 10 onward.

As previously mentioned, C; comprises several cost components, in-
cluding C,, C,, C,, C,, Cp, and Cgy. Variations in Spy, Ry, Emaxs
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Table 2
Practical data for simulation scenarios.
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(a) Forecasted data [46].

Time (h) Wind speed (m/s)  Temperature (7,(1)) (°C) Irradiation (P;,,) (kW/m?)
1 10.5 24.7 0.00000
2 13.5 24.5 0.00000
3 14.9 24.3 0.00000
4 15.6 24.4 0.00000
5 17.5 24.5 0.00000
6 18.6 26.5 0.00000
7 14.4 27.5 0.03000
8 14.1 28.0 0.06357
9 11.3 28.5 0.11000
10 9.7 28.8 0.28320
11 7.0 29.0 0.55040
12 5.9 29.7 0.78621
13 8.9 29.8 0.96207
14 9.5 30.0 1.02000
15 10.4 29.8 1.02000
16 8.8 29.5 1.00000
17 7.1 29.0 0.85256
18 8.3 27.7 0.63306
19 9.9 26.5 0.21191
20 7.5 24.8 0.00000
21 8.8 25.0 0.00000
22 9.8 24.8 0.00000
23 9.2 24.6 0.00000
24 8.4 24.8 0.00000
(b) Technical data [47-50].
Gas and Electricity Grids
4, (E/kWh) 0.2, 0.25, 0.29 A, (€/kWh) 0.1
. 0.3 B, 0.8
Jpy(€/KWh) 0.13 g (€/KWh) 0.12
Vmax(v) 240 ymin(v) 190
CHP System
fge 0.30 g 0.40
Ve 20m’ v om’
CV (kWh/m*) 9.8 dren, 0.05
c;:vp (€/kwh) 550 cg%ﬁ (€/year) 10

chp chp
Cfuel,: (€/year) 4 R; (€/year) 5
Eqyp (kWh/year) 2000 Heyp (kWh/year) 3000
PV and wind systems
ey 0.117 i 0.004
T C Cz) 25 Tyoc C ©) 40
p (kg/m*) 1.225 e 0.4
Ugur—in (M/8) 5 U eut—out (M/S) 35
dry, 0.05 cp, (€/kW) 1930
C: ., (€/kw-year) 20 E;, (kWh/year) 1400
c* 0.01 drg 0.05
n (years) 25 Cp, (€/kW) 3500
Cy (€/Kw-year) 110 EY (kWh/year) 2000
o 0.01
Li-ion Battery
C? (kWh€) 147 Cb (€/kW-year) 5
Ugg 0,1 dry, (%) 1
Hp s Ny 0.9 SV(€/kWh) 10
ol 1.4 Hewapn 0.8
Epo (kWh) 200
Thermal Storage
Cit (€/kWh) 18 C'" (€/kW-year) 3
Moo Mo 0.95 dr,, (%) 5
gy 0,1 N 0.7
Z,.,(kWh) 110

and Y VCthp influence each of these components. Figs. 7(c) to (f) illus-
trate the individual impacts of increasing these variables on each cost
component. These figures show that greater utilization of PV, wind, bat-
tery system, and CHP results in a reduction in electricity costs (C,) and
emission costs (C,), while leading to an increase in natural gas costs

(Cg) and operational costs (C,). Fig. 7(g) shows the amount of electric-
ity sold to the main grid. In the initial scenarios (up to scenario 15),
the microgrid consumes all of its generated power to meet internal de-
mand, resulting in no energy exports. As the capacities of Spy, Ry,
Epae and Y Véhp increase, the system begins to generate surplus en-
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Fig. 6. Pareto front for C1 and C2.

ergy starting from scenario 16, which can then be exported to the main
grid.

Gas allocation across the different scenarios is illustrated in Fig. 8.
Initially, natural gas is primarily used for direct heating (e.g., through
boilers). Up to scenario 10, boiler usage gradually decreases, while gas
consumption by the CHP units increases. Eventually, in the later scenar-
ios, all allocated gas is fully utilized by the CHP system. The algorithm
operates in a continuous update manner and ultimately identifies the
utopia point, which serves as a theoretical ideal representing the best
attainable values for each objective function. This point is used as a
reference to evaluate and select the optimal scenario. The optimal set
of decision variables is obtained by minimizing the euclidean distance
from each scenario to the utopia point, as formulated in the optimiza-
tion Eq. (48) [51]. To reflect the relative importance of each objec-
tive in the decision-making process, appropriate weights are assigned.
In this study, greater importance is attributed to C, compared to C,.
Accordingly, the weights are set to w; = 0.3 and w, = 0.7, emphasizing
the priority of maximizing C, over minimizing C; in the multi-objective

optimization process.
2 2

Where, C and C denote the coordinates of the utopia point cor-
responding to the objective functions, as illustrated in Fig. 6. The op-
timization problem, formulated using Eq. (48), identifies the optimal
scenario in the vicinity of scenario 20. The bounds imposed on the sizing

C -ct
*
= c;

Cr -G

S — (48)
cr—cpin

weighted __
dg =4|w;- <

10

variables Spy, Ry 1, Epay, and Y, Véhp, along with their corresponding
optimal values, are summarized in Table 3.

3.2.2. Heat and power management under power load uncertainty

Once the optimal values for Spy, Ry, Epgys and Y Vy,,  are de-
termined, they are integrated into the 14-bus IEEE test system, as de-
picted in Fig. 9. The objective is to develop a robust energy manage-
ment strategy that ensures cost-effective scheduling of energy resources.
The proposed robust optimization framework addresses uncertainties
from uncontrollable power loads and enables reliable planning to meet
electricity, heat, and gas demands across various scenarios. The conver-
gence behavior of the optimization process illustrated in Fig. 10 clearly
demonstrates the numerical stability and computational efficiency of the
proposed MINLP formulation. Within the BARON global optimization
framework, the model consistently attains the global optimum while
strictly satisfying the predefined optimality tolerances.

Figs. 11 and 12 illustrate the impact of robust optimization on power-
related variables and overall system costs. Fig. 11(a) illustrates the vari-
ability of uncontrollable demand loads under risk-neutral and robust op-
timization strategies. The robust approach maintains higher load values
during peak periods to account for potential uncertainty deviations, en-
suring system reliability. Fig. 11(b) demonstrates how robust optimiza-
tion reshapes the scheduling of controllable (demand-response) loads,
effectively flattening their profile and reducing sudden demand vari-
ations. This adjustment enhances system stability and prevents opera-
tional stress during uncertain conditions. Fig. 11(c) shows the impact of
these uncertainties on electricity transactions with the main grid. Com-
pared to the risk-neutral case, the robust optimization strategy results
in higher electricity purchases during critical hours and fewer exports,
reflecting a conservative behavior aimed at mitigating the effects of fore-
cast errors and ensuring supply adequacy. Fig. 12 presents a compara-
tive analysis of the main cost components under the robust optimization
and risk-neutral approaches, highlighting the influence of uncertainty
management on overall system economics. As shown, implementing ro-
bust optimization results in an increase in electricity cost, emission cost,
and total system cost by approximately 21 %, 15%, and 6 %, respec-
tively. This increase reflects the conservative nature of the robust strat-
egy, which prioritizes system reliability and feasibility under worst-case
uncertainty scenarios. In contrast, the amount of electricity sold to the
main grid decreases by nearly 17 %, indicating a shift toward reduced
grid dependency and a more secure internal energy balance. Meanwhile,
both the gas cost and operational cost remain nearly constant across the
two strategies, demonstrating that the impact of uncertainty is primarily
concentrated in the electricity-related components.

To assess the influence of the uncertainty radius («;) on system per-
formance, three complementary sensitivity analyses were performed:
linear, normalized, and elasticity-based analysis, as shown in Fig. 13.
Fig. 13(a) shows the linear sensitivity of each cost component, indi-
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Fig. 7. Impact of sizing variables on various cost components.
Table 3

Bounding and optimal values of decision variables.

Variables Symbol Min Max Optimal Values
Gas allocation to CHP > Ve (m?) 0 20 0.39

Surface area of PV panels Spy (m?) 0 1100 1030

Radius of wind turbine Ryr (m) 0 10 7.46

Capacity of battery storage E, o (kWh) 0 230 205

11
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5 Electricity Purchased from Main Grid
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Fig. 11. Impact of uncertainty in uncontrollable loads and electricity transactions with the main grid.
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Heat Management in the MEMG System
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Gas Management in the MEMG System
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Fig. 15. Heat, and gas management in a 14-bus IEEE configuration under robust optimization strategy.
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Fig. 16. Voltages at the buses and losses in the transmission lines.
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cating their absolute variation with «;. Both C; and C, increase al-
most linearly as uncertainty grows, while C,,;, decreases, reflecting a
more conservative operating strategy. Cost C, and losses remain nearly
constant, showing minimal dependency on uncertainty. Fig. 13(b)
presents the normalized sensitivity (0-1 scaling), enabling comparison of
relative trends. The results confirm that C, and C, grow consistently
with «;, while C,,;, declines, illustrating the trade-off between higher
costs and reduced revenues. Operating cost (C,), gas cost (Cg), and
losses cost show weak sensitivity. Fig. 13(c) illustrates the local elas-

14

ticity, which represents the percentage change in each cost for a 1%
change in «;, and is defined as follows:

AY )Y

E(Y,al) = m

A positive E(Y, ) indicates that the component increases with uncer-
tainty, while a negative value represents an inverse trend. Costs C; and
C, exhibit the highest positive elasticities, meaning they are the most
sensitive to uncertainty expansion. This implies that as uncertainty in-
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Determining the Optimal Sizing and Implementing Robust Optimization Strategies
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Fig. 19. Impact of demand response on costs and load shifting.

creases, the system adopts a more conservative strategy by purchas-
ing additional electricity from the grid and operating more internal re-
sources to ensure reliability, which in turn raises total costs. Grid elec-
tricity selling (C,,;;) shows a negative elasticity, reflecting the system’s
tendency to reduce grid exports under uncertain conditions to maintain
sufficient internal reserves. Both C, and loss components remain nearly
inelastic, indicating limited responsiveness to uncertainty within the ex-
amined range.

Figs. 14 and 15 illustrate the impact of robust optimization on power
and heat-gas scheduling within the MEMG system, comparing the risk-
neutral and robust optimization approaches. In Fig. 14, both cases show
that the optimal sizing of Spy, Ry, Epaxs and ZVCthp ensures that
all power demands are satisfied throughout the scheduling horizon.
However, notable differences arise in the interaction with the main
grid and in resource scheduling patterns. Under the robust optimiza-
tion approach, the system purchases more electricity from the main
grid while selling less compared to the risk-neutral case. This behav-
ior reflects a conservative scheduling strategy that prioritizes reliability
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and resilience under uncertainty, ensuring sufficient power availabil-
ity even in worst-case scenarios. Additionally, the robust strategy leads
to different controllable load adjustments compared to the risk-neutral
approach. Overall, the results confirm that the robust optimization
framework enhances operational security and system reliability, at the
expense of slightly higher energy imports, thereby achieving a more
resilient and uncertainty-tolerant power management strategy. Fig. 15
illustrates that, with optimal sizing, all heat and gas demands are fully
met. Moreover, the figure shows that power load uncertainty has a min-
imal impact on the scheduling of gas and heat resources.

Although this study focuses on hierarchical microgrid control at the
tertiary level, where voltage regulation (handled by the primary and
secondary levels) is not directly managed, the network constraints are
still taken into account. Accordingly, Fig. 16 illustrates the voltage de-
viations of all buses throughout the 24-hour operating period. Bus 1,
acting as the slack bus, maintains a reference voltage of 220V, while
the remaining buses operate within the acceptable range of approxi-
mately 218 V-222V. As shown in Fig. 17, the percentage voltage de-
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viations across the network remain minimal, demonstrating that the
proposed robust scheduling and power-flow management strategy effec-
tively maintains voltage stability under uncertain operating conditions.

Fig. 18 illustrates the process of resource sizing and the scheduling
of power and heating resources. The flowchart is divided into two core
components: robust sizing and robust operation. The robust operation
component is further divided into electricity and heat management. It
provides a clear and concise summary of the key steps carried out in this
research.

3.2.3. Demand response implementation

The implementation of demand response programs enables load
shifting, which helps reduce electricity costs and enhances grid reli-
ability. In this study, two DR programs are considered: price-based
and incentive-based. The price-based DR includes three tariff levels,
while the incentive-based program adjusts controllable electrical loads—
shifting them forward or backward based on network conditions-to
achieve peak shaving. Fig. 19 shows the impact of DR on system costs
and load shifting. As illustrated in Fig. 19(a), the implementation of DR
results in a 6 % reduction in electricity costs and a 0.6 % decrease in total
costs (C,). Meanwhile, gas costs, emission costs, operational costs, and
electricity exports to the grid remain nearly unchanged, while line losses
increase slightly by 0.7 %. This strategy not only reduces electricity ex-
penses for consumers but also enhances grid stability and contributes
to overall system sustainability. Fig. 19(b) demonstrates how control-
lable loads shift in response to dynamic pricing. During high-tariff pe-
riods (8:00-12:00 and 20:00-23:00), consumption decreases, whereas it
increases during low-tariff periods (1:00-8:00). However, since control-
lable loads account for only 2.4 % of total demand, the overall impact
of DR implementation is relatively limited.

4. Conclusion and future prospects

This study presented a comprehensive sizing and energy manage-
ment framework for a DC microgrid integrating a DHN and a GDS un-
der power load uncertainty. In the sizing stage, a bi-objective robust
optimization model was developed to determine the optimal PV sur-
face area, wind turbine radius, battery storage capacity, and gas alloca-
tion to the CHP unit. In the second stage, the optimal design parame-
ters obtained from the sizing process were applied to the IEEE 14-bus
test system, where a robust energy management strategy was imple-
mented. The results confirmed that the system can operate reliably and
efficiently under varying demand conditions. Although the incorpora-
tion of robustness led to moderate increases in electricity cost (21 %),
emission cost (15 %), and total cost (6 %), it also resulted in a 17 % re-
duction in electricity exported to the main grid, thereby improving local
energy utilization. The sensitivity analysis revealed that C; and C, are
the most responsive components to uncertainty expansion. In contrast,
C,,;; exhibited negative elasticity, indicating the system’s tendency to
reduce grid exports under uncertain conditions. Both C, and loss compo-
nents remained nearly inelastic, demonstrating limited responsiveness
to variations in uncertainty. Furthermore, the integration of DR pro-
grams yielded a 6 % reduction in electricity costs and a 0.6 % decrease
in total costs, while gas costs, emission costs, and operational costs re-
mained nearly unchanged, and line losses increased slightly by only
0.7 %. Overall, the proposed approach offers valuable insights into the
design and operation of cost-effective, resilient, and sustainable multi-
energy microgrids, capable of maintaining reliable performance under
power load uncertainty.

Future research can further advance this work in several meaning-
ful directions. While the present study primarily addresses load uncer-
tainty, future investigations should incorporate renewable generation
and market price uncertainties to provide a more comprehensive rep-
resentation of system variability. In addition, consumer behavior in de-
mand response programs-modeled deterministically in this study—can
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be enhanced through stochastic elasticity modeling to better capture re-
alistic behavioral and market dynamics. To ensure scalability and prac-
tical relevance, the proposed framework should be tested on larger and
real-world networks beyond the IEEE 14-bus system. Furthermore, to
strengthen experimental validation, future work will explore real-time
hardware-in-the-Loop (HiL) implementation using OPAL-RT, enabling
verification of the proposed model under practical operating condi-
tions. Finally, integrating artificial intelligence (AI) and machine learn-
ing (ML) methods offers promising avenues for improving predictive
modeling, fault detection, and adaptive control, thereby increasing sys-
tem resilience, reliability, and efficiency [52]. Expanding the framework
to encompass power-to-gas (P2G) and gas-to-power (G2P) technologies—
such as electrolyzers and fuel cells—could also enhance energy flexibility,
decarbonization, and economic viability in future multi-energy micro-
grid applications.
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