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Low-temperature plasmas often present non-equilibrium ion distribution functions due to

the collisions with the background gas and the presence of strong electric fields. This

non-equilibrium is beyond classical fluid models, often requiring computationally-intensive

kinetic simulations. In our work, we study high-order moment models in order to capture

the non-equilibrium state with a macroscopic set of equations, which is more computation-

ally efficient than kinetic simulations. We compare numerical simulations of different mo-

ment closures: Grad’s closure, the hyperbolic quadrature method of moments, the extended

quadrature method of moments, and a method based on entropy maximization. We assess

the different closures for plasma applications and propose efficient numerical discretizations.

The numerical solution of the high-order moment models is compared to kinetic simulations

of an argon plasma between two floating walls at different pressure regimes, from nearly

collisionless to collisionally-dominated. In general, all the high-order moment closures cap-

ture the ion transport with high fidelity as compared to the kinetic simulations, providing

an improvement as compared to classical fluid models. Classical fluid closures such as the

Fourier law for the heat flux is shown be not suitable to capture the sheath or the low

pressure regime. In addition, the ability of each moment method to reconstruct the velocity

distribution function from the moments is assessed. The high-order moment models are able

to capture the non-equilibrium distributions in the bulk and sheath with remarkable fidelity,

dramatically improving classical fluid models while having comparable computational cost.

In particular, the hyperbolic quadrature method of moments shows to be a robust method

that provides an excellent comparison with the kinetic simulations of both the moments

and the distribution function in the bulk and the sheath.
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I. INTRODUCTION

Low-temperature plasmas are used in a wide variety of applications such as elec-

tric propulsion1, plasma etching for microelectronics2,3, plasma-assisted combustion4, and

biomedical applications5. In general, these plasmas present a low ionization level that re-

sults in conditions far from thermodynamical equilibrium, where the charged species collide

more often with the neutral species of the gas than among themselves. In addition, low-

temperature plasmas are often in contact with the walls of the reactor and other surfaces.

The presence of the walls creates a plasma sheath with strong gradients and electric fields,

driving the plasma species even further from thermodynamic equilibrium. For these reasons,

the charged species present strongly non-Maxwellian distribution functions in the sheath re-

gions, which plays an important role for some applications such as plasma etching or surface

treatment, where the ion energy distribution has a large impact in the surface processes6.

Classical fluid models solve the particle number, momentum, and energy balance equa-

tions, i.e., 3 moments. The validity of classical fluid models for modeling these type of

non-equilibrium plasmas is limited since, strictly speaking, they only consider Maxwellian

velocity distribution functions (VDF) or small perturbations from the thermodynamic equi-

librium, and are therefore unable to capture phenomena such as strong heat fluxes, pressure

anisotropies or the non-Maxwellian VDF in the sheath. Despite these limitations, different

theoretical models based on the fluid formalism have been proposed7,8 to describe bounded

low-temperature plasmas (a summary can be found in Refs.2,3). More recent works9,10, have

revisited these fluid models based on kinetic simulations. The kinetic models are valid in

the whole range of pressures but computationally much more expensive than fluid models.

However, most of the fluid models used in the theory of bounded plasmas still consider a

reduced number of moments (e.g., often assuming isothermal conditions or at most follow-

ing empirical polytropic laws9,11). In addition, since they are based on a Maxwellian VDF,

they are not able to provide with a better approximation of the non-equilibrium distribution

function of the ions at the wall.

A potential alternative to kinetic models is the method of moments. This method extends

the fluid variables by considering higher-order moment equations, e.g., pressure tensor, heat-

flux, etc. As a result the method of moments can capture more general VDFs than classical

fluid models, i.e. non-Maxwellian distributions, hence extending the validity of the model
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to non-equilibrium conditions. In addition, moment methods are, in general, computation-

ally more efficient than kinetic models and without the statistical noise of particle-based

kinetic methods. The difficulty associated to these models is in providing a consistent,

mathematically stable, and numerically efficient model for the closing flux that appears in

the last equation of the moment hierarchy as well as for the reconstruction of the VDF

from the moments. Various closures for the moment equations have been proposed for dif-

ferent applications (see e.g. Ref.12 for a recent review). In particular, in partially ionized

plasmas, Zhdanov13 used Grad’s moment method to derive general transport coefficients of

neutral and charged species, in the linearized moment regime (i.e., close to thermodynamic

equilibrium), also recently revisited by Hunana14. Under conditions further from equilib-

rium we find some recent numerical works. Bocelli et al.15,16 have applied an interpolative

maximum-entropy closure to electrons and ions in a magnetized low-temperature plasma.

Taunay et al.17 considered different quadrature methods of moments (QMOM) for a collision-

less Vlasov-Poisson system. Alvarez Laguna et al.18,19 developed a regularized Grad’s model

for electrons in a reacting partially-ionized plasma, later generalized in Ref.20. Kuldinow et

al.21 have proposed a ten-moment model with a heat-flux closure. However, despite these

efforts, the realistic modeling of the multicomponent collisional processes in the moment

equations as well as the behavior of these models at different pressures in the presence of

sheaths is still an open question for the moment closures. Similarly, the comparison with

kinetic simulations of a bounded low-temperature plasma, representing the plasma-sheath

transition, is still a challenge due to the presence of strong electric fields in the plasma

sheath22,23. In addition, as mentioned above, the ability of moment models to capture the

ion VDF inside the sheath has not been studied so far.

In this paper, we focus on the ion dynamics in a one-dimensional argon plasma between

two floating walls in order to represent the plasma-sheath transition. This work follows

a similar methodology to the work of Laplante and Groth24, where different high-order

moment model were compared for the representation of a shock in a monoatomic rarefied

gas. However, in low-temperature plasmas, the sources of non-equilibrium and the numerical

challenges for the moment models are different to a shock in monoatomic rarefied gases. In

the shock test case of Laplante and Groth, the non-equilibrium is due to a gradient that

is smaller than the characteristic particle-like collisional mean-free path, which leads to

smooth shock jumps. Furthermore, the hypersonic velocities are a challenge for the moment
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models in order to correctly capture the smooth jump. Alternatively, in low-temperature

plasmas, due to the weakly-ionized state, the collisions between charged particles are often

negligible as compared to the collisions of the charged particles with the background gas.

As a result, even in collisionally-dominated plasmas at high pressures, the ions can be out

of thermodynamic equilibrium when the plasma is weakly ionized. Another source of non-

equilibrium is the charge exchange collisions, which is often dominant in the ion collisions,

and introduces an important anisotropy in the collision geometry, not present in the collision

model of Laplante and Groth. Finally, the electric field plays a fundamental role in the non-

equilibrium of low-temperature plasmas. In particular, it is very strong in the sheath region,

and leads to non-Maxwellian distributions with distributions that strongly depends on the

pressure regime. These challenges are very specific to partially-ionized plasmas and will be

studied in this paper.

In our paper, we will compare different high-order moment closures, some of them never

studied for low-temperature plasmas. We will consider: a regularized Grad’s moment

closure25, an interpolative maximum entropy closure26–28, and two QMOM models: the hy-

perbolic QMOM (HyQMOM)29 and the extended QMOM (EQMOM)30. For each method,

we will solve up to the fourth-order moment, i.e., five scalar moments (5M) in 1D. As some

of the closures do not allow for an analytical integration of the collisional processes, we

will study a simplified collisional model, considering only ionization and charge-exchange

collisions. We will propose an efficient numerical resolution of the moment equations that is

based on analytical formulas or approximations of the information required by the numeri-

cal scheme (such as the eigenvalues of the flux Jacobian or the closing flux), minimizing the

computational cost, which remains comparable to classical 3M models.

The paper is organized as follows. In Section II, we will introduce the setup representing a

low-pressure plasma plasma between two floating walls. Then, we will present the underlying

kinetic model for the ions. After, we will present the moment equations as well as the four

considered high-order moment closures, focusing on the theoretical aspects and requirements

for a robust moment set of equations. In Section III, we will present the numerical scheme for

the different set of equations. In particular, we will provide with analytical and approximated

expressions for the numerical fluxes, which allows to have very efficient numerical solvers.

Finally, in Section IV, we will present the numerical results of the different moment closures

representing the ion dynamics in an argon plasma between two floating walls. We will
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compare the solutions of the moment models to kinetic simulations, comparing both the

representation of the moments and the reconstructed VDF in the bulk and the sheath. The

paper will finish with a discussion of the findings and a summary of the conclusions in

Section V.

II. KINETIC AND MOMENT MODELS

A. Numerical setup and kinetic simulations

We consider a one-dimensional partially-ionized plasma between two floating walls.

The numerical set-up mimics an electropositive noble gas discharge at different pressure

regimes2,3. A scheme of the setup is presented in Fig. 1. We show the ion and electron

densities (in black and orange, respectively), along with the electrical potential (in green).

We separate the domain into two regions: the bulk, in the center of the discharge, where the

potential is mostly flat and densities of ions and electrons are nearly equal; and the sheath,

in the vicinity of the wall, where the plasma is non-neutral (positively charged), leading to

a sharp drop of the electrical potential that will accelerate the ions to very high velocity

towards the wall.

52.50-2.5

electrical potential
electron density
ion density

bulk

sheath sheath
electrode electrode

-5
position (cm)

FIG. 1. Scheme of the numerical set-up.

The kinetic simulations that will be used as a reference for the high-order moment model

are based on the particle-in-cell Monte-Carlo collisions (PIC-MCC) method. We study a

domain that extends from x ∈ [−L,L], where the length L = 5 cm. The electrons and

singly-ionized ions are simulated with the PIC-MCC method whereas the neutral gas is

5



Comparison of high-order moment models for ions

considered to be a spatially-homogeneous background at different pressures with constant

temperature of Tg = 300 K. The plasma species are initialized with a constant profile at

densities ne(t = 0) = ni(t = 0) = 1015 m−3 and Te = 5 eV and Ti = Tg, where the subscripts

e, i and g refer to electrons, ions, and gas, respectively. The charged species are absorbed

at the boundaries of the simulation domain, where the electric potential is imposed to be

ϕ(x = −L) = ϕ(x = L) = 0. In order to balance the loss of charged species at the walls, a

number of electrons and ions that is equal to the number of ions lost at the walls is injected

at every time step with a probability that is proportional to the electron local density,

as explained in Ref.22. The electrons are injected at Tinj (given in Table I) and the ions

at the neutral temperature Tg, both species injected following a Maxwellian distribution.

This particle injection method mimics both the ionization process for the creation of ions

and the electron heating mechanism that sustains the discharge. In this paper, we will

focus on the ion kinetics and the considered injection model is effectively equivalent to an

electron-impact ionization for the ion population. Similar one-dimensional set-ups have

been previously considered by different authors to study the plasma-sheath transition in gas

discharges9,10,22,31.

In our study, we will compare different high-order moment closures for ions to the kinetic

simulations. Some of the moment closures do not allow for analytical integration of the

collisional terms. For this reason we will consider a simplified model for the collisional cross

sections in an argon plasma. The ion collisions with the neutrals will be modeled with

a back-scattering collision with a polarization potential model where the cross section is

proportional to the inverse of the relative velocity, as described in the next section. Coulomb

collisions are neglected in the model. The PIC code used in this work is 1D-3V but, as it will

be shown in the following section, the ion kinetic equation of the above-mentioned set-up

can be reduced to a 1D-1V problem. The electrons carry out elastic collisions with the gas

(ionization and excitation collisions are not included in the model), with the elastic cross

section as found in the Phelps database from LXCat32.

As explained by classical works on the plasma-sheath formation, based on the isothermal

fluid equations with Boltzmann distributed electrons3,33,34, the studied plasma equilibrium

depends mainly on the following non-dimensional parameters: The ratio between the Debye

length and the domain length λD/L, with λD =
√

ε0Te/(nee) where ε0 is the vacuum

permittivity, Te is the electron temperature, ne is the electron density, and e is the elementary
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pressure (Pa) Nppc Nx Tg (eV) Tinj (eV) λmpf/L λD/L Ti/Te

0.01 100 2000 0.025 5 10 2 · 10−3 0.04

0.1 100 2000 0.025 5 1 2 · 10−3 0.06

1 100 2000 0.025 5 0.1 2 · 10−3 0.05

10 200 2000 0.025 10 0.01 2 · 10−3 0.07

TABLE I. Parameters of the simulations. Nppc is the number of particle per cell, Nx the number

of cells, Tg the gas temperature (considered constant and uniform during the simulation, Tinj the

injection temperature of the electrons, λmpf the mean-free-path of the ions, L the characteristic

length of the system (corresponding to the length of half of the domain), λD the Debye length, and

Ti and Te the ion and electron temperatures.

charge; the ratio between the ion mean free path and the domain length λmpf/L, with

λmpf = (ngσ0)
−1 where ng is the gas density, σ0 = 10−18 m2 is a reference ion-neutral

collision cross section for argon3; and the ratio between the ion and electron temperatures

Ti/Te. A summary of the numerical parameters as well as the above-mentioned normalized

parameters for the different cases of study are summarized in Table I.

B. Ion kinetic equation

As mentioned previously, we focus on the ion kinetics. To simplify notation, we will

remove the ion index in the rest of the paper. The ion kinetic model is based on the

Boltzmann equation, which describes the evolution in time and space of a VDF f(t, r⃗, v⃗) of

a particle of mass m and charge e, under an external electric field E⃗, as follows,

∂f

∂t
+ v⃗ · ∇⃗rf +

eE⃗

m
· ∇⃗vf =

δf

δt

∣∣∣∣
c
=

δf

δt

∣∣∣∣el
c
+

δf

δt

∣∣∣∣iz
c
, (1)

where the right-hand side term account for the collisional processes, divided into ion-gas

elastic collisions and ionization collisions (the self collisions and recombination collision are

neglected as the plasma is considered to be weakly-ionized and therefore these collisions are

negligible as compared to the ion-gas collisions). The ion-gas elastic collisions is modeled

with the Boltzmann collision term:

δf

δt

∣∣∣∣el
c

=

∫ ∫ [
f(v⃗′)fg(v⃗

′
g)− f(v⃗)fg(v⃗g)

]
σ(|v⃗ − v⃗g|, χ)|v⃗ − v⃗g| d2Ωd3vg, (2)
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where the primed velocities refer to the velocities of the restitution collision (which conserves

momentum, energy and follows micro-reversibility of the collision), σ is the differential cross

section, χ is the scattering angle, and d2Ω is the unit sphere element of the collision angles.

As explained by Robson et al.35, the angular dependence of the differential cross section

of a charge-exchange collision between an ion and its parent gas can be approximated by

the expression,

σ(|v⃗ − v⃗g|, χ) =
σ(0)(|v⃗ − v⃗g|)

2π
[δ(cosχ− cosχ0)]χ0→π , (3)

where δ is the Dirac delta function and σ(0)(|v⃗ − v⃗g|) is the total cross section.

If we consider a Langevin potential, i.e., a polarization potential, the cross section is

proportional to the inverse of the relative speed, and the integrals over the scattering angle

and the gas velocity can be performed, as follows,

δf

δt

∣∣∣∣el
c

= K(0)

∫
[f(v⃗g)fg(v⃗)− f(v⃗)fg(v⃗g)] d3vg = ngK

(0) [n(r⃗, t)wg(v⃗)− f(v⃗)] , (4)

where K(0) is a collision rate, such that σ(0)(|v⃗ − v⃗g|) = K(0)

|v−vg| . In this work, we choose

K(0) = 4.6 · 10−16 m3·s−1 so that the simplified cross section has a similar magnitude to the

actual argon cross section. In Eq. (4), n =
∫
f(v⃗)d3v is the ion density, and wg(v⃗) = fg(v⃗)/ng.

As seen in Eq. (4), the resulting collision operator is equivalent to a Bhatnagar–Gross–Krook

(BGK) operator.

The ionization collision is expressed as follows:

δf

δt

∣∣∣∣iz
c
= ngK

(0)
iz ne(r⃗, t)wg(v⃗), (5)

where the ionization rate is such that, at each time step, the number of particles added to

the domain is equal to the number of particles that left the domain at the boundaries. In

other words,

K
(0)
iz =

[Γi,wall(x = −L) + Γi,wall(x = L)]

ng
∫ L

−L
ne(x) dx

, (6)

where Γi,wall is the absolute value of the ion flux at each wall.

In the resulting kinetic model, due to the angular geometry of the back-scattering collision

and the 1D geometry, the velocities of the ions in the perpendicular direction are decorrelated

and hence the kinetic model can be reduced to a 1D-1V problem, as the distribution function

is in equilibrium at the gas temperature in the transverse direction. In the following, to
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simplify notation, we will denote v⃗ = ve⃗x + v⊥e⃗⊥. In that same spirit, we define the one-

dimensional VDF that depends on the velocity along x, f(v), defined as

f(v) =

∫
R2

f 3D(v⃗) dvy dvz . (7)

C. One-dimensional high-order moment equations

The moment equations are obtained by taking averages over the velocity space of the

kinetic equation, i.e., Eq. (1). In the high-order moment theory, it is useful to use different

definitions for the moments, as it helps for the notation and analysis of the results. First,

we define the velocity moments of order n as,

M (n) =

∫ ∞

−∞
mvnf(v) dv . (8)

The first moments are: M (0) = ρ = mn the mass density, and M (1) = ρu the mass density

flux with u the drift velocity. Second, we define the centered moments, that reads,

P (n) =

∫ ∞

−∞
mcnf(c) dc with c = v − u. (9)

Finally, in the moment theory it is useful to define the normalized (or standarized) moments,

as follows,

P (n)
⋆ =

mvT
ρ

∫ ∞

−∞
cn⋆f(c⋆) dc⋆ =

P (n)

ρvnT
with c⋆ =

v − u

vT
, (10)

where the thermal velocity is defined as vT =
√

p/ρ, with p = P (2), the pressure.

In our study, we will work with 5M closures, which solve the equations up to the fourth-

order moment (for n = {0, · · · , 4} in Eq.(8)) and the fifth-order moment is the closing flux,

needed to truncate the moment hierarchy. This choice of moments was found to be a good

compromise between accuracy and computational efficiency.

We define the 5M centered moments as:

P (2) ≡ p , P (3) ≡ q , P (4) ≡ r and P (5) ≡ s, (11)

respectively, the pressure, the heat flux, the kurtosis, and the hyper-skewness. Note that

as we are considering a 1D-1V problem, the pressure represents the xx component of the

pressure tensor, the heat-flux to the xxx component of the third-rank heat-flux tensor and

so forth.
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The standardized first six moments are denoted as:

P (0)
⋆ = 1 , P (1)

⋆ = 0 , P (2)
⋆ = 1 , P (3)

⋆ ≡ q⋆ , P (4)
⋆ ≡ r⋆ , P (5)

⋆ ≡ s⋆. (12)

Finally, the velocity moments are related to the centered moments by the following relations,

M (2) = ρu2 + p, (13a)

M (3) = ρu3 + 3up+ q, (13b)

M (4) = ρu4 + 6u2p+ 4uq + r, (13c)

M (5) = ρu5 + 10u3p+ 10u2q + 5ru+ s. (13d)

The moment equations are obtained by taking moments of the kinetic equation, Eq. (1),

which yields to the following non-linear set of equations,

∂ρ

∂t
+

∂(ρu)

∂x
= Siz (14a)

∂(ρu)

∂t
+

∂M (2)

∂x
=

eE

m
ρ+ C(1) (14b)

∂M (2)

∂t
+

∂M (3)

∂x
= 2

eE

m
ρu+ C(2) + Siz

kBTg

m
(14c)

∂M (3)

∂t
+

∂M (4)

∂x
= 3

eE

m
M (2) + C(3) (14d)

∂M (4)

∂t
+

∂M (5)

∂x
= 4

eE

m
M (3) + C(4) + 3Siz

(
kBTg

m

)2

(14e)

where C(n) are the collision terms due to elastic collisions and Siz = mngneK
(0)
iz is the rate

of ion density creation by ionization.

For the elastic collision terms, we take the moments of Eq. (4), which yields,

C(1) = −K(0)

m
ρiρgui, C(2) = −K(0)

m

(
ρgM

(2)
i − ρipg

)
,

C(3) = −K(0)

m
ρgM

(3)
i , C(4) = −K(0)

m

(
ρgM

(4)
i − 3ρip

2
g

)
. (15)

D. Analytical and interpolative 5M closures

The system of equations (14) is not closed as the moment M (5) (or more precisely the

centered moment s, also kown as hyper skewness) needs to be written as a function of the

other "known" moments. This is the so-called closure problem in the moment theory. The
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usual way to do so is by considering a VDF expression that depends on five parameters. In

general, these five parameters depend non-linearly on the first five moments and require a

numerical inversion of a system of equations. As a result, once inverted the numerical system,

the VDF is obtained and used to compute the closing moment. The mathematical expression

for the VDF as a function of the moments should respect several properties in order to be

used as a moment closure: (i) since the VDF represents a probability density, it should

be positive in all the velocity domain (here R) for all set of parameters in their definition

space; (ii) the moment system inversion should have a solution for any set of moments in

the realizability space (defined as the space of moments that provide a positive distribution

function, which is independent of the closure); and (iii) the existence of an entropy inequality

of the closed set of equations is important for the stability of the system of equations and

the uniqueness of the solution in discontinuities36. On a numerical point of view, the system

should be hyperbolic (which is related to the existence of an entropy36), otherwise the system

will have complex (non-real) eigenvalues, which can lead to a nonphysical behavior. Note

that all these properties are not necessarily satisfied by all the common moment closures.

In this study, we consider four of the most common closures for 5M equations, where we

provide analytical expressions or interpolative approximations of the closure.

1. Globally hyperbolic regularized Grad closure

The distribution function of Grad’s method of moment is a Maxwellian perturbed by a

polynomial in the velocity, which can be conveniently expressed as function of the Hermite

polynomials37, as follows,

fGrad(c) = M(c; ρ, T )

(
1 +

N−1∑
k=0

hkH
(k)(c)

)
, (16)

where M(c; ρ, T ) is a centered Maxwellian of density ρ and temperature T , H(k) is the

Hermite polynomial of order k, and hk is a coefficient that is a linear combinations of the

standarized moments. The inversion is therefore analytical and straightforward, due to the

orthogonality of the Hermite polynomials38. In the 5M case, the Grad distribution function

reads

f 5M
Grad(c) =

ρ

mvT
M(c⋆)

(
1− q⋆

6

(
3c⋆ − c3⋆

)
+

r⋆ − 3

6

(
3− 6c2⋆ + c4⋆

))
, (17)

11



Comparison of high-order moment models for ions

where the normalized Maxwellian distribution (or Gaussian distribution) is defined as,

M⋆(c⋆) =
e−c2⋆/2

√
2π

. (18)

The standardized closing flux can be easily computed as

s⋆ =
mvth
ρ

∫ ∞

−∞
c5⋆f

5M
Grad(c⋆)dc⋆ = 10q⋆ . (19)

In Fig. 2, the values of the closing flux is presented in the realizability space and compared

to other closures. Despite the simplicity of Grad’s distribution function, it has major draw-

backs in its applicability to conditions far from equilibrium. First, as seen in Eq. (17), the

distribution function is not guaranteed to be non-negative, which can lead to negative pop-

ulations in the tail of the VDF. In addition, when the closing flux of Eq. (19) is used in the

system of equations (14), the resulting system has mathematical problems related to the

hyperbolicity of the equations. In this paper, we will used a fix to this problem, proposed

by Cai et al.25, which consists in adding an additional term to Eq. (14e), allowing to recover

a hyperbolic system of equations. As a result, in the globally hyperbolic regularized Grad

closure, Eq. (14e) becomes,

∂M (4)

∂t
+

∂M (5)

∂x
+ 10

pq

ρ2
∂ρ

∂x
− 5K∂u

∂x
− 10

q

ρ

∂p

∂x
= 4

eE

m
M (3) + C(4) + 3Siz

(
kBTg

m

)2

, (20)

where K = r − 3p2/ρ.

2. Interpolative Maximum Entropy

The maximum entropy closure39,40 is based on the thermodynamical principle of entropy

maximization. We underline that the maximum-entropy principle differs in multi-component

mixtures as compared to monoatomic non-reacting gases, as explained in Ref.41. Neverthe-

less, in this work, we take the simple monoatomic gas maximum-entropy principle, as done

previously15,16. For a given number of moments, the VDF that maximizes the entropy is

an exponential of a polynomial in the velocity. In our 5M case, the VDF will thus take the

form

f 1D
ME(c) = exp

(
4∑

i=0

kic
i

)
. (21)
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The moment inversion of this closure has no analytical expression and its numerical reso-

lution is stiff and, in general, badly conditioned when far from equilibrium. In the results

(Sec. IV), we will show a comparison between the VDF as reconstructed by the maximum

entropy closure and the PIC simulations. In order to compute the maximum entropy dis-

tribution from the moments, we solve an optimization problem, as explained in Appendix

A.

For the computation of the closing flux, however, McDonald and Torrilhon26 developed

an interpolative formula that approximates the exact inversion with very high accuracy.

This interpolative formula can be written as

s⋆ =
q3⋆
β2

+
(
10− 8

√
β
)
q⋆, (22)

with

β =
1

4

(
3− r⋆ +

√
(3− r⋆)2 + 8q2⋆

)
. (23)

The variation of s⋆ as a function of q⋆ and r⋆ is shown in Fig. 2 along with the other closures.

This closure has the disadvantage of presenting a singular subspace in the realizability

space42, referred to as the Junk line. Indeed, for r⋆ > 3, if q⋆ = 0 (which corresponds to

the vertical semi-line above the equilibrium in Fig. 2), the closing moment and the VDF are

not defined. Furthermore, on each side of this singular line, the closing hyper-skewness has

opposite signs and are diverging towards ±∞ when approaching the singularity, and so will

do the eigenvalues. Numerically, as proposed by Refs.16,26, one can prevent the closing flux

of Eq. (22), becoming singular as β → 0. These references propose to limit the value of β

around the singularity. In our simulations, we fixed it to βmin = 10−4, similar to what was

done in Refs.16,26. The value of the cutoff βmin did not seem to have a significant impact on

the profiles, if small enough, but the time step becomes extremely small for smaller values of

βmin if some points of the simulation are close to the Junk line. As will be seen in section IV,

under low pressure conditions the present of the singular Junk line becomes a problem.

3. Hyperbolic quadrature method of moments (HyQMOM)

The quadrature method of moments (QMOM) considers a VDF that is a sum of Dirac

delta distributions (that represent the quadrature points to approximate integrals over the

13
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distribution)43, formally,

fQMOM(c) =
N∑
k=0

wkδ(c− ck) . (24)

where wk are the weights of each Dirac delta distribution and ck is the abcissa of the Dirac

delta distributions.

The Hyperbolic QMOM (HyQMOM) closure29 is a variant of QMOM that adds a con-

dition that ensures the hyperbolicity of the system of equations. This closure will therefore

consider 2N − 1 moments for N Diracs.

In the case of a 5-moments system, we impose the fifth order moment to respect the

following relation,

s⋆ = 2r⋆q⋆ − q3⋆.

The closing flux is presented in Fig. 2 along with the other considered closures.

The VDF will therefore consist of two Dirac distributions with abcissae that depend on

the moments, and one Dirac fixed at the center of the VDF, namely at the drift velocity

(i.e., c = 0). Therefore, in our case, we will consider a VDF of the form

f 5M
HyQMOM(c) =

ρ

mvT
[w0δ(c⋆) + w1δ(c⋆ − c1) + w2δ(c⋆ − c2)] . (25)

where the weights and abscissa can be analytically computed from the moments29, as follows,

w0 = 1− (w1 + w2) , w1 = αw2 , w2 =
α

(1 + α)c21

c1 =

√
r⋆

1− α + α2
, c2 = −αc1

α =
2r⋆ − q2⋆ − |q⋆|

√
4r⋆ − 3q2⋆

2(r⋆ − q2⋆)
. (26)

Note that, in general, the QMOM closure for more than 5M does not allow for analytical

expressions of the closing flux nor the VDF and they need to be computed through an

eigenvalue problem with the Chebychev algorithm44.

4. Extended QMOM (EQMOM)

The Extended QMOM (EQMOM) closure30 is similar to the QMOM closure where the

Dirac distributions are replaced by continuous functions, such as Gaussians with a single

temperature.

14
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In the 5M case, the EQMOM VDF will therefore have the form,

f 1D
EQMOM(c) =

n

vT

[
ρ⋆1M⋆

(
c⋆ − c1
a⋆

)
+ ρ⋆2M⋆

(
c⋆ − c2
a⋆

)]
, (27)

where the normalized Maxwellians are defined in Eq. (18) and the normalized parameters

are computed from the standarized moments as follows,

c1 = −
√

ρ2
ρ1

(1− a⋆) , c2 =

√
ρ1
ρ2

(1− a⋆),

ρ1 =
1

2
+

q⋆

2
√

q2⋆ + 4(1− a⋆)3
, ρ2 = 1− ρ1 . (28)

and a⋆ is a solution of the equation

(1− a2⋆)
3 +

r⋆ − 3

2
(1− a2⋆)−

(q⋆)
2

2
= 0, (29)

that gives, using the third order polynomial formula

a2⋆ = 1− C3 +
C2

C3

(30)

with C3 =
(
C1 +

(
C2

1 + C3
2

)1/2)1/3
, C1 =

q2⋆
4

and C2 =
r⋆ − 3

6
, (31)

where the roots must be treated as complex principal root.

Finally, this closure allows for an analytical closing flux, written as,

s⋆ =
q3⋆
b2⋆

+ (10− 8b⋆)q⋆ . (32)

Like the maximum entropy closure, EQMOM has the same singular subspace, as shown in

Fig. 2. Both closures are in fact very similar. The advantage of EQMOM is its mathematical

simplicity compared to maximum entropy that requires the inversion of an integral system.

However, as will be seen in Sec. IV, the latter is better at capturing a wide variety of VDF

forms. The singular subspace problem is addressed using the same approach as in maximum

entropy.

In Fig. 2, we compare the standarized hyper-skewness for the different models in the real-

izability space of the 5M closures, where we represented the singular subspace for EQMOM

and maximum entropy (Max. Entr.). We can clearly see that these two closures are indeed

almost identical. Alternatively, Grad closure shows a great simplicity as the hyper skewness

only depends on the heat flux. Finally, the HyQMOM closure has no singularities and a

behaviour that resembles Grad around the equilibrium but that also depends on the kurtosis

far from equilibrium.
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FIG. 2. Variation of the closing flux s⋆ as the heat flux q⋆ and the kurtosis r⋆. The hatched zoned

represent the non-realizable region where no positive function can have such heat-flux and kurtosis,

and the dashed line represents the Junk line and the purple cross the thermodynamic equilibrium.

III. NUMERICAL METHODS

The presented moment closures are non-linear system of equations that can be written

in the form:
∂M

∂t
+

∂F(M)

∂x
+B(M)

∂M

∂x
= S(M), (33)

where M are the velocity-moment variables, F(M) are the fluxes, B(M) is the non-

conservative product matrix (which is B(M) = 0 for all the closures except for regularized

Grad), and S(M) is the source term that contains the electric field and the collisional

terms, the notations for the numerical scheme are given in Appendix B. The numerical

resolution of Eq. (33) presents two main difficulties: (i) in high-order moment closures it

is often difficult to have analytical approximations for the numerical fluxes, as required for

computationally-efficient schemes, and (ii) the numerical treatment of this non-conservative

product is technically complex and requires specific numerical schemes. In the following,

we present a second-order numerical scheme that aims at providing efficient and stable

solutions.

A. Second-order finite volume scheme for Maximum Entropy, HyQMOM,

and EQMOM closures

The system of equations of Eq. (33), with B(M) = 0, can be discretized with classical

finite volume schemes45,46. In the finite volume discretization, the domain is divided into
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NC cells with size ∆xi for i ∈ {1, 2, · · · , NC}, were the time evolution of the cell-averaged

conservative variables in the cell i Mi follows the equation,

dMi

dt
+

1

∆xi

(
Fi+1/2 − Fi−1/2

)
= Si, (34)

where the fluxes Fn
i±1/2 are evaluated in the cell interface i±1/2. For the time discretization,

in this work we use a simple forward Euler scheme, as we are interested in steady-state

solutions and the convergence times are relatively fast. As a result, the discretized equation

reads

Mn+1
i = Mn

i −
∆t

∆xi

(
Fn

i+1/2 − Fn
i−1/2

)
+∆tSn

i . (35)

Here, the cell-averaged source term is approximated with the cell averages variables, i.e.,

Sn
i = S(Mn

i ). Alternatively, in order to compute the fluxes at the cell interface, the con-

sidered closures have the advantage that the homogeneous system of equation (i.e., with

S(M) = 0), is a hyperbolic non-linear system of equations (i.e., the Jacobian matrix ∂F/∂M

is diagonizable with real eigenvalues). As a result, Godunov schemes and approximated Rie-

mann solvers can be applied to the discretization of the fluxes. In the present work, we use

a Rusanov scheme that reads as follows,

Fn
i+1/2 =

1
2
[F(Mn

L) + F(Mn
R)]−

|λmax
i+1/2

|
2

(Mn
R −Mn

L) , (36)

where the sub-index R/L represents the reconstructed values on the right and left of the

interface and |λmax
i+1/2| is the maximum spectral radius of the Jacobian matrices with the

left and right states. The reconstructed values of the conservative variables are computed

with a Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) scheme47

with a minmod limiter. We reconstruct the primitive variables P (defined in Appendix B)

and compute the conservative variables in the interface from the reconstructed primitive

variables. We stress that this choice in the reconstructed variables plays a very important

role in the stability of the solution. We also tested the reconstruction of the conservative

variables, which provides unstable solutions, in particular in the sheath region.

The numerical scheme presented in Eq. (35) with (36) has a stability condition, as follows,

CFL = min

(
∆tmax

i∈Nc

(
|λmax

i |
∆xi

)
, ∆tνig

)
< 1. (37)
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B. Second-order finite volume scheme for the regularized Grad closure

The regularization of Grad’s model is proposed by Cai et al.25 such that the matrix

∂F/∂M+B is hyperbolic. This method is an elegant solution to the loss of hyperbolicity of

original Grad’s moment method but it comes with the drawback of adding a non-conservative

product to the equations. A consequence of the non-conservative character of the fluxes is

that classical Godunov’s schemes cannot be applied as there is no general Rankine-Hugoniot

relations. A solution to this difficulty was proposed by Dal Maso et al.48 with a generalization

of the weak solution introducing the notion of a “path” in the phase space of the variables49.

This “path” adds a degree of freedom to the numerical method. In the present work, we

adapt the work of Dumbster & Balsara50 to our sytem of equations. The discretization of

Eq. (33) is done by writing the fluctuation form of the discretized system, as follows,

Mn+1
i = Mn

i −
∆t

∆xi

(
D−

i+1/2 +D+
i−1/2

)
− ∆t

∆xi

(
F−

i+1/2 − F+
i−1/2

)
− ∆t

∆xi

B̂(Pn
i )∆Pn

i +∆tSn
i ,

(38)

where the details of the discretization of the fluxes and the non-conservative matrix are

given in Appendix B. The stability condition of this scheme is the same as in Eq. (37).

C. Analytical and approximated expressions of the eigenvalues of the

Jacobian of the flux

In order to estimate |λmax
i+1/2|, needed for the discretization of the fluxes, we need to eval-

uate the eigenvalues of the Jacobian matrix of the flux. This is one of the major difficulties

in high-order moment models as they, in general, do not have analytical expressions. The

numerical computation of |λmax
i+1/2| may result in computationally expensive numerical cal-

culation of the Jacobian matrix and its eigenvalues. In order to avoid this, in this work,

we provide analytical expressions (when possible) and interpolative expressions in order to

have computationally efficient and accurate algorithms.

a. HyQMOM: The eigenvalues of the HyQMOM Jacobian flux can be analytically

computed and read as follows29,

λHyQMOM
0,1,3,4 = u+

√
p
ρ

(
q⋆
2
±
√

1 + Υ + q⋆2

4
±
√

Υ(1 + Υ)

)
, and λHyQMOM

2 = u (39)

where Υ = r⋆ − q2⋆ − 1 can be proven to be a non-negative quantity for any realizable set of

moments and, hence, the eigenvalues are indeed always real.
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b. Maximum entropy: The eigenvalues of the maximum entropy closure cannot be com-

puted analytically. In this work, we use the approximation proposed by Baradaran27 (c.f.

Boccelli28 for the 3D case), which we give for completeness, as follows,

λMax.Ent.
m ≈ u+ vTλ

⋆
m with m ∈ {0, 1, 2, 3, 4} (40)

and

λ⋆
0,4 =

q⋆±
√

q2⋆∓
4
5
q2⋆βC⋆+4β2Y⋆

2β
± 8

10
C⋆, λ⋆

1,3 =
q⋆±

√
q2⋆∓

6
5
q2⋆βC⋆+4β2X⋆

2β
∓ 3

10
C⋆,

λ⋆
2 =

2q⋆(q2⋆
√
β+2β3)√

β3(q2⋆+2β2)
− λ⋆

0 − λ⋆
1 − λ⋆

3 − λ⋆
4, (41)

where

X⋆ = A⋆ +
(

3
10

)2
C2

⋆ +
3
5
C⋆

√
A⋆, Y⋆ = B⋆ +

(
8
10

)2
C2

⋆ − 8
5
C⋆

√
B⋆, C⋆ =

√
3− 3β,

A⋆ = 5− 4
√
β −

√
10− 16

√
β + 6β, B⋆ = 5 + 4

√
β −

√
10− 16

√
β + 6β. (42)

c. EQMOM: The eigenvalues of EQMOM cannot be computed analytically. In the

present work, we provide with an interpolative approximation of the spectral radius, similar

to the method of Baradaran27 for maximum entropy shown above. The asymptotes of the

highest eigenvalues at positive and negative high heat-flux are respectively q⋆/b⋆+
√

3(1− b⋆)

and
√

3(1− b⋆). The asymptotes of the lowest eigenvalues at positive and negative high

heat-flux are respectively −
√

3(1− b⋆) and q⋆/b⋆ −
√

3(1− b⋆). As a result, the spectral

radius can be estimated with an interpolation between these two asymptotes, as follows,

|λ⋆,HyQMOM
max | ≈ max

(
1
2

∣∣∣∣∣ q⋆b⋆ +

√
4 +

(
q⋆
b⋆

)2
+
√
3(1− b⋆)

∣∣∣∣∣ , 1
2

∣∣∣∣∣ q⋆b⋆ −
√

4 +
(

q⋆
b⋆

)2
−
√

3(1− b⋆)

∣∣∣∣∣
)
.

(43)

This fit is able to approximate the spectral radius λHyQMOM
max ≈ u+ vT |λ⋆,HyQMOM

max | within a

10% accuracy in the worst case, which is shown to be valid for the studied cases.

d. Globally hyperbolic regularized Grad The advantage of the regularization proposed

by Cai et al.25 is that the system has an analytical solution for the eigenvalues at arbitrary

moment order. In our case, they read as follows,

λReg. Grad
0,1,3,4 = u± vT

√
5±

√
10 and λReg. Grad

2 = u. (44)
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D. Ionization and electric field

In this work, we focus on the the influence of the different moment models on the ion

dynamics at different pressure regimes. Following the methodology proposed by Bocelli15,51,

we will impose the quantities that depend from the electron dynamics. These are the ion-

ization rate Siz and the electric field E, that will be taken from the PIC results and the

values will be interpolated to the mesh used for the moment models. In this way, the accu-

racy of the different ion moment models can be assessed, independently of the model used

for the electrons. A self-consistent simulation where the two charged species are coupled is

also possible, as previously done in Refs.22,31, and is left for future work comparing electron

moment closures.

E. Numerical grid, boundary and initial conditions

The simulations are run on a non-uniform grid with a cell size of 0.5 mm in the bulk that

decrease to 10 µm in the sheath. The simulations are initialized with a constant background

of density n = 1015 m3 with a Maxwellian distribution at rest with the gas temperature

T = 0.025 eV. The boundary conditions are imposed with a ghost cell strategy with outflow

conditions, where we assume that the ion flow is supersonic at the boundary. The CFL was

set to 0.1 at the beginning due to the large variations during the transient and can then be

increased to nearly 1.

IV. RESULTS

We present here the results of the high-order moment simulations representing the ions

in the numerical set up of an argon plasma between two floating walls (described in Section

IIA) and compare them with the PIC-MCC simulations with the conditions summarized

in Table I. As discussed earlier, the simulations study different pressure regimes. We vary

the pressure of the background gas from pg = 10 Pa, that corresponds to an ion-neutral

mean free path much smaller than the domain, i.e., λmfp/L = 0.01, to pg = 0.01 Pa, that

corresponds to an ion-neutral mean free path larger than the domain, i.e., λmfp/L = 10. We

will therefore refer to these two pressures as respectively high and low pressure in the rest

of the paper, and the other two pressures as intermediate pressures.
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In order to decrease the noise of the PIC data, the results have been averaged over 3.6·106

time steps, after convergence which takes of the order of 107 time steps. The high-order

moment equations are solved in time until convergence, which requires of the order of 105

to 106 time steps (depending on the pressure regime and the model chosen). Furthermore,

moment results do not require to be time averaged as they are free of statistical noise. The

high-order moments models will also be compared to several classical fluid models. One

based on the isothermal fluid equations (i.e. 2M) and two non-isothermal fluid models (with

3M) based on different closures: the isotropic Maxwellian and an anisotropic Maxwellian (i.e.

with two temperatures, one in the direction x and another in the perpendicular direction

considered to be equal to the gas temperature).

A. Moments profiles

We first present the moment profiles for every model considered at the studied gas pres-

sures. Due to the symmetry of the system, we show only half of the domain for each profile.

In Fig. 3, we present the density profiles for the 5M models as well as the 3M model with

anisotropic Maxwellian compared to the PIC simulations as well as with the isothermal and

3M isotropic Maxwellian models. As it is shown in the figure, the density profile varies

from a dome-like profile (Shottky collisionally dominated regime) at high-pressure to a flat

profile with a sharp drop in the sheath (Tonks-Langmuir nearly collisionless regime), at

low-pressure. In the density profiles, we can see that, in general, regularized Grad (Reg.

Grad) and HyQMOM are able to capture almost perfectly the density profile at all pres-

sures. However, both EQMOM and maximum entropy (Max. Entr.) present a spurious

density gradient in the center of the domain at low pressure. This feature is associated with

the singularity of the closing flux (Junk line) when the kurtosis is positive and the heat-flux

is null. As compared to the isothermal 2M and isotropic Maxwellian 3M moments, the mo-

ment models improve the representation of the density profile in the low and intermediate

pressures, whereas they compare similarly at high pressures. Alternatively, the anisotropic

Maxwellian 3M model is able to largely improve the density profile, although, as it will be

shown later, is not able to correctly predict the higher-order moments, the heat-flux at the

wall nor the VDF.

The temperature (the xx component of the temperature tensor) profiles are shown in
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FIG. 3. Density profiles of all the simulations for four pressures.

Fig. 4. Note that a zoom in the sheath is presented on the right of each profile. At high

pressure, the temperature is constant at Tg except in the sheath region, where it increases

because of the effect of the strong electric field and the collisions with the gas. Alternatively,

the temperature at low and intermediate pressures is lower than the gas temperature in the

center (because of the strong advection) and larger in the sheath (because of the electric

field). As in the density profiles, the high-order moment models, in particular HyQMOM, are

able to capture with very high fidelity the temperature profiles both in the bulk and in the

sheath at all pressures. We also see the effect of the Junk line at low pressure for EQMOM

and maximum entropy, where the temperature decreases slightly more than expected in

the center of the domain. Note that the large increase at the wall at low pressures for
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FIG. 4. Temperature profiles of all the simulations for four pressures. For each plot we show a

zoom of the sheath next to it.

these closure is a consequence of lack of resolution. This is due to the lack of stability and

robustness of these models (because of the Junk line) that prevents to run these simulations

with better resolution (because the time step tends to zero due to the presence of the Junk

line). Finally, the 3M and 2M classical fluid models are less accurate in most of the domain

at all pressures. The 3M anisotropic Maxwellian model is as good as the moment models

at high pressure, but loses its accuracy as the pressure decreases. This is because of the

lack of heat-flux, which becomes important at low pressures, as it will be shown below. The

isotropic 3M model has the right qualitative behavior but lacks of precision at all pressures.

The real advantage of the high-order moment models is their ability to capture higher-

order moments without statistical noise that is characteristic of particle-based kinetic sim-

ulations. We show the heat flux profile in Fig. 5. At high pressure, the heat-flux is almost

zero in the bulk and it presents a sharp drop in the sheath, whereas it is large in the bulk

for low pressures. The four moment models overall capture the kinetic behavior with a high
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FIG. 5. Heat flux profiles of all the simulations for four pressures. We represent the Fourier heat

flux of the non-isothermal Maxwellian cases in dashed lines. For each plot we show a zoom of the

sheath next to it.

level of accuracy. However, we still see the problem of the Junk line in the center of the

domain for EQMOM and maximum entropy. We also see small discrepancies in the sheath

for Grad, which can be explained due to the lack of precision of the moment of order 4. For

comparison, we also present the heat-flux obtained with the Fourier approximation52

Qxxx = 6
5
qx = −3

pkB

mν
∂xT , (45)

applied to 3M fluid models with the isotropic Maxwellian and the anisotropic Maxwellian.

We clearly see that the Fourier approximation is not well-suited here and that it almost

always overestimates (in norm) the heat-flux, especially at low pressure. This justifies a

high-order moment approach in order to capture the heat-flux to the wall in low-temperature

plasmas: Fourier-law is not able to represent the heat-flux inside the sheath due to the large

deviation from thermodynamic equilibrium.

In figure 6 we show the profiles of the standardize heat-flux and kurtosis represented
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in the phase-space (the so-called realizability space). At high pressures (upper plots), the

VDF is closer to a Maxwellian in the bulk, so the heat flux and kurtosis stay mostly around

the equilibrium point (q⋆ = 0 and r⋆ = 3, represneted with a pink cross). At these high

pressures, all the moment models capture the kinetic behavior with great accuracy in the

bulk. In the sheath, while the moments deviate greatly from equilibrium, all excepting

Grad still match the kinetic behavior with very high level of accuracy. In Grad’s closure the

moments even leave the realizability region at the boundaries, in the upper left plot, as a

consequence of a VDF that is not ensured to be positive by this method. On the other hand,

at lower pressures (lower plots), HyQMOM is the most accurate overall, despite an offset

of kurtosis in the bulk. For EQMOM and Maximum Entropy, we see clearly the problem

of the crossing of Junk’s line in the center of the domain. These two models exhibit an

interesting behavior, where the moments peak in the Junk line after being deviated towards

the equilibrium. A similar behavior can be seen in the results presented by Boccelli16. This

non-physical behavior is due to the artificial cut-off of the closing moment around Junk’s line

to avoid its divergence. Despite this problem in the center, EQMOM and maximum entropy

are still highly accurate far from the center of the domain except in the last mesh points of

the domain close to the wall, due to the lack of resolution of these two simulations at low

pressures as mentioned in the previous paragraph. Finally, Grad highly overestimates the

kurtosis everywhere. This overestimation is due to the regularization terms in the kurtosis

equation, as mentioned in the previous paragraph. An interesting point to stress on is that

despite the very large discrepancy of Grad in the kurtosis, this has a minor impact in the

previous moments (only small inaccuracies in heat-flux, as discussed above).

B. VDF reconstruction

We will now assess the accuracy of the different closures to reconstruct the VDF from

the simulated moments. We stress the fact that, in order to obtain low-noise VDF from

PIC simulations, the data were averaged over 3.6 · 106 time steps. Alternatively, the VDFs

of the high-order moment models are instantaneous values, obtained with a method that is

computationally almost as efficient as classical fluid models.

First, since the HyQMOM VDF consists of a sum of Dirac delta distributions, this model

will not recover a continuous VDF. This is a major drawback if one is interested in the VDF
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FIG. 6. High-order moments profiles plotted in the realizability space (heat-flux - kurtosis space)

for four pressures.

shape, in particular for an accurate computation of the collisions or wall processes (e.g.,

sputtering). However, the three Diracs represent in fact quadrature points used to calculate

integrals of a continuous distribution. In that sense, Fox et al.53 developed a method, called

generalized QMOM (GQMOM), to dramatically increase the number of Diracs while keeping

the same first moments. The VDF can therefore be refined as much as desired, making it

quasi-continuous. This method will be used in order to represent the reconstructed VDFs

of the HyMOM results.

The results of the VDF reconstruction at high pressure (pg = 10 Pa) are shown in Fig. 7,

26



Comparison of high-order moment models for ions

in three different points of the domain, including the bulk, the entrance of the sheath and

close to the wall. The VDF is very close to Maxwellian in most bulk domain and can

therefore be reproduced with great accuracy by the four 5M models in the bulk as well

as the 3M model with anisotropic Maxwellian model. In the entrance of the sheath, the

distribution has a positive skewness, which is captured by all the 5M models, and it is

beyond the 3M representation. Close to the wall, the VDF is strongly non-Maxwellian, and

the global shape of the VDF is recovered by all the models with remarkable accuracy, despite

some small differences for EQMOM. We note small differences with the kinetic simulation

in order to capture the fast decreasing tail on the high-velocities side.

The intermediate pressure regime (pg = 1 Pa) is presented in Fig. 8. We present the VDF

in four points: in the center, in the presheath, in the entrance of the sheath, and close to

the wall. The kinetic simulation shows that the VDF is nearly Maxwellian at the center,

whereas it is very elongated in the presheath and it is a beam with a long tail in the sheath

and close to the wall. As seen in the results, these VDFs are beyond the 3M description with

an anisotropic Maxwellian, which provides a particular wrong representation in the sheath

and close to the wall. Alternatively, all the 5M models largely improve the 3M results.

We can see that the regularized Grad model has positivity problems (i.e., negative tails)

in the sheath. Alternatively, maximum entropy provides an excellent representation at this

pressure. EQMOM and GQMOM capture the right trend while presenting some differences,

but still a remarkable accuracy.

Finally, the low pressure (pg = 0.01 Pa) is presented in Fig. 9. As in the previous case,

we present the VDF in four points: in the center, in the presheath, in the entrance of the

sheath, and close to the wall. In this case, the VDF in not Maxwellian in any of them. In

the center of the domain, it presents heavy tails with a symmetric distribution, whereas in

presheath, sheath and close to the wall, the distribution is very skewed, with a very long tail

towards low energies. As a result, these very non-equilibrium distributions can be seen as a

challenge for the different high-order moment models. As previously discussed, due to the

presence of the Junk line, the moment inversion of maximum entropy and the EQMOM do

not necessarily converge around the center of the domain and for visualization purposes are

set to be Maxwellian. In the rest of the domain, these two closures still manage to capture

the very long tail on the low-energy side of the VDF, but they lack precision in capturing the

shape of the peak of the VDF. Nevertheless, they still give a better approximation than the
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anisotropic Maxwellian. Grad is clearly far from its region of validity in the whole domain

with VDFs that exhibit large negative parts. Alternatively, GQMOM is the only method

that manages to capture a very accurate shape of the VDF in the center of the domain as

well as a good approximation of the VDF in the presheath, sheath and close to the wall. In

summary, the 5M HyQMOM (combined with GQMOM for the VDF reconstruction) shows

a great ability to represent non-equilibrium distributions at all pressure both in the bulk

and the sheath.

V. CONCLUSION AND DISCUSSION

We compared the numerical resolution of some of the most common high-order moment

closures to kinetic simulations in a one-dimensional bounded low-temperature argon plasma.

For each moment closure, we used expressions that allow for an efficient computation of the

closing flux and a stable and accurate numerical scheme that is able to have a computational

time that is comparable to classical 3M fluid models, but with a largely improved accuracy.

The accuracy of each method to recover the profiles of fluid quantities (i.e., the density,

the temperature) is similar for the four 5M models and always more accurate than classical

3M fluid models, except in the center of the domain at low pressure for EQMOM and

maximum entropy, due to the singular behavior of these closures. In particular, the high-

order moment closures are able to capture the ion temperature evolution in the sheath better

than models assuming anisotropic Maxwellians, showing that the heat-flux in the sheath has

an impact that cannot be modeled with simplified a Fourier-type heath-flux. Indeed, the

high-order moment models are able to capture the heat-flux profile with high accuracy both

in the bulk and the sheath, largely improving the classical Fourier approximation. We also

compared the ability of each method to reconstruct the VDF from the first five moments,

showing promising results. At high pressure, all 5M closures recover the kinetic VDF with

high fidelity. At low pressures, Grad presents strong negative tails, EQMOM and maximum

entropy have an improved fidelity as compared to a Maxwellian approximation and GQMOM

presents a good accuracy both in the bulk and the sheath of the domain at all pressures.

We propose a summary of the advantages, drawbacks, and possibility of extension of each

of the considered closures:

• Grad is the simplest method despite the difficulty associated to the numerical dis-
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cretization, as shown in this work. In our comparison to the kinetic results, Grad’s

closure presents a good accuracy in the representation of moments up to the heat-flux

in both the sheath and the bulk. However, it presents problems to capture the kur-

tosis, due to the error in the closing flux associated to the non-conservative terms of

the regularization. As shown in the VDF reconstruction, at low pressures the tail of

the VDF presents strong negative parts. In our work we present the 5M model, but

extending Grad to a larger number of moments is straightforward, with a moderate

increase of the computational cost. In addition, Grad’s closure allows for an analytical

integration of the collisional terms for general collisional interactions.

• The maximum entropy closure shows some clear advantages in accuracy at high and

intermediate pressures, capturing with great accuracy the transport and the kinetic

VDF in all the domain. In the 5M case considered here, we used an interpolative

method that shows to be computationally very efficient. However, the presence of

the singular Junk line is a real drawback at low pressure, both for the accuracy and

the stability of the method. The extension to higher-order moment closures is not

straightforward and would require specific interpolative expressions. In addition, there

will always be a singular subspace (due to the fact that the last coefficient of the

maximum entropy distribution function must necessarily be negative), whose impact

is difficult to foresee. Furthermore, another drawback is the high computational cost

of the VDF reconstruction. As a result, the computation of the collisional terms for

general interaction potentials adds a layer of complexity to this problem since there

is no analytical simplification of the collision terms and a numerical integration would

be required in a general case, loosing numerical efficiency.

• The main advantage of EQMOM is that its closure is very similar to maximum entropy

but with a much lower computational cost to reconstruct the VDF. In our results, we

show that the reconstructed VDF is, however, slightly less accurate than the maximum

entropy closure. Nevertheless, an increase in the number of moments considered is

rather simple and one can use some efficient moment inversion algorithms to limit the

computational cost. In addition, the computation of the collisional terms might be

possible in an analytical manner as the model is based on Maxwellian distributions.

• Finally, HyQMOM was found to be the most efficient, robust, accurate, and stable
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method that captures with very high fidelity all the simulated moments both in the

sheath and the bulk at all the studied pressures. The VDF reconstruction is more

challenging, but the GQMOM shows to be a great tool, allowing to capture VDFs

with high fidelity to the PIC ones at all pressure regimes and both in the bulk and

the sheath. In addition, as compared to PIC they do not have any statistical noise.

Furthermore, as in the case of EQMOM, an increase in the number of moments is

rather simple and there exists efficient algorithms, such as the Wheeler algorithm54,

for the VDF reconstruction. In addition, the computation of the collisional terms for

general collisional cross sections has analytical expressions.

These results prove that the use of high-order moment hierarchies to simulate ions in a

low-temperature plasma is a sound approach and could allow an accurate modeling at a much

lower cost than kinetic simulations. In the 5M moment cases shown here, the computational

cost is comparable to this of classical 3M fluid models. The collision modeling with general

collision cross sections is still a challenge in high-order moment closures. Some of the moment

methods studied in this work (e.g., Grad, EQMOM, HyQMOM) allow for affordable collision

computations that will be studied in a future work.
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Appendix A: Moment inversion in maximum entropy closures

We solve the moment inversion system by performing the Newton-Raphson algorithm:

writing the system as

F (U) = M , (A1)

where U = (k0, ..., k4) is the vector of parameters of the VDF and M = (1, 0, 1, q⋆, r⋆)

the vector of normalized moments, one performs iteratively until convergence the following

operation:

Un+1 = Un − J−1(F (Un)−M) , (A2)
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where J = ∂F/∂U is the Jacobian of the function F .

However, the convergence of this method is not ensured and requires an initial guess very

close to the solution for it to convergence in a reasonable number of iterations. For this

reason, instead of solving directly equation A1, we solve iteratively the equation

F (Uk) = M0 + (M −M0)
k

N
, (A3)

where M0 = (1, 0, 1, 0, 3) is the equilibrium moment, and N is chosen so that the convergence

is fast enough. We found N = ⌊10max(q⋆, r⋆ − 3)⌋+ 1 to work most of the time.

Appendix B: Notation for the numerical schemes

1. Definition of vectors and matrices

The velocity moments are

M =



M (0)

M (1)

M (2)

M (3)

M (4)


=



ρ

ρu

ρu2 + p

ρu3 + 3up+ q

ρu4 + 6u2p+ 4uq + r


. (B1)

We define the array of primitive variables, as follows,

P =



ρ

u

p

q

K


, (B2)

where the kurtosis is defined as K = r − 3p2/ρ.

The conservative flux reads

F(M) =



M (1)

M (2)

M (3)

M (4)

ρu5 + 10u3p+ 10u2q + 5ru+ s


, (B3)
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where the closing flux s depends on the particular model. The Jacobian matrix of the

transformation from conservative to primitive variables reads

∂M

∂P
=



1 0 0 0 0

u ρ 0 0 0

u2 2ρu 1 0 0

u3 3ρu2 + 3p 3u 1 0

u4 − 3p2

ρ2
4ρu3 + 12pu+ 4q 6u2 + 6p

ρ
4u 1


. (B4)

The non-linear source term contains the electric field and the collisional terms, as follows,

S(M) =



Siz

M (0) eE
m

+ C(1)

2M (1) eE
m

+ C(2) + Siz
kBTg
m

3M (2) eE
m

+ C(3)

4M (3) eE
m

+ C(4) + 3Siz

(
kBTg
m

)2


. (B5)

Finally, the non-conservative product matrix B is zero for all the models except for the

regularized Grad. In that case, the matrix in conservative variables reads,

B(M) =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

5Ku
ρ

+ 10pu
ρ2

− 10qu2
x

ρ
−5K

ρ
+ 20qu

ρ
−10q

ρ
0 0


. (B6)

For the numerical method, instead, we use the non-conservative product in primitive vari-

ables, where the matrix reads

B̂(P) = B(P)
∂M

∂P
=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

10pq
ρ2

−5K −10q
ρ

0 0


. (B7)
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2. Numerical fluxes in fluctuation form

For the vectors an matrices of Eq. (38), we use the Rusanov-type scheme for the approx-

imate Riemann solver, as follows,

D±(Mn
L,M

n
R) =

1
2

[
Fn

R − Fn
L + B̃(Pn

L,P
n
⋆ )(P

n
⋆ −Pn

L) + B̃(Pn
⋆ ,P

n
R)(P

n
R −Pn

⋆ )
]

± |λmax|
2

(Mn
R −Mn

L) (B8)

where the primitive variables P and the Roe-type matrix B̃ are given in Appendix B 1. The

intermediate state (with the Rusanov scheme) is computed as follows,

Mn
⋆ = 1

2|λmax|

[
|λmax| (Mn

L +Mn
R)− (Fn

R − Fn
L)− B̃(Mn

L,M
n
R)(M

n
R −Mn

L)
]
, (B9)

and the averaged value of the primitive variables Pn
⋆ are computed from the conservative

variables Mn
⋆ . Finally, the fluxes at the interface are computed with the reconstructed

variables, as

F−
i+1/2 = F(Mn

L) and F+
i−1/2 = F(Mn

R). (B10)

The slopes of the extrapolated values of the primitive variables are computed as

∆Pn
i = minmod

(
Pn

i+1 −Pn
i , P

n
i −Pn

i−1

)
. (B11)

The left and right states at the i+1/2 wall interface are computed with this slope, as in the

MUSCL scheme, i.e.,

Pn
L = Pn

i +
1
2
∆Pn

i and Pn
R = Pn

i+1 − 1
2
∆Pn

i+1. (B12)

The conservative variables at the cell interface Mn
L/R are computed from the reconstructed

primitive variables of Eq. (B12). The Roe-type matrix of the non-conservative product is

easily obtained by doing the arithmetic mean between the left and right states, as follows:

B̃(PR, PL) = B̂(P̄) with P̄ = 1
2
(PR +PL) . (B13)

REFERENCES

1D. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters , JPL

Space Science and Technology Series (Wiley, 2008).

36



Comparison of high-order moment models for ions

2M. A. Lieberman and A. Lichtenberg, Principles of Plasma Discharges and Materials

Processing, 2nd ed. (Wiley-Interscience, 2005) Chap. 6.
3P. Chabert and N. Braithwaite, Physics of radio-frequency plasmas (Cambridge University

press, 2011) Chap. 3.
4S. M. Starikovskaia, “Plasma assisted ignition and combustion,” Journal of Physics D:

Applied Physics 39, R265 (2006).
5M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L.

Zimmermann, “Plasma medicine: an introductory review,” New Journal of Physics 11,

115012 (2009).
6E. Kawamura, V. Vahedi, M. A. Lieberman, and C. K. Birdsall, “Ion energy distributions

in rf sheaths; review, analysis and simulation,” Plasma Sources Science and Technology 8,

R45 (1999).
7W. Schottky, “Diffusionstheorie der positiven säule,” Phys. Zeits 25, 635 (1924).
8V. A. Godyak, Soviet radio frequency discharge research (Delphic Associates, 1986).
9A. Tavant, R. Lucken, A. Bourdon, and P. Chabert, “Non-isothermal sheath model for

low pressure plasmas,” Plasma Sources Science and Technology 28, 075007 (2019).
10L. P. Beving, M. M. Hopkins, and S. D. Baalrud, “How sheath properties change with gas

pressure: modeling and simulation,” Plasma Sources Science and Technology 31, 084009

(2022).
11S. Kuhn, M. Kamran, N. Jelić, L. Kos, J. Tskhakaya, D., and S. Tskhakaya, D. D.,

“Closure of the hierarchy of fluid equations by means of the polytropic-coefficient function

(pcf),” AIP Conference Proceedings 1306, 216–231 (2010).
12T. Pichard, “Some recent advances on the method of moments in kinetic theory,” ESAIM:

ProcS 75, 86–95 (2023).
13V. Zhdanov and G. Tirskii, “The use of the moment method to derive the gas and plasma

transport equations with transport coefficients in higher-order approximations,” Journal

of Applied Mathematics and Mechanics 67, 365–388 (2003).
14P. Hunana, “Generalized fluid models of the braginskii type. part 2. the boltzmann oper-

ator,” (2025).
15S. Boccelli, F. Giroux, T. E. Magin, C. P. T. Groth, and J. G. McDonald, “A 14-moment

maximum-entropy description of electrons in crossed electric and magnetic fields,” Physics

of Plasmas 27, 123506 (2020).

37



Comparison of high-order moment models for ions

16S. Boccelli, J. G. McDonald, and T. E. Magin, “14-moment maximum-entropy modeling

of collisionless ions for Hall thruster discharges,” Physics of Plasmas 29, 083903 (2022).
17P.-Y. C. Taunay and M. E. Mueller, “Quadrature-based moment methods for kinetic

plasma simulations,” Journal of Computational Physics 473, 111700 (2023).
18A. Alvarez Laguna, B. Esteves, A. Bourdon, and P. Chabert, “A regularized high-order

moment model to capture non-Maxwellian electron energy distribution function effects in

partially ionized plasmas,” Physics of Plasmas 29, 083507 (2022).
19A. A. Laguna, B. Esteves, J.-L. Raimbault, A. Bourdon, and P. Chabert, “Discussion on

the transport processes in electrons with non-maxwellian energy distribution function in

partially-ionized plasmas,” Plasma Phys. and Controlled Fusion 65, 054002 (2023).
20A. A. Laguna and T. Pichard, “Kinetic theory and moment models of electrons in a

reactive weakly-ionized non-equilibrium plasma,” Kinetic and Related Models (2025),

10.3934/krm.2025007.
21D. A. Kuldinow, Y. Yamashita, A. R. Mansour, and K. Hara, “Ten-moment fluid model

with heat flux closure for gasdynamic flows,” Journal of Computational Physics 508,

113030 (2024).
22A. Alvarez Laguna, T. Pichard, T. Magin, P. Chabert, A. Bourdon, and M. Massot,

“An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-

temperature plasmas at low-pressure,” Journal of Computational Physics 419, 109634

(2020).
23R. Sahu, A. R. Mansour, and K. Hara, “Full fluid moment model for low temperature

magnetized plasmas,” Phys. Plasmas 27, 113505 (2020).
24J. Laplante and C. P. T. Groth, “Comparison of maximum entropy and quadrature-based

moment closures for shock transitions prediction in one-dimensional gaskinetic theory,”

AIP Conference Proceedings 1786, 140010 (2016).
25Z. Cai, Y. Fan, and R. Li, “Globally hyperbolic regularization of grad’s moment system,”

Communications on Pure and Applied Mathematics 67, 464–518 (2014).
26J. McDonald and M. Torrilhon, “Affordable robust moment closures for cfd based on the

maximum-entropy hierarchy,” Journal of Computational Physics 251, 500–523 (2013).
27A. R. Baradaran, Development and implementation of a preconditioner for a five-moment

one-dimensional moment closure, Ph.D. thesis, Université d’Ottawa/University of Ottawa

(2015).

38



Comparison of high-order moment models for ions

28S. Boccelli, W. Kaufmann, T. E. Magin, and J. G. McDonald, “Numerical simulation

of rarefied supersonic flows using a fourth-order maximum-entropy moment method with

interpolative closure,” J. Comput. Phys. 497 (2024), 10.1016/j.jcp.2023.112631.
29R. O. Fox, F. Laurent, and A. Vié, “Conditional hyperbolic quadrature method of moments

for kinetic equations,” Journal of Computational Physics 365, 269–293 (2018).
30C. Chalons, R. Fox, and M. Massot, “A multi-gaussian quadrature method of moments

for gas-particle flows in a les framework,” in Proceedings of the Summer Program (2010)

pp. 347–358.
31G. M. Gangemi, A. Alvarez Laguna, M. Massot, K. Hillewaert, and T. Magin, “Bridging

multifluid and drift-diffusion models for bounded plasmas,” Physics of Plasmas 32, 023502

(2025).
32“Phelps database, www.lxcat.net, retrieved on april 14, 2021.”.
33K.-U. Riemann, “Plasma—sheath transition and bohm criterion,” Contributions to Plasma

Physics 32, 231–236 (1992).
34K.-U. Riemann, J. Seebacher, D. D. Tskhakaya, and S. Kuhn, “The plasma–sheath match-

ing problem,” Plasma Physics and Controlled Fusion 47, 1949 (2005).
35R. Robson, R. White, and M. Hildebrandt, Fundamentals of Charged Particle Transport in

Gases and Condensed Matter , Monograph Series in Physical Sciences (CRC Press, 2017).
36P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock

Waves , CBMS-NSF Regional Conference Series in Applied Mathematics No. n°s 11 à 16

(Society for Industrial and Applied Mathematics, 1973).
37H. Grad, “On the kinetic theory of rarefied gases,” Communications on Pure and Applied

Mathematics 2, 331–407 (1949).
38R. Balescu, “4 - the hermitian moment representation,” in Classical Transport , Transport

Processes in Plasmas, edited by R. Balescu (North-Holland, Amsterdam, 1988) pp. 163–

209.
39W. Dreyer, “Maximisation of the entropy in non-equilibrium,” Journal of Physics A: Math-

ematical and General 20, 6505 (1987).
40C. D. Levermore, “Moment closure hierarchies for kinetic theories,” Journal of Statistical

Physics 83, 1021–1065 (1996).
41M. Pavić, T. Ruggeri, and S. Simić, “Maximum entropy principle for rarefied polyatomic

gases,” Physica A: Statistical Mechanics and its Applications 392, 1302–1317 (2013).

39



Comparison of high-order moment models for ions

42M. Junk, “Domain of definition of levermore’s five-moment system,” Journal of Statistical

Physics 93, 1143–1167 (1998).
43R. McGraw, “Description of aerosol dynamics by the quadrature method of moments,”

Aerosol Science and Technology 27, 255–265 (1997).
44D. Marchisio and R. Fox, Computational Models for Polydisperse Particulate and Multi-

phase Systems , Cambridge Series in Chemical Engineering (Cambridge University Press,

2013).
45R. LeVeque, Finite Volume Methods for Hyperbolic Problems , Cambridge Texts in Applied

Mathematics (Cambridge University Press, 2002).
46E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Intro-

duction (Springer Berlin Heidelberg, 2009).
47B. van Leer, “Towards the ultimate conservative difference scheme. v. a second-order sequel

to godunov’s method,” Journal of Computational Physics 32, 101–136 (1979).
48G. Dal Maso, P. Le Floch, and F. Murat, “Definition and weak stability of nonconservative

products,” Journal de mathématiques pures et appliquées 74, 483–548 (1995).
49C. Chalons and F. Coquel, “A new comment on the computation of non-conservative

products using roe-type path conservative schemes,” Journal of Computational Physics

335, 592–604 (2017).
50M. Dumbser and D. S. Balsara, “A new efficient formulation of the hllem riemann solver for

general conservative and non-conservative hyperbolic systems,” Journal of Computational

Physics 304, 275–319 (2016).
51S. Boccelli, T. Charoy, A. Alvarez Laguna, P. Chabert, A. Bourdon, and T. E. Magin,

“Collisionless ion modeling in Hall thrusters: Analytical axial velocity distribution function

and heat flux closures,” Physics of Plasmas 27, 073506 (2020).
52G. M. Kremer, An Introduction to the Boltzmann Equation and Transport Processes in

Gases , Interaction of Mechanics and Mathematics (Springer Berlin, Heidelberg, 2010).
53R. O. Fox, F. Laurent, and A. Passalacqua, “The generalized quadrature method of

moments,” Journal of Aerosol Science 167, 106096 (2023).
54J. C. Wheeler, “Modified moments and gaussian quadratures,” The Rocky Mountain Jour-

nal of Mathematics 4, 287–296 (1974).

40


