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Understanding and optimizing the design of helical microswimmers is crucial for advancing their application in various fields.The Boundary

ElementMethod (BEM) is used to simulate the dynamic [1]. Due to the complexity of our model, we focus on parametric shape optimization.

We employ the Free-Form Deformation (FFD) technique [2], which provides a sufficiently complex admissible shape space. This is integrated

with the Scalable Constrained Bayesian Optimization (SCBO) method [3], ideal for high-dimensional constrained optimization problems. Published in Physical Review Fluids.

Flagella geometry of microswimmers

The swimmer, denoted by S, is composed of a head H and a set of nf of flagella, i.e.

S = H
⋃nF
i=1Fi. Each flagellum Fi is a tube of radius r with a centerline of total length L.
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Figure 1. Schematic of microswimmers represented by an arbitrary flagellum.

Fixed parameters Optimized parameters

r Radius of the flagella Rt Amplitude

L Total length λ Wavelength

l Junction distance α, β, γ, δ Angles for position and orientation

Table 1. Fixed and optimized parameters of flagella.

Head geometry of microswimmers

The head is obtained as the image of the Free-Form-Deformation (FFD) map T applied

to the unit sphere, where control points P ∈ R3M are shifted by a vector µ ∈ R3M ,

T : D × R3×M → D(µ)
(Θ, µ) 7→

(
ψ−1 ◦ T̂ ◦ ψ

)
(Θ, µ),

where T̂ (·) =
∑J

i=0
∑J

j=0
∑K

k=0 b
I,J,K
i,j,k (·)(P + µ)i,j,k and bI,J,Ki,j,k (·) is the tensor products of

Bernstein polynomials.

Figure 2. Illustration of the FFD method deforming a domain D containing a Θ shape via a µ vector

using the T map.

Dynamic of microswimmers

Due to the low Reynolds number in microswimmer dynamics, the fluid behavior is

governed by the Stokes equations given by

−µ∆u + ∇p = 0 in R3 \ S,
∇ · u = 0 in R3 \ S,

u = U + Ω ∧ (x− xH) on ∂H,

u = U + Ω ∧ (x− xH) + ωeFi1 ∧ (x− xFi) on ∂Fi,

‖u‖, p → 0 as x → +∞,

for all i ∈ {1, . . . , nF}.

Parameter Description

u, p Velocity and pressure of the fluid

U,Ω Translational and angular velocities of the swimmer

ω = −2πrad.s−1
Angular velocity of the flagella

eFi1 Directional axes of the flagellum Fi
xFi, xH Junction point of the flagellum Fi and head center of mass

Table 2. Parameters of the Stokes PDE.

Boundary Element Method

1. Green tensor kernel : u(y) = −
∫
∂SG(x, y)σ(u, p)(x)n(x)dx for all y in R3.

2. Self-propulsion :
∫
∂S σ(u, p)(x)n(x)dx = 0,

∫
∂S σ(u, p)(x)n(x) ∧ (x− xH)dx = 0.

3. P1 finite element space of ∂S.

Shape optimization problem

Admissible shapes : Sad = Hε
ad × FP

ad

Admissible flagella : FP
ad = { F ⊂ R3 | (λ,Rt, α, γ, β, δ) ∈ P and |F | = |F 0| }

where P is a compact set.

Admissible heads : Hε
ad =

{
H = T (H0, µ)

∣∣µ ∈ V and ||H| − |H0|| ≤ ε
}
where

V is a sufficiently small closed set around the control points to prevent mesh

collapse.

Cost functions : J1 for the mean velocity and J2 for the mean efficiency along e1,

J1(S) = −Ū1(S)
Ū 0

1
and J2(S) = −Ū1(S)

Ū 0
1

× P̄ 0

P̄ (S)
.

Finally, the optimization problem for i ∈ {1, 2} is formulated as infS∈Sad Ji(S).

High dimensional Bayesian optimization method

Gaussian Process (GP) is used to model costly functions from a given dataset Dn.

Prior: J ∼ GP(0, k)
Posterior: J | Dn ∼ GP(µ,Σ)

with


µ(x) = K(x,Xn)K−1

n Yn,

Σ(x) = K(x, x) −K(x,Xn)K−1
n K(Xn, x),

(K(X,X ′))i,j = k(Xi, X
′
j) and Kn = K(Xn, Xn).

The SCBO method is based on the trust region approach, which outperforms conven-

tional Bayesian Optimization (BO).
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Figure 3. Illustration of the Scalable Constrained Bayesian Optimization (SCBO) method developed in [3].

Results

1.557 µm

1.480 µm

1.480 µm

J = J = 11| | 2| |

1.896 µm

2.790 µm

1.103 µm

J = 1.55402| |

e3

1.405 µm

2.768 µm

1.152 µm

J = 3.59801| |

1.369 µm

1.104 µm

1.364 µm

J = 10.9081| |

1.927 µm

2.263 µm

1.425 µm

J = 1.24772| |

1.2
1.0

0.8
0.6

0.4
0.2

0.0
X/L 0.0

0.5
1.0

1.5
2.0

2.5
3.0

1e
1

Y/L

0.5

0.0

0.5

1.0

1.5

2.0

2.5

1
e

1

Z/L

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
X/L 1.5

1.0

0.5

0.0

0.5
1e

2

Y/L

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1
e

2

Z/L

Figure 4. (a) Reference swimmer and the best swimmers. (b) Center of mass trajectories.
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