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ARTICLE OPEN

Effects of eight neuropsychiatric copy number variants on
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European Consortium*, Simons Searchlight Consortium*, Lester Melie-Garcia 4, Leila Kushan5, Ana I. Silva 6,7,
Marianne B. M. van den Bree 7,8,9, David E. J. Linden6,7,9, Michael J. Owen 7,8, Jeremy Hall 7,8,9, Sarah Lippé2, Mallar Chakravarty10,
Danilo Bzdok11,12, Carrie E. Bearden 5, Bogdan Draganski 1,13,75 and Sébastien Jacquemont 2,75✉

© The Author(s) 2021

Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions
including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time,
showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain
morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and
non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n= 39/28), 16p11.2 (n= 87/78), 22q11.2 (n= 75/30),
and 15q11.2 (n= 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci
demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels.
Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent
brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary
motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent
dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small
neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will
help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.
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INTRODUCTION
Genomic copy number variants (CNVs) are deletions or duplica-
tions of DNA segments of more than 1000 base pairs. Rare CNVs
with large effects have been associated with a range of often
overlapping developmental psychiatric phenotypes and condi-
tions, including autism spectrum disorder (ASD) and schizophrenia
(SZ) [1–4]. A looming question in psychiatric genetics pertains to
the underlying basis of polygenicity: How do different variants
lead to risk for the same psychiatric condition?
Some of the most frequent risk factors for neuropsychiatric

disorders identified in pediatric clinics include CNVs at the 22q11.2,
16p11.2, 1q21.1, and 15q11.2 genomic loci [5, 6]. They affect the
dosage of 60, 29, 12 and 4 genes, respectively [7–9]. The largest

increases in risk for SZ have been documented for the 22q11.2
deletion (30 to 40-fold) followed by 16p11.2 duplication (10-fold),
1q21.1 deletion and 15q11.2 deletion (1.5-fold) [2]. ASD risk is
highest for 16p11.2 deletions and duplications (10-fold) followed by
1q21.1 duplications and 22q11.2 duplications (3 to 4-fold) [1, 2, 10–
13]. The nature and specificity of CNV effects on cognitive and
behavioral traits is an area of intense investigation. All CNVs studied
to date affect cognition to varying degrees and a broad range of
cognitive functions [14, 15]. A recent study found that the range of
affected traits was broadly similar for 13 CNVs at 8 loci and specific
genotypes accounted for a low proportion of phenotypic variance
[3]. These variants are therefore opportunities to investigate brain
phenotypes conferring high-risk for mental illness.
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Neuroimaging studies have only been performed for a few
CNVs. Robust effects on total and regional brain volumes, cortical
thickness (CT) and surface area (SA), have been reported in
22q11.2 [12, 13, 16], 16p11.2 BP4-5 [17–19], and 15q11.2 CNVs
[20–23]. Opposing effects on global and-or regional brain volumes
between deletions and duplications were observed for 16p11.2
[19], 22q11.2 [16], 1q21.1 [24] and 15q11.2 [20] loci (hereafter
referred to as “mirror effects”).
Neuroanatomical alterations associated with 16p11.2 and

22q11.2 show overlap with those observed in idiopathic ASD
and SZ [17–19, 21, 25]. Finally, most of the effects are observed
irrespective of psychiatric diagnoses and symptoms [12], suggest-
ing that the final clinical outcome may result from the effect of
CNVs and additional factors.
Neuroimaging studies across genomic variants are scarce. An

investigation of 49 unaffected carriers of SZ-associated CNVs
across five genomic loci in the UK biobank showed smaller
volumes of the thalamus, hippocampus, and nucleus accumbens
[26]. Functional connectivity similarities have also been demon-
strated between 16p11.2 and 22q11.2 deletions as well as with
idiopathic ASD and SZ [27]. Alternatively, a recent study suggests a
relatively distinct association between neuroimaging alterations
and six different CNVs [28].
In this study, we aimed to characterize shared and distinct

neuroanatomical alterations associated with eight CNVs at four
genomic loci. We analyzed high-resolution structural brain scans
from the largest multi-site dataset of CNV carriers (n= 484, of
which 87 have not yet been published) and controls (n= 1296) to
date. Different approaches were implemented, from simple case-
control contrasts to one-view and multi-view multivariate pattern
learning [29, 30]. First, we compared brain morphometry features
associated with each deletion and duplication using univariate
linear models. Second, we quantified the shared variation of brain
morphometry associated with eight CNVs using principal compo-
nent analysis (PCA). To complement this single-view approach, a
multi-view pattern-learning algorithm was carried out for the joint
analysis of genetic and morphometry brain data, to identify latent
‘gene-morphometry dimensions’ (canonical correlation analysis,
CCA). Primary analyses were performed using VBM for consistency
with previous studies [19]. In addition, we carried out the same
multivariate analyses using freesurfer-derived cortical SA and
thickness to ensure that shared variation was not limited to one
neuroimaging modality or analytical pipeline.

METHODS
Participants
Deletions and duplications carriers’ neuroimaging data included in the
study were selected on the following breakpoints (hg 19): 16p11.2 (BP4-5,
29.6-30.2MB), 1q21.1 (Class I, 146.4-147.5MB & II, 145.3-147.5MB), 22q11.2
(BPA-D, 18.8-21.7MB) and 15q11.2 (BP1-2, 22.8–23.0MB), together with
control individuals not carrying any CNVs at these loci (Table 1,
Supplementary Table 1 and supplementary materials). Signed consents
were obtained from all participants or legal representatives prior to the
investigation. Of note, data of 87 CNV carriers have never been published.
Clinically ascertained CNV carriers were recruited as either probands
referred for genetic testing, or as relatives. Controls were either non-
carriers within the same families or individuals from the general
population. We pooled data from five cohorts. CNVs from non-clinical
populations were identified in the UK Biobank [31, 32].

MRI data
Details for methods and analyses are provided in Supplementary material
and Supplementary Methods 1–8. Data sample included T1-weighted
(T1w) images at 0.8–1mm isotropic resolution across all sites. Population
description is available in Table 1 and Supplementary Table 1.

Data quality check
All data included in the analysis were quality checked by the same
researcher (CM). A total of 107 structural brain scans from carriers and
controls were excluded from further analysis based on visual inspection
that identified significant artifacts compromising accurate tissue classifica-
tion and boundary detection (Supplementary materials).

MRI data processing
Data for Voxel-Based Morphometry were preprocessed and analyzed with
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) [33–35] running
under MATLAB R2018b (https://www.mathworks.com/products/
new_products/release2018b.html). For surface-based feature extraction,
we used FreeSurfer 5.3.0 (http://surfer.nmr.mgh.harvard.edu [36,37,]).
Quality control was performed using standardized ENIGMA quality control
procedures (http://enigma.ini.usc.edu/protocols/imaging-protocols/).

Statistical analysis for global brain measures
Global brain aggregate measures (TIV, total gray matter (GM) volume, total
SA, and mean CT) were adjusted for age, age2, and sex as fixed effects and
scanning site as random factor. Non-clinically ascertained subjects from
the UKBB are on average 30 years older than the clinically ascertained
subjects. Because of this age difference we used age matched control
groups for univariate analysis. Global measure z-scores for each CNV for
clinically and non-clinically ascertained CNVs were calculated using 331
and 965 controls, respectively. All statistical analyses were performed in R,
version 3.4.4 (https://www.r-project.org/), or in MatlabR2018b.

Voxel-based measures and statistical analyses
We performed whole-brain voxel-based analysis testing for voxel-wise
volume differences within the mass-univariate analysis framework
implemented in SPM (Supplementary Method 4). Cohen’s d (i.e., effect
size) [38] maps were obtained by converting SPM T-maps using the CAT12
toolbox for SPM (http://www.neuro.uni-jena.de/cat/).

Surface-based measures and statistical analyses
In parallel to VBM, we used surface-based GLM-based analysis to test
differences in CT and SA (SurfStat toolbox [39]).

Neuromorphometrics and Desikan parcellations
Parcellation into regions of interest (ROIs) was performed using
neuromorphometric atlas (http://www.neuromorphometrics.com/) for GM
volume (130 ROIs excluding white matter ROIs), and using Desikan
parcellation [37] for FreeSurfer-derived CT and SA (68 ROIs).

Comparison of ranked Cohen’s d maps across CNVs
To adjust for the unequal power to detect alterations across different CNV
groups, which have different sample and effect sizes, we ranked the
Cohen’s d values of all voxels (/vertices) for each statistical maps (CNV
versus controls contrast). We then tested for spatial overlap between maps
across CNVs after thresholding the tails of the distribution at the 15th &
85th quantiles. Dice index was calculated using publicly available Matlab
scripts (https://github.com/rordenlab/spmScripts).

Null hypothesis testing using spin permutations and label
shuffling
We used spin permutation and label shuffling [40, 41] to calculate
empirical p values for (1) the deletion and duplication convergence pattern
and (2) the correlation/dice index between two maps.

Quantifying shared variation across CNVs using principal
components (PC)
PCs were derived to quantify shared morphometry variation across CNVs.
We used Cohen’s d values of 130 neuroanatomical GM regions
(neuromorphometrics atlas) of eight CNVs as input-variables (z-scored
Cohen’s d contrasts adjusted for total GM and nuisance variables;
FactoMineR package in R). The variance explained (coefficient of
determination, R-squared) for each CNV-associated Cohen’s d map by
PCs was obtained by running a linear model (lm) in R; with PC1 and PC2 as
independent explanatory variables and the CNV Cohen’s d map as a
dependent variable.
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Jointly modeling of gene-morphology dimensions using CCA
We re-purposed CCA to simultaneously model the shared and distinct
impact of the CNVs in causing distributed alterations in brain morpho-
metry (130 grey matter regions) [29, 30]. This principled doubly-
multivariate approach, widely used in neuroimaging studies [29, 30], was
performed to identify modes of coherent co-variation that jointly
characterize how CNVs and patterns of regional volumes systematically
co-occur across subjects. Henceforth, we refer to the ensuing modes of co-
variation as ‘CCA dimensions’ or ‘gene-morphology dimensions’.

RESULTS
CNV effects on global brain morphometry
Deletions and duplications of each genomic loci showed opposing
effects on one or more global metrics: TIV, total GM volume, total
SA, or mean CT (Fig. 1, Supplementary Table 2). The directionality

of global effects differed across loci (Fig. 1a–c). Effects on GM and
SA were less pronounced once adjusted for TIV (Supplementary
Fig. 1).

Overlapping deletion effects on regional morphometry
Whole-brain VBM analyses contrasting each deletion and duplica-
tion group with controls showed mostly distinct brain patterns
across CNVs (Fig. 2a, c, e, Supplementary Table 3). To investigate
potential overlap across the four genomic regions, we ranked
Cohen’s d maps and overlapped voxels with similar rankings.
Using a threshold for voxels with Cohen’s d < 15th and >85th
percentiles separately (Fig. 3c, e, g, i), we observed significant
overlap between deletions (p valueSHUFFLE < 10e−4, Fig. 3a).
Volumes of the middle and anterior cingulate extending to the
supplementary motor cortex and of the cerebellum were

Table 1. Demographics.

Clinical ascertainment

CNV loci Copy number Age mean (SD) Male/Female TIV mean (SD) FSIQ mean (SD) ASD SCZ Other diagnosis

1q21.1 Deletions
N= 29

29 (18) 11/18 1.22 (0.14) 90.85 (21.75)
N= 26

1 – 7

Duplication
N= 19

34 (17) 10/9 1.57 (0.11) 95.56 (23.19)
N= 18

1 – 4

16p11.2 Deletions
N= 83

17 (12) 47/36 1.54 (0.17) 82.17 (14.99
N= 64

13 – 36

Duplication
N= 73

31 (14.9) 41/32 1.33 (0.17) 85.47 (19.48)
N= 63

10 1 19

22q11.2 Deletions
N= 74

16 (8.6) 35/39 1.30 (0.15) 77.42 (13.51)
N= 48

9 2 32

Duplication
N= 22

20 (14.2) 15/7 1.47 (0.16) 97.83 (20.34)
N= 12

2 – 8

Controls N= 331 26 (14.6) 189/142 1.46 (0.15) 106.73 (15.03)
N= 224

1 – 23

Non-clinical ascertainment

CNV loci Copy number Age mean (SD) Male/Female TIV mean (SD) UKB FI mean (SD) ASD SCZ Other diagnosis

1q21.1 Deletions
N= 10

59.1 (6.7) 6/4 1.35(0.12) −0.8 (0.5)
N= 9

– 1* 3

Duplication
N= 9

60.6 (7) 2/7 1.55(0.14) 0.2 (1.3)
N= 9

– – –

15q11.2 Deletions
N= 72

63.4 (7.6) 31/41 1.54(0.15) −0.3 (0.9)
N= 63

– – 2

Duplication
N= 76

62.9 (7.3) 36/40 1.49(0.15) 0 (1.1)
N= 71

– – 6

16p11.2 Deletion
N= 4

65.6 (3.2) 3/1 1.56(0.13) 0.8 (0.5)
N= 2

– – –

Duplication
N= 4

69.3 (2.1) 1/3 1.29(0.11) −1.6 (0.2)
N= 4

– – –

22q11.2 Deletion
N= 1

69.8 (–) 1/– 1.44(-) – – – –

Duplication
N= 8

62 (9.5) 4/4 1.55(0.17) −0.2 (1.1)
N= 8

– – 1

Controls N= 965 62.1 (7.4) 358/607 1.51(0.14) 0 (1)
N= 866

– 2* 65

CNV copy number variant, SD standard deviation, TIV total intracranial volume, FSIQ full scale IQ, UKB FI UK Biobank fluid intelligence, ASD autism spectrum
disorders, SCZ schizophrenia (including * ICD10 code F25.9 Schizoaffective disorder, unspecified).
CNV carriers and controls from the clinically ascertained group come from five different cohorts (Supplementary Table 1), while non-clinically ascertained
participants were identified in the UK Biobank. 16p11.2 and 22q11.2 from the UKBB were not included in the VBM and SBM due to small sample size. Other
diagnosis included: language disorder, major depressive disorder, posttraumatic stress disorder (PTSD), unspecified disruptive and impulse-control and
conduct disorder, social anxiety disorder, social phobia disorder, speech sound disorder, moderate intellectual disability, specific learning disorder, gambling
disorder, bipolar disorder, conduct disorder, attention deficit/hyperactivity disorder ADHD, Substance abuse disorder, global developmental delay, motor
disorder, obsessive compulsive disorder, sleep disorder, Tourette’s disorder, mood disorder, eating disorders, transient tic disorder, trichotillomania, pervasive
developmental disorder NOS, specific phobia, body dysmorphic disorder, mathematics disorder, dysthymic disorder.
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decreased in all deletions while volume was increased in the
thalamus (Fig. 3a).
Sensitivity analyses tested the effect of ascertainment and

control groups: (1) We recomputed the deletion convergence map
using 1q21.1 deletion carriers from UK Biobank instead of those
clinically ascertained (Table 1). The new deletion convergence
map was similar to the initial one presented above with a dice
index of 39.4% (p valueSPIN < 10e−4); (2) We excluded all subjects
with autism, SZ, or other psychiatric diagnoses. Again, this did not
change the overlap (Supplementary Fig. 2); (3) We tested the
effects of the control group by recomputing contrasts only using
controls from the same site (instead of the initial ANOVA pooling
all controls together and controlling for site). This again did not
alter the convergence maps (Supplementary Fig. 3). Finally, we
performed the same analysis using Freesurfer-derived SA and CT
measures. We also identified spatial overlaps but regions
identified were different especially for CT (Supplementary Table
4 & Fig. 4). Overlap maps are provided in Supplementary Figs. 5–8
and Tables 5, 6.

Overlapping duplication effects on regional morphometry
Contrasts computed for duplications (Fig. 2b, d, f) showed smaller
effect sizes compared to deletions. The same analysis using

Cohen’s d values <15th and >85th percentiles (Fig. 3d, f, h, j)
demonstrated spatial overlap across all four duplications (p
valueSHUFFLE < 10e−4, Fig. 3b). The resulting pattern was mainly
distinct from the one observed in deletions and was characterized
by smaller volumes in anterior insula and frontal operculum, and
larger volumes in the middle cingulate gyrus and supplementary
motor cortex compared to controls.
Sensitivity analysis testing the effect of clinical ascertainment,

psychiatric diagnoses, control groups, and volume versus
Freesurfer-derived measures demonstrated that results were
robust (Supplementary Figs. 2–8).
The deletion/duplication ratio of Cohen’s d distributions ranged

from 1.24 to twofold across the four genomic loci (F-test, p <
10e−16, Fig. 3c–j, Supplementary Table 7). Similar effect-size ratios
were also observed for SA alterations (Supplementary Table 7),
except for the 15q11.2 locus.
We tested opposing (mirror) effects on VBM contrast maps

between deletion and duplications. The strongest anticorrelation
of Cohen’s d values was observed for 16p11.2 (p valueSPIN < 10e
−4) followed by 15q11.2 (p valueSPIN < 10e−4), 1q21.1 (p valueSPIN
< 0.033) and 22q11.2 (p valueSPIN < 0.038) (Supplementary Fig. 9
and Tables 8–10). Mirror effects were observed in clinically and
non-clinically ascertained CNV carriers, as well as for SA at all four

Fig. 1 1q21.1, 16p11.2, 22q11.2, and 15q11.2 exert rich effects on global brain measures. Total intracranial volume (a), total surface area
(b), total grey matter volume (c) and mean cortical thickness (d) for clinically and non-clinically ascertained CNVs. Z scores for clinically and
non-clinically ascertained CNVs were calculated using 331 and 965 controls, respectively, adjusting for age, age2, sex and site as a random
factor. Y axis values are z scores. X axis are CNV groups. Significant difference between CNV group and corresponding control group is
indicated with a star. Horizontal bars with stars show significant differences between deletions and duplications within the same locus. TIV
total intracranial volume, SA surface area, GM grey matter, CT cortical thickness.
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genomic loci but not for CT (Supplementary Tables 8–10). Hence
mirror effects were observed in global metrics and, independently,
in regional alterations.

Quantifying distinct and shared effects on brain morphometry
associated with eight CNVs
We performed a multivariate PCA based on Cohen’s d profiles
obtained from contrasts between the eight CNV groups and
controls (using 130 neuromorphometric regional volumes, Sup-
plementary Table 11). The first two components explained 31.8
and 28.7% of the variance of Cohen’s d maps, respectively. The
third component dropped to 13.8% and was therefore not
investigated further.
Deletions and duplications at each genomic loci showed

opposite loading on PC1 or PC2 (Fig. 4c). Regions with the
highest loadings on PC1 and PC2 were also those identified in the
convergence maps presented above: in particular the middle
cingulate gyrus and the supplementary motor cortex. Anterior and

posterior insula, cerebellum, fusiform gyrus and thalamus were
also top regions altered across subsets of CNVs (Fig. 4a, b and
Supplementary Table 12). The variance explained by both
components for each CNV’s Cohen’s d map ranged from 27% to
82% (Fig. 4d). Finally, we performed the same analysis using
Freesurfer-derived SA and CT measures which also provided latent
dimensions with comparable variance explained, opposing load-
ings for deletions and duplications of each genomic loci
(Supplementary Fig. 10). However, CNV loadings differ across
brain morphometry metrics.

Gene-morphology dimensions across eight CNVs
As a next step, we performed a multi-view pattern-learning
analysis, jointly analyzing the genetic and morphometry brain
data. This doubly multivariate method allowed testing whether
shared dimensions could be identified in a data-driven approach,
without performing any individual contrast. We interrogated 2
hypotheses: (1) CNVs show levels of shared brain effects at the

Fig. 2 Cohen’s d maps of VBM regional brain differences in deletion and duplication carriers at the 1q21.1, 16p11.2, and 22q11.2 loci
compared to controls. Regional brain differences adjusted for total grey matter volume. Left and right columns show results for deletions (a,
c, e) and duplication (b, d, f) carriers, respectively. Color maps show the significant effects of each CNV, thresholded at q < 0.05 FWE. Color scale
represents positive and negative Cohen’s d effect sizes were estimated. The linear model was adjusted for sex, linear, and quadratic expansion
of age and total grey matter volume. 15q11.2 was not displayed because only a few voxels survived family-wise error (FWE) correction.
Corresponding maps for surface area and cortical thickness are reported in Supplementary Figs. 4 and 5.
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morphometry level and (2) deletions and duplications show
opposing effects. We investigated the same 130 regional volumes
in 484 carriers of CNVs at four genomic loci. To test hypothesis (2),
deletions and duplications were coded as opposing gene dosage.
CCA confirmed both hypotheses by identifying two significant
‘gene-morphometry dimensions’ (r= 0.84, 0.79, p value < 0.05, Fig.
4e, f). Regional brain contributions to canonical dimension 1 and 2
were well correlated with those of PC2 and 1, respectively (r=
0.83, r=−0.81).
Top ranking brain regions contributing to either of the two CCA

dimensions of morphological variation included supplementary
motor cortex, posterior and anterior insula, middle cingulate
gyrus, calcarine cortex, cuneus and accumbens (Supplementary
Fig. 11 and Supplementary Table 13). 16p11.2 and 22q11.2
preferentially contributed to dimension 1 and 2 respectively, and
1q21.1 loaded similarly on both dimensions. 15q11.2 CNVs
showed the smallest loadings on both dimensions (Fig. 4e).
Sensitivity analyses are detailed in supplementary material

(Supplementary Figs. 12–16 and Tables 14, 15).

DISCUSSION
Here, in the largest cross-CNV-neuroimaging study to date, we
tested potentially shared effects of eight neuropsychiatric CNVs on
brain morphometry. CNVs showed a combination of distinct and
shared profiles of brain alterations, as demonstrated by the spatial
overlap of Cohen’s d maps across deletions and duplications. A
multivariate approach (PCA) quantified distinct and shared
alterations across subsets of CNVs and identified two latent
dimensions explaining 31.8 and 28.7% of Cohen’s d map’s

variance. A second multivariate approach (CCA), jointly analyzing
genetic and morphometry data, confirmed the latent CNV-brain
dimensions identified by PCA. Genomic loci contributed to the
latent CCA dimensions in proportion to their effect sizes. Even for
small effect-size deletions at the 1q21.1 and 15q11.2 loci, the PCA
components explained between 43 and 65% of their Cohen’s d
profile. All three approaches—spatial overlap, CCA, and PCA—
identified a similar set of regions altered by CNVs including the
cingulate gyrus and supplementary motor cortex.

Distinct and shared effects of CNVs
Our results show that two-thirds of the average CNV effects on
brain morphometry are distinct. This is consistent with a recent
study showing relative specificity of association between brain
patterns of gene expression and patterns of cortical anatomy
changes across six CNVs and chromosomal aneuploidies [28]. One-
third of the effects on brain morphometry is shared as
demonstrated by latent gene-morphology dimensions identified
across subsets of CNVs. There is no single dimension explaining
CNV effects. Instead, subsets of CNVs load on either dimension,
which may suggest similar brain mechanisms within subgroups of
CNV. Yet CNVs within subgroups were not characterized by the
same risk for ASD or SCZ.
These results have implications for our conceptualization of

polygenic psychiatric conditions. Indeed, studies estimate that
70–100% of any 1-MB window in the human genome encom-
passes variants (including CNVs) contributing to increased risk for
SZ and autism [4, 42]. Gene-morphology dimensions alone, can
not explain the fact that subgroups of CNVs are associated with a
similar range of behavioral symptoms [43], and psychiatric

Fig. 3 Spatial overlap across deletions and duplications at four genomic loci. Spatial overlap across clinically and non-clinically ascertained
deletions (a) and duplications (b) at four genomic loci shown separately for <15th and >85th percentile of Cohen’s d values. Overlap of all four
deletions (a) or all four duplications (b) is shown in blue. Overlaps of any combination of three deletions (a) or any combination of three
duplications (b) are shown in red. Top ranking Cohen’s d values used in (a, b) are presented on the density plots for all eight deletions and
duplications: 1q21.1 (c, d), 16p11.2 (e, f), 22q11.2 (g, h), 15q11.2 (i, j). The x axes values of the eight density plots are Cohen’s d. Corresponding
maps for surface area and cortical thickness are reported in Supplementary Figs. 6 and 7.
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disorders [1, 2, 4, 44]. In fact, the large proportion of distinct CNV-
neuroimaging effects suggests that a broad diversity of brain
mechanisms increase the risk for autism and SZ. Extreme
examples include CNVs associated with opposing loadings on
the same latent gene-morphology dimension while increasing risk
for the same psychiatric condition (ie. 16p11.2 deletions, duplica-
tions, and autism). The presence of such genomic variants in
studies of ASD and SZ may explain heterogeneity and small
neuroimaging effect sizes [45, 46]. Why opposing effects on the
same latent brain dimension increase risk for the same psychiatric
condition is an unsolved question. Further observations on a
broad variety of genomic variants are required to address this
question.

Brain hubs vulnerable to altered gene dosage
Insula, cingulate, fusiform gyrus, and hippocampus are regions
showing alterations across SZ, bipolar disorders, major depression,
and obsessive-compulsive disorders [45, 47]. The cingulate, insula,
and fusiform gyrus were also among regions markedly altered
across eight CNVs. CNVs have either negative or positive effects on
these brain regions, however, the number of CNVs included in this
study did not allow us to associate the directionality of these

effects with phenotypic traits. Alterations of the cingulate cortex
have been associated with genetic and environmental risk for SZ
[48]. The supplementary motor cortex has been shown to play a
critical role in 16p11.2, 22q11.2 CNVs as well as autism and SZ by
functional connectivity studies, but not by cross-diagnostic
neuroimaging structural studies [49, 50]. Several cerebellar regions
(vermis lobule VIII-X and cerebellar cortex) are highly sensitive to
CNVs, which may be due to the cerebellum’s protracted
development [51]. The cerebellum has either been excluded or
not reported by cross-disorder structural neuroimaging studies,
but volume alterations have been associated with autism and SZ
separately [52, 53]. Multiple genetic mouse models of autism, as
well as Down Syndrome, also show abnormal cerebellar develop-
ment [54]. The same level of spatial overlap was observed for SA
and CT but implicated mostly distinct sets of brain regions. This is
in line with the distinct genetic contributions previously demon-
strated for these cortical metrics [55].

Dissociation between global and regional effects
Results suggest that global and local effects may be mechan-
istically unrelated. 1q21.1 deletions and duplications highlight the
contrast between very large effects on global measures, with small

Fig. 4 Principal component analysis and canonical correlation analysis of brain alterations due to eight CNVs. a PCA dimension 1 and 2
regional relevances projected on axial brain slices. The darker the red or blue color, the stronger the positive or negative association with the
PCA dimensions. PCA was run on z-scored Cohen’s d values, with the eight CNVs as variables and 130 neuroanatomical GM regions as
observations. GM region volumes were adjusted for total grey matter, age, age2, sex, and site. The first two components explained respectively
31.77 and 28.66 % of the variance. b Loading of eight CNVs on the two PCA dimensions. Values are PC loading magnitudes and represent the
contribution of a CNV to the PC. c Variance explained (coefficient of determination, R-squared) of each CNV Cohen’s d profile by PC1 and PC2.
Values and color scale represent the “percent of variance”. d Loadings of the first and second CCA dimension on four CNV genomic loci. Shows
contribution of a CNV loci to the canonical dimension. e Loading of Neuromorphometrics Regions of Interests (ROIs) on the two PCA
dimensions. ROIs are averaged across the left and right hemisphere for visualization. The font size is correlated to the region’s contribution to
dimensions. ROI names are color coded as being part of the deletion (red), duplication (blue) and both deletion and duplication (magenta)
convergence patterns. f Scatterplot showing the participant/specific expressions of each of the 484 carriers of eight different CNVs along two
dominant gene-morphometry canonical correlation (CC) dimensions established using 130 neuroanatomical GM regions of CNV carriers. GM
region volumes were adjusted for total grey matter, age, age2, sex, and site. The empty and full symbols represent deletions and duplication,
respectively. The grey hexagonal bin plot represents the frequency of controls (n= 1296). Controls were not used to calculate the CCA and
were projected post hoc on the two dimensions using CCA prediction. CCA ROI loadings are reported in Supplementary Fig. 10. Results for
surface area and cortical thickness are reported in Supplementary Fig. 9 (PCA), 14–15 (CCA).
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regional effects once adjusted for total GM. Dissociation is also
observed between the directionalities of global and regional
effects: all deletions are associated with a smaller cingulate and
supplementary motor cortex volume irrespective of their effect on
TIV and GM. Animal studies have proposed mechanisms for global
[8, 56], but not regional effects of CNVs.

Limitations
Multiple sites included in the study may have introduced noise,
but previous studies have shown that site effects do not influence
the neuroanatomical patterns associated with CNVs at the
16p11.2, 22q11.2, and 15q11.2 loci [12, 19, 23]. While shared
variation could have been influenced by clinical ascertainment or
psychiatric diagnoses, our sensitivity analyses showed that this is
not the case. The effect of medication on CNVs brain alterations
could not be investigated in the current study as medication
information was not available for the whole dataset. We were
underpowered to properly investigate potential sex-related effects
of 1q21.1 and 15q11.2 on brain morphometry. Of note, previous
neuroimaging studies of large 22q11.2 and 16p11.2 samples were
unable to identify any sex-related effects [19, 25].
15q11.2 deletions and duplications have small effect sizes and

larger samples would improve the accuracy of the brain
morphometry signature. Systematic analysis through the two
most widespread computational neuroanatomy frameworks
(voxel-based and surface-based) shows that effects could not be
attributed to the processing pipeline. Extending our approach to
the rapidly expanding number of rare genomic variants associated
with psychiatric disorders is required to draw a robust conclusion
on the distinct and shared effects of CNVs on brain structure.

CONCLUSIONS
The simultaneous analyses and comparisons of several genomic
variants demonstrate distinct CNV-associated alteration profiles as
well as shared latent gene-morphology dimensions relevant to
subsets of CNVs. Large proportions of distinct effects may provide
some answers to the small neuroimaging effect sizes reported in
idiopathic psychiatric conditions. The mechanisms underlying the
identified latent dimensions remain unknown and pathway
convergence may occur early on at the transcriptome and protein
level, or at later stages (i.e., brain architecture or behavior). The
hotly debated omnigenic model postulates that convergence may
occur at early stages due to highly interconnected cell regulatory
networks [57]. These approaches may help subgroup genomic
variants based on their morphometry signature and dissect the
heterogeneity of psychiatric conditions.
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