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Abstract. Boolean networks (BNs) are systems of entities described by
Boolean variables providing interaction in discrete time. They are par-
ticularly used in the modeling of Cell Signaling called Boolean Genetic
Regulation Networks (BGRN). We present in this article a new repre-
sentation of BGNR. For this representation, we use a modal Hypothe-
sis Logic (H). We also introduce a representation for BNs in H which
drives to new formal results. Our results make it possible to discriminate
between stable configurations, limit cycles and unstable cycles of BNs.
Ghost Extensions, defined in H, play here a key role.
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1 Introduction

From a logical point of view, a biological system can be viewed as a set of
interacting elements (or entities), whose states change over discrete time. Genetic
networks are specific biological systems that represent how the genes/proteins
of a cell interact with each other for the survival, reproduction, or death of this
cell. They have been studied from the end of the 1960s in the context of Boolean
networks (BNs), as sets of entities mapped to Boolean states, and their associated
Boolean dynamical systems (BDSs). In this framework, it is considered that the
expression of one gene modulates the expression of another gene by activation
or inhibition. The use of BDSs leads to founding theorems on feedback circuits
that create behavioral complexity and richness [9, 19, 23–26, 28, 35].

The study of genetic networks can be a source of relevant questions regarding
knowledge representation. Firstly, interactions appear as a form of causality.
Therefore, we expect that the models use logical inferences, but which inference
is the most adequate for the genetic networks ?

Of course, the use of classical logic is inadequate in this context because it
cannot deal with inconsistencies, whereas what we learn on genetic networks
often arises from long and expensive experiments, and even then we only know
or observe a small part of the interactions. This knowledge could be revisable,
uncertain, contradictory and even false. Moreover, algorithmic complexity is a
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crucial issue regarding the need to provide algorithms with reasonable calculation
times in practice. These questions have been studied in artificial intelligence since
the late 1970s, especially by the use of both particular nonmonotonic logics and
techniques derived from constraint programming. Notably, default logic (DL) [22,
6] as well as answer set programming (ASP) [18] are good approaches. For the
representation of genetic networks with no cycle, results have been obtained
with default logic [12, 11]. This article deals with a representation of boolean
genetic networks and of a representation of BDSs using a non-monotonic modal
logic called hypothesis logic (H) [30, 32] defined in 1993, after a first approach
proposed by [3]. Preliminary results on circuits were presented in [31].

A dynamic of a BDS is characterized by a function f associated with an
updating mode µ that organizes the entities updates over time. In this paper,
we focus solely on the fully asynchronous (non-deterministic) updating mode.
Most of the studies done on BDSs have focused on their temporal asymptotic,
i.e., on the analysis of both their stable configurations (or fixed points) and
stable/unstable cycles/oscillations. If the representation of a BDS by whatever
DL, ASP or other well known nonmonotonic formalisms enables us to find fixed
points, these representations are not suitable to capture cyclic dynamical behav-
iors. This is embarrassing because these cycles may represent real fundamental
phenomena in living organisms such that the cell cycle [5, 17], the circadian cy-
cle [1, 29], or the cardio-respiratory pace [10]. This possible lack of extensions in
DL has been fully studied in the context of hypothesis logic. As shown in [32, 30],
DL is a fragment of H. In the latter logic, theories always have extensions among
which some of them, called ghost extensions, have no counterpart in DL. We in-
troduce representations in H for BN asynchronous transition graphs (ATGs),
which allows us to exhibit new formal results. Notably, ghost extensions play
here a key role since they enable H to discriminate between BDSs stable con-
figurations, stable and unstable attractors. This article is structured as follows:
Section 2 reminds basic results about non-monotonicity logic. Section 3 gives the
main definitions and notations related to H. Section 4 gives a representation of
genetic networks into H . Section 5 gives the definitions on BDS. In Section 6,
we present a syntax and a semantic representations of BDSs in H. We also shows
that the asynchronous asymptotic behaviors such as stable configurations and
stable attractors, as well as unstable attractors, are properly captured. Section 7
gives a brief conclusion.

2 Non-monotonic and default logics

Representing biological system with a logical formalism seems intuitive. Such
a representation from classical logic is not adapted because it leads to incon-
sistencies in most cases. A way to manage these inconsistencies is provided by
non-monotonic formalisms. Monotonicity is a property of inference relations that
states that deductions directly increases/decreases with knowledges: whereas this
property is crucial in mathematics, it is largely questionable regarding reason-
ing with incomplete or contradictory information. That led to the development
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of non-monotonic logics in artificial intelligence among which Default Logic or
ASPs. Default logic [22] concerns standard formulas of first order logic, to which
contextual inference rules called defaults are added in order to deal with revis-
able informations. A default is a local inference rule d “ A :B

C , whose application
specifically depends on the formulas A, B, C that compound it. The intuitive
meaning is: “If A holds, if B is coherent with what is known, then C holds”. The
fact that a default can be triggered or not depending on the context, further leads
to a notion of extensions as max-consistent sets of formulas with respect to the
trigger of the defaults used to get it. The underlying reasoning is non-monotonic
because adding here a new information may invalidate previously triggered de-
faults. A first remark is that some default theories may have no extensions, which
expresses a form of deep inconsistency which renders computation more tricky.
A second remark is that default logic only computes stable extensions, which
appears as a drawback. Indeed, such a type of extension is limited since it ap-
pears too cheap to handle more than stable attractors of BDSs while we actually
expect to capture also unstable ones. Intuitively, the main problem arises from
how the dynamics is represented.

3 Hypothesis Logic

Hypothesis logic H [30, 32] is a bimodal logic [4] with two modal operators L
and rHs. If f is a formula, the intuitive meaning of Lf is f is proved/stated. The
dual H of rHs is defined as Hf “  rHs f . The intuitive meaning of Hf is f is a
hypothesis, and hence rHsf means  f is not a hypothesis. For example, a default
A :B
C can be interpreted/translated in H by the modal formula LA^HB Ñ LC

whose intuitive meaning is: If A is stated and B is a valid hypothesis then C
is stated. The formalism used in this article uses a restricted definition of the
language of H, sufficient to represent BNs and Boolean Genetic Networks.

3.1 Syntax

The language of H, denoted by L pHq, is defined by the following inductive rules:
‚ Any formula of propositional calculus (PC) is in L pHq.
‚ The set of atoms (or propositional variables) of L pHq is finite.
‚ Whenever f and g are formulas of PC, Lf , rHsf , Hf ,  Lf ,  rHsf ,  Hf are
in L pHq too4.

And no other formulas are in L pHq than those formed by applying these two
rules. Operator L has the properties of the modal system T and rHs has those of
the modal system K. As a consequence, the inference rules and axiom schemata
of H are:
‚ All inference rules and axiom schemata of first-order logic.
‚ pNrHsq: $ fñ$ rHsf , the necessitation rule for rHs.

4The full definition of H further states that any formula of first-order logic is in
L pHq, and that, whenever f and g are in L pHq,  f , pf ^ gq, pf _ gq, pf Ñ gq, are in
L pHq too.
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‚ pNLq: $ fñ$ Lf , the necessitation rule for L.
‚ pKrHsq: $ rHspf Ñ gq Ñ prHsf Ñ rHsgq, the distribution axiom schema for
rHs.
‚ pKLq: $ Lpf Ñ gq Ñ pLf Ñ Lgq, the distribution axiom schema for L.
‚ pTLq: $ Lf Ñ f , the reflexivity axiom schema for L. Unlike L, the axiom
of reflexivity does not hold for rHs. It is important to remark that there are so
far no connections between L and rHs. We force this connection by adding the
following link axiom schema:
‚ pLIq: $  pLf ^H fq.

This very weak axiom is the base of H. It means that it is impossible to
prove f and to assume the hypothesis  f at the same time. Note the following
equivalences:  pLf ^H fq ô Lf Ñ  H f ô H f Ñ  Lf , where the second
formula means that if we prove f , we cannot assume the hypothesis  f and the
third formula means that if we assume the hypothesis  f , we cannot prove f).

3.2 Semantics

The Kripke semantics [16] is defined for normal modal logics (i.e., the logics that
contain at least axiom pKq). We shortly remind here the bases needed for our
developments. A Kripke structure is a digraph K “ pW,Rq where the universe
W is a set tw1, . . . , wnu of worlds and the accessibility relation R ĎW ˆW is a
binary relation among worlds. When wj Rwk, wk is accessible from wj . A Kripke
model is obtained by assigning in every world a truth value to every atom i. This
makes possible to assign a truth value to all the formulas of the propositional
calculus (PC). A world is then mapped to a logical interpretation and hence
implicitly to a configuration of a BDS. Formulas other than those of PC are
assigned to worlds with the following condition: for all f , Lf is true in a world
wk if and only if f is true in all accessible worlds from wk. The different axioms
that hold in different modal logics depend on the properties of the accessibility
relations R. For the system K, R is any relation, while reflexivity axiom pTLq
holds if and only if R is reflexive.

As shown in [30], H has a Kripke semantics with two accessibility relations,
RrHs for rHs, RL for L. RrHs is the relation of system K and RL is the relation
of system T , hence reflexive. The relationship between the two relations, is given
by the extra constraint RL Ď RrHs which corresponds to the link axiom. Proofs
of completeness, correctness, and compactness for H are given in [30].

Note 1. The axiomatics of H was defined to give an alternative to Default Logic,
using the minimum of axioms. With the full definition of H, one could move to
the system S4, by adding axiom (4) $ Lf Ñ LLf . But this addition makes lose
the notion of dynamics necessary to the representation of a BDS and thus of its
underlying genetic network. Indeed, to represent the dynamics we consider here
that Lf represents an action (for example the production of a protein f), at a
time step represented by a Krypke world w. All the accessible worlds from w are
the following steps. Using (4), we obtain LLp, and thus Lp by pTLq, in all these
accessible worlds. Which, by induction thay means that p will be produced all
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the time. In a biological framework and for dynamical systems, that makes little
sense.

3.3 Hypothesis theories and extensions

As defined above, H is a non-monotonic logic. In order to deal with the revisable
character of usual informations, for example of biological nature, a notion of
extension is added just as in DL. However, contrary to the latter, three kinds of
extensions are considered here, namely stable extensions, ghost extensions and
sub-extensions.

Definition 1. Given H:
‚ A hypothesis theory is a pair T “ tHY,Fu, where HY is a set of hypotheses
and F is a set of formulas of H.
‚ An extension E of T is a set E “ ThpFY HY1q, such that HY1 is a maximal
subset of HY consistent with F.
‚ A sub-extension E of T is a set E “ ThpF Y HY1q, such that HY1 is a non-
maximal subset of HY consistent with F.
‚ E is a stable extension if it is an extension that satisfies the coherence prop-
erty:

@Hf,  Hf P E ùñ L f P E.
Thanks to the link axiom schema, we hence get: @f, L f P E ðñ  Hf P E.
‚ E is a ghost extension if it is an extension that satisfies: DHf,  Hf P

E and L f R E.

Thus, an extension is obtained by adding one of the largest consistent sets of
hypotheses to F while remaining consistent. Intuitively, E is stable if whenever
it is forbidden to assume the hypothesis f ,  f is proven. It is a ghost extension
otherwise. Stable extensions correspond to the standard extensions of DL. Ghost
extensions do not have any correspondence in DL nor in ASP. In [32, 30] it is
proved that if F is consistent then T “ tHY,Fu has at least one extension
and, that a default theory ∆ can be translated into a hypothesis theory T p∆q
such that the set of standard extensions of ∆ is isomorphic to the set of stable
extensions of T p∆q.

The following definitions will help to characterize the stable configurations,
cycles and the attractors of BDSs.

Definition 2. Let E be an extension or a sub-extension:
‚ An i P V is free in E if Li R E and L i R E. It is fixed otherwise.
‚ The degree of freedom of E is the number of free atoms that compose it.
‚ The mirror of E, denoted by mirpEq, is the set ThpFpGq Y tH ykuq.

Algorithm: There is not enough space to study the algorithms that com-
putes the extensions. But, with the restricted definition of H, used here there is
no nesting of modalities (no LLf , HLf ...), so all modal formulas are of the form
Lf , where f is a PC formula. This restriction allows to translate H into PC by
identifying any formula L with an atom of CP. We can then consider that the
language of representation is finite, which opens the way to use SAT algorithms.
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4 Representing genetic networks into H

A genetic network represents interactions among genes or proteins in cell [2,
7, 8, 13, 15, 21]. In a modeling context, a protein is classically represented by
an integer i P t1, . . . , nu. Its concentration in a cell is denoted by xi. In such
networks, given a protein i, a set of interactions (or influences) from a set of
proteins toward i describes in which conditions the concentration of i evolves.
In the most general case, a concentration xi is a real number. Here, we study
the particular case where the concentrations xi are in t0, 1u.

Genetic networks can be studied with the formalism of BNs and their underly-
ing BDSs, defined in the following section. Here, to introduce our representation
it suffices to know that, for a BDS, the concentration xi “ 1 (resp. xi “ 0)
denotes the presence (resp. the absence) of protein i in the cell. To lighten the
notations, we will identify a numbered Boolean variable xi directly with i.

One of the interests of hypothesis logic is that this bi-modal logic enables us
to use three kinds of information: i, Li and Hi. Hence, by combining modalities
with negations, we can use ti,Hi,H i,Li,L iu. Remark that in H, we have:
Li ‰  L i,  Li ‰ L i, Hi ‰  H i and  Hi ‰ H i. This increasing of
expressiveness allows for a more precise representation of biological networks.

We can then give the meanings of L and H in the context of genetic networks.
‚ i means that the protein i is present in the cell and  i that it is absent.
‚ Li means that i is produced by the cell (i is being activated) and  Li means

that i is not produced (i is not being activated).
‚ L i means that i is destroyed by the cell (i is being inhibited) and  L i

means that i is not destroyed (i is not being inhibited).
‚ Hi (resp.  Hi) means that the cell gives (resp. does not give) the permission

for attempting to produce i. In other words, the cell has (resp. has not) the ability
to activate i.
‚ H i (resp.  H i) means that the cell gives (resp. does not give) the per-

mission for attempting to destroy i. In other words, the cell has (resp. has not)
the ability to inhibit i.

Regarding the use of H in this context, the role of an extension appears to
gather a maximum of consistent permissions. Note that even if Hi stands for
the cell giving permission to attempt the production of i, this production is not
mandatory. It can be carried out or not, according to the context (i.e., the set
of all interactions in the cell). Similarly H i gives the authorization to destroy
i. It is important to note that Li and L i are actually actions (production or
destruction of a protein). So there is a difference between L i which says that
i is destroyed, and  Li which says that i is not produced, and hence is weaker.
There is a similar distinction between H i and  Hi (and between Li and  L i;
and between Hi and  H i).

Note 2. For a cell, the production/destruction occurs practically at a time t. This
temporal notion could call for the use of temporal logics [3]. In our approach,
using H, it is not necessary to use a specific modality to represent time, which
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is implicitly included in the axiomatics of H, via the accessibility relation of
Krypke semantics. As such, H is adapted to the representation of the dynamics
of change.

Proposition below gives some general properties of H, particularly adequate
for the modeling of the different states of proteins in a cell.

Proposition 1. Given i a protein, the following results hold in H:
‚[(1)] Li Ñ i and L i Ñ  i ( i.e., if i is produced (resp. destroyed), then i

is present (resp. absent)).
‚[(2)]  pLi ^ H iq and  pL i ^ Hiq (It is impossible to produce (resp. de-

stroy) i and to give the permission to destroy (resp. produce) i it at the same
time).
‚[(3)]  pLi ^ L iq (It is impossible to produce and destroy i at the same

time).

Idea of the proof: Axioms of H are all what is needed. (1) are instances of
axiom pTq; (2) are instances of the linking axiom pLIq; (3) LiÑ i and L iÑ  i
are two instances of (1) from which we derive  pLi^ L iq.

5 Boolean Dynamical Systems

A finite BDS describes the evolution of the interactions in a BN of a set V “

t1, ..., nu of n entities numbered from 1 to n, over discrete time. A configuration
x “ px1, ..., xnq of the network is an assignment of a truth value xi P t0, 1u
to each element i of V . The set of all configurations (i.e., all interpretations
on the logic side), called the configuration space, is denoted by X “ t0, 1un. A
dynamic of such a network is modeled via both a function f , called the global
transition function, and an updating mode µ that defines how the elements of V
are updated over time. More formally, f : X Ñ X is such that x “ px1, ..., xnq ÞÑ
fpxq “ pf1pxq, ..., fnpxqq, where each function fi : X Ñ t0, 1u is a local transition
function that gives the evolution of i over time.

There exists an uncountable number of updating modes among which the
parallel and the fully asynchronous ones remain the most used [14, 34]. The
parallel updating mode is such that all the entities of the network are updated
at each time step. Conversely, the fully asynchronous updating mode is a non-
deterministic variation in which only one entity is updated at a time. In the
sequel, we restrict our study to fully asynchronous dynamics [23, 26] which we
will abreviate by asynchronous dynamics in the sequel for the sake of simplicity.

5.1 Asynchronous transition graphs

Let X “ t0, 1un be a configuration space and f : X Ñ X a function that defines
a BN. The asynchronous dynamics of f is given by its asynchronous TG (ATG)
G pfq “ pX,T pfqq, a digraph whose vertex set is the configuration space and arc
set is the set of effective asynchronous transitions such that:
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T pfq “ tpx, yq P X2 | Di P V, x “ px1, ..., xi, ..., xnq,
y “ px1, ..., xi´1, fipxq, xi`1, ..., xnq, x ‰ yu.

Therefore, if px, yq P T pfq, x and y differ exactly by one element; the transi-
tion is unitary.

An orbit in G pfq is a sequence of configurations px0, x1, x2, . . . q such that
either pxt, xt`1q P T pfq or xt`1 “ xt if xt “ fpxtq (i.e., xt has no successors).
A cycle of length r is a sequence of configurations px1, . . . , xr, x1q with r ě 2
whose configurations x1, . . . , xr are all different. From this, we derive what is
classically called an asynchronous attractor in dynamical systems. An attractor
is terminal strongly connected component (SCC) of G pfq, i.e., a SCC with no
outward transitions. Among attractors, we distinguish stable configurations from
stable cycles. A stable configuration is a trivial attractor, i.e., a configuration x
such that @i P V, xi “ fipxq, which implies that x “ fpxq. A stable cycle is a
cyclic attractor such that, in G pfq, @t ă r, xt`1 is the unique successor of xt

and x1 is the unique successor of xr. If an attractor is neither trivial nor cyclic,
it is called a stable oscillation. When it is possible to get out from a non trivial
SCC, this SCC is called an unstable cycle or an unstable oscillation depending
on whether it is cyclic or not. An orbit that reaches a stable configuration stays
there endlessly. Similarly, when it reaches a stable cycle or a stable oscillation, it
adopts endlessly a stable oscillating behavior. Notice that in Figures, recurring
configurations, i.e., configurations belonging to an attractor, are pictured in gray,
and cycles are represented by bold transitions.

Example 1. Boolean positive and negative circuits of size 3: Consider V “
t1, 2, 3u, x = t0, 1u3 and two functions/BNs f and g such that fpx1, x2, x3q “
p x2, x3, x1q and gpx1, x2, x3q “ p x3, x1, x2q. From the definitions of f and g,
it is easy to derive their related ATGs, G pfq and G pgq, pictured in Figure 1. A
transition corresponds to one arrow in the picture. We notice that, the transition
graph being asynchronous, for each arrow px, yq then x differs from y by a single
component.

There are up to 3 transitions leaving each configuration. Here, G pfq has two
miror (symetric) stable configurations, p 1, 2, 3q and p1, 2, 3q while all the
other configurations belong to an unstable cycle. G pgq has a stable cycle, of
length 6. This cycle is stable because there is only one transition leaving from
each configuration, which is not the case for the unstable cycle of G pfq. We will
see in Section 6 that the two stable configurations of G pfq correspond to two
stable extensions of H, and that the stable cycle of G pgq corresponds to a set of
6 ghost extensions of degree 1.

Example 2. Consider function/BN hpx1, x2q “ p x1 _ x2, x1 _ x2q pictured in
Figure 2. This ATG has a stable state p1, 2q and an unstable cycle tp 1, 2q, p 1, 2qu.
There is an infinity of possible orbits because one can follow the unstable cycle
indefinitely, before attending p1, 2q and then stabilizing in p1, 2q.

Example 3. Consider function/BN kpx1, x2q “ px2, x1 ^  x1 ^ x2q, pictured in
Figure 2. This ATG has a stable state t 1, 2u and no cycles.
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Fig. 1. ATG’s of function (left) f and (right) g presented in Example 1.
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1, 2
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Fig. 2. (left) ATG of function h presented in Example 2 ; (right), ATG of function k
presented in Example 3.

5.2 General fundamental results and their biological direct
applications

By considering that BNs and their associated BDSs are good candidates for qual-
itatively modeling genetic networks (since established by the seminal papers [14,
34]), the presence of several attractors in their dynamical behaviors allows to
model the cellular specialization. Indeed, if a genetic network controls a phe-
nomenon of specialization, the cell will specialize (i.e., will acquire a particular
phenotype or a specific physiological function) according to the attractor toward
which its underlying BDS evolves. A classical example of direct biological ap-
plications is the immunity control in bacteriophage λ, for which both lytic and
lysogenic cycles of λ have been modeled in [33]. Another more tricky applications
of BDSs in molecular systems biology concerns the floral morphogenesis of the
plant Arabidopsis thaliana [20, 21]. Its dynamical behavior admits notably four
stable configurations that correspond to the genetic expression patterns of the
floral tissues, sepals, petal, stamens and carpels.

These works and the numerous other ones using BDSs or more general dis-
crete dynamical systems (DDSs) emphasized the essential role of studies aiming
at understanding the formal relations between interactions graphs and transition
graphs and their respective properties. They also clearly underlined the essential
role of circuits, nowadays known as the behavioral complexity engines in dynam-
ical systems. This comes in particular from Robert who established that, if the
IG Gpfq of a DDS f is acyclic, then f converges towards a unique stable configu-
ration [27, 28]. Moreover, in [35], basing himself on asynchronous DDS, Thomas
conjectured that Gpfq of an asynchronous DDS f must contain a positive (resp.
negative) circuit, for the latter to admit several stable configurations (resp. a



10 P. Siegel, A. Doncescu, V. Risch, S. Sené

non-trivial attractor such as a stable cycle or a stable oscillation). These two
conjectures were proven to be true [23–26]. Furthermore, in [23], the authors
showed that an asynchronous positive (resp. negative) circuit of size n admits
two attractors (resp. one attractor), namely two stable configurations x and its
dual x (resp. a stable cycle of length 2n). In [31], we obtained these results via
the translation of BDSs into H.

6 Representing BDS into H

In [31], we studied in detail a translation of both positive and negative circuits
into H, which seems to be a first step to us because of their essential role in
the regulation of the cell. But this previous approach left formulas of the type
pHi ^ Hjq Ñ Lk out of reach. Such formulas are essential, for example, for
representing the notion of binding in genetic networks. In the sequel, we extend
this translation to any asynchronous BDS. This translation does not use nesting
of modalities and SAT algorithms can be used.

6.1 Syntax representation of BDS

Remind that an asynchronous BDS is characterized by a function/ATG f : X Ñ

X such that x “ px1, . . . , xnq ÞÑ fpxq “ pf1pxq, . . . , fnpxqq, where each function
fi : X Ñ t0, 1u is a local transition function. Also, remind that we consider
that each xi is an atom i, that the assignment xi is a Boolean value i or  i, and
therefore that each fi is a Boolean formula.

Definition 3.
‚ The translation of a local transition function fi into H is given by a set

TRpfiq containing two formulas: TRpfiq “ tHfipxq Ñ Li and H fipxq Ñ
L iu.
‚ The translation of f : X Ñ X of a BDS in H is the union of translations

TRpfiq for all i P t1, ..., nu such that TRpfq =
Ťn

i“1 TRpfipxqq.

Example 4. Consider V “ t1, 2, 3u, X “ t0, 1u3, and the function f of Exam-
ple 1, defined as fpxq “ pf1pxq, f2pxq, f3pxqq “ p x2, x3, x1q. The functions f1,
f2 and f3 are translated into H by;
TRpf1q=tH2 Ñ L 1,H 2 Ñ L1u, TRpf2q=tH3 Ñ L 2,H 3 Ñ L2u, TRpf3q=
tH1 Ñ L3,H 1 L3u.

Therefore we obtain the following global translation:
TRpfq “ tH2 Ñ L 1,H 2 Ñ L1,H3 Ñ L 2,H 3 Ñ L2,H1 Ñ L3,H 1 Ñ
 L3u that admits two stable extensions E1 “ ThpTRpfqYtH1,H 2,H3quq and
E2 “ ThpTRpfq Y tH 1,H2,H 3quq 5.

5This is shown by attempting to add to FpGpfqq each subset of HYpGpfqq and
keeping only those among them that are the maximals ones consistent with FpGpfqq.
This can be done using a SAT solver.



Representation of Boolean Genetic Regulatory Network 11

When developing these extensions, we see that they are equivalent to their
simplified forms:
‚ E1 “ tH 1,H2,H 3,L1,L 2,L3, H1, H 2,  H3, L 1, L2, L 3u
‚ E2 “ tH1,H 2,H3,L 1,L2,L 3, H 1, H2,  H 3, L1, L 2, L3u.
In order to ease the reading and abusing notations, from now on in the text

and in the figures, the extensions will contain only the Li and L i that are true.
So, here, E1 “ tL1,L 2,L3u and E2 “ tL 1,L2,L 3u. We can check that
E1 and E2 are stable extensions (because for all i,  Hi P E1 (resp. E2) ùñ

L i P E1 (resp. E2) and that E2 is the miror of E1.

Example 5. Consider function k, presented in Example 3, such that kpx1, x2q “
px2, x1 ^  x1 ^ x2q, whose ATG is pictured in Figure 2 right. Function k1 is
translated into H by the couple TRpk1q “ tH2 Ñ L 1,H 2 Ñ L1u and function
k2 is translated by TRpk2q “ tHp1^ 1^ 2q Ñ L2q,H p1^ 1^ 2q Ñ L 2u.
Since  p1 ^  1 ^ 2q “  1 _ 1 _  2, we finally obtain the following global
translation into H for k: TRpkq “ tH2 Ñ L 1,H 2 Ñ L1,Hp1 ^  1 ^ 2q Ñ
L2q,Hp 1_ 1_ 2q Ñ L 2qu, which admits thee extensions:
‚ A stable extension E1 “ ThpTRpkq Y tH 1,H 2uq “ tL 1,L 2u;
‚ Two ghost extensions of degree 1: E2 “ ThpTRpkqYtH1,H 1uq “ tL 2u,

and E3 “ ThpTRpkq Y tH2uq “ tL1u.
Function k may appear naive, because x1 ^  x1 ^ x2 “ K, which gives an

equivalent translation TRphq “ tH2 Ñ L 1,H 2 Ñ L1,HK Ñ L2,HJ Ñ

L 2u. However, one of the aims of this study is also to show that we can deal
with functions of any kind, without the need of a pre-processing. The formalism
of H and the algorithms implicitly make the expected simplifications.

6.2 Semantic representation of ATGs into H

This section gives a morphism between ATGs and Kripke models for the modal
system T , which allows us to exhibit a morphism from hypothesis theories to
ATGs. It uses Kripke semantics [16] presented in Section 3.2. In order to obtain
these morphisms, we give and increased version of ATGs.

Definition 4. Let V “ t1, . . . , nu be a set of entities, X “ t0, 1un be a configura-
tion space, f : X Ñ X be a function with its associated ATG G pfq “ pX,T pfqq.
Remind that T pfq is a set of edges corresponding to transitions. We now look at
an increased version of G pfq, namely G ‹pfq “ pX,TY ýq where ý denotes the
reflexivity such that px, xq is a transition of G ‹pfq for all x P t0, 1un.

We can consider that G ‹pfq is a Kripke structure whose universe is X and
whose accessibility relation is R “ T pfqY ý. If we consider that any configura-
tion x P X is a world, we get a Kripke model with R as accessibility relation.
As R is reflexive, it has the properties of system T . Therefore, we get an iso-
morphism between reflexive Kripke models and increased ATGs, from which it
is trivial to obtain the related ATGs.

As the ATG G pfq is asynchronous, the accessibility relation R is such that, if
wj ‰ wk, then wj Rwk if and only if, wk is reachable from wj and differs from
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wj by one and only one proposition. Under these conditions, the ATG of any
BDS is a canonical Kripke structure. Given such a framework, for any world wk

and any entity x, Lx “ J if and only if x “ J for every wk reachable from wj .
In order to obtain a morphism between hypothesis theories and ATGs, we

define the concept of a projection of an extension or of a sub-extension.

Definition 5. Consider a sub-extension, or an extension, E of H. The projec-
tion of E on the system T is the set of formulas of E that do not contain the
operator H.

Now, if T “ tHY,Fu is an hypothesis theory, and P is the set of the pro-
jections of the extensions or of the sub-extensions of T , we obtain a morphism
from T to P , and therefore a morphism from hypothesis theories to Kripke mod-
els. Note that one does not get an isomorphism. Indeed the projections of two
different extensions can be equal, and therefore be related to the same Kripke
model.

Example 6. Figure 3 depicts both the Kripke model and the ATG of function h
given in Example 2. Three nodes represent the three extensions of the translation
of k: node tL 1,L 2u represents the stable one, t1,L 2u and tL1, 2u the two
ghost ones of degree 1. There is also one sub-extension of degree 2, t1, 2u.

 1, 2

 1, 2

1, 2

1, 2

 1,L 2

 1,L2

1, 2

L1,L2

Fig. 3. (left) The ATG of h, (rigth) the corresponding Kripke model.

6.3 Results

The existence of a morphism from hypothesis theories to ATGs, allows to prove
these theoretical results. Therefore is a strong link between configurations and
extension sets.

The generalization of the notion of degree of freedom of extensions allows to
configure ATGs. The degree of a configuration x, is the number of arcs coming
out of x. By previous construction of the Kripke models associated with ATGs,
it is obvious that, if w is the world associated with x, then x and w have the
same degree.

Proposition 2. Let T be an hypothesis theory, E be an extension or a sub-
extension of T , w be its projection and k be the degree of freedom of E. In the
Kripke model associated to T , there are exactly k distinct worlds, different from
w, reachable from w.
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Proof. Since the degree of E is k, there are ti1, .., iku atoms, free in E. For every
i P ti1, . . . , iku, we have both  Li P E and  L i P E. Two cases are possible,
either i P E or  i P E. If i P E, since  Li P E, there exists a world w1 accessible
from w, and distinct from w, that contains  i. Regarding the second case, if
 i P E, since  L i P E, there exists a world w2 accessible from w, and distinct
from w, that contains i. Therefore, for each i P ti1, . . . , iku, there is a world
accessible from w, and distinct from w, that contains the opposite of i. Because
w is related to an ATG all these accessible worlds are distinct. Hence there are
k distinct worlds reachable from w.

Theorem 1. Let G pfq be an ATG of function f , and TRpfq be its associated
hypothesis theory. The following holds:

[1.] If x “ tx1, . . . , xnu is a stable configuration of G pfq, then there exists an
extension E of degree 0, issued from TRpfq, that contains tLx1, . . . ,Lxnu.

[2.] Let E be an extension of degree 0, issued from TRpfq, and w the projec-
tion of E. If x is the configuration related to w, then x is stable.

Proof. Each statement is proven separately:

[1.] If x is a stable configuration of G pfq, no edges can leave from x. By
construction of the Kripke model, the same holds for the Kripke world w related
to x. Hence the only word accessible from w is w, that is, for any i P w (resp.
 i P w), Li P w (resp. L i P w). Therefore, every i is fixed and the degree of
the extension E, issued from TRpfq, is 0.

[2.] Let the projection of E be represented by the world w. Since E is of degree
0, from Proposition 2, the only reachable world from w is w. By construction of
the Kripke model, the same holds for x. Therefore x is a stable configuration of
G pfq.

Theorem 2. Let G pfq be the ATG of function f and TRpfq be its associated
hypothesis theory. Every stable cycle C of G pfq corresponds to a cycle of exten-
sions of degree 1 in TRpfq.

Proof. The proof is similar to that of Theorem 1. Let C “ tx1, . . . , xku be a
stable cycle of G pfq, and W “ tw1, . . . , w`u the set of extensions associated with
C. By construction of the Kripke model, W is also a cycle of same length as
C. Since C is stable, each of its configurations xi admits only one outward arc.
And the same property holds for for wi, i.e., the degree of wi is 1. Therefore, all
extensions of W are of degree 1.

Analog theorems were proved in the context of interaction graphs [31]. They
correspond to the results given in [23]. With the same arguments as those used
for the proofs of the previous theorems, we can show that if a BDS contains an
unstable cycle C, it is represented by a set of extensions such that at least one
of those is of degree greater than 1. Indeed, if the cycle is unstable, it contains a
configuration x of degree greater than 1 and, by construction, the Kripke model
associated with the BDS contains the extension E corresponding to x.
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7 Conclusion

In [31], we studied in detail a translation of both positive and negative asyn-
chronous circuits into (H). In this paper, we extend this translation to any
asynchronous BDS, by showing that hypothesis logic captures some of their es-
sential behavioral capacities, such as stable configurations and stable cycles that
are specific attractors and unstable cycles. Of course, these results pave the way
to further studies about how hypothesis logic could enable to represent all the
dynamical richness of BDSs, by taking for instance into account their stable and
unstable oscillations and other known properties related to the orbits.
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as gauges of the robustness against boundary conditions in biological complex
systems. PLoS One 5, e11793 (2010)
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