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Abstract

We introduce the finite element method to analyze a membrane with a Koch snowflake-shaped
boundary. The fractal nature of this domain presents unique challenges due to its intricate bound-
ary structure. Our approach involves discretizing the domain, estimating the error, and proving
convergence. With these aspects addressed, we solve a shape optimization problem to determine
the optimal thickness of the membrane. These findings provide valuable insights into how fractal
boundaries affect structural performance and optimization.
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1 Introduction

In the 90’s, the french physicist Bernard Sapoval and his collaborators conducted experiments de-
voted to the study of the vibration modes of irregular drums, especially, in the case of a fractal boundary
(or, to be more precise, of a prefractal boundary, i.e., a polyhedral approximation of the given fractal).
The drums consisted in a thick polyethylene film (5 mm), stretched across the prefractal boundary,
which had the form of a square Koch fractal curve (or Minkowski fractal ; see Benoît Mandelbrot’s
book [Man83], Plate 32). The drums were excited by an acoustic source (a loudspeaker) located one
meter above the drum; see [Sap89], [SGM91], [SG93], [HS98] for further details. The observed and
recorded modes were rather surprising: in fact, if modes were localized to four bounded regions, it was
possible to excite each of these regions separately, just by moving the acoustic source, in complete con-
tradiction with the well-known behavior of smooth domains. Those localization phenomena resulted
in exceptional damping properties.

Following this work, a sharp mathematical study was done by Michel L. Lapidus and his collabora-
tors, along with numerical simulations, devoted to the study and understanding of the eigenfunctions
of the Dirichlet Laplacian on a Koch snowflake domain; see [LNRG96]. The algorithm was based on the
finite difference method; in particular, the authors obtained approximations of the first fifty smallest
eigenvalues, along with the associated eigenfunctions. In contrast to the aforementioned experiments,
no localization phenomena were observed.

We hereafter propose to carry on the exploration of those fractal drums, by means of the finite
element method, suitably implemented in the case of a domain with a fractal boundary. When the
boundary has the shape of a Koch curve, it is, also, a d–set, i.e. a compact set F ⊂ R2, 0 < d < 2,
such that there exists a Radon measure µ with support F and two strictly positive constants c1 and c2

satisfying, for any strictly positive number r and any ball B(X, r) the center of which belongs to F ,

c1 r
d 6 µ (B(X, r)) 6 c2 r

d ·

The measure µ is then called a d–measure.

Formally, we can then use the Sobolev extensions theorems associated to d–sets (such as, for in-
stance, the ones given by Peter Wilcox Jones in [Jon81]), along with Alf Jonsson and Hans Wallin’s
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trace theorems (see [JW84]). This enables us to properly solve the associated Poisson problem.

Insofar as our aim is to implement finite elements, this calls for approximation by polynomials, the
degree of which will provide information related to the level of smoothness of the considered functions.
More precisely, the polynomials involved are defined on the intersection of F with two–dimensional
compacts. This is, of course, a kind of spline approximation. A powerful tool happens to be given by
Markov’s inequality, which, in its original form that goes back to 1889 (see [Mar48]) and states that,
for any complex polynomial P of degree degP :

‖P ′‖[−1,1] 6 (degP )2 ‖P‖[−1,1] .

Along these lines, Markov’s inequality is preserved on the set F if, for any polynomial P with d
variables, any point X ∈ F and any real number r ∈ ]0, 1]:

max
F ∩B(X,r)

|∇P | 6 c (P, d,F)

r
max

F ∩B(X,r)
|P |

where c (P,N,F) denotes a positive constant which depends on N , P and F . Fortunately, as it can
be found, for instance in [Wal92], d–sets preserve Markov’s Inequality. Along with the fact that the
aforementioned trace theorems involve Besov spaces, where functions can be approximated by splines,
this makes d–sets good candidates for the finite elements method.

Indeed, as was the case if the experiments described above, we do not work with the fractal bound-
ary itself, but, instead, with the sequence of prefractal polygonal approximations (in our case, iterated
fractal drums (ifs), as introduced in [DL22]), which are Lipschitz. We are then able to prove the weak
convergence of the sequence of solutions associated with the the sequence of prefractals.

Our paper is organized as follows:

i. In Section 2, we introduce the geometry of the problem, along with the functional framework.

i. In Section 3, we introduce our parametric optimization problem, in connection with the com-
pliance properties of the involved membrane (a Koch snowflake membrane); i.e., the properties
associated to the elastic deformation of the membrane, when undergoing the excitation. The
considered domain is of particular interest for being both fractal and with a fractal boundary.

ii. In Section 4, we introduce the finite element method on our domain with a fractal boundary,
along with the associated numerical analysis.

iii. In Section 5, we solve a shape optimization problem involving the Koch snowflake. In particular,
we obtain the optimal thickness.

2 Geometric and Functional Framework

2.1 The Koch Curve and the Koch Snowflake

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be re-
spectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers and Intervals). As in Bourbaki [Bou04] (Appendix E. 143),
we denote by N = {0, 1, 2, . . .} the set of all natural numbers and set N? = N \ {0}.

Given a, b with −∞ 6 a 6 b 6∞, ]a, b[ = (a, b) denotes an open interval, while, for example,
]a, b] = (a, b] denotes a half–open, half–closed interval.
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Notation 2 (Rotation Matrix). For θ ∈ R, we denote by RO,θ the following rotation matrix,

RO,θ =

(
cos θ − sin θ
sin θ cos θ

)
·

Property 2.1 (The Koch Snowflake as a Self–Similar Set [HOP92]). The Koch Snowflake KS is
the bounded domain, the boundary of which is defined as the union of three rotated copies of Koch curves
KC; in particular, each curve is a self–similar set with respect to the family of similarities {f1, f2, f3, f4}
defined for any X ∈ R2, by

f1(X) =
1

3
X +

(
− 1√

3
1
3

)
; f2(X) =

1

3
RO,π

3
X +

(
0
2
3

)
; f3(X) =

1

3
RO,−π

3
X +

(
0
2
3

)
;

f4(X) =
1

3
X +

(
1√
3

1
3

)
,

where, for θ ∈ R, the rotation matrix RO,θ has been introduced in Notation 2, on page 4.

The respective fixed points of the similarities {f1, . . . , f4} will be denoted by
{
P f1 , . . . , P

f
4

}
. Note

that

P f1 =

−
√

3

2
1

2

 ; P f2 =

−
√

3

7
5

7

 ; P f3 =


√

3

7
5

7

 ; P f4 =


√

3

2
1

2

 .

The two other copies of the Koch curves are obtained by rotating the Koch curve KC, i.e.,

∂KS = KC ∪ h1(KC) ∪ h2(KC) ,

where h1 and h2 are respectively given by

∀X ∈ R2 : h1(X) = RO,− 2π
3
X and h2(X) = RO, 2π

3
X·
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Figure 1 – Koch Snowflake.

Property 2.2 (Self–Similarity of the Koch Snowflake). The Koch Snowflake is self–similar, with
respect to the family of contractions {g1, . . . , g7}, such that, for any X ∈ R2,

g1(X) =
1

3
X +

− 1√
3

−1

3

 ; g2(X) =
1

3
X +

(
0

−2

3

)
; g3(X) =

1

3
X +

 1√
3

−1

3

 ;

g4(X) =
1√
3
RO,π

6
X ;

g5(X) =
1

3
X +

− 1√
3

1

3

 , g6(X) =
1

3
X +

(
0
2

3

)
; g7(X) =

1

3
X +

 1√
3

1

3

 .

The respective fixed points of the contractions {g1, . . . , g7} will be denoted by {P g1 , . . . , P
g
7 }. Note

that

P g1 =

−
√

3

2

−1

2

 ; P g2 =

(
0
−1

)
; P g3 =


√

3

2

−1

2

 ; P g4 =

(
0
0

)
;

P g5 =

−
√

3

2
1

2

 ; P g6 =

(
0
1

)
; P g7 =


√

3

2
1

2

 ·
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Figure 2 – The Koch Snowflake as the union of seven scaled copies of itself.

Definition 2.1 (The Open Set Condition – Similarity Dimension). Given N ∈ N?, let us
consider a set of similarity maps {f1, . . . , fN} and, as is done in [Hut81], the self–similar set F as the
unique set of R2 such that

F =
⋃
i=1

fi(F) ·

The set of maps {f1, . . . , fN} satisfies the open set condition if there exists a nonempty bounded
open set O such that

∪
16i6N

fi(O) ⊂ O and fi(O) ∩ fj(O) = ∅ if i 6= j ·

In the case when the similarity maps {f1, . . . , fN} are contractions, with respective ratios
{r1, . . . , rN} ∈ ]0, 1[N , there exists a real number DH (F) such that

N∑
i=1

r
DH(F)
i = 1 , (1)

called the similarity dimension of F (see [Fal03]); it is also the Hausdorff dimension of F .

Proposition 2.3 (Hausdorff and Similarity Dimension of the Koch Snowflake). The respective
Hausdorff dimensions of the Koch Snowflake KS and of its boundary ∂KS = KC ∪ h1(KC) ∪ h2(KC) (see
Property 2.1, on page 4), are given by

DH (KS) = 2 and DH (∂KS) =
ln(4)

ln(3)
·

Note that they coincide with the similarity dimension; see [Fal03].
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Proof. This directly follows from the definition of the similarity dimension (see Definition 2.1, on page 6
just above) since

4∑
i=1

(
1

3

)DH(KC)

= 1 and
(

1√
3

)DH(KS)

+
6∑
i=1

(
1

3

)DH(KS)

= 1 ·

Definition 2.2 (Initial Points – Initial Segment). We define the initial points, respectively denoted
by I and J as being the fixed points respectively associated with the similarities f1 and f4 introduced
in Property 2.1, on page 4; in fact, we have that

I = P f1 =

−
√

3

2
1

2

 ; J = P f4 =


√

3

2
1

2

 .

The line segment [IJ ] is called the initial segment.

Property 2.4 (The Koch Curve, Limit of a Sequence of Prefractal Graphs). The Koch
Curve KC is the limit of the prefractal sequence of finite graphs (KCm)m∈N such that

KC0 = [IJ ] and ∀m ∈ N? : KCm =
⋃
W∈Σm

fW(KC0) ,

where the points I and J have been introduced in Definition 2.2, on page 7 just above and where,
for any m ∈ N?, Σm = {1, 2, 3, 4}m, with fW denoting a composition of maps from {f1, . . . , f4} and
indexed by W; see Figure 3, on page 7.

Figure 3 – The prefractals curves KC0, KC1 and KC2.

Property 2.5 (The Koch Snowflake, Limit of a Sequence of Prefractal Polygonal Domains).
The Koch Snowflake KS is the limit of the prefractal sequence of polygonal domains (KSm)m∈N where,
for any m ∈ N?, KSm is the mth–prefractal Snowflake, which is the bounded domain of R2 delimited
by the three copies {KCm; h1(KCm); h2(KCm)}; see Figure 4, on page 8. Note that, for any m ∈ N?,

∂KSm = KCm ∪ h1(KCm) ∪ h2(KCm) .

Definition 2.3 (Sets of Vertices, Prefractals). We introduce the initial boundary set I0 = {I, J} ,
where the points I and J have been given in Definition 2.2, on page 7 above.

We then set for any m ∈ N?,

V Im =
N⋃
i=1

fi
(
V Im−1

)
=

⋃
W∈Σm

fW (I0) ·
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Figure 4 – The polygonal domains KS0, KS1 and KS2.

For any m ∈ N, the set of points V Im, where two consecutive points are connected, is an undirected
finite graph, called the mth–prefractal graph and denoted by KCm. Observe that, for any m ∈ N,
the set of points of V Im also corresponds to the set of vertices of KCm. Therefore, V Im is naturally called
the set of vertices of the prefractal KCm.

We set V I,? =
⋃
m>0

V Im and recall that KC = V I,? (see [Hut81]).

Definition 2.4 (Adjacent Vertices, Edge Relation). For any m ∈ N, two vertices X and Y
belonging to V Im will be said to be adjacent (i.e., neighboring or junction points) if and only if the edge
XY belongs to ∂KSm ; we then write X ∼

m
Y . Note that this edge relation depends on m, which

means that points adjacent in V Im might not remain adjacent in V Im+1.

2.2 Sobolev Spaces – Traces – Weak Formulation

Notation 3 (Lebesgue Measure on R2). We hereafter denote by µL the Lebesgue measure on R2.

Notation 4 (Boundary Measure on the Boundary of the Snowflake). In the sequel, we denote
by µ∂KS the boundary measure on the boundary ∂KS of the Snowflake.

Remark 2.1. In practice, µ∂KS is a DH (∂KS)–measure; see Definition 2.7, on page 9, along with
Proposition 2.6, on page 10 below.

2.2.1 (ε, δ)–Domains, John Domains and d–sets

Notation 5 (Euclidean Distance). In the sequel, we denote by deucl the Euclidean distance on R2.

Definition 2.5 ((ε, δ)–Domains [Jon81]). Given ε > 0 and 0 < δ 6∞, an open connected sub-
set Ω ⊂ Rn is called an (ε, δ)-domain if, for every pair of points (X,Y ) ∈ Ωn2 such that deucl(X,Y ) < δ,
there exists a rectifiable arc γ ⊂ Ω, with length `(γ) joining X to Y and satisfying

i. `(γ) 6
deucl(X,Y )

ε
.

ii. ∀Z ∈ γ : deucl(Z, ∂Ω) >
ε deucl(X,Z) deucl(Y, Z)

deucl(X,Y )
.
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Definition 2.6 (John Domains [Joh61]). An open connected subset Ω ⊂ Rn is called a John
domain if there exist two real numbers α > 0 and β > 0, along with a point X ∈ Ω called the center
of Ω such that for every point Y ∈ Ω we can find a rectifiable arc γ ⊂ Ω, with length `(γ) 6 β joiningX
to Y and satisfying

∀Z ∈ γ : deucl(Z, ∂Ω) > α `(γ(Z, Y )) ·

Remark 2.2 (Connection between John Domains and (ε, δ)–domains – Some Examples [JW84]).
i. (ε, δ)–domains are John domains; see Figure 5, on page 9, for the (ε, δ) and John conditions.
ii. The Koch Snowflake KS is an(ε, δ)–domain and therefore also a John domain.

X Y

(ε, δ) condition.

X Y

John condition.

Figure 5 – An (ε, δ) domain and a John domain.

Notation 6 (Wave Inequality Symbol). Given two positive numbers a and b, we will use the
notation a . b when there exists a strictly positive constant C such that a 6 C b.

Definition 2.7 (d–Measure – d–set ([JW84], page 28)). Let us denote by F a closed, nonempty
subset of Rn and d a real number such that 0 < d 6 n. A positive Borel measure µ with support F
is called a d–measure on F if, for any closed ball B(X, r), with center X ∈ F and radius r > 0, we
have that

rd . µ (B(X, r)) . rd ·

A closed, nonempty subset F of Rn is a d–set (0 < d 6 n) if there exists a d–measure on F .

Remark 2.3 (About d–measures). Examples of d–measures and d–sets can be found in the book [JW84],
Chapter 2.

An important comment is that, when 0 < d 6 n, suitably normalized d–measures coincides with
the n–dimensional Lebesgue measure (see [Wal91], Notation page 118). This enables us, in particular,
to obtain equivalent and useful characterizations of the function spaces involved, especially, the Besov
spaces, as in Theorem 2.11, on page 10 below.
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Proposition 2.6 (The Boundary of the Koch Snowflake as a d–set ([Wal91], Proposition 2)).

The boundary ∂KS of the Koch Snowflake is a
ln 4

ln 3
–set. Note that

ln 4

ln 3
is the Hausdorff dimension of

the Koch Curve KC mentioned in Proposition 2.3, on page 6.

2.2.2 Function Spaces – Trace Theorems

Definition 2.8 (Hölder Spaces [Eva10]). Let us denote by Ω an open subset of Rn, α > 0 and k
an integer such that k < α 6 k + 1. The Hölder space Ck,α−k(Ω) is the space of Ck(Ω) functions f
such that

‖f‖Ck,α−k(Ω) =
∑
|j|6k

∥∥Djf
∥∥
C(Ω)

+
∑
|j|=k

sup
h∈Ω

|Djf(X + h)−Djf(X)|
|h|α−k

<∞·

Definition 2.9 (Sobolev Space on an Open Set Ω ⊂ R2). Given k ∈ N and p > 1, we recall that
the Sobolev space on an open set Ω ⊂ R2, denoted by W p

k (Ω), is given by

W k
p (Ω) = {f ∈ Lp (Ω) , ∀α 6 k , Dα f ∈ Lp (Ω)} ,

where Lp (Ω) denotes the Lebesgue space of order p on Ω, while, for the multiindex α 6 k, Dα f is the
classical partial derivative of order α, interpreted in the weak sense.

We denote Hk(Ω) = W k
2 (Ω) and by Hk

0 (Ω) the closure of the space test functions D(Ω) in Hk(Ω). For
a function f ∈ Hk(Ω), we denote by

|f |Hk
0 (Ω) =

∑
|α|=k

||Dαf ||2L2(Ω)

 1
2

‖f‖Hk
0 (Ω) =

∑
|α|6k

||Dαf ||2L2(Ω)

 1
2

Definition 2.10 (Besov Spaces [JW84]). Given an open subset Ω of Rn, α > 0, 1 6 p, q 6 ∞,
along with an integer k such that 0 6 k < α 6 k + 1, the Besov space, or (Hölder spaces in Lp–norm)
Bp,q
α (Ω) is given by

Bp,q
α (Ω) =

f ∈ Lp(Ω),
∑
|j|6k

∥∥Djf
∥∥
Lp(Ω)

+
∑
|j|=k

{∫
Rn

‖∆hf‖qLp(Ω)

|h|n+(α−k) q
dh

} 1
q

<∞

 ,

where ∆h denotes the usual first difference, defined here by

∀ t ∈ Ω, ∀h ∈ Rn , ∆hf(t) = f(t+ h)− f(t) .

Proposition 2.7 ([JW84]). The space Bp,q
α (Ω) is a Banach space for the norm ‖·‖Bp,qα . If 1 6 p, q <∞,

then D(Ω), the space of infinitely differentiable functions with compact support on Ω, is dense in
Bp,q
α (Ω).

Definition 2.11 (Besov Spaces on d–sets [JW84]). Let 0 < α < 1, 1 6 p 6 ∞ and F a d–set
with respect to a d–measure µ. A function f belongs to the Besov space Bp,p

α (F ) if and only if it has
finite norm
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‖f‖Bp,pα = ‖f‖Lpµ +

(∫∫
deucl(X,Y )<1

|f(X)− f(Y )|p

(deucl(X,Y ))d+αp
dµ(X) dµ(Y )

) 1
p

.

Theorem 2.8 (Rellich Embedding Theorem for John Domains [CRW13]). If 1 6 p <∞ and
if Ω ⊂ Rn is a John domain, the injection

W 1
p (Ω)→Lp(Ω) ,

is a compact injection.

As a consequence, we have the following Poincaré inequality (for a more general result, we refer to
[CDMP19]):

Theorem 2.9 (Poincaré Inequality for John Domains). Let us denote by Ω ⊂ Rn a John domain.
Then, there exists C > 0 such that

∀ f ∈ H1
0 (Ω) , ‖f‖L2(Ω) 6 C ‖∇f‖L2(Ω) .

The constant C is called the Poincaré constant.

Now, we introduce a trace theorem for d–sets. Let us recall that the trace operator of a function f
on a set F is the operator

R : f → f|F

and that an extension operator of a function g, defined onF , to Rn, yields

E : g → Eg such that (Eg)|F = g .

Theorem 2.10 (Trace of Sobolev Spaces on d–sets [JW84]). Let us denote by F a d–set

with respect to ta d–measure µ, α an integer, along with real numbers 0 < d < n, 0 < β = α− n− d
p

and 1 < p <∞. The restriction operator satisfies Wα
p (Rn)|F = Bp,p

β (F ), as a linear bounded operator.

Theorem 2.11 (Jones Extension Theorem of Sobolev Spaces [Jon81]). If Ω ⊂ Rn is an (ε, δ)–
domain, there exists a linear bounded extension operator

Wα
p (Ω)→Wα

p (Rn) for 1 6 p 6∞ and α > 0 .

Notation 7 (Set of Real Polynomials with N Variables). Given n ∈ N?, we denote by R[X1, . . . , Xn]
the set of real polynomials with n variables.

For the sake of concision, we will often write, with a slight abuse, R[X], instead of R[X1, . . . , Xn].
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Definition 2.12 (Markov Inequality). We say that a closed, nonempty subset F of Rn preserves
Markov’s Inequality if, for any polynom P ∈ R[X1, . . . , Xn], any point X ∈ F and any real num-
ber r ∈ ]0, 1]:

max
F ∩B(X,r)

|∇P | 6 c (P, n, F )

r
max

F ∩B(X,r)
|P | ,

where c (P, n, F ) denotes a positive constant which depends on n, P and F .

Corollary 2.12 (Trace Operator [Wal91]). Let Ω ⊂ Rn be an (ε, δ)-domain, ∂Ω a d–set with respect

to a d–measure µ, α an integer, 0 < d < n, 0 < β = α − n− d
p

and 1 < p < ∞. If ∂Ω preserves

Markov’s inequality; i.e., if d > n− 1, we then have that

Wα
p (Ω)|∂Ω = Bp,p

β (∂Ω) ,

along with the fact that the trace operator is a linear bounded surjection; (see [Wal91], Proposition 4,
page 120).

Remark 2.4 (On the Use of the Trace Operator). In our present setting, where the boundary is
fractal, we cannot a priori define normal derivatives. However, since we have a trace operator, which
maps Sobolev spaces on the interior of the considered domain, onto Besov spaces endowed with a scalar
product (by means of the d–measure involved), we can work on the dual spaces; hence, it is possible
to apprehend the normal derivative of a function belonging to the aforementioned Sobolev spaces, as
en element of the Besov trace spaces.

Theorem 2.13. If Ω ⊂ Rn is an (ε, δ)–domain and if k >
n

p
, then, the Sobolev space W k

p (Ω) is a

subset of C0(Ω), and the injection is continuous.

Proof. According to Theorem 2.11, on page 11, there exists a linear bounded extension operator
E : W k

p (Ω)→W k
p (Rn) such that

(Eg)|Ω = g and ‖Eg‖Wk
p (Rn) . ‖g‖Wk

p (Ω) .

We can then use the following classical result to conclude:

Lemma 2.14 (Compact Injection from W k
p in C0(Rn) [Bre99]). For k >

n

p
, the injection

ι : W k
p (Rn)→C0(Rn) is compact.

Theorem 2.15 (Density). Let us denote by K̊S the interior of the Koch Snowflake KS. For every
u ∈ H1(K̊S), there exists a sequence of functions (uk)k∈N ⊂ C∞(KS) such that

lim
k→∞

‖u− uk‖H1(K̊S) = 0 .

12



Proof. From the Jones extension theorem, there exists an extension ū ∈ H1(R2) such that ū|K̊S = u

and ‖ū‖H1(R2) 6 ‖u‖H1(K̊S). So we can choose a function ρ ∈ C∞(R2) such that

∀x ∈ R2 : ρ(x) > 0 ; ∀x ∈ R2, for ‖x‖ > 1 : ρ(x) = 0 ;

∫
R2

ρ dx = 1

and then introduce the mollifier ρk = k2 ρ(kx). We thus have that the sequence of terms
(uk)k∈N = (ū ? ρk)k∈ N satisfies the theorem.

Theorem 2.16 (Normal Derivatives on a Fractal Boundary [Lan02]). If u ∈ H1(K̊S) and ∆u ∈
L2(K̊S), then the normal derivative of u on the boundary exists as an element of the dual space of the

trace space H1
|∂KS(K̊S); i.e., as an element of the dual space of B2,2

DH (∂KS)

2

(∂KS) (where DH(∂KS) =
ln(4)

ln(3)
);

i.e., as a linear and continuous functional on H1
|∂KS(K̊S). More precisely, the normal derivative of u

is given by

∀ v ∈ H1(K̊S) :
〈
∂nu, v|∂KS

〉
=

∫
KS

∆u v dx+

∫
KS
∇u∇v dx .

3 The Membrane Problem on the Koch Snowflake

The membrane problem consists in finding the solution of the following non-autonomous Poisson equa-
tion, given by

(PH)

{
−div (h∇u) = f in K̊S ,

u = 0 in ∂KS ,
(2)

By multipling the first equation of (PH) by v ∈ D(K̊S) and by applying the integration by parts
formula, we get the variational Dirichlet problem

∀ v ∈ D(K̊S) :

∫
KS

h∇u∇v dx =

∫
KS

f v dx , (Dir) (3)

Theorem 3.1 (Solution of The Membrane Problem on the Koch Snowflake). Given h ∈ L∞(K̊S)
such that hmin 6 h 6 hmax and f ∈ L2(K̊S), the following variational Dirichlet problem,

∀ v ∈ D(K̊S) :

∫
KS

h∇u∇v dx =

∫
KS

f v dx , (Dir) (4)

admits a weak solution in H1
0 (K̊S).

Proof. The bilinear form (u, v) 7→ a(u, v) =

∫
KS

h∇u∇v dx is symmetric and continuous, because

∀ (u, v) ∈ H1(K̊S)×H1(K̊S) :

∣∣∣∣∫
KS

h∇u∇v dx
∣∣∣∣ 6 hmax ‖∇u‖L2(K̊S) ‖∇v‖L2(K̊S) .

It is also coercive, since

∀u ∈ H1(K̊S) : a(u, u) =

∫
KS

h |∇u|2 dx > hmin ‖∇u‖2L2(K̊S)
>

hmin

C + 1
‖u‖2

H1(K̊S)
, (5)

13



where C is the Poincaré constant, introduced in Theorem 2.9, on page 11.

The map L : v 7→
∫
KS

f v dx is linear and continuous. So, thanks to the Lax–Milgram theorem,

we deduce that the problem (Dir) in relation (4) just above admits a unique solution in the Hilbert
space H1

0 (K̊S).

An important question concerns the regularity of the solution u given the regularity of f . A
significant and challenging result, established Kaj Nyström in [Nys94] and [Nys96], and discussed by
Alf Jonsson and Hans Wallin in [JW97], shows that u does not generally belong to H2(K̊S). However,
we still have the interior regularity :

Theorem 3.2 (On the Regularity of Solutions ([Eva10] theorem 2 on page 332)). Assume h ∈
Cm+1(KS) and f ∈ Hm(K̊S) for m ∈ N?. Suppose u ∈ H1(K̊S) is the weak solution of the elliptic
problem

−div (h∇u) = f in K̊S .

Then

u ∈ Hm+2
loc (K̊S)

and for each open set U ⊂ K̊S we have the estimate

‖u‖Hm+2(K̊S) 6 C
(
‖f‖Hm(K̊S) + ‖u‖L2(K̊S)

)
the constant C depending only on m, K̊S, U and h.

4 The Finite Element Method for the Koch Snowflake

4.1 Position of the Problem

Let us again consider the Dirichlet membrane problem in the variational form:

∫
KS

h∇u∇v dx =

∫
KS

f v dx . (Dirvar) (6)

For the benefit of the reader who may not be familiar with mathematical notions devoted to
Lagrange finite elements, we shall first recall several definitions (see [All12] for further details).

Definition 4.1 (Lagrange Finite Element). A Lagrange finite element is a triplet (K,Σ, P )
such that:

i. K is a compact, convex and nonempty interior.

ii. Σ = {a1, . . . , aN}, with N ∈ N?, is a finite set of (distinct) points of K.

iii. P is a function vector space of finite dimension defined on K, such that Σ is unisolvent in the
sense of Definition 4.2, on page 15.

14



Definition 4.2 (Local Basis Functions). Let us denote by (K,Σ, P ) a Lagrange finite element. We
call local basis functions the following N functions of P , denoted by ei, for i = 1, . . . , N , such that

ei(aj) = δij 1 6 i, j 6 N

The N–uplet (e1, . . . , eN ) is, by construction, a basis of the vector space P .

The P–interpolation operator on Σ is the operator πK that to every function g on K, asso-
ciates πK g defined by

πK g =
N∑
i=1

g(ai)ei .

This function (πK g) is the unique element of P taking the same values as g on Σ.

Definition 4.3 (Triangular Mesh). Given a polyhedral, connected, open susbset Ω ⊂ Rn, a trian-
gular mesh of Ω is a set Tδ of N–simplices (Ti)16i6N such that

i. Ti ⊂ Ω and
⋃

16i6N
Ti = Ω.

ii. Ti ∩ Tj is an m–simplex, 0 6 m 6 n− 1, whose vertices are vertices of Ti and Tj .

iii. δ = max
i=1,...,N

|Ti| is the maximal diameter.

Definition 4.4 (Triangular Lagrange Finite Element). Given a triangular mesh Tδ of a poly-
hedral, connected, open subset Ω ⊂ Rn, the triangular Lagrange finite element of order k,
associated to this mesh, is defined by the discrete spaces

Uδ =
{
v ∈ C(Ω) | v|Ti ∈ Pk ∀ Ti ∈ Tδ

}
and Vδ =

{
v ∈ Uδ | v|∂Ω = 0

}
,

where Pk is the space of real polynomials of degree 6 k.

4.2 Discretization of the Snowflake and of the Boundary of the Snowflake

Property 4.1 (Discretization of the Boundary of the Snowflake). We introduce the sequence
of sets of boundary points, denoted by (Vm)m∈N, obtained by means of a uniform discretization of the
sequence of boundaries (∂KSm)m∈N and such that

∀m ∈ N? : Vm = V Im ∪ h1

(
V Im
)
∪ h2

(
V Im
)

;

where the sequence of sets of vertices
(
V Im
)
m∈N has been introduced in Definition 2.3, on page 7; see

also Figure 6, on page 16, for the three first sets, i.e., respectively, V1, V2 and V3.

Property 4.2 (Discretization of the Snowflake). We introduce the sequence of sets of points,
denoted by

(
V KS
m

)
m∈N and obtained by means of a uniform discretization mesh of the sets (KSm)m∈N

(Cf. the FEM section 4.3); see Figure 7, on page 16, for the three first sets; namely, V KS
1 , V KS

2

and V KS
3 .
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Figure 6 – V1, V2 and V3.

Figure 7 – V KS
1 , V KS

2 and V KS
3 .

For any m ∈ N?, we can check that every interior point X of V KS
m has six neighbors, which are the

vertices of an hexagon, where the distance between adajacent vertices is equal to δm = O(3−m); see Fig-
ure 8, on page 17. Note that for the points X in KS \ V KS

m , we can find a sequence of points (Xm,k)k∈N
such that, for all k ∈ N, Xm,k ∈ V KS

m , with lim
k→∞

Xm,k = X.

4.3 Illustration in the Case of the P1 Finite Element on a Uniform Mesh

As is evoked in the introduction, we herefater work with the sequence of prefractal polygonal
approximations (KSm)m∈N of the Snowflake KS introduced in Property 2.5, on page 7, along with the
sequence of prefractal approximations (∂KSm)m∈N of the boundary ∂KS, introduced in Property 2.4,
on page 7.

Let us start with the following finite set of points:

P1 = (0,−1) ; P2 =

(
−
√

3

2
,−1

2

)
; P3 =

(
− 1

2
√

3
,−1

2

)
; P4 =

(
1

2
√

3
,−1

2

)
;

P5 =

(√
3

2
,−1

2

)
; P6 =

(
− 1√

3
, 0

)
; P7 = (0, 0) ; P8 =

(
1√
3
, 0

)
; P9 = P f1 =

(
−
√

3

2
,
1

2

)
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P6
m

P4
m

P2
m

P1
m

P3
m

P5
m

I

Figure 8 – Hexagonal neighbor of an interior point I.

P10 =

(
− 1

2
√

3
,
1

2

)
; P11 =

(
1

2
√

3
,
1

2

)
; P12 = P f4 =

(√
3

2
,
1

2

)
; P13 = (0, 1) ,

where the points P f1 and P f4 are the respective fixed points of the similarities f1 and f4 introduced in
Property 2.1, on page 4.

We then obtain the initial triangular mesh KS1; see Figure 9, on page 17.

P5

P1

P2

P6

P3 P4

P8P7

P10P9 P11 P12

P13

Figure 9 – KS1.

This provides us with the first set of vertices V KS
1 .

Next, we use the successive discretization of the Koch Curve to fix the discretization diameter, so
we obtain a uniform triangulation mesh of the whole Koch Snowflake.
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The Koch Curve discretization sequence (KCm)m∈N? is generated by starting with five points

P9 =

(
−
√

3

2
,
1

2

)
; P10 =

(
− 1

2
√

3
,
1

2

)
; P13 = (0, 1) ; P11 =

(
1

2
√

3
,
1

2

)
; P12 =

(√
3

2
,
1

2

)

and by using the similarities introduced in Section 2 to obtain the induction relation; namely,

∀m ∈ N? KCm = ∪
16i64

fi (KCm−1) .

P9 P10 P11 P12

P13

Figure 10 – KC1.

By using the two rotations h1 and h2, we also obtain the sequence of boundary points (Vm)m∈N;
see figure 6, on page 16.

By using a uniform diameter, i.e., for anym ∈ N?, δm =
1

3m
, we obtain the points of the discretiza-

tion of the Snowflake
(
V KS
m

)
m∈N; see Figure 7, on page 16.

Proposition 4.3 ([LNRG96]). Given an integer m ∈ N, let us denote respectively by N ′m, the
number of vertices of the triangulation of the boundary and by N (KS)m and Nm, the numbers of
triangles and vertices of the Snowflake triangulation. We have that

N ′1 = 12 , N (KS)1 = 12, N1 = 13 ,

and, for any strictly positive integer m:

N ′m = 3× 4m (7)

N (KS)m =

(
9m +

3

5
(9m − 4m)

)
(8)

Nm =
N ′m +N (KS)m

2
+ 1 . (9)

First, given m ∈ N?, we compute the values of the respective two–dimensional Lebesgue mea-
sures (µL (T mi ))16i6N (KS)m

of the mth–order mesh triangles (T mi )16i6N (KS)m ; see Definition 4.3, on
page 15). Namely,

µL
(
T 0
)

= µL (P2P5P13) =
1

2

(√
3

2
+

√
3

2

)
×
(

1 +
1

2

)
=

3
√

3

4

and

∀m ∈ N? : µL (T mi ) =
µL
(
T 0
)

9m
.
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Given m ∈ N? and the discretization points of V KS
m , let T ml = PaPbPc, 1 6 l 6 N (KS)m be a

mesh triangle. We then define the associated barycentric coordinates λmi , with i ∈ {a, b, c} (see,
for instance, the book [Luc04]), such that, for all M = (x, y) ∈ R2,∑

i∈{a,b,c}

λmi (M) = 1 and
∑

i∈{a,b,c}

Piλ
m
i (M) = M .

For the initial triangle T 0 = P2P5P13, we compute

∇λ0
2(M) =

(
− 1√

3

−1
3

)
, ∇λ0

5(M) =

(
1√
3

−1
3

)
, ∇λ0

13(M) =

(
0
2
3

)
.

∫
T0
|∇λ0

2|2 dx =
1√
3

,

∫
T0
|∇λ0

5|2 dx =
1√
3

,

∫
T0
|∇λ0

13|2 dx =
1√
3∫

T0
∇λ0

2∇λ0
5 dx = −

√
3

6
,

∫
T0
∇λ0

2∇λ0
13 dx = −

√
3

6
,

∫
T0
∇λ0

5∇λ0
13 dx = −

√
3

6
.

More generally, given m ∈ N? and the set KSm, we consider a mesh triangle T ml = PiPjPk,
1 6 l 6 N (KS)m, for some vertices Pi = (xi, yi), Pj = (xj , yj), Pk = (xk, yk). The barycentric
coordinates are then given by:

λmi (M) =
1

2µL
(
T ml
) (X(yj − yk) + Y (xk − xj) + xjyk − yjxk) ;

λmj (M) =
1

2µL
(
T ml
) (X(yk − yi) + Y (xi − xk) + xkyi − ykxi) ;

λmk (M) =
1

2µL
(
T ml
) (X(yi − yj) + Y (xj − xi) + xiyj − yixj) ;

the associated gradients are themselves given by

∇λmi (M) =
1

2µL
(
T ml
) (yj − yk

xk − xj

)
= 3m∇λ0

2(M) ;

∇λmj (M) =
1

2µL
(
T ml
) (yk − yi

xi − xk

)
= 3m∇λ0

5(M) ;

∇λmk (M) =
1

2µL
(
T ml
) (yi − yj

xj − xi

)
= 3m∇λ0

13(M) .

We then deduce that∫
T ml
|∇λmi |2 dx =

∫
T ml
|∇λmj |2 dx =

∫
T ml
|∇λmk |2 dx = 9−m

∫
T 0

9m|∇λ0
2|2 dx =

1√
3

;

∫
T ml
∇λmi ∇λmj dx =

∫
T ml
∇λmi ∇λmk dx =

∫
T ml
∇λmj ∇λmk dx = 9−m

∫
T 0

9m∇λ0
2∇λ0

5 dx = −
√

3

6
.

Now, we can compute the cross product involving the local basis functions. The function h is
taken as constant on every mesh triangle T ml and given a local basis function ei (see Definition 4.2, on
page 15) associated to a point Pi, we denote by l(i) the triangle number l containing vertex Pi, and
by l(i, j) the triangle number l adjacent to edge PiPj , i 6= j. The following two configurations may
occur:
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1. The point Pi is an interior point, in which case we have that

∫
KS

h |∇ei|2 dx =

6∑
l=1

hl(i)

∫
T ml
|∇λi|2 dx =

(
6∑
l=1

hl(i)

)
1√
3

;

∫
KS

h∇ei∇ej dx =

(h1(i,j) + h2(i,j))

∫
T ml
∇λi∇λj dx = (h1(i,j) + h2(i,j))

(
−
√

3

6

)
,

0 , if Supp(ei) ∩ Supp(ej) = ∅ .

2. The point Pi is a boundary point, two situations have then to be considered:

(a) The point Pi has two adjacent vertices, in which case

∫
KS

h |∇ei|2 dx = hl

∫
T ml
|∇λi|2 dx =

hl√
3

;

∫
KS

h∇ei∇ej dx =

hl
∫
T ml
∇λi∇λj dx = hl

(
−
√

3

6

)
0 if Supp(ei) ∩ Supp(ej) = ∅ .

(b) The point Pi has five adjacent vertices, in which case

∫
KS

h |∇ei|2 dx =

5∑
l=1

hl(i)

∫
T m
l

|∇λi|2 dx =

(
5∑

k=1

hk

)
1√
3

∫
KS

h∇ei∇ej dx =



(h1(i, j) + h2(i, j))

∫
T m
l

∇λi∇λj dx = (hk + hl)

(
−
√

3

6

)
if Pj is an interior point,

hl

∫
T m
l

∇λi∇λj dx = hl

(
−
√

3

6

)
if Pj is a boundary point,

0 if Supp(ei) ∩ Supp(ej) = ∅ .

4.4 Convergence and Error Estimates

Given an integer m ∈ N, we consider KSm as the uniform triangulation of the Koch snowflake at
the order m and K̊Sm its interior. The main object of this section is to estimate the convergence of
the finite element method at the order m. We adopt the methodology of [RJM04].

First, we observe that

KSm =
⋃
i

T mi ⊂ KS .

For any m ∈ N?, we respectively denote by δm and ρm the diameter of the mesh triangles and
their roundness (incircle diameter).

The triangulation is regular, since

δm =

√
3

3m
, ρm =

1

3m
,

δm
ρm

=
√

3, lim
m→∞

δm = 0 ,
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and using the fact that KS is a John domain we get the regularity (see [Pom92] page 107 for an
alternative definition)

∀X ∈ ∂KSm ∩ T ml : deucl(X, ∂KS) 6 C0 δm . (10)

Let us consider the discrete space

Vδm =
{
v ∈ C(KSm); v|T ml ∈ Pk ∀T ml ∈ Tδm , v|∂KSm = 0

}
, (11)

and the natural extension by zero on the following unresolved features

Ṽδm =
{
ṽ ∈ C(KS); ṽ|K̊Sm ∈ Vδm , ṽ|K̊S\K̊Sm = 0

}
. (12)

Now, let us consider the solution ũm of the variational Dirichlet problem (Dirvar) given in equa-
tion (6) of Section 3:

∀ ṽm ∈ Ṽδm , a(ũm, ṽm) = L(ṽm) .

Thanks to the symmetry of the bilinear form, we have that

‖u− ũm‖H1
0 (K̊Sm) 6

√
(C + 1)hmax

hmin
inf

ṽm∈Ṽδm
‖u− ṽm‖H1

0 (K̊Sm) .

(C is the Poincaré constant introduced in Theorem 2.9, on page 11.)

Indeed, since ṽm − ũm ∈ H1
0 (K̊Sm) is an admissible function, we have that

∀ ṽm ∈ Ṽδm , a(u, ṽm − ũm) = L(ṽm − ũm) ,

we have that

∀ ṽm ∈ Ṽδm , a(u− ũm, ṽm − ũm) = 0 , (13)

or, equivalently,

∀ ṽm ∈ Ṽδm , a(u− ũm, u− ũm) = a(u− ũm, u− ṽm) . (14)

By using the coercitivity of the bilinear form a(., .), we obtain that

‖u− ũm‖H1
0 (K̊Sm) 6

(C + 1)hmax
hmin

‖u− ṽm‖H1
0 (K̊Sm) .

From this result, along with relation (13) just above, we deduce that ũm is the orthogonal projection
of u with respect to the norm ‖.‖a (or, equivalently, the scalar product associated to a on H1

0 (K̊Sm);
i.e.,

∀ ṽm ∈ Ṽδm : ‖u− ũm‖2a 6 ‖u− ṽm‖
2
a .

We then use the regularity of the bilinear form a(., .) on this expression; namely,

hmax ‖u− ũm‖2H1
0 (K̊Sm)

6
hmin
C + 1

‖u− ṽm‖2H1
0 (K̊Sm)

. (15)
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to finally obtain that

‖u− ũm‖H1
0 (K̊Sm) 6

√
(C + 1)hmax

hmin
inf

ṽm∈Ṽδm
‖u− ṽm‖H1

0 (K̊Sm) . (16)

and using the equivalence of the two norms in H1
0

|u− ũm|H1
0 (K̊Sm) . inf

ṽm∈Ṽδm
|u− ṽm|H1

0 (K̊Sm) . (17)

which becomes

|u− um|H1
0 (K̊Sm) . inf

vm∈Vδm
|u− vm|H1

0 (K̊Sm) . (18)

We now have to take into account the fact that (see figures 11 and 12)

|u− ũm|H1
0 (K̊S) =

(
|u− um|2H1

0 (K̊Sm)
+ |u|2

H1
0 (K̊S\K̊Sm)

) 1
2
. (19)

Figure 11 – The open set K̊S\K̊Sm form = 1.

Figure 12 – The open set Oi of K̊S \ K̊Sm

delimited by [Pi, Pj ].

Now, given m ∈ N, let us consider the interpolation operator πm on K̊Sm, which, to any con-
tinuous function on KS associates the continuous function πmu on KSm, such that, for any triangle
mesh T ml ∈ Tδm , the restriction (πmu)|T ml is the Lagrange interpolation on T ml and which is identically
equal to zero on the vertices of ∂KSm.

We will first establish a general result for h in L∞ on the regular approximation domain KSm.
Remark thatW 2

∞(K̊S)∩H1
0 (K̊S) is dense in H1

0 (K̊S) (contains D(K̊S)). Then we decompose the error
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by choosing v ∈W 2
∞(K̊S) ∩H1

0 (K̊S) and m ∈ N such that, ∀ε > 0

‖u− πmv‖H1(K̊Sm) 6 ‖u− v‖H1(K̊Sm) + ‖v − πmv‖H1(K̊Sm)

. ‖u− v‖H1(K̊Sm) + δm‖v‖W 2
∞(K̊Sm)

. ‖u− v‖H1(K̊S) + δm‖v‖W 2
∞(K̊S)

6
ε

2
+
ε

2
= ε

where we used the density of W 2
∞(K̊S)∩H1

0 (K̊S) in H1
0 (K̊S), and we applied theorem 3.1.6 in [Cia02],

page 124, on the regular domain K̊Sm to get the upper bound of ‖v−πmv‖H1(K̊Sm), then we extended

the norm to the whole domain K̊S by the choice of v.

If we analyze the second part of the error ‖u‖H1
0 (K̊S\K̊Sm), given that u ∈ H1

0 (K̊S), one can employ
the dominated convergence theorem. Specifically, note that the inequalities

1K̊S\K̊Sm |u|
2 6 |u|2 and 1K̊S\K̊Sm |∇u|

2 6 |∇u|2

hold for every m, where 1K̊S\K̊Sm is the characteristic function of the set K̊S \ K̊Sm. Since |u|2 and

|∇u|2 are integrable over K̊S, the shrinking measure of K̊S \ K̊Sm as m→∞ ensures that

lim
m→∞

‖u‖H1(K̊S\K̊Sm) = 0. (20)

We have proved the following:

Proposition 4.4. Let f ∈ L2(K̊S) and h ∈ L∞(K̊S) then

lim
m→∞

‖u− ũm‖H1(K̊S) = 0 (21)

We now proceed to compute the convergence order of the finite element method applied to our
elliptic problem. This computation, however, necessitates imposing additional restrictions on h. We
begin recalling the following lemma:

Lemma 4.5 ([RJM04]). Given m ∈ N?, let T ml be a mesh. We denote by k > 1 the interpolation
order. There exists a real constant C > 0, depending only on k and m, such that, for all 0 6 n 6 k + 1
and for each v ∈ Hk+1(T ml ),

|v − πmv|Hn
0 (T ml ) 6 C

δk+1
m

ρnm
|v|Hk+1

0 (T ml ) . (22)

• The case k = 1:

In that case, the function πmu belongs to Vδm . We can use We have the following lemma 4.5 to
deduce the following result:

Lemma 4.6. Let us assume that k = 1. Given m ∈ N?, we have, for every function h ∈ C1(KS)
and f ∈ L2(K̊S),

inf
vm∈Vδm

|u− vm|H1
0 (K̊Sm) . δm

(
‖f‖L2(K̊S) + ‖u‖L2(K̊S)

)
. (23)
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Proof.
Using lemma 4.5 and theorem 3.2:

inf
vm∈Vδm

|u− vm|H1
0 (K̊Sm) . |u− πmu|H1

0 (K̊Sm) . δm |u|H2
0 (K̊Sm) . δm ‖u‖H2(K̊Sm)

. δm

(
‖f‖L2(K̊S) + ‖u‖L2(K̊S)

)
.

• The case k > 2:

In that case, the function πmu does not belong to Vδm (πmu isn’t null on ∂KSm). We need to
prove the following lemma:

Lemma 4.7. Let us assume that k > 2. Given m ∈ N?, we have, for every function h ∈ C3(KS)
and f ∈ H2(K̊S), that

inf
vm∈Vδm

|u− vm|H1
0 (K̊Sm) . δ2

m

(
‖f‖H2(K̊S) + ‖u‖L2(K̊S)

)
. (24)

Proof. We give here an adaptation of the proof which can be found in the book [RJM04]. Let
π0
m be the interpolation function such that π0

mu ∈ Vδm . The support of πmu− π0
mu is the set of

boundary triangles T ml ∩ ∂Tδm 6= ∅. We can use the triangle inequality; namely,

inf
vm∈Vδm

|u− vm|H1
0 (K̊Sm) 6 |u− π

0
mu|H1

0 (K̊Sm) 6 |u− πmu|H1
0 (K̊Sm) + |πmu− π0

mu|H1
0 (K̊Sm) .

On the one hand, thanks to Lemma 4.5, on page 23, we have that

|u− πmu|H1
0 (T ml ) .

δ4
m

ρm
|u|H4

0 (T ml ) .
δ4
m

ρm
‖u‖H4(T ml ) .

We thus use theorem 3.2 to deduce that

|u− πmu|H1
0 (K̊Sm) .

δ4
m

ρm
‖u‖H4(K̊Sm) . δ3

m

(
‖f‖H2(K̊S) + ‖u‖L2(K̊S)

)
.

On the other hand, let T ml = PiPjPk be a boundary mesh triangle, such that {Pi, Pj} ∈ ∂KS.

We set Pij =
Pi + Pj

2
and denote by Pij? the intersection point of the bisector of the line seg-

ment [Pi, Pj ] with ∂KS; see Figure 13 just below (Pij could be any interpolation point on the
segment [Pi, Pj ]).

Given the basis function el associated with T ml , we deduce that

(πmu− π0
mu)|T ml = u(Pij)el .

Recall that any point Pα in the segment [Pi, Pj ] could be written as Pα = αPj + (1 − α)Pi for
0 6 α 6 1. Define û(α) = u(αPj + (1 − α)Pi). By using Taylor-Lagrange formula, for some
0 6 α1 6 α and α 6 α2 6 1,
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Pi PjPij

Pij*

Figure 13 – The edge {Pi, Pj} ∈ ∂KS of the boundary triangle T ml .

û(0) = u(Pi) = û(α)− α û′(α) +
α2

2
û′′(c1)

= u(Pα)− α∇u(Pα) · (Pj − Pi) +
α2

2
(Pj − Pi) ·D2u(Pα1) · (Pj − Pi)

= u(Pα)− α δm|∇u(Pα)|+ α2δ2
m

2
|D2u(Pα1)|

û(1) = u(Pj) = u(Pα) + α δm|∇u(Pα)|+ (1− α)2δ2
m

2
|D2u(Pα2)|

Summing the two identities for α =
1

2
, along with the continuous injection of Sobolev space

H2(T̊ ml ) in C0(T ml ) (see for example [Bre99]), we obtain that

|u(Pij)| =
∣∣∣∣−δ2

m

16
|D2u(c1) +D2u(c2)|

∣∣∣∣ 6 δ2
m

8
max

06α61

∣∣D2u(Pα)
∣∣ . δ2

m ‖D2u‖H2(K̊Sm) .

Consequently,

∀ T ml ∈ ∂KSm : |πmu− π0
mu|H1

0 (T ml ) . δ2
m ‖D2u‖H2(K̊Sm) .

In the end, using theorem 3.2, we have that

|πmu− π0
mu|H1

0 (K̊Sm) =

 ∑
T ml ∈ ∂KSm

|πmu− π0
mu|2H1

0 (T ml )

 1
2

. δ
3
2
m ‖D2u‖H2(K̊Sm)

. δ
3
2
m ‖u‖H4(K̊Sm)

. δ
3
2
m

(
‖f‖H2(K̊S) + ‖u‖L2(K̊S)

)
.

Now, by combining those results with Inequality (18), on page 22, we obtain the following theorem
about the convergence of the finite element method:
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Proposition 4.8. Denote by k the interpolation order, introduced in lemma 4.5, and by f the force
term in the right hand side of the problem (PH). Given m ∈ N?, we have that

∀ f ∈ L2(K̊S) and ∀h ∈ C1(KS) : |u− ũm|H1
0 (K̊Sm) . δm

(
‖f‖L2(K̊S) + ‖u‖L2(K̊S)

)
for k = 1 ,

(25)

∀ f ∈ H2(K̊S) and ∀h ∈ C3(KS) : |u− ũm|H1
0 (K̊Sm) . δ

3
2
m

(
‖f‖H2(K̊S) + ‖u‖L2(K̊S)

)
for k > 2 .

(26)

We now merge Propositions 4.4 and 4.8 into a unified theorem:

Theorem 4.9 (Convergence of the FEM Method). We recall that k denotes the interpolation
order, introduced in lemma 4.5, on page 23, f is the force term and h is the membrane thickness of
the problem (PH) on page 13. Given m ∈ N?, the following results hold:

1. If f ∈ L2(K̊S) and h ∈ L∞(K̊S), then:

lim
m→∞

‖u− ũm‖H1(K̊S) = 0 (27)

2. In addition:

(a) If f ∈ L2(K̊S) and h ∈ C1(KS), then:

|u− ũm|H1
0 (K̊Sm) . δm

(
‖f‖L2(K̊S) + ‖u‖L2(K̊S)

)
for k = 1 , (28)

(b) If f ∈ H2(K̊S) and h ∈ C3(KS), then:

|u− ũm|H1
0 (K̊Sm) . δ

3
2
m

(
‖f‖H2(K̊S) + ‖u‖L2(K̊S)

)
for k > 2 . (29)

One could observe that increasing the interpolation order does not necessarily improve the con-
vergence speed. This can be attributed to the loss of regularity caused by the fractal nature of the
boundary.

4.5 Numerical Results

In this section, we ilustrate the numerical solution of the Dirichlet membrane problem by means of
the finite element method, namely,

(PH)

{
−div (h∇u) = f in K̊S ,

u = 0 in ∂KS ,

for h = 1 and f(M) = e−(x2+y2). The solutions are generated by using the package NDSolve‘FEM‘ of
Mathematica; see Figure 14, on page 27, for the values m = 1, 2 , 3.

Next, we report a P2 solution for m = 4 with a uniform mesh.
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m = 1. m = 2.
m = 3.

Figure 14 – The meshes, for m = 1, 2 , 3.

-0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

1.0

The contour plot of the
solution.

The meshed solution. The solution.

Figure 15 – The solution, in FEM4
2, as a contour plot (left) and in 3D, meshed (center), or not (right).

5 Parametric Optimization

5.1 An Alternative Approach to the Membrane Problem

Given an (ε, δ)–domain (see Definition 2.5, on page 8), delimited by a d–set (for instance, the Koch
Snowflake KS) and f ∈ L2(K̊S), we are presently interested in the Poisson equation, in the case of
Dirichlet boundary conditions; namely,

(PH)

{
−div (h∇u) = f in K̊S ,

u = 0 in ∂KS ,

where hmin 6 h 6 hmax. As is proved before, this equation admits a weak solution in the Sobolev
space W 1

2 (K̊S) = H1(K̊S).

Since the bilinear form a(., .) is symmetric, we then deduce, thanks to the symmetric Lax–Milgram
theorem ([Bre99], Corollary V.8, on page 84), that

u = min
v∈H1

0 (K̊S)

{
Φ(v) =

1

2

∫
KS

h∇v∇v dx−
∫
KS

fv dx

}
. (30)

By taking e = ∇v, this is equivalent to
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min
v∈H1

0 (K̊S), e∈L2(K̊S)
2

e=∇v

{
Φ(v, e) =

1

2

∫
KS

h e.e dx−
∫
KS

fv dx

}
.

The intermediary Lagrangian of the problem is given by

L̃(e, v, λ) = Φ(v, e) +

∫
KS

λ. (∇v − e) dx .

The Lagrangian of the problem is then

L(v, λ) = min
e∈L2(K̊S)

L̃(e, v, λ) .

The map e 7→ L̃(e, v, λ) is strongly convex and therefore admits a unique minimum given by the
Euler equation e? = h−1λ, which implies that

L(v, λ) = −1

2

∫
KS

h−1λ.λ dx−
∫
KS

fv dx+

∫
KS

λ.∇v dx

= −1

2

∫
KS

h−1λ.λ dx−
∫
KS

v (div(λ) + f) dx .

The dual problem is then given by

max
λ∈L2(K̊S)2

−div(λ)=f

{
Ψ(λ) =

1

2

∫
KS

h−1λ.λ dx

}
.

We thus obtain the following theorem:

Theorem 5.1 (Existence of a Saddle Point Associated to the Lagrangian [All07]). There
exists a unique saddle point (u, λu) associated to the Lagrangian L(v, λ) on H1

0 (K̊S)× L2(K̊S)
2
, given

by

L(u, λu) = max
λ∈L2(K̊S)

2
min

v∈H1
0 (K̊S)

L(v, λ) = min
v∈H1

0 (K̊S)
max

λ∈L2(K̊S)
2
L(v, λ) ,

with λu = h∇u.

5.2 Optimization Thickness of an Elastic Membrane on Fractals

In the following, we consider the problem of the optimal thickness h of a membrane deformed by a
force f . We proceed as in [All07] in order to prove the existence of a solution. The thickness h is such
that

∀X ∈ K̊S : 0 < hmin 6 h 6 hmax .

The behavior of the membrane is described by the Dirichlet problem

(PH)

{
−div (h∇u) = f in K̊S ,

u = 0 in ∂KS ,
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where K̊S is the Koch Snowflake domain with fractal boundary ∂KS. The problem amounts in finding h
in H which minimizes the compliance J(h), given by

J(h) =

∫
KS

j(uh) dx =

∫
KS

f uh dx ,

where

H =

{
h ∈ L∞(K̊S) such that 0 < hmin 6 h 6 hmax and

∫
KS

h dx = h0 |KS|
}
,

and where uh is the solution of the weak problem

∫
KS

h∇u∇v dx =

∫
KS

fv dx .

The following lemmas establish the continuity of the operators J : h 7→ J(h) and T : h 7→ uh.

Lemma 5.2 ([All07] proposition 5.1 p. 78). The functional J : h 7→ J(h) is continuous from H
to R.

Lemma 5.3 ([All07] lemma 5.3 p. 78). Let hn ∈ H converging to h? for the norm L∞(K̊S). Let
uhn (resp. uh?) the corresponding unique solution in H1

0 (K̊S) of the associated (PH) problem. Then

lim
n→∞

‖un − u‖H1
0 (K̊S) = 0 (31)

In addition, by applying Theorem 5.1, on page 28, we deduce that

∫
KS

f uhdx = min
λ∈L2(K̊S)2

−div(λ)=f

1

2

∫
KS

h−1|λ|2 dx .

The optimization problem then becomes

inf
h∈H

min
λ∈L2(K̊S)2

−div(λ)=f

1

2

∫
KS

h−1 |λ|2 dx = inf
(h,λ)∈H×J

1

2

∫
KS

h−1 |λ|2 dx , (32)

where J =
{
λ ∈ L2(K̊S)2, −div(λ) = f in K̊S

}
. The setH×J is closed and convex as a product of

two closed convex sets and the map (h, λ) 7→ Ψ(h, λ) =
1

2

∫
KS

h−1|λ|2 dx is convex, since the associated

Hessian matrix is positive, continuous: Given λn ∈ J converging to λ? for the norm L2(K̊S), and
hn ∈ H converging to h? for the norm L∞(K̊S), we have

|Ψ(h, λ)−Ψ(hn, λn)| 6 1

2

∫
KS
|h−1|λ|2 − h−1

n |λn|2| dx

6
1

2

∫
KS

h−1||λ|2 − |λn|2|+ |h−1 − h−1
n ||λn|2 dx

6
1

2

(
1

hmin
‖λ− λn‖L2(K̊S)‖λ+ λn‖L2(K̊S) +

∥∥∥∥h− hnhhn

∥∥∥∥
L∞(K̊S)

‖λn‖2L2(K̊S)

)

6
1

2

(
1

hmin
‖λ− λn‖L2(K̊S)‖λ+ λn‖L2(K̊S) +

1

h2
min

‖h− hn‖L∞(K̊S)‖λn‖
2
L2(K̊S)

)
→ 0
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and coercive, namely, for (hn, λn) ∈ H × J ,

lim
‖(hn,λn)‖→+∞

Ψ(hn, λn) > lim
‖λn‖→+∞

‖λn‖2L2(K̊S)

hmax
= +∞

The existence of the solution is ensured by the following theorem (see [CZ16] p. 125 for a more
general version):

Theorem 5.4 ([All07] theorem 3.8 and remark 3.9 p. 125). Let X be the dual space of a
separable Banach space. Let E ⊂ X be a non-empty convex closed subset. If f : E → R is convex,
continuous, and coercive, then f attains its minimum on E.

We have the following result:

Theorem 5.5 ([All07] lemma 5.25 p. 98). Given λ ∈ L2(KS)
2, the problem

min
h∈H

1

2

∫
KS

h−1|λ|2 dx

has a minimum h(λ) in H given by

h(λ)(M) =


h?(M) =

|λ(M)|√
l

, if hmin < h? < hmax ,

hmin , if h? 6 hmin ,

hmax , if hmax 6 h? ,

where l ∈ R+ is the unique value such that
∫
KS

h dx = h0 |KS|. This value is unique if l > 0.

5.3 Resolution by the Discrete Projected Gradient Algorithm (D.P.G.A.)

This section is based on the algorithm introduced by A. M. Toader in [Toa97] and described by
G. Allaire in [All07]. Since the convergence of the finite element approximation has been proved, we
can build a projected gradient algorithm on this approximation. We give next a convergence result for
the P1 approximation. To this purpose, we set

∀m ∈ N? : Vδm =
{
v ∈ C(KSm); v|T ml ∈ P1 ∀ T ml in Tδm , v|∂KSm = 0

}
;

Ṽδm =
{
ṽ ∈ C(KS); ṽ|K̊Sm ∈ Vδm , ṽ|K̊S\K̊Sm = 0

}
.

Hm =

{
h ∈ L∞(K̊S) : 0 < hmin 6 h 6 hmax on K̊Sm, h = 0 on K̊S \ K̊Sm,

∫
KSm

h dx = h0 |KSm|
}

Jm =
{
λ = h∇u, (h, u) ∈ Hm × Ṽδm , −div(h∇u) = f in K̊Sm, u = 0 in ∂KSm

}
,

and

Ψ(h, λ) =
1

2

∫
KS

h−1 |λ|2 dx .
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We introduce the restriction operator, given by

R : H →
{
h ∈ L∞(K̊S) : 0 < hmin 6 h 6 hmax on K̊Sm, h = 0 on K̊S \ K̊Sm

}
h→ 1K̊Smh|K̊Sm ,

along with the extension operator

E : Hm → H

h→ h̃ s.t.
(
h̃
)
|K̊Sm

= h and
(
h̃
)
|K̊S\K̊Sm

= PH(h) ,

where PH(h) = max (hmin,min(hmax, h− l)) and where l is the solution of
∫
KS

PH(h) dx = h0 |KS|.

We use the finite element discretization in order to introduce

min
(h,λ)∈Hm×Jm

Ψ(h, λ) . (33)

For any m ∈ N?, the discrete projected gradient algorithm (D.P.G.A.) is given as follows:

Numerical algorithm:

1. Fix hm0 ∈ Hm.

2. For n > 0:

(a) Compute λmn = hmn ∇umn , where umn ∈ Ṽδm is the unique solution of:

(PHm)

{
−div(hmn ∇umn ) = f in K̊Sm

umn = 0 in ∂KSm

(b) Update h:

hmn+1 = PHm(hmn − µ∂hΨ(hmn , λ
m
n ))

where µ > 0, PHm(h) = max(hmin,min(hmax, h− l)) and where l is the solution of∫
KSm

max(hmin,min(hmax, h− l)) dx = h0 |KSm| .

and we have that

∂hΨ(h, λmn ) = −|λ
m
n |2

h2
.

3. Stop when

|hmn −PHm(hmn − µΨ′(hmn , λ
m
n ))| < εµhmax .
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The update can be written more explicitly

hmn+1 = PHm

(
hmn + µ

|λmn |2

(hmn )2

)
. (34)

The discrete projected gradient approximation is done in two steps:

h?
FEM−−−→ h?,m

PGA−−−→ hmn?

where we denote respectively by h?, h?,m and hmn? , the respective solutions of the optimization
problems (32), (33) and of equation (34). Let us introduce

h?,m
FEM−−−→ λ?,m

h̃?
Continuous−−−−−−−→ λ̃?

h̄?,m
FEM−−−→ λ̄?,m

h?
Continuous−−−−−−−→ λ?

where h?,m and h? stand respectively for the optimal thickness of discrete and continuous problems,
h̃? = E(h?,m) is the extension of h?,m to K̊S and h̄?,m = PHm (R(h?)) is the projected restriction of
h? on Hm, we can check that

‖h̄?,m − h?|L∞(K̊S) 6 ‖h̄
?,m −PHm(h?)‖L∞(K̊S) + ‖PHm(h?)− h?‖L∞(K̊S)

6 ‖R(h?)− h?‖L∞(K̊S) + ‖PHm(h?)− h?‖L∞(K̊S)

→ 0

since h? = PH(h?) and

lim
m→∞

∥∥∥h?,m − h̃?∥∥∥
L∞(K̊S)

=
∥∥∥h̃?∥∥∥

L∞(K̊S\K̊Sm)
= 0 .

We therefore obtain the L∞(K̊S) convergence. Now, given the continuity of the solution operator
h→ uh and the functional Ψ, for any real number ε > 0, we have that

−ε < Ψ(h?,m, λ?,m)−Ψ(h̃?, λ̃?) 6 Ψ(h?,m, λ?,m)−Ψ(h?, λ?) 6 Ψ(h̄?,m, λ̄?,m)−Ψ(h?, λ?) < ε ,

since

Ψ(h?, λ?) 6 Ψ(h̃?, λ̃?) and Ψ(h?,m, λ?,m) 6 Ψ(h̄?,m, λ̄?,m) .

We also have convergence of the projected gradient algorithm on the prefractal domain:

Proposition 5.6 ([Toa97]). Given m ∈ N and the prefractal domain KSm, the projected gradient
algorithm converges to the optimal solution h?,m.

We have proved that:
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Corollary 5.7.
The discrete projected gradient algorithm introduced in Section 5.3 converges to the optimal solution
h?.

Proof. This directly follows from the triangle inequality; namely,

‖Ψ(h?, λ?)−Ψ(hmn? , λ
m
n?)‖ 6 ‖Ψ(h?, λ?)−Ψ(h?,m, λ?,m)‖+ ‖Ψ(h?,m, λ?,m)−Ψ(hmn? , λ

m
n?)‖ ,

where n? denotes the optimal stopping iteration.

5.4 Numerical Results

In this last section, we represent the optimal solution of the compliance problem for the Koch
Snowflake domain KS:

min
h∈H

J(h) =

∫
KS

f uh dx ,

where

H =

{
h ∈ L∞(K̊S) such that 0.1 6 h 6 1 and

∫
KS

h dx =
1

2
|KS|

}
and where u is the solution of

−div (h∇u) = e−(x2+y2) in K̊S

u = 0 in ∂KS .

The approximation parameters are m = 4, ε = 0.05 and µ = 0.05.

The optimal thickness h in figure 17 presents oscillations up to the boundary, while the solution in
figure 18 is smooth.
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Figure 16 – The approximated domain KS4.

Figure 17 gives a thrilling idea of the optimal shape:

1. The thickness does not vary radially from the center to the boundary, and it is not uniform near
the boundary.

2. There are extreme thickness differences between neighboring regions near the boundary.

3. One can expect a self-similar structure of the shape as m approaches infinity.

The final form of the drum could be explained by the deformation properties of the snowflake mem-
brane as explained By M. Lapidus and M. Pand in [LP95]. Approaching the boundary, the authors
proved that the magnitude of the gradient of the ground state eigenfunction approaches 0 near acute
angles of the approximation domain, while it tends to infinity near obtuse angles. This is exactly what
is shown in figure 17: since the thickness is a positive function of the deformation, one can try to give
the value +1 to obtuse angles and −1 to acute ones, by summing over a sub-region of the boundary,
one can predict the color (mean thickness).

Upon zooming into the picture, we observe that the thickness value is not minimal at the center
(h = 0.125). The minimal value is attained in specific regions near the corners, confirming the dumping
phenomena near coastlines [LP95]. In the limit, we expect to observe a self-similar structure forming
the minimal thickness regions in the image shown in Figure 22.
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Figure 17 – Contour plot and 3D representation of the optimal thickness.
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Figure 18 – Contour plot and 3D representation of the optimal solution.
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6 Concluding Comments

The results of this work go far beyond the plain shape optimization of the Koch snowflake. In our
mathematician’s perspective, the Koch snowflake simply plays the role of a model fractal membrane.
We intend to apply our results to fractal membranes which already exist in nature, more specifically, the
plasma membrane of the Amoebozoa Physarum polycephalum, which presents an irregular appearance
with numerous invaginations at multiple scales; see [Sau82]. This membrane is a dynamic structure,
constantly changing as the organism moves, feeds, and explores its environment, which can display
complex, adaptive behavior that can fold and unfold at various length scales, thus also exhibing a
fractal-like organization. This dynamics is associated with oscillations.

This is not all. We believe that the oscillations associated with fractal-shaped membranes can be
modelled – and understood – by applying the theory of Complex Dimensions, laid out for many years by
Michel L. Lapidus and his collaborators; see [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LvF00], [LP06],
[Lap08], [LPW11], [ELMR15], [LvF13], [LRŽ17], [LRŽ18], [Lap19], [HL21] and [Lap24], in particular.
The theory of Complex Dimensions is a very natural and intuitive way to characterize fractality,
in connection with the intrinsic oscillations associated with fractals. The Complex Dimensions are
obtained as the poles of fractal zeta functions, which can be viewed as (global) differential operators.
Recent developments of the theory in [DL24b], [DL24a], [DL25], have shed new light on the connections
between the Complex Dimensions and the eigenmodes of the fractal Laplacian issued from fractal
cohomology; in particular, it is shown that a suitable truncation of the (infinite order) differential
operator induced by the fractal zeta function enables us to obtain the fractal counterparts of classical
operators, such as the Laplacian. We intend to go further, and numerically implement those results.
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Figure 19 – The center of the snowflake.

-0.10 -0.05 0.00 0.05 0.10

-1.00

-0.95

-0.90

-0.85

-0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 20 – The south corner.
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Figure 21 – The south west corner.

Figure 22 – Zoom on the thickness.40
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