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Abstract

We introduce a Bayes-adaptive framework for
controlling Piecewise-Deterministic Markov
Processes (PDMPs) under partial observabil-
ity and uncertain parameters. PDMPs form
a class of continuous-time Markov processes
that capture hybrid (discrete—continuous)
dynamics, allowing highly flexible model-
ing with a small number of interpretable
parameters. We cast the problem as
a hybrid state-space Bayes-Adaptive Par-
tially Observable Markov Decision Process
(BAPOMDP), which accounts for model un-
certainty offline, without requiring prior in-
teraction with the system. This BAPOMDP
can be seen as a higher-dimensional hybrid
Partially Observable Markov Decision Pro-
cess (POMDP). Because computing optimal
policies in such hybrid state-space POMDPs
is intractable, we rely on simulation-based
deep reinforcement learning algorithms to ob-
tain effective solutions. The approach is
demonstrated in a medical patient follow-up
scenario, where numerical experiments high-
light the feasibility of applying this frame-
work in realistic settings with partial observ-
ability and uncertain dynamics.

1 Introduction

Piecewise-Deterministic Markov Processes (PDMPs),
first introduced by [Davis, 1984], are a family of
Markov processes characterized by deterministic mo-
tion interspersed with random jumps. This structure
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allows PDMPs to model not only the discrete, random
events of a system but also the continuous, determin-
istic dynamics between these events. Due to this dual
capability, PDMPs have been widely applied to de-
scribe phenomena in various fields, including biology,
economics, and medicine [Anderson and Kurtz, 2011,
Goan et al., 2023, Wang and Chen, 2023].

The problem of optimally controlling a fully observed
PDMP via punctual decisions, also known as im-
pulse control of PDMPs, was first formulated by
[Costa and Davis, 1989] and further extended by sub-
sequent works [Costa, 1991, Dempster and Ye, 1995,
Dufour et al., 2016, de Saporta et al., 2017]. In cases
of partial observations, this problem can be framed as
a continuous-space Partially Observed Markov Deci-
sion Process (POMDP). While approximation meth-
ods like discretization [Cleynen and de Saporta, 2018,
Cleynen and de Saporta, 2023] and Monte Carlo plan-
ning [de Saporta et al., 2024] have been proposed to
solve these POMDPs, they all share a critical assump-
tion: the underlying PDMP model is perfectly known.

In this article, we address the more challenging prob-
lem of controlling partially observed PDMPs with ill-
known parameters. A key challenge is that the values
of these parameters are generally uncertain at plan-
ning time. Although prior knowledge can come from
experts or available data, and online learning meth-
ods may sometimes be applied, many critical applica-
tions, such as personalized medical treatment, do not
permit extensive real-world experimentation. There-
fore, there is a clear need for a planning approach that
explicitly handles model uncertainty, a challenge we
address using the Bayes-Adaptive Partially Observed
Markov Decision Processes (BAPOMDP) framework
[Duff, 2002, Pineau et al., 2008]. This framework is
designed to manage model uncertainty a priori, with-
out assuming prior interaction with the controlled sys-
tem.

The classical BAPOMDP approach augments the orig-
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inal POMDP’s state space to include hyperparame-
ters representing parameters uncertainty. For finite-
horizon problems with finite states and observations,
the resulting BAPOMDP also has a finite, though
exponentially larger, state space [Pineau et al., 2008].
In our case, we demonstrate that modeling controlled
PDMPs within a Bayes-adaptive framework results in
an even more complex augmented POMDP with a con-
tinuous, multidimensional state space. Our contribu-
tions are therefore three-fold.

1. We propose a Bayes-adaptive framework to model
and solve partially observed controlled PDMPs
with ill-known parameter values. We motivate
our approach with a medical patient follow-up ap-
plication. Unlike standard BAPOMDPs, our re-
sulting framework handles continuous state spaces
and uses state transitions to generate bayesian es-
timates of the dynamics parameters.

2. We note that solving the resulting BAPOMDP is
significantly more difficult than solving a POMDP
derived from a controlled PDMP with known pa-
rameters. We therefore benchmark several state-
of-the-art deep reinforcement learning (deep RL)
algorithms to derive near-optimal policies for our
BAPOMDP model of the medical patient follow-
up problem.

3. Finally, we evaluate the robustness of the poli-
cies obtained from our Bayes-adaptive approach
by comparing them against a deep RL baseline
that handles uncertainty only as an initial dis-
tribution. Our experiments demonstrate that the
Bayes-adaptive approach is computationally effec-
tive for controlling PDMPs with ill-known param-
eters.

The remainder of this paper is organized as follows.
Section 2 provides an overview of impulse control of
PDMPs. Section 3 introduces our main contribu-
tion: the Bayes-adaptive approach to model impulse-
controlled PDMPs with uncertain parameters, and
its motivating medical example. Finally, Section 4
presents, first, a benchmark of classical deep RL algo-
rithms on the constructed BAPOMDP, and second, an
empirical evaluation of the benefits of using an adap-
tive model compared to a non-adaptive approach.

2 Control of Piecewise Deterministic
Markov Processes

2.1 Piecewise Deterministic Markov Process

We start with a formal definition of a Piecewise Deter-
ministic Markov Process (PDMP), its state space and

its local characteristics.

Definition 2.1 (PDMP). A Piecewise Deterministic
Markov Process X = (Xy)i>0 is defined by a tuple P =
(E,®, )\, Q), where

e The state space E has the hybrid form

E=J{m} xEnm,

meM

for some finite mode set M, and where for all m €
M, En is some Borel subset of Ro. Let B(E) be
its Borel o-field. Denote E the closure of E.

A state will be denoted x = (m,x) € E.

o The flow @ is a continuous function from E X
Ry onto E satisfying a semi-group property, i.e.
O(-,t+s) = &(P(-,1),s) forallt,s € Ry and leav-
ing the mode unchanged. The flow prescribes the
deterministic motion between jumps. We write
O(x,t) = (m, Ppn(x,1)), for all x = (m,x) € E.

e The jump intensity, also known as hazard rate or
risk function X\ is a measurable function from E
onto Ry that determines the occurrence of random
jumps and is such that for any x in E, there exists
€ > 0 such that

/6 A(P(x,t))dt < +o0,
0

forbidding instantaneous jumps. We also write
AMz) = An(x), for all z = (m,x) € E.

e The jump kernel @ is a Markov kernel on
(B(E), E) that selects the new location of the pro-
cess after each jump. The probability Q(B|m,x) =
Qm(B|x) is the probability to jump to B C E
when a jump occurs at x € En. It satisfies
Q{z}|lx) = 0,Yx € E so that a jump has to
change the state of the process.

The PDMP dynamics can be described informally as
follows: starting from some initial point x € E, the
motion of the process follows the deterministic flow
t — ®(x,t) until a first jump time 77. Jumps may
occur via two means: random jumps occur from the
realization of the random clock with intensity A, while
boundary jumps occur when the process reaches the
boundary OF of the state space. Thus, starting from
x at time 0, the first jump time 77 has the following
distribution

Pm(Tl >t) :P(Tl >t|X0 :(E)

t
= exp (—/ M@(z,u)) du) Lict(a)
0
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Figure 1: Trajectory of a generic PDMP. Starting from
an initial value zo at time ¢ = 0, the process follows
a deterministic trajectory until a jump occurs, either
at a random time (as at Ty) or because the process
reaches the state boundary (as at T5). At jump times,
the process jumps to a new location drawn from kernel

Q.

where t*(z) is the deterministic time the flow takes to
reach the boundary OF of FE when it starts from x:

t*(z) =t (x) = inf{t > 0: ®(z,t) € OF}.

At Ty the process jumps to a new point ' = X7, se-
lected according to the distribution Q(:|®(z,71)) and
the motion restarts from this new point as before. A
generic representation of a PDMP is given in Figure 1.
The flow ®, the jump rate A, and the Markov kernel
Q are called the local characteristics of the PDMP
(E,®,\ Q).

Note that the dynamics of a PDMP can be simulated
easily when ® and A are explicitly given and when @Q
can be simulated.

2.2 Control of a PDMP

For a PDMP on a state space E, let {(®,\ Q)’ :
¢ € L} be the finite set of (user-chosen) available
dynamics. Controlling the PDMP means that the
decision-maker can switch dynamics after some delay
reT=10,T], with 0 < T < +o0.

We define action space A = L x T, where an action
a = (¢,r) € A consists of the chosen dynamic ¢ and a
finite delay r before the next switching. The set of ad-
missible actions in state © € E is denoted by A(x) C A.
A policy to control a PDMP is a function 7 : E — A
such that 7(z) = (¢,r) € A(x),Vz € E. Given an ar-
bitrary policy 7, the PDMP P = {{®, A\, Q)™ } on state
space E is augmented with deterministic jumps at de-
cision times, where the active dynamic ¢ is updated
and the current state remains unchanged.

The expected cost of a policy 7 applied at time tqg =0
in state xg is defined as follows. First, a running

cost cg : E — R captures the cost accumulated

along the trajectory (X[ )ico,r]- Then, an impulse
cost is incurred whenever a dynamic change occurs:
cr : E x E — R captures the cost incurred when ap-
plying m(x¢,) = (bn,rn) € A(zy,) in state zy,, .

The expected cost of an impulse policy 7 applied from
xo at time t = 0 to time 7', is then defined by:

T )
V(m,x0) = BT, / cr(XP)dt+ 3 er(XT X7))
0

n=0

Solving a controlled PDMP amounts to compute
a policy with the minimal expected cost up to
a given precision. Such policies always exists
[Costa and Davis, 1989].

2.3 Partially Observed Controlled PDMP

The state z of a controlled PDMP may not be fully
observed. In particular, the mode m may be hidden,
or the Euclidean part x observed with noise. Partial
observability does not impact the PDMP transition
model. However, modelling partially-observed con-
trolled PDMP requires the addition of an observation
space

Q= U Qm, where Q,, € R
meM

Then, we define an observation function O : E' x A X
Q — [0,1]. O(z,a,w) € [0,1] is the probability of ob-
serving w when action a = (¢, r) was previously applied
and led to current state x € E.

A partially observed controlled PDMP can be mod-
elled as a Partially Observed Markov Decision Process
(POMDP) [Cleynen et al., 2025]. Then, an optimal
control policy shall take into account past decisions
and observations to make new decisions. Thus, we de-
fine H, the set of all possible histories. At any given de-
cision time ¢, € [0,T): hy, = (Ggy, Weyy- -5 At —1,We, )-
And H = {hy,,t, €[0,T]}.

A controlled POMDP history-dependent policy is a
function 7 : ‘H — A. Such history dependent pol-
icy assigns a probability distribution over actions in A
to any partial history h:, € H, at decision time ¢,,.

Note that the resulting POMDP has a hybrid state
space and a transition kernel built from the PDMP’s
local characteristics. Unlike the simple structure of a
standard POMDP, this transition kernel depends on
actions (it changes depending on the chosen PDMP
dynamics) and is considerably more complex to man-
age. Moreover, the underlying process evolves in con-
tinuous time rather than in discrete steps.

n?
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2.4 Motivating medical example

Consider a medical setting in which patients cured
from cancer are monitored over a follow-up period of
length T' (e.g., 2400 days), starting from the onset of
their first remission at time ¢ = 0. During follow-
up, cancer relapses may occur, which can be either
curable or incurable, and patients may subsequently
transition to new remission phases or to death. Hos-
pital visits must be scheduled throughout the follow-
up period, at which blood samples are checked for
cancer marker presence. After each visit, based on
marker levels, treatment decisions may be made, with
prescribed therapies maintained until the subsequent
visit.

We give here a short description of this case study, as
a motivating example. The full details of the model
are in the Appendix B.

Let us first describe the controlled PDMP model
(B, (®,\,Q)") for the medical scenario.

The state space £ = {En}, ¢y is defined as follows.

= {0,1,2,3} x {0,1,..., K} represents the mode
part. A mode m = (h,k) € M is composed of a
health status, h (h = 0: remission, h = 1: curable
relapse, h = 2: non curable relapse, h = 3: death)
and of a number, k € {0, ..., K}, of past applied treat-
ments. We assume that an increase in the number
of past treatments decreases treatment efficiency and
increases the probability of a non-curable relapse.

The quantitative part of the state is described by a
Euclidian variable, x = ((,u,7,t) € E = [(, D] x
[0, T)® where ¢ is some marker level that keeps track
of the disease progression, u is the time that has been
spent in the current health status, 7 is the time since
the current treatment has been applied, and ¢ is the
time since the beginning of the follow-up. A treatment
has to be applied for at least 45 days.

Since (o is the marker level of a patient in remission
and D is the marker level of a dead patient, we have

m = (Co, D) x [0,T]> whenever m = (h,k) is such
that h € {1,2} (curable or non-curable relapse), E,, =
{¢o} x [0,T)® whenever h = 0 (remission) and Ey =
{0} whenever h = 3 (death). State 0 is an absorbing
state.

The decision space is defined as follows. A full action
is a = (¢,r), where r € T = {15,30,60} is the delay
until next visit, during which dynamic ¢ is applied.
We consider two sets of dynamics {(®,A, Q)" : ¢ €
{0,1}} (¢ = 0: no treatment, £ = 1: under treatment).
Constraints A(x) ensure treatment lasts at least 45
days: if at a visit: x = (¢, u,7) with 0 < 7 < 45 the
dynamic cannot be changed.

Flow, Risk intensity and Jump kernel are detailed
in Appendix B.1. However, note that the flow corre-
sponds to biomarker growth without treatment, and
to biomarker decline under treatment during relapse:
for x = (¢, u, 7, t),

Cef%s, uts, 7+s, t+s),

Dy 1y (x,8) = (

(p?l i (X, 8) = (Ce"® u+s,0,t+s),

‘sz K (%, 8) = (Ce™% u+s, (T4 8)Le=1, t +3),
D) (%, 8) = (Co, u+ 5, (T +8) =1, L+ 5).

In the next Section, we will consider that parameter
vy is unknown.

In words, random jumps are possible from health
state h = 0 (remission) to health state h = 1 (curable
relapse) and to health state h = 2 (incurable relapse).
Both jump intensities actually only depend on the
number of relapses, £ and the time spent in health
status h = 0 (u). It is also possible to switch
directly from a curable relapse to a mnon-curable
one. It depends on the marker level { instead of
the time spent in curable relapse, and on the curent
dynamic ¢. All other jumps are impossible, except
jumps from h € {1,2} to b’ = 3 (death) which oc-
cur deterministically when the marker level reaches D.

Partial Observation. In the above controlled
PDMP, marker measurements are intrinsically sub-
ject to variations independent of the medical condi-
tion. These fluctuations can be attributed to mea-
surement errors, natural variations and external in-
fluences. The biomarker is thus observed through an
additive noise. Let y = ¢ 4+ € with e ~ N(0,1) be
the noisy biomarker. In addition, the patient’s overall
health h is hidden, together with the time u since the
last change of health status, except when the patient
is deceased, with z = 1(,—3) the death indicator. The
time since the current treatment started, 7, and the
number of treatments, k, are perfectly observed.

The POMDP corresponding to the controlled partially
observed PDMP is presented in Appendix B.2. The
transition kernel P(a’ | x,a) is derived from a combi-
nation of the PDMP’s local characteristics. Although
its expression is lengthy, its structure allows for simple
simulation.

3 Bayes-Adaptive Control of PDMP

Controlled PDMPs are very general and flexible
models for planning under uncertainty which gen-
eralize Markov and Semi-Markov Decision Processes
[Hu and Yue, 2008]. In many applications of con-
trolled PDMP, it is useful to consider a parameterized
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version of @, A and @ since, while the general structure
of the flow, jump intensity and probability kernel are
often known, the precise values of the parameters of
the dynamics may be ill-known.

3.1 Context and state-of-the art of control
under ill-known parameters

The controlled PDMP framework relies on a flow @,
a jump intensity A and a probability kernel () which
may be ill-known in practice.

Let us assume that ®, A\, and ) are parameterized
and that their parameters are unknown. The param-
eterized dynamics model is written (®,, Ay, @) with
parameters v, w, and z following probability density
functions (fgj\eq)v I/EI%’ ,§|29Q)7 with parameters 0g, 0,
and QQ.

Updated knowledge about the parameters of the prob-
ability density functions may be acquired whenever
observations of the controlled PDMP are acquired on-
line. When only few on-line observations are available
(because the PDMP is controlled through a limited
number of interactions with the environment), the un-
certainty about these parameters must be explicitly
considered off-line in the planning framework, before
any interaction with the real environment occurs.

Uncertainty on the transition and observation
functions has been addressed in the sub-case of
discrete-time POMDP (which is encompassed in
PDMPs by assuming constant flow and specific
jump intensities leading to discrete-time Markovian
dynamics), with the introduction of BAPOMDP
[Ross et al., 2011]. In BAPOMDP, the agent must not
only make decisions based on partial observations of
the environment, but also adapt to the current knowl-
edge about the unknown parameters that affect the
system dynamics. These parameters are treated as
random variables with associated prior distributions,
which are updated over time using Bayesian inference
as new observations are acquired [Duff, 2002]. This
allows the agent to maintain and refine their belief
about the environment while interacting with the sys-
tem, improving decision-making in the face of both
partial observation and uncertainty about the system’s
underlying dynamics.

Uncertainty on the jump intensity has also been
tackled in the simpler case of Semi-Markov Decision
Processes by [Kohar, 2020]. In this case, time can
be continuous, but the state space is discrete and
the authors have proposed a Bayes-adaptive approach
to handle uncertain continuous sojourn time duration
(linked to jump intensity).

In the following sections, we focus on a scenario where

the parametric flow is partially unknown, while
other dynamics, as well as the observation function,
are fully known. Handling full model uncertainty in
flow, jump intensity and transition kernel would lead
to a more complex BAPOMDP model, leveraging the
contributions of [Ross et al., 2011], [Kohar, 2020] and
of this paper. This is left for future research.

3.2 Modelling controlled PDMP with
ill-known parameters as a BAPOMDP

Let {(E,(®,\,Q)) : £ € L} be a controlled PDMP
under partial observations and parametric flow, where
parameter vector v is unknown but supposed to have a
probability density fﬁ% parameterized by a vector of
hyper-parameters fg (which we will denote 6 for short,
in the following, since only ® will be parameterized).

As established in [Cleynen et al., 2025] and described
in Section 2.3, a partially observed controlled PDMP
can be modelled as a partially observed MDP (E, A =
LxT,P,R,Q,0).

The transition kernel P(-|z, a) specifies the transitions
of the POMDP. Choosing a = (4,7) in state z € E
specifies that decision dynamic ¢ will be applied from
now on, until date ¢’ =t + 7.

The cost function ¢ should, in full generality, be de-
fined by

c(z,a) =FE [/ cR(Xf/)dt‘ Xo =z| + ¢1(x,a),
0

where ¢7(xz,a) = cI(an,Xf;) if a = (¢,r) and at
time t,, the decision is taken to change the dynamic
¢ to ¢'. In practice, such a cost function is generally
intractable to compute, and alternative cost functions
close to ¢, depending only on the values of (x, a, z’) are
considered instead.

Note that this POMDP has a finite action set, A, and
a finite number of decision steps, since T is finite, ex-
cludes 0, and the horizon T is finite. In contrast, the
state space E is hybrid, combining discrete and con-
tinuous components: jumps may occur at any time
between two consecutive decision steps, while the flow
evolves continuously. The finiteness of T does not alter
this property.

As a consequence, classical BAPOMDP methods (e.g.,
[Ross et al., 2011]) cannot be directly applied to this
setting. In the following, we introduce a novel up-
date function designed to address this Bayes-adaptive
framework.

First, the state space is augmented to handle flow hy-
perparameters 6:

E=Ex0.
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Then, the following transition kernel P(#,0'| =
(z,0),a = (¢,r)) specifies the transitions of the
BAPOMDP.

P(i/ = (a/,0') € Bg x Bo | & = (2,0),a)

= / 1poU(0,z,a,2") x P(dz' | x,a,0).
Bgp

for any Borel subsets Bg, Bg of E and ©, where
U0, z,a,z’) is the posterior update function.

Typically authors assume that the prior over the
transition function follows a Dirichlet distribution
[Duff, 2002, Ross et al., 2011]. In contrast, our set-
ting places the prior on a specific parameter of the
transition function, and this parameter has continu-
ous support. As a result, the posterior update does
not directly depend on the transition (z,a,2’), as in
the classical case, but instead requires inferring the un-
known flow parameter v from the observed transition:

u(67 x? a” x/) = W(97 V(x7 a‘? xl))?

where V(x,a,2’) denotes the inference function for
the unknown parameter 6, and W(0, 0) represents the
prior update function.

Example: Assume that the flow parameter follows
a log-normal distribution. Consequently, one might
model the prior distribution over the log-normal pa-
rameters using a Normal-Gamma prior [Fink, 1997],
though other prior distributions could also be consid-
ered. Theorem 3.1 provides the update formulas for
the Normal-Gamma distribution, which will be used
in the next section.

Theorem 3.1. Let v = (v!,...,v") be an i.i.d. sam-
ple drawn from a log-normal distribution:

v’ | p, 0% ~ Log-N(p,1/0%),

2

where the mean p and the variance o are unknown.

The conjugate prior for (u,1/a?) is assumed to be a
normal-gamma distribution:

(,U, 1/02) ~ Nr(,an K0, Oéo,ﬁo),

where (po, ko, 0o, o) are the prior parameters.

Assume that, at time n, the posterior distribution of
(u, 1/0%) follows a normal-gamma distribution:

(,uv 1/02) ~ NF(,U,n, R, anyﬂn)~

Then, after a new observation v"+' is obtained via
V(Xp, p, Tnt1), the posterior parameters are given by:

_ Hnﬂn+10g(vﬂ/+1)
Hn+l = = 3
En+1 = Knp+ 1

W(Ons1,Vn41) = Qnir = am +1/2

Rn ) n 2

But = P+ oo )
Proof. The proof is derived from [Murphy, 2007,
Fink, 1997] and available in Appendix A. O

3.3 Medical example formalized as a
BAPOMDP

In the following, it is assumed that all PDMP param-
eters are known, except in remission where we assume
that v; ~ Log-N'(u, 1/0?), where the mean p and vari-

ance o2 are unknown.

We now formalize the medical example of Section 2.4
as a BAPOMDP (F,A,Q, A, P,0,c). Its characteris-
tics are defined as follows:

e The state space £ = E x © with E from the
PDMP model in Section 2.4 and © C R* the space
of hyperparameters. As explained in Section 2.4,
model uncertainty only concerns the value of the
flow parameter vy, which follows a log-normal dis-
tribution with unknown parameters p and o. Ac-
cording to Theorem 3.1, a conjugate prior for the
log-normal distribution is a normal-gamma distri-
bution. Therefore, the set of hyperparameters ©
consists of the set of vectors (i, fin, o, Bn) C RE.

e The action space A, the observation space (2, the
available actions sets A, the observation kernel
O and the cost function ¢ are the same as those
defined in Section 2.4 and in Appendix B.2.

e The transition kernel P(|Z = (z,6),a) is defined
in Section 3.2:

— at the start of a patient’s trajectory, the un-
known parameters p and o are assumed to
follow a Normal-Gamma distribution with
hyperparameters (jo, ko0, 20, 50),

— the posterior update function i is defined in
the example of Section 3.2, and

— the transition kernel P remains the same as
in Section 2.4, but now depends on the pa-
rameter vector 0 = (ln, Kn, Qn, Bn)-

Unlike standard BAPOMDP cases where the transi-
tion update only depends on (z,a,z’), here the up-
date of the function U is different because we estimate
the distribution of the flow parameter v; with function
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V(z,a,z") detailed in Table 1. This estimate allows us
to update the posterior distribution of v; using the
Bayesian update formulas for a normal-gamma prior,
available in Theorem 3.1.

Table 1: Function V(z,a,2’) to estimate the slope v
from transition (z,a,z').

¢ (h,h’) Expression
L ¢
0 (01) Llog (CO)
0 (L,1) %log (%)
0 (1,2) - (log %) - vgu/>
1 (1,00 % log (g
k <
1 (1,1 = log(c,
1(12) 5 (log(§) - eaw)

4 Benchmarking solution algorithms
for BAPOMDP frameworks

This section details a practical implementation of our
BAPOMDP framework using simulation-based deep
reinforcement learning (RL) and evaluates its effec-
tiveness in the medical patient follow-up case study.
We first conduct an extensive benchmark to assess the
ability of deep RL algorithms to solve the BAPOMDP.
We then evaluate the resulting policies on the real
model (i.e., instantiated with real parameters), and
compare their performance against a non-adaptive
baseline. Experiments’ code is provided as supplemen-
tary material.

4.1 Solving a BAPOMDP

The BAPOMDP, formulated in Section 3.3, is an
augmented finite-horizon POMDP with a continuous,
multi-dimensional state space, rendering classical tab-
ular RL algorithms impractical. We therefore turn to
deep RL methods, which are well suited to such mul-
tidimensional continuous settings.

In simulation-based RL, the algorithm iteratively im-
proves its policy by interacting with a simulator of the
model—in this case, the BAPOMDP. At each step,
the algorithm selects an action, which the simulator
executes, returning the resulting observation transi-
tion (w — w’) and reward, defined as the opposite of
r(z,a) = —c(z,a). The algorithm then updates its
policy based on these experiences, gradually converg-
ing toward a near-optimal deep policy.

Given the wide variety of deep RL algorithms and con-
figuration options, identifying the most effective for

computing near-optimal policies for the BAPOMDP
is a challenging task. To address this, we conduct an
extensive benchmark of the main deep RL algorithms,
options, and hyperparameters on our BAPOMDP. A
detailed account of the study, including implementa-
tion, tuning procedures, and extended results, is pro-
vided in the Appendix C. Based on this analysis, we
adopt for the remainder of our evaluation the deep
DQN algorithm [Mnih et al., 2013], combined with
action-masking to handle invalid actions and tuned hy-
perparameters as specified in the Appendix C.3.

4.2 Illustrative empirical Evaluation

We assess the performance of the policies computed
from the BAPOMDP model at test time, i.e., when
applied to the real model with the true distribution of
the unknown parameter v .

To examine how the level of uncertainty in the prior
affects performance, we consider three scenarios of in-
creasing certainty about parameter 6 that differ in the
amount of information provided by the prior distribu-
tion. Table 2 reports the prior values associated with
each scenario where v; follows a log-normal distribu-
tion with parameters ;4 = —6.40 and o = 0.0.

Table 2: Prior values for the three experimental sce-
narios where vy follows a log-normal distribution with
parameters u = —6.40 and ¢ = 0.0.

Prior /1‘07’%07050750)

(

Ouweak (1, 0.001, 1.01, 1)
(
(

Omedium  (—6.785, 5.001, 3.51, 1)
~6.23, 10, 6.01, 1)

ehigh

As a baseline, we compare our approach with a non-
adaptive POMDP. In this model, the unknown param-
eter v; is modeled as a fixed Normal-Gamma random
variable. Thus, when solving the model via simulation-
based RL, parameter v; is drawn from the Normal-
Gamma prior at the start of each simulated patient
trajectory.

For each scenario, we compute policies for both the
BAPOMDP and the non-adaptive POMDP using
simulation-based RL with the DQN algorithm, config-
ured with the best-performing options and hyperpa-
rameters identified in the benchmarking analysis (Sec-
tion 4.1). To account for training variability, this pro-
cess is repeated five times, yielding five policies per
model and scenario.

We then evaluate these policies on the real model by
running 5,000 Monte Carlo simulations of complete
trajectories for each policy. The performance of each
model in each scenario is measured as the average tra-
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jectory reward, aggregated over the 5 x 5,000 trajec-
tories. Results, reported in Table 3, show compa-
rable performance between the BAPOMDP and the
non-adaptive POMDP, with outcomes depending on
the informativeness of the prior. Specifically, under a
weakly informative prior, the non-adaptive POMDP
slightly outperforms the BAPOMDP (—5.82 £+ 0.28
vs. —5.70 + 0.23). In contrast, with a medium or
strong prior, the BAPOMDP outperforms the non-
adaptive approach (—5.74 £0.29 vs. —5.86 +0.13 and
—5.77£0.12 vs. —5.84 £ 0.11).

Table 3: Performance evaluation of BAPOMDP and
non-adaptive POMDP policies. Reported values corre-
spond to the average trajectory reward (with standard
deviation) computed from 25,000 Monte Carlo simu-
lations on the real model for each scenario.

Prior BAPOMDP Non-adaptive POMDP
Oweak —5.82+0.28 —5.70 +0.23
Omedium  —5.74 £0.29 —5.86+0.13
Onigh —5.77+0.12 —5.84 +0.11

Overall, these results indicate that although the per-
formance is close to that of standard POMDPs ap-
proaches, the BAPOMDP handles prior uncertainty
more effectively, up to the point where the prior be-
comes entirely uninformative, in which case it provides
no advantage over non-adaptive methods.

5 Concluding remarks

In this article, we have provided a framework for
the optimal control of Piecewise-Deterministic Markov
Processes (PDMPs) under partial state and model
observability. We have considered the case where
the parameters of the PDMP flow are ill-known and
a probability distribution over their values is main-
tained. We have proposed a Bayes-adaptive method
to address the learning-while-managing PDMP con-
trol problem. A key practical finding of this paper is to
have demonstrated that the problem of optimally con-
trolling PDMPs under parameter uncertainty and par-
tial observability can be modeled as a hybrid-state Par-
tially Observable Markov Decision Process (POMDP).

The BAPOMDP framework is not an online rein-
forcement learning framework. Instead, updates to
the POMDP model based on future observations are
predetermined before taking any action and are al-
ready incorporated into the BAPOMDP model. Thus,
while the original POMDP model is ill-known, the con-
structed BAPOMDP model is fully-known at planning
time.

Solving hybrid state POMDPs is highly intractable.

Therefore, we propose and evaluate an implementa-
tion of our approach that approximates the solution
of the BAPOMDP using simulation-based deep re-
inforcement learning. Numerical experiments in the
medical patient follow-up application show that our
approach achieves test-time performance comparable
to currently used non-adaptive models, while offering
the advantage of being a principled method grounded
in the standard Bayesian inference framework.

As additional real-world data becomes available, the
agent’s knowledge can be refined by constructing a
new BAPOMDP with a more accurate prior. The
agent can then be retrained on this updated model,
benefiting from the improved information. Over time,
as this process is repeated with progressively richer
data and increasingly adaptive priors, the framework
could naturally evolve toward an online reinforcement
learning paradigm, where model updates and policy
improvements occur continuously during interaction.

The field of deep reinforcement learning (RL) re-
search for hybrid-state POMDPs is experiencing rapid
growth. Emerging algorithms, such as those based on
transformer models [Vaswani et al., 2023], are being
investigated for POMDP solutions. We believe that
the unique characteristics of Bayes-adaptive control of
PDMPs make this problem a valuable new benchmark
for exploring the capabilities of cutting-edge deep RL
methods. Our work paves the way for controlling more
complex PDMPs, where future research could explore
scenarios in which the jump intensity or Markov ker-
nel also contain multiple unknown parametric compo-
nents, going beyond the uncertainty of a single flow
parameter considered in this study.
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Supplementary Material

A Proof of Theorem 3.1

Let v = [v!,--- ,v"] be an i.i.d. sample drawn from a log normal distribution Log-A (1, ) where we assume that
both the mean p and the precision A\ = 0~2 are unknown. Here we show how to infer those parameters from a
Bayesian model with conjugate priors.

A.1 Likelihood of a log normal distribution

The probability density function is defined as

o) = (;ﬁ) e (—;aog(-) - m?) 7

hence the likelihood of sample v is

n

(ol A) = [ ] (o'l )

where

A.2 The prior

The conjugate prior of the log normal distribution is the normal-Gamma distribution, with density function:

o 2 ~3 _ A
(s Alpo, Ko, o, Bo) = F(zo) (HO> Aotz L exp <—2(Ho(u — po)? + 250))

Note that it is possible to compute the marginals of such distributions in the following way:



Orlane Rossini’, Meritxell Vinyals®, Alice Cleynen®, Benoite de Saporta', Régis Sabbadin?

w0 = [ wl

o A0t 2 =L exp (—)\Bo)/ exp (_/\;O(“ _ u0)2) dp
X A* exp (—Afp)

And therefore A follows a Gamma distribution with parameters o + 1, 5p. Similarly,
w0 = [ s A

/)\Oéo+2 exp( ABo + (ﬂ2u0) ))d/\

which integrand corresponds to the density of an unnormalized Gamma distribution G(a = «g + %, b= P+

2
W) We can therefore write:

I'(a)
ba

()

xb

— )? .
= (8o + S H0] 00y

=(1+ 1 + aoko(p — M0)2)772a%+1
20 Bo

That is a multivariate Student’s t distribution with mean pg, scale matrix 8y /(cpko) and 2aq degrees of freedom.

A.3 The posterior distribution

The posterior is defined as follows.

7(, Alv) o< w(p, Al pto, ko, o, Bo)m(v|p, A)

1 A A S log(v
o A%+~ oxp <_2(mo(u — po)* + 2ﬁo X A7 exp ( 5 > (log(v') — H)2>

i=1
lyap+2-1 A 2 &
X AZAYT2 7 exp (—BoA) exp ) ko(p — po) —l—ZlOg
i=1

On one side we have

and on the other side

Kon(0 — p1o)?

Ko(p — p0)® + n(p —0)% = (Ko +n)(n — pa)® + P

where ~
_ RKopo +NU

" Ko +n



Bayes-Adaptive Impulse Control of Piecewise-Deterministic Markov Processes

Therefore,

(1, AJv) oc A% exp (—;\(Ko +n)(p— un)2>

x XT3 exp (=B \) exp <—/2\ > (log(v') — 17)2)> exp (—;\Kon@ — o) )

Ko+n
i=1 0+

which is once again a normal-Gamma distribution with parameters

_ Kopo +no
" Ko+ 1
Kpn =Ko +n
an =g +n/2

n

B = b+ 5 > (og(v') —)” +

i=1

Kon (0 — pio)?

2(&0 + n)

A.4 The posterior marginals distribution

From Section A.2 we have

77(/\|U) = G()‘|O‘na ﬁn)
77(/‘|U) =T, (N|Mm 5n/<an"€n))

Note that in the special case where n = 1 (only one new observation), the updated parameters are simply

Knpn + 1Og<vn + 1)
Kn +1

Hn+1 =

Ept41l = Kn +1
Qpt1 =y +1/2

“n(IOg(Un + 1) - Nn)2
2(kn +1)

ﬁn+1 = ﬂn +

B Medical Example Details

B.1 Medical example as a PDMP

Subsets E,, are defined as follows:

® En—(o.x) = {¢o} x [0, T), Vk: a patient in remission (health status h = 0) has a marker level of ¢y, whatever
his current treatment and number of past treatments.

® En—(1,k) = [0, D) x [0,T]3, Vk: a patient suffering a relapse (neither dead nor in remission) has a marker
level (y < ( < D, whatever the number of past treatments.

o En—(2,x) = [C0, D) x [0, T)3, Vk: a patient suffering an incurable relapse (neither dead nor in remission) has
a marker level (y < ¢ < D, whatever the number of past treatments.
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o En—(3 = {0}: a patient dies when her marker level reaches D (and reaches an arbitrary absorbing state,
0), whatever his number of past treatments.

Let {{(®,\, Q)" : ¢ € {0,1} denote the finite collection of available dynamics for the PDMP on the state space E.
The case ¢ = 0 corresponds to the dynamics without treatment, while £ = 1 corresponds to the dynamics under
treatment.

Dynamics without treatment (¢ = 0). The biomarker evolution follows an exponential pattern. Under
remission (h = 0), it remains constant at ¢y, while for a relapse (h = 1 and h = 2), it is increasing:

@?07k)(x = (¢, u,7,t),8) = (Co, u+s,0,t+s),

Oy 1y (x= (G 1),8) = (™%, ut 5, 0,1+ 5),

<I>(()27k)(x = (¢, u,7,t),s) = (Ce"*, u+s, 0,t + s).

The time required for the process to reach its boundary is infinite under remission, and, under relapses, correspond
to the time required to reach the death biomarker level D:

t?éfk)(x) = +o0,

1 D
9 (x) = — log(=),
(1,k)( ) " g( §)

1 D
9% (x) = — log(=).
(2,k)( ) v g( C)

From remission, the probability of relapse occurrence increases with the duration of time spent in remission and
the number of previous treatments. From standard relapse, the risk of relapses associated with therapeutic escape
is influenced by the biomarker level and the number of previous treatments. In light of these considerations, we

choose Weibull distributions of the form: ,ugq_%h, g (1) = (a?n_%h, k)u)ﬂg—‘(’b’*) and p?n_m 0 (Q) = (a%()ﬁo:

)‘?O,k)(x) = (NEH(M) + lu’0m~>(2,k))(u)7

)‘?1,k)(x) = NgH(z,k)(C),

/\?Z’k)(x) =0.
In remission, the patient may transition to either a standard relapse or an incurable relapse. In the case of
relapse or therapeutic escape, the biomarker increases to a critical value D, leading to the patient’s death. A

therapeutic escape may occur at any time. We define the Markov kernel @ (case h = 3 is omitted as no jumps
are allowed when patients are dead) for all real-valued bounded measurable functions g on F :

/‘gqa(l,k) ()
(/‘21—>(1,k) + u?nﬁ(z,k))(U)
/J?n—>(2,k)(“)
(Hon s (1 1) T Hins 2, )) (1)
Qlry9(x) = 9(2,k,¢,0,0,)1psc + h(3,k,0)1c=p,

Qo py9(x) = 9(3,k,0)1c=p.

Q(()O,k:)g(x) = g<1’ ka CO? 07 Oa t)

+ g(2u k7 <07 07 Oat)

)

Dynamics with treatment (¢ = 1). The biomarker evolution follows an exponential pattern. Under remission
(h = 0), it remains constant at ¢y, while for a relapse h = 1 it is decreasing, and for incurable relapse (h = 2), it
is increasing:

q)%o,k)(x = (Ca u, T, t)7 S) = (CO? U + S, T + S, t + S)a

(I)%l,k)(x = (Ca u, T, t)a S) = (Ce_%sv u+ S, T + 57t + 5)7

Bly o (X = (1, 7,1),5) = (Ce™*, u+ 5, 7+ 5,1+ 5).
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The time required for the process to reach its boundary is infinite under remission, and, under relapse, corresponds
to the time required to reach the nominal value (y while under incurable relapse it is the time required to reach
the death biomarker level D:

g (x) = +00,

1, k ¢
t(lfk) (X) = 17110%(6)’
. 1 D
fliy () = o log( L),

From remission, the probability of incurable relapse occurrence increases with the duration of time spent in re-
mission and the number of previous treatments. From standard relapse, the risk of relapses associated with thera-
peutic escape is influenced by the biomarker level and the number of previous treatments. In light of these consid-

erations, we, once again, choose Weibull distributions of the form: U%o k) (b k)(u) = (O‘(lo K)o ( k)u)ﬁ(lo,k)—»(h’,k)
1
and lu%l,k)—>(2,k)(<) = (aQ)"

A%O,k) (x) =n 0,k)—(2,k) (u),

1
A(l,k) (x) = p

1
A2k (x) = 0.
In remission, the patient may transition to an incurable relapse. In the case of relapse the biomarker decreases
to {p and returns to remission. Therapeutic escape may occur at any time. In the case of therapeutic escape, the
biomarker increases toward the D threshold, ultimately resulting in the patient’s death. We define the Markov

kernel @) (case h = 3 is omitted as no jumps are allowed when patients are dead) for all real-valued bounded
measurable functions g on E :

N

L) 2.0 (€

Q%O,k)g(x) = 9(21 k, <07 0,7, t)v
Qlir9(@) = 9(2,k,¢, 0,7, )Les e, + 9(0,k, 6o, 0,7, 8) Le=¢,,
Qlopy9(x) = g(3,k,0)1c—p.

Under both dynamics, one could write the transition kernel P¢ as a combination of the deterministic flow, the
jump intensity and the Markov kernel such that for a time period r and all real-valued bounded measurable
functions g on E, Plg(z) = E[g(X,)| X0 = =, ).

The transition kernel P can be written as a combination of the deterministic flow, the jump intensity and
the Markov kernel such that for a time period r and all real-valued bounded measurable functions g on E,
Pg(x) = E[g(X,)|Xo = z]|. It is assumed that in the event of a relapse from the remission state (m = 0), the
patient takes more than 60 days to die (t((J(’)Tk) (x) > 60 and tf;k)(x) > 60), this implies v1 < 0.061 and vy < 0.061.

As this form of P is complex, we work case by case for z = (m = (h,k),x = ({,u,7,t)) € E.

o If m = (3), then Pg(z) = g(3,k,d), the patient is dead.
o If m = (2,k), over a time step r the patient may either die or remain in therapeutic escape.

,Pzg(m) = g(3a ka 8)]1t1,;=*(<)§7« + g(mv (Pﬁ] (Xa T))]ltﬁ**(g)>»,«'

e If m = (1, k), and no treatment is applied (£ = 0), the biomarker increases. Over a time step r, the patient
may die, remain in relapse, transition to a therapeutic escape and stay there, or transition to a therapeutic
escape and die.

_ AL x £, % _ AL X7
POg(z) = g(3, k, d)e~Mnlxtn (O)]ltf;’*(g)gr + g(m, B, (x,1))e Anl )]ltf;*(c)>r
+/0 g (Q,ka‘l)fz,o,k) (@f;((,s),r - s) ,r—8,0,t+ r)

¢ ¢ —Af (x,s
X i (2, (D (€, 9)) ™ An )ﬂtf; (@4,(C,8)) >r—s e () > 05

k)

(2,k)

" — £ X,8
+/0 9(3, K, D) iy (1) (Pra(C,8)) e Mo (@8 (¢,5))<r—s 85
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e If m = (1,k), and treatment is applied (¢ = 1), the biomarker decreases. Over a time step r, the patient
may fall in remission and remain there, remain in relapse, transition to a therapeutic escape and remain
there, fall into remission and transition to a therapeutic escape, transition to a therapeutic escape and die.

Plg(z) =g (0,k,Co.r — t5*(C), T+ 1t +7) e~ Anlatn ™ () (O <r

+g(l7k7(1)f;1(<.ar)7u+TaT+T7t+T) ( )]1 fw*(c)>7’

+/0T (2.5, @) (P(Co5),7 = 5) 7= s,7 1+ 7)

l ‘ —AL (x5
Xty (2,00 (B (G 8))e A1 b > Lety, (@ (s >r—s B

—tn " (©)
+/0 g(2,k7@f27k) (Coor — s — tﬁ;*(()) =5 —to (), T+t +7)

2 — AL (x,t* —Af L (x,s
X o k) o,k (s)e (DT Rom 0L ds

+/0 9(3,k75’)ﬂﬁ1_>(2,k)( m(C,8))e” G )]1’*(¢)>91t‘(’2*k)(q>f(<,9))<7 sds

e If m = (0,%), and no treatment is applied (¢ = 0), the biomarker remains at its nominal value. Over a

time step r, the patient may stay in remission, transition to a relapse, transition to a therapeutic escape or
transition to a relapse before transitioning to a therapeutic escape.

N X
Poy(a) = g (mgbfo,k) (x,r)) )

+/0 g(1,]@,(1){17,6)(@,7"—s),r—s,O,tJrr) pﬁ]_}(Lk)(u+s)

¢ ¢
% e—Aﬁ‘(x,s)e—A(lvk)(tb(l,k)(g‘o,r—s),r—s) ds

+/O g (27k,¢€2,k)(§0,7' — ), —s5,0,t + r) s o (04 5)e™ 00 ds

T T—S8
+/0 /0 g (27]“7‘1)%2,1@) (q)fl’k) (Co,8"),r— 8" — s) ,r—s —s,0,t+ 7“)

12 _ AL s’
x 'uﬁﬂ—>(17k) (u+ S)eiAm(x’S)Nfl,k)e(z,k) (‘I)ﬁ,k)(CO» Sl)) e w0005 g g

e If m = (0, %), and treatment is applied (¢ = 1), the biomarker remains at its nominal value. Over a time
step r, the patient may stay in remission or transition to a therapeutic escape.

~ Al (x
Plg(:r) =g (m, @fm)(x,r)> e Am(xm)

+ /0 g (2, k, <I>€27k) (Coyr—8),r—s,7+r,t+ 7”) ana(z,k)(u + s)e*/\ﬁ(x,s) ds

Although the PDMP transition kernel appears lengthy to write out, its structure allows for straightforward
simulation.

B.2 Medical example as a POMDP

The associated POMDP (E, A, Q, A, P, O, ¢), is characterized as follows :

e The state space E corresponds to the state of a patient x € En, and the absorbing state 9 € E3 1.

e The action space A collects the decision pairs a = (¢,7), where r € T is the delay until the next visit and
¢ e L =1{0,1} is the dynamics choice.
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e The observation space §) corresponds to the observation of a patient w = (k, z,y, 7, t), with y = ( + € where
€ are real-valued independent and identically distributed random variables with density f independent from
the controlled PDMP. Here f correspond to the Gaussian distribution. z = 1,—3 is the death indicator.

e The available actions sets are defined by

0 if 2 =1,
Aw) =< {1} x (TN[0,T —t]) if0<7 <45,
{0,1} x (TN[0, T —t]) otherwise.

o The transition kernel P can be written from the PDMP transition kernel P¢, defined above. For all real-
valued bounded measurable function g on E, let Pg(z) = E[g(X,)|Xo = z]. Then one has

[ ¢(9) ifx=20

Py(z,a) = { Plg(h,k,C,u, 7t +71) else.

e The observation function does not rely on the action a. For all real-valued bounded measurable function ¢
for ' = (m' = (W, k'),X) € En,

q(k,1,D,t) if o = 9,

Oq(z',w) = , _
q(k,0,y,7,t)f(y — ¢")dy  otherwise.

e The cost function ¢ is ¢(z,a,2") = rCy + Cy + Cprily—3 where a = (¢,r), i.e. the cost is composed of a
fixed visit cost Cy, a cost of treatment r¢Cy proportional to the treatment duration and a death cost rCp
proportional to the time spent in the death mode.

C Benchmarking simulation-based reinforcement learning on solving

BAPOMDPs

This section presents the benchmarking of deep RL algorithm on solving the BAPOMDP in our our medical
patient follow-up application. We begin by detailing the experimental setup, including the baseline algorithms
and their variants that will be benchmarked on the BAPOMDP model. Next, we describe the tuning of hyperpa-
rameters performed for each selected algorithm and finally we analyse the results of the numerical experiments,
focusing on the performance of the trained policies.

C.1 Benchmark description

Next we describe the algorithms selected for benchmarking as listed in Table 4. The selection criteria were based
on three dimensions: the type of algorithm (value-based or policy-based), the use of memory, and the method
for handling invalid actions.

Value-based vs. policy-based. To compare value-based and policy-based RL algorithms, we include one
state-of-the-art representative from each family: DQN [Mnih et al., 2013] for value-based methods and PPO
[Schulman et al., 2017] for policy-based methods.

memory. Optimal policies in POMDPs generally depend on the history of past observations rather than only
on the current observation of the system. Deep RL algorithms typically incorporate recurrent structures to
encode this history. To assess the impact of memory, our benchmark includes a variant of PPO equipped with
a Long Short-Term Memory (LSTM) module.

Handling invalid actions. In our medical application, two types of invalid actions can occur: (i) actions
exceeding the treatment horizon; and (ii) actions that terminate the treatment prematurely. We benchmark
the two main approaches [Huang and Ontanién, 2020] proposed in the literature to handle such invalid actions:
action penalties and action masking, knowing that action masking has been shown to outperform in general
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Table 4: List of benchmarked algorithms.

PPO

PPO with action masking
PPO-LSTM

DQN

DQN with action masking

action penalty. In invalid action penalty, the invalid actions receive large costs so that the agent learns to
minimize costs by not executing any invalid actions. In our medical patient-follow up application this translates
to constraints that are directly implemented in the cost function with prohibitive cost as follows:

cx(z,a,2") = c(x,a,2") + Culisg + Crli—olo<r<as,

where Cp is a cost for exceeding the horizon and Cp penalizes stopping treatment too early. Instead in action
masking, invalid actions are masked out and then the algorithm samples just from those actions that are valid.
In Table 4, unless otherwise specified, the algorithms handle invalid actions using an action penalty; cases where
action masking is applied are explicitly indicated.

Regarding the environment, Table 5 show the parameters of the PDMP (the Patient model) and BAPOMDP
models used in the experiments. Both models were implemented using the Gymnasium environment
[Towers et al., 2024] to ensure compatibility with the main RL libraries. For each algorithm listed in Ta-
ble 4 we use in experiments the implementation provided in the RLIib framework [Wu et al., 2021]. Finally,
RL algorithms optimize rewards rather than costs. Since our reward is defined as the negation of the cost
r(z,a,2') = —c¢(z, a,2’), maximizing reward is equivalent to minimizing cost, ensuring our results remain con-
sistent with the original objective.

C.2 Hyperparameter Tuning

For each algorithm listed in Table 4, we performed a hyperparameter tuning process using the Ray Tune func-
tionality from the RLIib library to identify the best-performing configuration. The set of hyperparameters
considered in this tuning is reported in Table 6. For each algorithm, 1000 configurations were randomly sampled
from the ranges specified in Table 6 and trained in the training environment (the RL simulator of the BAPOMDP
model). Training for each configuration was terminated once it reached either 100000 simulation timesteps or
1000 training iterations, whichever occurred first. The best configuration for each algorithm was defined as
the one achieving the highest average reward among all tested configurations. Table 7 summarizes the selected
hyperparameters for each algorithm.

C.3 Evaluation

For the evaluation, each algorithm was trained using the best hyperparameter configuration identified in the pre-
vious section. To account for randomness, five independent training runs were performed per algorithm. Training
was terminated once it reached either 100,000 simulation timesteps or 1,000 training iterations, whichever oc-
curred first. During training, the current policy was evaluated every five iterations in the environment without
exploration noise. Each evaluation consisted of 10 episodes, and the performance metric was the average reward
per episode under the current policy.

We report the performance of each algorithm, using its best configuration, by plotting the mean episode reward
as a function of the number of training interactions. The results are shown in Figures 2 and are analyzed and
discussed below.

Impact of action masking. Figures 2a and 2b compares handling invalid actions with action masking versus
action penalties in DQN and PPO, respectively. In Figure 2a, we observe that DQN with an action penalty
requires significantly more training interactions to learn to avoid invalid actions, whereas action masking enables
the agent to incorporate this constraint directly and learn faster. In Figure 2b, the difference for PPO is less
pronounced, but the action-masking variant still adapts to invalid actions more quickly than the action-penalty
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Table 5: PDMP and BAPOMDP parameter values used in experiments, where v; ~ Log-N(p, o) and (u, o) are
unknown

Name Notation Value
Boundaries

Biomarker nominal level Co 1

Biomarker death level D 40

Horizon T 2400

Flow

Slope parameter in relapse U1 Log-N(—6.40,0)
Slope parameter in non curable relapse  vs U[0.0001, 0.06]
Jump function

Scale parameter of ufo)k)%(Lk) afO,k))*}(l,k) 0.0002/k
Shape parameter of l“fo,k)—)u,k) ﬂko,k)->(1,k) 3.5

Scale parameter of H(0,k)— (2,k) 0 k)= (2,k) 0.00001

Shape parameter of ufo,k)%(m) ﬂé“ojk)_)@’k) 3.5

Scale parameter of /i) 4y (o ) al 1.116e=2%% /4
Shape parameter of N(()l,k)—>(2,k) BY 4.5

Scale parameter of M%l,k)%(lk) ap, 5.58e "k
Shape parameter of Nél,k)%(lk) B -0.8
BAPOMDP

Noise e~N(u,o) (p=0,0=1)
Initial prior 0, (—6.785,5.001, 3.51,1)
Cost function

Treatment cost Cy 0.1

Visit cost Cy 1

Death cost Cp 300

Horizon constraint cost Ch 1000
Treatment constraint cost Cr 1000

counterpart.

Impact of memory in PPO. Figure 2c examines the impact of adding memory (LSTM) to PPO. Incorporat-
ing LSTM does not significantly alter the overall learning curve compared to standard PPO, as both ultimately
achieve similar reward levels. However, PPO-LSTM exhibits substantially lower performance during the initial
training iterations before converging to comparable results.

Based on the above results, the remainder of our evaluation focuses on PPO with action masking and DQN with
action masking, while excluding the PPO variant with memory and the action-penalty approach.

Impact of algorithm type (value-based vs. policy-based). Figure 2d compares DQN and PPO, both
using action masking, to assess the effect of algorithm type. Both algorithms show performance degradation after
approximately 15,000 training iterations, indicating overfitting or training collapse; training should therefore be
stopped at this point. Up to this stage, their performances are comparable. However, PPO with action masking
exhibits high variability, with large reward fluctuations and limited stability, whereas DQN with action masking
demonstrates a more stable training process.

Conclusion. From these results, we retain DQN with action masking as the deep RL algorithm of choice for

computing near-optimal policies for the BAPOMDP model in our medical application.
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Table 6: Summary of tuned parameters and their possible values.

Parameter

Possible Values

Shared Hyperparameters

Discount Factor ()
Training Batch Size
Training Batch Mode
Learning Rate

Fully Connected Layer Sizes
Activation Function
Observation Filter

10.95, 0.97, 0.99, 0.999]

(32, 65, 256, 512, 1024, 2048, 4096}
{TruncateEpisodes, CompleteEpisodes}
{3e-5, 0.0001, 0.0003, 0.001}

{[32], [32.32], [64], [64,64]}

{linear, relu, tanh}

{meanStdFilter, NoFilter}

DQN

TD Error Loss

Number of Step

Double Q-learning

Dueling Architecture

Replay Buffer Capacity
Prioritized Replay Alpha
Prioritized Replay Beta
Prioritized Replay Epsilon
Epsilon Timestep

Initial Epsilon

Final Epsilon

Value Range Min

Value Range Max

Noisy Nets

Hidden Layers Size

Training Intensity

Target Network Update Frequency
Steps Before Learning Starts

{Huber, MSE}

{1, 2, 3}

{True, False}

{True, False}

{50000, 100000, 500000, 1000000}
(0.5, 0.6}

{0.4, 0.5}

{1e-6, 3e-6}

{2, 10000, 50000, 100000, 200000}
(0.9, 1.0, 1.5}

{0.0, 0.01, 0.02}

{-60 000, -50 000, -40 000}

{-500, -10, 0, 10}

{True, False}

{[64], [128], [256], [512]}

(1, 4, 16, 32}

{500, 1000, 5000, 10000, 20000}
{1000, 10000, 20000}

PPO Without LSTM

Number of SGD Iterations

SGD Minibatch Size

Clipping Parameter

Value Function Shared Layers

Gradient Clipping

Use Generalized Advantage Estimation (GAE)
Value Function Loss Coefficient

{10, 20, 30}

{64, 128, 2561

{0.1, 0.2, 0.25, 0.3, 0.4, 0.5}
{False, True}

{None, 0.5, 1.0, 2.0, 5.0}
{True, False}

{0.001, 0.01, 0.1, 0.5, 1.0}

PPO With LSTM

LSTM Cell Size
Use Previous Action in LSTM
Use Previous Reward in LSTM

{64, 256, 512, 1024}
{False}
{False}
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Table 7: Best configuration for each algorithm trained with BAPOMDP framework.

Parameter Without Action-Masking  with Action-Masking
DQN

TD Error Loss MSE MSE
Discount Factor (v) 0.99 0.99
Number of Step 3 3
Double Q-learning True False
Dueling Architecture False False
Replay Buffer Capacity 500 000 500 000
Prioritized Replay Alpha 0.6 0.6
Prioritized Replay Beta 0.4 0.4
Prioritized Replay Epsilon 3x 107 3x 107
Epsilon Timestep 2 50000
Initial Epsilon 1.5 1.5
Final Epsilon 0.0 0.0
Value Range Min —50000 —40000
Value Range Max 10 —500
Training Batch Size 4096 2048
Training Batch Mode CompleteEpisodes TruncateEpisodes
Learning Rate 0.0003 0.001
Fully Connected Layer Sizes [64,64] [64,64]
Activation Function relu tanh
Observation Filter NoFilter NoFilter
Noisy Nets False False
Hidden Layers Size [512] I
Training Intensity 16 16
Target Network Update Frequency 500 500
Steps Before Learning Starts 10000 20000
PPO

Discount Factor (v) 0.95 0.97
Number of SGD Iterations 20 20

SGD Minibatch Size 256 128
Training Batch Size 256 256
Training Batch Mode TruncateEpisodes TruncateEpisodes
Learning Rate 0.001 0.0003
Clipping Parameter 0.25 0.5
Fully Connected Layer Sizes [64,64] [64,64]
Activation Function tanh linear
Value Function Shared Layers True False
Observation Filter MeanStdFilter NoFilter
Gradient Clipping 2.0 0.5

Use GAE True True
Value Function Loss Coefficient 0.5 0.01
PPO with LSTM

Discount Factor (v) 0.97

Number of SGD Iterations 10

SGD Minibatch Size 64

Training Batch Size 256

Training Batch Mode TruncateEpisodes

Learning Rate 3x107°

Clipping Parameter 0.3

Fully Connected Layer Sizes [64,64]

Activation Function linear

Value Function Shared Layers True

Observation Filter MeanStdFilter

Gradient Clipping 2.0

Use GAE True

Value Function Loss Coefficient 0.001

LSTM Cell Size [64]

Use Previous Action in LSTM False

Use Previous Reward in LSTM False
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Figure 2: Impact of algorithm choice on the performance in terms of mean episode reward per episode with
respect to the number of training experiences used on BAPOMDP model.
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