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Abstract

We introduce the finite element method to analyze a membrane with a Koch snowflake-shaped
boundary. The fractal nature of this domain presents unique challenges due to its intricate bound-
ary structure. Our approach involves discretizing the domain, estimating the error, and proving
convergence. With these aspects addressed, we solve a shape optimization problem to determine
the optimal thickness of the membrane. These findings provide valuable insights into how fractal
boundaries affect structural performance and optimization.
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1 Introduction

In the 90’s, the french physicist Bernard Sapoval and his collaborators conducted experiments de-
voted to the study of the vibration modes of irregular drums, especially, in the case of a fractal boundary
(or, to be more precise, of a prefractal boundary, i.e., a polyhedral approximation of the given fractal).
The drums consisted in a thick polyethylene film (5 mm), stretched across the prefractal boundary,
which had the form of a square Koch fractal curve (or Minkowski fractal; see Benoit Mandelbrot’s
book [Man83|, Plate 32). The drums were excited by an acoustic source (a loudspeaker) located one
meter above the drum; see [Sap89], [SGMII], [SG93|, [HS98| for further details. The observed and
recorded modes were rather surprising: in fact, if modes were localized to four bounded regions, it was
possible to excite each of these regions separately, just by moving the acoustic source, in complete con-
tradiction with the well-known behavior of smooth domains. Those localization phenomena resulted
in exceptional damping properties.

Following this work, a sharp mathematical study was done by Michel L. Lapidus and his collabora-
tors, along with numerical simulations, devoted to the study and understanding of the eigenfunctions
of the Dirichlet Laplacian on a Koch snowflake domain; see [LNRG96]. The algorithm was based on the
finite difference method; in particular, the authors obtained approximations of the first fifty smallest
eigenvalues, along with the associated eigenfunctions. In contrast to the aforementioned experiments,
no localization phenomena were observed.

We hereafter propose to carry on the exploration of those fractal drums, by means of the finite
element method, suitably implemented in the case of a domain with a fractal boundary. When the
boundary has the shape of a Koch curve, it is, also, a d-set, i.e. a compact set F C R?, 0 < d < 2,
such that there exists a Radon measure p with support F and two strictly positive constants ¢; and ¢
satisfying, for any strictly positive number r and any ball B(X,r) the center of which belongs to F,

et < w(B(X,r)) < e rd.

The measure p is then called a d-measure.

Formally, we can then use the Sobolev extensions theorems associated to d—sets (such as, for in-
stance, the ones given by Peter Wilcox Jones in [Jon81]), along with Alf Jonsson and Hans Wallin’s



trace theorems (see [JW84]). This enables us to properly solve the associated Poisson problem.

Insofar as our aim is to implement finite elements, this calls for approximation by polynomials, the
degree of which will provide information related to the level of smoothness of the considered functions.
More precisely, the polynomials involved are defined on the intersection of F with two—dimensional
compacts. This is, of course, a kind of spline approximation. A powerful tool happens to be given by
Markov’s inequality, which, in its original form that goes back to 1889 (see [Mar4S]) and states that,
for any complex polynomial P of degree deg P:

1P'||(—1,1] < (deg P)* || Pll-1,1; -

Along these lines, Markov’s inequality is preserved on the set F if, for any polynomial P with d

variables, any point X € F and any real number r €]0, 1]:
c(P,d, F
max |VP| < c(Pd,F) max |P|
FAB(X,r) r FAB(X,r)

where ¢ (P, N, F) denotes a positive constant which depends on N, P and F. Fortunately, as it can
be found, for instance in [Wal92|, d—sets preserve Markov’s Inequality. Along with the fact that the
aforementioned trace theorems involve Besov spaces, where functions can be approximated by splines,
this makes d—sets good candidates for the finite elements method.

Indeed, as was the case if the experiments described above, we do not work with the fractal bound-
ary itself, but, instead, with the sequence of prefractal polygonal approximations (in our case, iterated
fractal drums (ifs), as introduced in [DL22]), which are Lipschitz. We are then able to prove the weak
convergence of the sequence of solutions associated with the the sequence of prefractals.

Our paper is organized as follows:
i. In Section 2, we introduce the geometry of the problem, along with the functional framework.

1. In Section |3} we introduce our parametric optimization problem, in connection with the com-
pliance properties of the involved membrane (a Koch snowflake membrane); i.e., the properties
associated to the elastic deformation of the membrane, when undergoing the excitation. The
considered domain is of particular interest for being both fractal and with a fractal boundary.

ii. In Section [ we introduce the finite element method on our domain with a fractal boundary,
along with the associated numerical analysis.

112 In Section [5] we solve a shape optimization problem involving the Koch snowflake. In particular,
we obtain the optimal thickness.

2 Geometric and Functional Framework

2.1 The Koch Curve and the Koch Snowflake

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (z,y). The horizontal and vertical axes will be re-
spectively referred to as (2'z) and (y'y).

Notation 1 (Set of all Natural Numbers and Intervals). Asin Bourbaki [Bou04] (Appendix E. 143),
we denote by N = {0, 1, 2, ...} the set of all natural numbers and set N* = N\ {0}.

Given a, b with —oo < a < b < o0, |a,b| = (a,b) denotes an open interval, while, for example,
la,b] = (a,b] denotes a half-open, half—closed interval.



Notation 2 (Rotation Matrix). For § € R, we denote by Ro g the following rotation matrix,

6 —sind
Rog — (cos sin ) .

sinf cos@

Property 2.1 (The Koch Snowflake as a Self-Similar Set [HOP92|). The Koch Snowflake RS is
the bounded domain, the boundary of which is defined as the union of three rotated copies of Koch curves

RC; in particular, each curve is a self-similar set with respect to the family of similarities { f1, fa, f3, fa}
defined for any X € R?, by

AX)=3X+| ; fQ(X)_3RO,§X+<§> ; f3<X>—Ro;X+<§)7
1 1
f4(X):7X+ (@) )

3 3

where, for € R, the rotation matriz Ro g has been introduced in Notation@ on page .

The respective fized points of the similarities {f1,..., fa} will be denoted by {Plf, e ,PI}. Note

that
V3 V3 V3 V3
Plf = 12 : P2f = 57 : Pz{ = g : P4f = %
2 7 7 2

The two other copies of the Koch curves are obtained by rotating the Koch curve K€, i.e.,

O0RG = KLU h1(RE) U h2(RC),

where h1 and ho are respectively given by

VX € R?: b1(X) =Rp_22 X and hy(X) =Rp 25 X-



Figure 1 — Koch Snowflake.

Property 2.2 (Self-Similarity of the Koch Snowflake). The Koch Snowflake is self-similar, with

respect to the family of contractions {g1,...,gr}, such that, for any X € R2,

1 1
_ 0 1
) =3 X+ P 92<X>=X+<_2) om0 =tx1 (V]
1
g4(X) = 73 RO,% X7
1 1
L V3 1 0 1 7
g(X) =3 X+ | } v e(X) =g X+ (2] 5 gr(X) =X+ | Y
3 3 3
The respective fized points of the contractions {g1, ..., g7} will be denoted by {P{,..., P?}. Note
that
V3 . V3 ;
P} = % ; PQq:(_l) ; PY= 21 : p49:<0)’
2 2
V3 . V3
Pi=| 2] Pg:(l) ; P=| %
2 2



Figure 2 — The Koch Snowflake as the union of seven scaled copies of itself.

Definition 2.1 (The Open Set Condition — Similarity Dimension). Given N € N* let us
consider a set of similarity maps {fi,..., fx} and, as is done in [Hut81], the self-similar set F as the
unique set of R? such that

F=rr-
=1

The set of maps {fi,..., fx} satisfies the open set condition if there exists a nonempty bounded
open set O such that

U Sil0) O and fi(O)N fi(O0) =0 ifij-

1<i<
In the case when the similarity maps {fi,..., fx} are contractions, with respective ratios
{r,...,rn} €]0,1["V, there exists a real number Dy (F) such that
N
Dy (F
dor =1, M)
=1

called the similarity dimension of F (see [Fal03]); it is also the Hausdorff dimension of F.

Proposition 2.3 (Hausdorff and Similarity Dimension of the Koch Snowflake). The respective
Hausdorff dimensions of the Koch Snowflake 86 and of its boundary 0RS = K& U h1(RC) U ha(RE) (see

Property on page , are given by

In(4)
In(3)
Note that they coincide with the similarity dimension; see [Fal03)].

Dy (86) =2 and Dy (0RG) =




Proof. This directly follows from the definition of the similarity dimension (see Deﬁnition on page@

just above) since
1\ P (8) 1 \Pu®&) 6 N Du(RS)
G e () 26

=1
L]

Definition 2.2 (Initial Points — Initial Segment). We define the initial points, respectively denoted
by I and J as being the fixed points respectively associated with the similarities f; and f4 introduced
in Property on page [4 in fact, we have that

V3 V3

2 2
The line segment [I.J] is called the initial segment.

Property 2.4 (The Koch Curve, Limit of a Sequence of Prefractal Graphs). The Koch
Curve K€ is the limit of the prefractal sequence of finite graphs (R¢.,),, < such that

A& =[IJ] and Vm € N*: &€, = (] fw(Rey),
WeXn,
where the points I and J have been introduced in Definition [2.3, on page [7 just above and where,
for any m € N*, ¥, = {1,2,3,4}™, with fyy denoting a composition of maps from {fi,..., fa} and
indexed by W; see Figure[3, on page [T

Figure 3 — The prefractals curves £€j, K€ and K&s.

Property 2.5 (The Koch Snowflake, Limit of a Sequence of Prefractal Polygonal Domains).
The Koch Snowflake R is the limit of the prefractal sequence of polygonal domains (RS,,),, oy where,
for any m € N*, RGy, is the m!"prefractal Snowflake, which is the bounded domain of R? delimited
by the three copies {R€y,; h1(REy,); h2(REm)}; see Figure[f, on page[§ Note that, for any m € N*,

ORG,, = R, Uh1(RE,,) U ha(8E,,) .

Definition 2.3 (Sets of Vertices, Prefractals). We introduce the initial boundary set Ty = {1, J},
where the points I and J have been given in Definition [2.2] on page [7] above.

We then set for any m € N*,

N
Va=UrWe)= U @) -
i=1

WeXm



Figure 4 — The polygonal domains 8Gg, R&; and RGs.

For any m € N, the set of points V,Z, where two consecutive points are connected, is an undirected
finite graph, called the m**—prefractal graph and denoted by &¢,,. Observe that, for any m € N,
the set of points of V,Z also corresponds to the set of vertices of £¢,,. Therefore, V,Z is naturally called
the set of vertices of the prefractal R&,,.

We set VI* = U VZ and recall that 8¢ = VT+ (see [Hut81]).

m=0

Definition 2.4 (Adjacent Vertices, Edge Relation). For any m € N, two vertices X and Y

belonging to V. will be said to be adjacent (i.e., neighboring or junction points) if and only if the edge

XY belongs to 0RG,, ; we then write X ~ Y. Note that this edge relation depends on m, which
m

means that points adjacent in V,Z might not remain adjacent in V.2 Y1

2.2 Sobolev Spaces — Traces — Weak Formulation

Notation 3 (Lebesgue Measure on R?). We hereafter denote by ji. the Lebesgue measure on R2.

Notation 4 (Boundary Measure on the Boundary of the Snowflake). In the sequel, we denote
by pass the boundary measure on the boundary 0RS of the Snowflake.

Remark 2.1. In practice, poag is a Dy (0RG)—measure; see Definition on page @L along with
Proposition [2.6] on page [I0] below.

2.2.1 (¢,6)-Domains, John Domains and d—sets

Notation 5 (Euclidean Distance). In the sequel, we denote by de,o the Euclidean distance on R2.

Definition 2.5 ((¢,0)-Domains [Jon81]). Given ¢ >0 and 0 < ¢ < oo, an open connected sub-
set Q C R"™ is called an (¢, 6)-domain if, for every pair of points (X,Y) € Q"2 such that de,q(X,Y) < 9,
there exists a rectifiable arc v C Q, with length £(v) joining X to Y and satisfying

XY
i E('y)é deucl( ’ )

€
€ deucl(X7 Z) deyel (Y7 Z)

i. V7 C dona(Z,00) >
" € 7 l( ) deucl(X7 Y)

8



Definition 2.6 (John Domains [Joh61]). An open connected subset Q@ C R™ is called a John
domain if there exist two real numbers > 0 and 8 > 0, along with a point X €  called the center
of Q such that for every point Y € Q we can find a rectifiable arc v C 2, with length ¢(v) < § joining X
to Y and satisfying

VZ €y dewa(Z,00) > al(v(Z,Y))-
Remark 2.2 (Connection between John Domains and (€, §)-domains — Some Examples [JW84])).

i. (e,0)-domains are John domains; see Figure |5 on page |§|, for the (e,0) and John conditions.
ii. The Koch Snowflake RS is an(e, d)-domain and therefore also a John domain.

John condition.

(e,0) condition.

Figure 5 — An (¢, 6) domain and a John domain.

Notation 6 (Wave Inequality Symbol). Given two positive numbers a and b, we will use the
notation a < b when there exists a strictly positive constant C' such that a < C'b.

Definition 2.7 (d—Measure — d—set ([JW84], page 28)). Let us denote by F a closed, nonempty
subset of R” and d a real number such that 0 < d < n. A positive Borel measure p with support F
is called a d—measure on F if, for any closed ball B(X,r), with center X € F and radius r > 0, we
have that

S u(B(X,r)) St

A closed, nonempty subset F' of R" is a d—set (0 < d < n) if there exists a d-measure on F.

Remark 2.3 (About d—measures). Examples of d-measures and d-sets can be found in the book [JW84],
Chapter 2.

An important comment is that, when 0 < d < n, suitably normalized d—measures coincides with
the n—dimensional Lebesgue measure (see [Wal91|, Notation page 118). This enables us, in particular,
to obtain equivalent and useful characterizations of the function spaces involved, especially, the Besov
spaces, as in Theorem [2.11] on page [L0| below.



Proposition 2.6 (The Boundary of the Koch Snowflake as a d—set (J[Wal91], Proposition 2)).

In4 In4

The boundary ORS of the Koch Snowflake is a ln—gfset. Note that ln—g 1s the Hausdorff dimension of
n n

the Koch Curve R€ mentioned in Proposition [2.5, on page [0

2.2.2 Function Spaces — Trace Theorems

Definition 2.8 (Ho6lder Spaces [Eval0]). Let us denote by © an open subset of R”, o > 0 and k
an integer such that k < o < k + 1. The Holder space C***(Q) is the space of C*(2) functions f
such that

|DJf(X +h) — DI f(X
fllena-sq = 3 10 o + 3 sup PLELDZ 2O oo,

a—k
i<k il=k" 7

Definition 2.9 (Sobolev Space on an Open Set 2 C R?). Given k € N and p > 1, we recall that
the Sobolev space on an open set  C R?, denoted by W,f (), is given by

WEQ)={f € L?(Q) ,Va<k,D*f € L"(Q)},
where LP (§2) denotes the Lebesgue space of order p on 2, while, for the multiindex o < k, D* f is the

classical partial derivative of order «, interpreted in the weak sense.

We denote H*(Q2) = W§(Q) and by HE () the closure of the space test functions D(Q2) in H*(Q). For
a function f € H*(Q), we denote by

N

g = | S 1D Iz

|a|=k

[

ey = | 32 10712

|laf<k

Definition 2.10 (Besov Spaces [JW84]). Given an open subset 2 of R", a > 0, 1 < p,q < o0,
along with an integer & such that 0 < k < a < k + 1, the Besov space, or (Hélder spaces in LP-norm)
BY1(Q) is given by

. ) j 1808 ey |
BP1(Q) =< f € LP(Q), Z |D fHLp(Q)Jr Z /R G dhy <oy,

i<k lil=k

where A}, denotes the usual first difference, defined here by

Vi e QVh e RY, Anf(t)=f(t+h)— f(t).

Proposition 2.7 ([JW84]). The space B&Y(Q) is a Banach space for the norm ||| gpa. If1 < p,q < o0,
then D(R2), the space of infinitely differentiable functions with compact support on €, is dense in
BYY(Q).

Definition 2.11 (Besov Spaces on d—sets [JW84]). Let 0 < o < 1,1 < p < o0 and F a d-set
with respect to a d-measure u. A function f belongs to the Besov space BY?(F) if and only if it has
finite norm

10



RSB

17z = 171y + ( [ e ) du(Y)>

Theorem 2.8 (Rellich Embedding Theorem for John Domains [CRW13]). If1 < p < 0o and
if Q C R"™ is a John domain, the injection

W, (Q)—LP(Q),

18 a compact injection.

As a consequence, we have the following Poincaré inequality (for a more general result, we refer to
[CDMP19]):

Theorem 2.9 (Poincaré Inequality for John Domains). Let us denote by Q@ C R™ a John domain.
Then, there exists C' > 0 such that

Ve Hy(Q), Iflee <CIVlag -

The constant C s called the Poincaré constant.

Now, we introduce a trace theorem for d—sets. Let us recall that the trace operator of a function f
on a set F'is the operator

and that an extension operator of a function g, defined onF’, to R™, yields

E:g—Eg such that (Eg)|F =g.

Theorem 2.10 (Trace of Sobolev Spaces on d—sets [JW84|). Let us denote by F a d-set
n—d

p
and 1 < p < oo. The restriction operator satisfies W' (R")|p = Bg’p(F), as a linear bounded operator.

with respect to ta d—measure i, o an integer, along with real numbers 0 < d <n, 0 < f =« —

Theorem 2.11 (Jones Extension Theorem of Sobolev Spaces [Jon81]). If Q C R™ is an (¢,0)-
domain, there exists a linear bounded extension operator

W) =W (R") for1<p<ooanda>0.

Notation 7 (Set of Real Polynomials with N Variables). Givenn € N*, we denote by R[ X7, ..., X,]
the set of real polynomials with n variables.

For the sake of concision, we will often write, with a slight abuse, R[X], instead of R[X}, ..., X,].

11



Definition 2.12 (Markov Inequality). We say that a closed, nonempty subset F' of R™ preserves
Markov’s Inequality if, for any polynom P € R[Xy,...,X,], any point X € F and any real num-
ber r €10, 1]:

Pn, F
max |VP| < clbn F) max |P|,
FNnB(X,r) r FnB(X,r)

where ¢ (P, n, F') denotes a positive constant which depends on n, P and F.

Corollary 2.12 (Trace Operator [Wal91]). Let Q@ C R”™ be an (€, 0)-domain, 9 a d—set with respect
—d
and 1 < p < oo. If O preserves

to a d—measure p, a an integer, 0 < d <n, 0 < 8 = a —

Markov’s inequality; i.e., if d > n — 1, we then have that

W' ()90 = B5¥(09),

along with the fact that the trace operator is a linear bounded surjection; (see [Wal91|, Proposition 4,
page 120).

Remark 2.4 (On the Use of the Trace Operator). In our present setting, where the boundary is
fractal, we cannot a priori define normal derivatives. However, since we have a trace operator, which
maps Sobolev spaces on the interior of the considered domain, onto Besov spaces endowed with a scalar
product (by means of the d-measure involved), we can work on the dual spaces; hence, it is possible
to apprehend the normal derivative of a function belonging to the aforementioned Sobolev spaces, as
en element of the Besov trace spaces.

Theorem 2.13. If Q C R" is an (¢,0)-domain and if k > E, then, the Sobolev space WIf(Q) is a
p

subset of C°(Q), and the injection is continuous.

Proof. According to Theorem [2.11] on page there exists a linear bounded extension operator
E : WF(Q)—W}(R") such that

(Bg)o=9 and Byl S 9l -
We can then use the following classical result to conclude:

Lemma 2.14 (Compact Injection from WI'f in C°(R™) [Bre99]). For k > ﬁ, the injection
p
L Wg(R”)%CO(R") is compact.

O]

Theorem 2.15 (Density). Let us denote by RS the interior of the Koch Snowflake RS. For every
u € HY(R®), there exists a sequence of functions (ug)reny C C*°(RS) such that

e

12



Proof. From the Jones extension theorem, there exists an extension @ € H'(R?) such that Ugs = U

and [|al g1 ey < HuHHl(ﬁoe). So we can choose a function p € C°°(R?) such that
VeeR?: p(x)=0 ; VoeR?for|z|>1: p)=0 ; / pdr =1
R2

and then introduce the mollifier py = k? p(kx). We thus have that the sequence of terms
(ur)pen = (W* pr)y e  satisfies the theorem. O

Theorem 2.16 (Normal Derivatives on a Fractal Boundary [Lan02]). Ifu € H'(86) and Au €
L?(8G), then the normal derivative of u on the boundary exists as an element of the dual space of the

. In(4
trace space Hﬁ@g@(ﬁG); i.e., as an element of the dual space ofBZL;i(a%) (0RG) (where Dy (0RG) = ln§3;
ZHOES) n
2
i.e., as a linear and continuous functional on H|1aﬁ6(§6)' More precisely, the normal derivative of u
s given by

)}.

Vv € Hl(ﬁDG) : <6nu, ’U|aﬁ6> :/ Auvdr + VuVudz.
RS RS

3 The Membrane Problem on the Koch Snowflake

The membrane problem consists in finding the solution of the following non-autonomous Poisson equa-
tion, given by

—div(hVu) =f in RS,
(Pr) { u —0 in KRG, 2)
By multipling the first equation of (Py) by v € D(88) and by applying the integration by parts
formula, we get the variational Dirichlet problem

Vv € D(RS) : hVqud:E:/ fvdx, (Dir) (3)
RG RS

Theorem 3.1 (Solution of The Membrane Problem on the Koch Snowflake). Givenh € L®(R&)
such that hyin < h < hmax and f € L?(88), the following variational Dirichlet problem,

Vv € D(RS) : /hVqudx: fvdz, (Dir) (4)
RG RG

admits a weak solution in H} (RS).

Proof. The bilinear form (u,v) — a(u,v) = / h VuVvdzx is symmetric and continuous, because
£6

V(u,v) € HY(RG) x H'(RS) : / hVuVodzx
RS

< hmax ||VUHL2(J{G) Hv””ﬂ@@ '

It is also coercive, since

o h .
1 . _ 2 . 2 min 2
Vu e ) alu = [ VU b Vg > o il O

13



where C is the Poincaré constant, introduced in Theorem on page

The map L : v — / fuvdz is linear and continuous. So, thanks to the Lax—Milgram theorem,

RS
we deduce that the problem (Dir) in relation (4) just above admits a unique solution in the Hilbert
space Hi(RS).
O

An important question concerns the regularity of the solution w given the regularity of f. A
significant and challenging result, established Kaj Nystrom in [Nys94] and [Nys96|, and discussed by
Alf Jonsson and Hans Wallin in []W97] shows that u does not generally belong to H? (RG) However,
we still have the interior regularity :

Theorem 3.2 (On the Regularity of Solutions (|Eval] theorem 2 on page 332)). Assume h €
C"H(RS) and f € H™(RS) for m € N*. Suppose u € HY(RS) is the weak solution of the elliptic
problem

—div(hVu) = f  in RS .
Then

u e H" 2 (RS)

loc

and for each open set U C RS we have the estimate

el g sisy < € (1F g sy + 1l s )

the constant C' depending only on m, ﬁOG, U and h.

4 The Finite Element Method for the Koch Snowflake

4.1 Position of the Problem

Let us again consider the Dirichlet membrane problem in the variational form:

/ hVuVuvdr = fode. (Diryer) (6)
RG RG

For the benefit of the reader who may not be familiar with mathematical notions devoted to
Lagrange finite elements, we shall first recall several definitions (see |AIl12] for further details).

Definition 4.1 (Lagrange Finite Element). A Lagrange finite element is a triplet (K,X%, P)
such that:

1. K is a compact, convex and nonempty interior.
ii. ¥ ={ai1,...,an}, with N € N*, is a finite set of (distinct) points of K.

111. P is a function vector space of finite dimension defined on K, such that X is unisolvent in the
sense of Definition on page
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Definition 4.2 (Local Basis Functions). Let us denote by (K, X, P) a Lagrange finite element. We
call local basis functions the following N functions of P, denoted by e;, for ¢ = 1,..., N, such that
ei(aj) = (Sij 1<, N

The N-uplet (eq,...,en) is, by construction, a basis of the vector space P.

The P—interpolation operator on ¥ is the operator wx that to every function g on K, asso-
ciates g g defined by

N
kg =Y glae.
i=1

This function (7x g) is the unique element of P taking the same values as g on X.

Definition 4.3 (Triangular Mesh). Given a polyhedral, connected, open susbset Q2 C R", a trian-
gular mesh of Q is a set 75 of N-simplices (7;); ;< such that

i. ;CQand |J T;=Q.
1<i<N

5. T; N'T; is an m-simplex, 0 < m < n — 1, whose vertices are vertices of 7; and 7;.

iii. § = max |7;| is the maximal diameter.

i=1,...,

Definition 4.4 (Triangular Lagrange Finite Element). Given a triangular mesh 75 of a poly-
hedral, connected, open subset (2 C R"”, the triangular Lagrange finite element of order k,
associated to this mesh, is defined by the discrete spaces

TU(;:{UEC(Q) | o7 € Py V’HE'E} and ng{veUg | ’U|8Q:O},

where P is the space of real polynomials of degree < k.

4.2 Discretization of the Snowflake and of the Boundary of the Snowflake

Property 4.1 (Discretization of the Boundary of the Snowflake). We introduce the sequence
of sets of boundary points, denoted by (Vin),,cn, obtained by means of a uniform discretization of the
sequence of boundaries (0RGy,),, oy and such that

VYm € N* : Vm:VmIU[JI(Vg)Um(Vn%);

where the sequence of sets of vertices (V%)meN has been introduced in Definition on page @ see
also Figure[6, on page[16, for the three first sets, i.e., respectively, Vi, Va and V3.

Property 4.2 (Discretization of the Snowflake). We introduce the sequence of sets of points,
denoted by (V,ﬁg)meN and obtained by means of a uniform discretization mesh of the sets (RGy,),,cn

(Cf. th@e FEM section ; see Figure @ on page for the three first sets; namely, V{*®, V5
and V3ﬁ .
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Figure 6 — V1, V5 and V3.
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Figure 7 — V{*¢, V5*¢ and VJ*©.

For any m € N*, we can check that every interior point X of V% has six neighbors, which are the
vertices of an hexagon, where the distance between adajacent vertices is equal to 6, = O(37™); see Fig-
ure (8} on page Note that for the points X in 86 \ V.2® we can find a sequence of points (Xm.k)
such that, for all k € N, X, € Vrﬁ‘G, with kh_g)lo X = X.

keN

4.3 Illustration in the Case of the P; Finite Element on a Uniform Mesh

As is evoked in the introduction, we herefater work with the sequence of prefractal polygonal
approximations (R&,,),,cy of the Snowflake RS introduced in Property on page |7}, along with the
sequence of prefractal approximations (0R6,),,cy of the boundary JRS, introduced in Property

on page [7]

Let us start with the following finite set of points:



Py

Figure 8 — Hexagonal neighbor of an interior point I.

1 1 1 1 V31
Po=(—-——%,= . Ph=(—= = . Po=P/=(%2Z i Pi3=1(0,1),

where the points Pfc and PI are the respective fixed points of the similarities f; and f; introduced in
Property 2.1 on page [4

We then obtain the initial triangular mesh R&;; see Figure [ on page

Figure 9 — RG;.

This provides us with the first set of vertices V;%©.

Next, we use the successive discretization of the Koch Curve to fix the discretization diameter, so
we obtain a uniform triangulation mesh of the whole Koch Snowflake.
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The Koch Curve discretization sequence (R¢;,),,cn+ is generated by starting with five points

V31 1 1 1 1 V3 1
Py=|-X2 = - Pio=-——- = « Pia = 1 - Py = - . Py = el
9 ( 573 ; 10 ( 2\/572> ; 13=(0,1) ; 11 (2\/§72> ; 12 573

and by using the similarities introduced in Section [2] to obtain the induction relation; namely,

YmeN R, = U fi(RC,_1).

1<i<4

PA3

0 P 2

Figure 10 — RC;.

By using the two rotations h; and by, we also obtain the sequence of boundary points (Vi),,cn;
see figure [6] on page

1
By using a uniform diameter, i.e., for any m € N*, 6,,, = —, we obtain the points of the discretiza-

tion of the Snowflake (V,ﬁ‘g)meN; see Figure |7 on page

Proposition 4.3 ([JLNRG96|). Given an integer m € N, let us denote respectively by N , the
number of vertices of the triangulation of the boundary and by N (RS),, and N, the numbers of
triangles and vertices of the Snowflake triangulation. We have that

N =12 |, N(KG) =12, N =13,

and, for any strictly positive integer m:

N, =3 x 4™ (7)
N(AS)y, = <9m + % (o™ — 4m)> (8)
N = Al +/\2f(ﬁ6)m +1. (9)

First, given m € N*, we compute the values of the respective two—dimensional Lebesgue mea-
sures (pz (7)) 1<ic N(&S),, Of the m!"—order mesh triangles (7;™);<;< N(86),; see Definition , on
page . Namely,

pe (T°) = pe (PyPsPig) = % (? + ?) X <1 + 1) _ %

and 70
Vm e N : ug(ﬁm)zlmg(m).
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Given m € N* and the discretization points of V23S, let 7™ = P,PyP., 1 < 1 < N(88),, be a
mesh triangle. We then define the associated barycentric coordinates A", with i € {a,b,c} (see,
for instance, the book [Luc04]), such that, for all M = (z,y) € R?,

Y OAN(M)=1 and Y PXMM)=M.
i€{a,b,c} i€{a,b,c}
For the initial triangle 7° = P, P5P;3, we compute

_ 1 1
V)\(Q)(M) = < %3) , V)\g(M) = <\/§i> 7 V)\(l)g(M) _ <2>
—3 —3 3
VA2 da = o P = L / VAL Rdr = -
7o V3 7 V3 T V3
VARVAS do = _Y3 : VAIVAY do = V3 , VAV, dz = V3

More generally, given m € N* and the set 86,,, we consider a mesh triangle 7, = P;P;Py,
1 <1 < N(RB),,, for some vertices P; = (zi,vi), P; = (25,y;), Pe = (x,yx). The barycentric
coordinates are then given by:

m 1
N'(M) = 20z (777) (X(yj —ye) + Y (2 — ) + 250 — yj2k)
1
AN M) = ————— (X (yr —vi) + Y(z; — i — YkTi) ;
(M) 2HL(7?")( (Ye — vi) + Y (zi — 1) + Ty — Yrs)
m 1
(M) = >z (77 (X (yi —y5) + Y (z; — zi) + 23y — yiwj)

m 1 Yi — Yk m 0
VARM) = J =3"VAy(M);
7 ( ) 2,“/5 (,ﬁm) <$k _ l’j) 2( ) )
m 1 Yk — Yi m 0
AN M) = = i (M)
VAT (M) 2 e (T,) <~”ﬂz— k> VAL
mnf) = 1 Y=Y\ _ am 0 M

We then deduce that

1
/ yw;”\?dx_/ yw;ﬂ?dx_/ \wa?dx_g—m/ IV de = —=;

l

VAV da = VAPV dr = VAPV do =97 / 9"VAIV dx = V3 :

Now, we can compute the cross product involving the local basis functions. The function A is
taken as constant on every mesh triangle 7, and given a local basis function e; (see Definition , on
page associated to a point P;, we denote by [(i) the triangle number [ containing vertex P;, and

by {(7,7) the triangle number [ adjacent to edge P;Pj, i # j. The following two configurations may
occur:
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1. The point F; is an interior point, in which case we have that

6 6
1
h]VeiIQd:):: hli/ !V)\iIdeL”: higy | —=
Je 2" 20 ) s

hi(ig) + o VAV de = (hy gy + hog) | —— |,
/ hVe;Ve;dr = ( 1(0.4) T 2 ’J)) /77” jdo = ( 1(i,5) T Pz J)) ( 6 )
e 0, if Supp(e;) N Supp(e;) =0.

2. The point P; is a boundary point, two situations have then to be considered:

(a) The point P; has two adjacent vertices, in which case

Iy
h Vei|2dx—hl/ Vil de = —;
/RG | Tm | \f

l

h | VAV de = hy —v3
/ hVe;Ve;dr = T 6
RG

0 if Supp(e;) N Supp(e;) = 0.

(b) The point P; has five adjacent vertices, in which case

5
1
hveﬁdx_E h / VAP de =Y i | —
/ﬁ | | (4 7_m| | ( \/g

=1 i k=1

. . -3
(ha(i,j) + h2(%]))/ VAV de = (hy + hy) <6
/ hVe;Ve; dz = s if P; is an interior point,
"e b [ VAV do =Ry <_6> if P; is a boundary point,
7’[771.

0if Supp(e;) N Supp(e;) = 0.

4.4 Convergence and Error Estimates

Given an integer m € N, we consider 86, as the uniform triangulation of the Koch snowflake at
the order m and KRS, its interior. The main object of this section is to estimate the convergence of
the finite element method at the order m. We adopt the methodology of [RJMO04].

First, we observe that
RS, = JT" C 8S.

For any m € N*, we respectively denote by d,, and p,, the diameter of the mesh triangles and
their roundness (incircle diameter).

The triangulation is regular, since

3 1 Om,
5m:;£ y Pm = 5 7:\/37



and using the fact that S is a John domain we get the regularity (see [Pom92| page 107 for an
alternative definition)

VX € 08RG NT™ ¢ deyat(X,086) < Copm - (10)

Let us consider the discrete space

Vs, = {U €C(RGn); vyrm € Py V" €T5,, voss,, = 0} , (11)
and the natural extension by zero on the following unresolved features

Vs, = {0 €CR6): T, € Vonr Tgsrsis, =0 - (12)

Now, let us consider the solution 1, of the variational Dirichlet problem (Dir,q,,) given in equa-

tion @ of Section

Vom € Vs, a(lim,om) = L(0p) -
Thanks to the symmetry of the bilinear form, we have that

(C+1) himag in

u—7v : .
hmin 5,eVs,, | il e )

|u — ﬁmHHé(ﬁfem) X
(C is the Poincaré constant introduced in Theorem on page )

Indeed, since @, — Uy, € H (ﬁ@m) is an admissible function, we have that

Vim € Vs, a(u, Om — tim) = L(Om — ) ,
we have that
Vim € Vs, a(u— i, Om — m) =0, (13)
or, equivalently,
VO, € @’57”, a(t — Uy U — Upy) = a(U — Uy, U — D) - (14)

By using the coercitivity of the bilinear form af(.,.), we obtain that

(C+1) himaa

L 3

|u — ﬂ‘mHHé(ﬁon) X
From this result, along with relation just above, we deduce that 4, is the orthogonal projection
of u with respect to the norm ||.||, (or, equivalently, the scalar product associated to a on H}(8&,,);
ie.,
~ <7 ~ 2 ~ 2
Vip € Vs, t [lu—1tnlly < [lu—0m; -
We then use the regularity of the bilinear form a(.,.) on this expression; namely,

~ 2 hmin ~ 2
Pimaz ||u — Um”ﬂé(;{gm) SO0+ HU_UmHHé(;{Gm) .
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to finally obtain that

o= g < e Tl s, - (16)
and using the equivalence of the two norms in H}
lu — ﬁm‘H&(K@m) < ﬁmiéggm lu — @W‘Hg(ﬁ%m) . (17)
which becomes
|u—um\H&(R°6m) gvmiengém ’u_”m‘H(}(y{Gm)' (18)

We now have to take into account the fact that (see figures [11] and

N

_ B 2 2
u— “m‘Hg(ﬁ"G) = (‘“ - “m‘Hg(ﬁ"em) + ’u‘Hé(ﬁDG\ﬁem) (19)

pi 3

Figure 12 — The open set O; of A6 \ £6,,
delimited by [P}, P;].

Figure 11 — The open set ROG\,QOGm for m = 1.

Now, given m € N, let us consider the interpolation operator m,, on ﬁOGm, which, to any con-
tinuous function on KS associates the continuous function m,u on KG,,, such that, for any triangle
mesh 7" € 7Tj,., the restriction (ﬂmu)mm is the Lagrange interpolation on 7;"* and which is identically
equal to zero on the vertices of 0RG,,.

We will first estoablish a ggeneral result for h in L* on the regular approximation domain KG,,.
Remark that W2 (R6)N HE (RS) is dense in H} (RS) (contains D(RS)). Then we decompose the error
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by choosing v € W2 (A6) N HY(RG) and m € N such that, Ve > 0

Ju — 71'ﬂ”Lv”Hl(ﬁ"Gm <u— U||H1(ﬁ°6m) + v = 7T”LUHIH”(ﬁDGm)
S lu— UHHl(ﬁ%m) + 5mHU||W§O(ﬁ°6m)
S =l ey + Omlvlliyz (s
13 g
SptyTe

where we used the density of W2 (RS) NHg (R&) in H} (&), and we applied theorem 3.1.6 in [Cia02],
page 124, on the regular domain RS, to get the upper bound of ||v — Wmv”Hl(ﬁ”Gm), then we extended

the norm to the whole domain &G by the choice of v.

If we analyze the second part of the error ||ul| H )» given that u € H} (RG), one can employ

(RG\ KRG,
the dominated convergence theorem. Specifically, note that the inequalities
1

> and 1 Vul? < [Vul?

AB\R6,, |V |u ’ RG\RG,,

hold for every m, where 1 R6\86 is the characteristic function of the set 86 \ RS,,. Since lu|? and

|Vu|? are integrable over RG, the shrinking measure of RS \ RG,, as m — 0o ensures that

W%gn ||U||H1 (RG\&G,) — 0. (20)
We have proved the following;:
Proposition 4.4. Let f € L2(86) and h € L®(RS) then
n}iinoo Hu_ﬁmHHl(ﬁ{@) =0 (21)

We now proceed to compute the convergence order of the finite element method applied to our
elliptic problem. This computation, however, necessitates imposing additional restrictions on h. We
begin recalling the following lemma:

Lemma 4.5 ([RJMO04]). Given m € N*, let T/ be a mesh. We denote by k > 1 the interpolation
order. There exists a real constant C > 0, depending only on k and m, such that, for all 0 <n < k+1
and for each v € HFL(T™M),

k+1

m
" |U‘H§+1(7;m) .
m

‘U - ’/va’HSL('Um) < C (22)

e The case k = 1:

In that case, the function m,u belongs to Vs . We can use We have the following lemma [4.5] to
deduce the following result:

Lemma 4.6. Let us assume that k = 1. Given m € N*, we have, for every function h € C1(RG)
and f € L*(RG),

Umi&gm u — ”m|H3(ﬁ°6m) S Om <||f||L2(ﬁ‘é) + HUHL2(£§G)> . (23)
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Proof.
Using lemma [£.5] and theorem [3:2}

i — . < — . < . < .
b= vl e, S 1= gy s, S Om Ul s, S 0m e g,

< b (12 + 1l i) -

e The case k > 2:

In that case, the function mp,u does not belong to Vs (mpu isn’t null on 0RGS,,). We need to
prove the following lemma:

Lemma 4.7. Let us assume that k > 2. Given m € N*, we have, for every function h € C3(R&)
and f € H*(RS), that

. 2
o= vnly i, < 0 (1l + Tl - (24)

Proof. We give here an adaptation of the proof which can be found in the book [RJMO04]. Let
70 be the interpolation function such that 70,u € V; . The support of m,u — 79,u is the set of
boundary triangles 7,” N 07, # 0. We can use the triangle inequality; namely,

. 0 0
o= Ol gy i, S = Ty s,y S 10— Tty ) £ 1T = Tt gy )

On the one hand, thanks to Lemma on page [23] we have that

54 54
_ < m < Im .
|u 7Tmu|Hg(7;m) ~ om |U|Hg(77n) ~ om ||U||H4(7; )

We thus use theorem to deduce that

54
lu — Trmu|Hé(ﬁ°6m) S p% HU||H4(ﬁ°6m) S 5§n (Hf”H?(ﬁQ@) + ||u||L2(ﬁ°@)) .
On the other hand, let 7" = P;P; P, be a boundary mesh triangle, such that {P;, P;} € 0RG.
P, + P;
We set Pj; = it

ment [P, Pj| with 0RS; see Figure just below (Pj; could be any interpolation point on the
segment [P, Pj]).

and denote by F;j, the intersection point of the bisector of the line seg-

Given the basis function e; associated with 7;"", we deduce that

(Tmu — W?nu)mm =u(P;j)e .

Recall that any point P, in the segment [P;, P;] could be written as P, = a P; + (1 — a) P; for
0 < o < 1. Define 4(a) = u(aPj + (1 — ) P;). By using Taylor-Lagrange formula, for some
0<ar<aand a<ag <1,
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Figure 13 — The edge {P;, P;} € 0RGS of the boundary triangle 7,”.

OéQ
w(0) = u(P;) = (a) — ad'(a) + ?ﬁ”(cl)
— u(Pa) ~ aVu(Pa) - (P, = P) + (P, = P) - Du(Pay) - (P, ~ P)
2
= u(Pa) — adm|Vu(Py)| + Tm’DQU(Pm)’

a(1) = w(Pj) = u(Pa) + adm|Vu(Po)| + (A-a)’s,

1
Summing the two identities for a = 5 along with the continuous injection of Sobolev space

H2(77”) in CO(T;™) (see for example [Bre99]), we obtain that

52 9 9 52 2 2 2
uPy)l = | =5 P"ulen) + Diuler)l| < 5t max, [D%u(Fa)| S om 10"l i,
Consequently,
VT™ € 086, : !ﬂmu—W%U\Hé(Tlm) < o ||D2uHH2(ﬁ°6m)'

In the end, using theorem [3.2] we have that

(NI

0 . — 0,2
|Tmu — 7rmu|Hé (@) = Z |7 7Tm“|H3 (7m)
T € 0RGm

3
S O ||D2U\|H2(ﬁ“6m)

3
O ||UHH4(§{6m)

3
S 03 (I lpz2 sy + el 2 s ) -

Now, by combining those results with Inequality , on page we obtain the following theorem
about the convergence of the finite element method:
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Proposition 4.8. Denote by k the interpolation order, introduced in lemma[4.5, and by f the force
term in the right hand side of the problem (Py). Given m € N*, we have that

Vf € LX(RS) and Vh € CY(RS) :  [u— iim| s (gs,) S Om (||f|yL2(ﬁaG) + Hu||L2(ﬁu6)) fork=1
(25)

o 3
V€ HAKS) and Vh € CHRS):  u—lim| a5,y S O (||f||H2(ﬁn6) + ||u||L2(ﬁoG)) fork>2.
(26)

We now merge Propositions and into a unified theorem:

Theorem 4.9 (Convergence of the FEM Method). We recall that k denotes the interpolation
order, introduced in lemma[{.5, on page [ is the force term and h is the membrane thickness of
the problem (Py) on page . Given m € N*, the following results hold:

1. If f € L2(RS) and h € L™(RS), then:
i u = G| g g5 = 0 (27)
2. In addition:
(a) If f € L2(RS) and h € C*(RS), then:
= il gy iy S O (1l 2y + i) fork=1, ()

(b) If f € H2(RS) and h € C3(]S), then:

3
[ = Gl gy sy S 00 (11206 + 10l 2 0 ) fork=2.  (29)

One could observe that increasing the interpolation order does not necessarily improve the con-
vergence speed. This can be attributed to the loss of regularity caused by the fractal nature of the
boundary.

4.5 Numerical Results

In this section, we ilustrate the numerical solution of the Dirichlet membrane problem by means of
the finite element method, namely,

—div(hVu) =f in RS,

(Pr) { u =0 in 986G,

for h=1and f(M) = ¢~ (2"+%%) | The solutions are generated by using the package NDSolve'FEM* of
Mathematica; see Figure on page for the values m =1, 2, 3.

Next, we report a Py solution for m = 4 with a uniform mesh.
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L L
0.0 05

The contour plot of the The meshed solution. The solution.

solution.

Figure 15 — The solution, in FEM3, as a contour plot (left) and in 3D, meshed (center), or not (right).

5 Parametric Optimization

5.1 An Alternative Approach to the Membrane Problem

Given an (e, d)—domain (see Definition on page [§)), delimited by a d-set (for instance, the Koch
Snowflake £6) and f € L?(RG), we are presently interested in the Poisson equation, in the case of
Dirichlet boundary conditions; namely,

(Pr) { —div(hVu) =f in RS,

=0 in 0RG,

where Amin < h < hmaxo. As is proved before, this equation admits a weak solution in the Sobolev
space W} (8G) = H'(8S).

Since the bilinear form af(., .) is symmetric, we then deduce, thanks to the symmetric Lax-Milgram
theorem ([Bre99], Corollary V.8, on page 84), that

uw= min {@(v)zl/ thVfuda:—/ fvda:}. (30)
veH)(RS) 2 Jse RS

By taking e = Vv, this is equivalent to
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1
min {CI’(v,e) = / he.ed:c—/ f’ud:v} .
vEH) (RS), ecL2(R6)’ 2 Jse 76

e=Vuv

The intermediary Lagrangian of the problem is given by

L(e,v,\) = ®(v,e) +/R6 A (Vv —e) do.

The Lagrangian of the problem is then
L(v,A) = min L(e,v,\).
c€L2(R6)

The map e — ﬁ(e,v, A) is strongly convex and therefore admits a unique minimum given by the
Euler equation e* = h~!\, which implies that

L(v, \) :—1/ RN dx — fvdx—i—/ A\.Vovdx
2 Jss £6 /6
1
== h_l)\.)\dm—/ v (div(\) + f) dz.
2 Jas S

The dual problem is then given by

1
max {\Il(/\) = / h_l/\.)\dx} .
AEL2(RE)? 2 Jas

—div(\)=f

We thus obtain the following theorem:

Theorem 5.1 (Existence of a Saddle Point Associated to the Lagrangian [AlIO7]). There
exists a unique saddle point (u, \,) associated to the Lagrangian L(v, \) on Hg (RG) x LQ(ﬁDG)Q, given
by

L(u,\,) = max min  L(v,\)= min  max L(v,\),
AEL2(RG)” vEH(RS) vEH} (RS) AeL2(86)°

with Ay, = h Vu.

5.2 Optimization Thickness of an Elastic Membrane on Fractals

In the following, we consider the problem of the optimal thickness h of a membrane deformed by a
force f. We proceed as in [AII07] in order to prove the existence of a solution. The thickness h is such
that

VX € 86 1 0 < hypin < h < hynas -
The behavior of the membrane is described by the Dirichlet problem

—div(hVu) =f in RS,
(Pr) { u =0 in 0RG,
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where 86 is the Koch Snowflake domain with fractal boundary RS. The problem amounts in finding h
in H which minimizes the compliance J(h), given by

J(h)Z/ﬁGj(uh)dﬁ: fupdz,

ARG
where

H= {h € Loo(ﬁoéi) such that 0 < hpin < h < ypge and / hdx = hg ]ﬁG\} ,
A6

and where uy, is the solution of the weak problem

/ hVuVvdr = fudx.
R6 R6

The following lemmas establish the continuity of the operators J : h +— J(h) and T : h > uy,.

Lemma 5.2 (JAlIO7] proposition 5.1 p. 78). The functional J : h + J(h) is continuous from H
to R.

Lemma 5.3 ([AII07] lemma 5.3 p. 78). Let h, € H converging to h* for the norm L®(RS). Let
up, (resp. up+) the corresponding unique solution in Hg (ﬁ@) of the associated (Py) problem. Then
Jim o =l =0 o)

In addition, by applying Theorem on page we deduce that

1
fupdzr = min / RN de .
RS

RS AEL2(R6)2
—div(A\)=f
The optimization problem then becomes
. . 1 12 . 1 —1y2
inf  min = R |Afde = inf  — h™" | A“ dz, (32)
het rer2(se)? 2 Jas (hNeHXT 2 Jas
—div(A)=f

where J = {)\ € L2(RG)?2, —div(\)=f in RG} The set Hx 7 is closed and convex as a product of
1
two closed convex sets and the map (h, \) — W (h, A) = 5 / h™1|A|? dz is convex, since the associated
86

Hessian matrix is positive, continuous: Given A, € J converging to A\* for the norm Lz(ROG), and
hy, € H converging to h* for the norm L*°(RS), we have

1
(W (h,A) = W (hn, \n)| < 5 Ih MNP = Byt AP da
2 Jge "

1
<5 / KA = (APl + 1R = hy A |? do
2 Jge
1 h—h,
< <hm1n||)\ An ||L2(ﬁ6 A+ An ”LQ(KG +Hhh

Il ﬁ@)
L= (86)

2
1

<3 (hmml\A Ml o sisy 1A + Anll L2 h2 17 = hn | oo s | A |L2(ﬁ6)>
0

min
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and coercive, namely, for (h,, A\,) € H X J,

[
lim  U(hp, M) > lim  — 209

The existence of the solution is ensured by the following theorem (see [CZ16] p. 125 for a more
general version):

Theorem 5.4 ([AlIO7] theorem 3.8 and remark 3.9 p. 125). Let X be the dual space of a
separable Banach space. Let E C X be a non-empty convex closed subset. If f : E — R is convex,
continuous, and coercive, then f attains its minimum on E.

We have the following result:

Theorem 5.5 (JAIIO7] lemma 5.25 p. 98). Given A € L2(R6)2, the problem

1
min / RN dx
het 2 /G

has a minimum h(\) in H given by

RRENEYs
Vi

hmin7 Zf h* < hmin7
hmama @f hmaa: < h*a

y Zf hmzn < h* < hmax )

h(A)(M) =

where I € Ry s the unique value such that / hdx = hy |RS|. This value is unique if [ > 0.
RG

5.3 Resolution by the Discrete Projected Gradient Algorithm (D.P.G.A.)

This section is based on the algorithm introduced by A. M. Toader in [Toa97| and described by
G. Allaire in [AlIO7]. Since the convergence of the finite element approximation has been proved, we
can build a projected gradient algorithm on this approximation. We give next a convergence result for
the P; approximation. To this purpose, we set

Vm € N* : V(gm = {U S C(ﬁ@m); vm eP V'ﬁm’in'ﬁsm, V|9RGy, = 0} ;

V(;m = {f) S C(ﬁ@); 6|-‘§06m c V(;m, 1~)|ﬁ"6\ﬁ°6m = 0} .
Hp = {h € L®(8S) : 0 < hpmin < h < hmax on 86,,, h =0 on 86 \ 8S,,, / hdz = ho \R6m|}
REm

jm:{)\:hVu, (hou) € Hom x Vs, —div(hVu) = f in 86, u=0 ina%m},

and
1

U(h,\) = 2/% RN da .
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We introduce the restriction operator, given by

R : H—>{h€L°°(ﬁ°6) £ 0 < hunin < 7 < himag o0 BGp, h:Oonﬁ%\ﬁ"em}
h — 1ﬁb€?mh\f€6m’

along with the extension operator

E:H,—H

h—h st (ﬁ)\ﬁf@ —h  and —Pyy(h),

(B> |RG\RG,,

where Py(h) = max (hmin, min(hmax, b — 1)) and where [ is the solution of / Py (h)dz = hy |RS].

KRG

We use the finite element discretization in order to introduce

min U(h,\).
(R ) EHm X Tm

For any m € N*, the discrete projected gradient algorithm (D.P.G.A.) is given as follows:

Numerical algorithm:

1. Fix hi' € Hp,.
2. Forn > 0:

(a) Compute N™ = A™Vu™, where u™ € Vs is the unique solution of:
—div(h™Vu™) = f  in RS,
(Pin) { um =0 in 0RG,,

(b) Update h:

1 = Pty (hy" — n oW (hy', A7)

n»’n

where © > 0, Py, (h) = max(hmin, min(hAmax, b — 1)) and where [ is the solution of
/ max(Amin, Min(Amax, b — 1)) dx = ho |RS,,| .
RGm

and we have that

DY
h2

8hqj(h7 )‘Zl) ==

3. Stop when

| = P, (b = W (R, A7) | < € pt P -

n»’'n
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The update can be written more explicitly

m o, R
hn+1 PHm hn + 2 | - (34)
(hi)
The discrete projected gradient approximation is done in two steps:

» FEM m PGA

h h*

h

where we denote respectively by h* h*™ and h]"%, the respective solutions of the optimization

problems (|32 , and of equation (|34 . Let us introduce

FEM
h* ,m )\* ,m
ﬁ* Continuous 5\*
_—
T FEM N
Jxm , M
h* Continuous *

Yvhere h*™ and h* stand respectively for the optimal thickness of discrete and continuous problems,
h* = E(h*™) is the extension of h*™ to RS and h*™ = Py, (R(h*)) is the projected restriction of
h* on H,,, we can check that

157 = | e gy < IR = Pt (0 oo sy + [P () = 27 o )
SR(AT) = Pl oo (i) + P o () = 27| oo i)
=0
since h* = Py (h*) and
lim e =i :(” =
m—00 Lo (RG) Lo (RG\RGr,)

We therefore obtain the L*° (RG) convergence. Now, given the continuity of the solution operator
h — uj, and the functional ¥, for any real number € > 0, we have that

—e < W(RS™ XS — W (R X)) < W(RS™, NS — TR N < T(RS™ NS — U(h, N < e
since

W(h* N < W(R*,X*) and  W(R™™ X\™™) < W(R*™ N\~™).

We also have convergence of the projected gradient algorithm on the prefractal domain:

Proposition 5.6 (|[Toa97]). Given m € N and the prefractal domain RS,,, the projected gradient
algorithm converges to the optimal solution h*™.

We have proved that:
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Corollary 5.7.
The discrete projected gradient algorithm introduced in Section [5.3 converges to the optimal solution
h*.

Proof. This directly follows from the triangle inequality; namely,

(A", A7) = W (R, A | < I (A", AT) = W(RS™, AR [0 (R A™) = W (hpt, AL

n*s ‘n* n*s ‘n*

where n* denotes the optimal stopping iteration.

5.4 Numerical Results

In this last section, we represent the optimal solution of the compliance problem for the Koch
Snowflake domain KG:

inJ(h) = dx ,
min J{h) » fupdr
where
H= {hGL‘X’(ﬁOG) such that 0.1 < h <1 and hdx = ﬁ6|}
RG
and where u is the solution of
—div (hVu) = e~ @) in RS
u=0 in 0RG.

The approximation parameters are m = 4, € = 0.05 and p = 0.05.

The optimal thickness h in figure [17] presents oscillations up to the boundary, while the solution in
figure [1§ is smooth.
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Figure 16 — The approximated domain RG.

Figure [17] gives a thrilling idea of the optimal shape:

1. The thickness does not vary radially from the center to the boundary, and it is not uniform near
the boundary.

2. There are extreme thickness differences between neighboring regions near the boundary.

3. One can expect a self-similar structure of the shape as m approaches infinity.

The final form of the drum could be explained by the deformation properties of the snowflake mem-
brane as explained By M. Lapidus and M. Pand in [LP95]. Approaching the boundary, the authors
proved that the magnitude of the gradient of the ground state eigenfunction approaches 0 near acute
angles of the approximation domain, while it tends to infinity near obtuse angles. This is exactly what
is shown in figure since the thickness is a positive function of the deformation, one can try to give
the value +1 to obtuse angles and —1 to acute ones, by summing over a sub-region of the boundary,
one can predict the color (mean thickness).

Upon zooming into the picture, we observe that the thickness value is not minimal at the center
(h = 0.125). The minimal value is attained in specific regions near the corners, confirming the dumping
phenomena near coastlines [LP95]. In the limit, we expect to observe a self-similar structure forming
the minimal thickness regions in the image shown in Figure [22]
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Figure 17 — Contour plot and 3D representation of the optimal thickness.
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Figure 18 — Contour plot and 3D representation of the optimal solution.
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6 Concluding Comments

The results of this work go far beyond the plain shape optimization of the Koch snowflake. In our
mathematician’s perspective, the Koch snowflake simply plays the role of a model fractal membrane.
We intend to apply our results to fractal membranes which already exist in nature, more specifically, the
plasma membrane of the Amoebozoa Physarum polycephalum, which presents an irregular appearance
with numerous invaginations at multiple scales; see [Sau82]. This membrane is a dynamic structure,
constantly changing as the organism moves, feeds, and explores its environment, which can display
complex, adaptive behavior that can fold and unfold at various length scales, thus also exhibing a
fractal-like organization. This dynamics is associated with oscillations.

This is not all. We believe that the oscillations associated with fractal-shaped membranes can be
modelled — and understood — by applying the theory of Complex Dimensions, laid out for many years by
Michel L. Lapidus and his collaborators; see [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LvE00], [LP06],
[Cap08], [LPW11], [ELMRI15), [LvF13|, [LRZ17|, [LRZ18)|, [Lap19], [HL21] and [Lap24], in particular.
The theory of Complex Dimensions is a very natural and intuitive way to characterize fractality,
in connection with the intrinsic oscillations associated with fractals. The Complex Dimensions are
obtained as the poles of fractal zeta functions, which can be viewed as (global) differential operators.
Recent developments of the theory in [D1.24b], [DL24a], [DL25], have shed new light on the connections
between the Complex Dimensions and the eigenmodes of the fractal Laplacian issued from fractal
cohomology; in particular, it is shown that a suitable truncation of the (infinite order) differential
operator induced by the fractal zeta function enables us to obtain the fractal counterparts of classical
operators, such as the Laplacian. We intend to go further, and numerically implement those results.
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Figure 19 — The center of the snowflake.
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Figure 22 — ZoomOon the thickness.
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