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Abstract Epidemiologic studies often evaluate the association between an expo-

sure and an event risk. When time-varying, exposure updates usually occur at discrete

visits although changes are in continuous time and survival models require values to be

constantly known. Moreover, exposures are likely measured with error, and their obser-

vation truncated at the event time. We aimed to quantify in a Cox regression the bias

in the association resulting from intermittent measurements of an error-prone exposure.

Using simulations under various scenarios, we compared five methods: last observation

carried-forward (LOCF), classical two-stage regression-calibration using measurements

up to the event (RC) or also after (PE-RC), multiple imputation (MI) and joint model-

ing of the exposure and the event (JM). The LOCF, and to a lesser extent the classical

RC, showed substantial bias in almost all 43 scenarios. The RC bias was avoided when

considering post-event information. The MI performed relatively well, as did the JM.

Illustrations exploring the association of Body Mass Index and Executive Functioning

with dementia risk showed consistent conclusions. Accounting for measurement error

and discrete updates is critical when studying time-varying exposures. MI and JM

techniques may be applied in this context, while classical RC should be avoided due to

the informative truncation.
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INTRODUCTION

The association between a time-varying exposure and a time-to-event outcome is often

under investigation in epidemiological research. Proportional hazards models, includ-

ing the semi-parametric Cox model, are by far the most favored models to study such

associations1. However, in addition to the assumptions of proportional hazards over

time and log-linearity of the relationship between the hazard and the exposure, the

Cox model relies on three stringent assumptions that are rarely met when the expo-

sure varies over time. First, the individual exposure is supposed to be continuously

recorded so that it is known at any time during the observation period. Beyond age

or time since treatment initiation, this may for instance occur in intensive care where

biomarkers are measured continuously, or in environmental epidemiology with contin-

uous measurements of air pollution. However, in many situations, the design involves

staggered visits and the exposure information becomes infrequently measured and in-

termittently unknown. Second, as most statistical models, the Cox model assumes that

the exposure is measured without error. Yet, every measurement is subject to error,

either due to the measuring device or to the impossibility to access precisely the ac-

tual construct. When dealing with human-related processes, this error may become

substantial and cannot be ignored anymore2. Third, the Cox model assumes that the

exposure is exogenous, that is the future exposure process (i.e. after the event occurs)

is independent of the event occurrence3. This might be true for environmental expo-

sures, such as air pollution, but it rarely applies beyond that. Most often, exposures

are endogenous with the post-event values likely impacted by the event; for instance,

body mass index or other lifestyle behaviors after dementia onset.

In the presence of a time-varying covariate that is infrequently measured, the most

common, but naive, strategy of analysis is to carry forward the last observation until

a new one becomes available. This method, also known as LOCF or LVCF (Last Ob-
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servation/Value Carried Forward), tends to propagate the measurement errors in both

the timings and the exposure values, as demonstrated in simulation studies4–7. Ander-

sen and Liestøl8 have acknowledged a resulting attenuation of the regression coefficient

when the covariate is measured at infrequent times, and proposed a correction.

When the error-prone exposure is measured over time, a solution to retrieve the

error-free underlying exposure process is to model its trajectory over time. This is what

linear mixed models aim to do by isolating the measurement error and parametrically

describing the remaining individual signal9. The predicted individual exposure can be

calculated at any time and may then serve as a proxy of the error-free exposure in the

Cox model10. This procedure follows the regression calibration (RC) approach largely

recommended in the presence of measurement error11. The individual prediction in

RC approximates the covariate with a Berkson error, which, in contrast with classical

error, does not induce bias in the estimation of the regression coefficients in linear

models12. The longitudinal design raises however an additional issue. When the time-

dependent exposure is endogenous, its collection ends when the event occurs, leading

to a truncation of the exposure process which is likely informative13. For instance, if

the exposure is a risk factor for the event, participants with worse trajectories are likely

to experience the event earlier and thus have shorter follow-ups. Several simulation

studies have demonstrated that regression calibration for time-dependent exposure in

survival models leads to biased results5–7;10 due to the early truncation of the exposure

collection linked to the event which breaks down the RC procedure12.

A workaround is to estimate a linear mixed model at each time point where the

covariate’s value is needed (each failure time), using only the data available up to that

time point. This method, introduced in the 1990s as the sequential two-stage approach

and also known as risk-set regression calibration5 is however numerically very demand-

ing. In the late 1990s, joint models of the exposure process and the hazard function14;15
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have also emerged. By simultaneously employing a mixed model for retrieving the un-

derlying error-free exposure and a survival model for associating it with the event rate

over time, they naturally account for the infrequent measures, error-prone observations,

and the internal nature of the exposure. Joint models have gained significant popu-

larity and are now widely adopted within the statistical community. However, despite

efforts to make software user-friendly16–18, the joint modeling approach remains a so-

phisticated method that needs advanced statistical expertise and is computationally

demanding. This may explain why LOCF methods and classical regression calibration

are still widely used in epidemiology. Facing the complexity of joint model estimation,

particularly in the context of multiple time-dependent exposures, a two-stage procedure

relying on the multiple imputation principle was also proposed19.

The international STRATOS initiative (http://stratos-initiative.org) seeks to Strength-

ening the Analytic Thinking in the design and analysis of Observational Studies. As

part of STRATOS topic group TG4 dedicated to "measurement error and misclassifi-

cation", we aimed to address the issue of infrequent and error-prone measurement of

time-varying exposures in epidemiological survival analyses. This work reviews five sta-

tistical approaches available and compares them in simulations and real data analyses.

We conclude with recommendations and cautions regarding appropriate and easy-to-

implement methods.

METHODOLOGY

Let X(t) be the time-varying exposure process we are interested in and whose associa-

tion with an event is to be assessed. The right-censored observed event time is denoted

Ti for individual i (i = 1, ..., N) with event indicator Ei. We assume that the process

Xi(t) defined at any time t is not known for all the individuals. We only observe a
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noisy version of it, X∗
ij, subject to homoskedastic classical measurement error at study

visits j (j = 1, ni) so that:

X∗
ij = X∗

i (tij) = Xi(tij) + ϵij

where ϵij is independent of Xi(tij) and has mean zero and constant variance.

We assume that the target model of interest (considered as well-specified) for study-

ing the association of the time to event and the exposure is following a proportional

hazards model:

λi(t) = λ0(t) exp(Xi(t)γ), (1)

where λ0(t) is the baseline hazard function (left unspecified in the Cox model) and γ

quantifies the strength of association between the exposure and the instantaneous risk

of event, both considered at the exact same time t. No adjustment covariates were

added here for sake of readability. Since X is not observed, this model cannot be

directly estimated and special estimation methods must be used. They are summarized

in Figure 1 and further detailed below.

The LOCF Cox model

The most popular solution is to replace Xi(t) by its noisy version that was observed at

the last visit preceding t. This approach thus assumes that, after each measurement,

X∗ remains constant until a new measurement becomes available. This technique, made

popular under the name LOCF for last observation carried forward, can be defined as

follows. The LOCF-approximated process is X∗LOCF
i (t) = X∗

i (tij) for all t ∈ [tij, tij+1)

(j = 1, ..., ni) with tini+1 = Ti, and the associated Cox model is:

λi(t) = λ0(t) exp(X
∗LOCF
i (t) γLOCF) (2)
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This method is very easy to implement in any standard software. However, it is

important to note that this model not only relies on a strong and unlikely piecewise

constant value, but also neglects the measurement error in X∗.

Cox regression calibration

Regression calibration is a two-stage procedure recommended in the presence of mea-

surement error11;12. It involves generating a prediction for X (which will have Berkson

error rather than classical error12) and subsequently including this prediction into the

model of interest. In our context, we obtain a predicted value of X(t) from a linear

mixed calibration model:

X∗
ij = Xi(tij) + εij

= F (tij)
⊤β + F (tij)

⊤ui + εij

(3)

where F (tij) is a pre-determined vector of time functions that can approximate the

general shape of X∗
i trajectories over time, β are the associated parameters at the

population level, ui ∼ N (0, B) are the associated random effects at the individual

level, and εij ∼ N (0, σ2) are independent homoskedastic measurement errors. Once

the model is estimated, the individual exposure process Xi(t) can be predicted at any

time t: XRC
i (t) = F (tij)

⊤β̂ + F (tij)
⊤ûi with β̂ the fixed-effect estimates and ûi the

predicted random-effects.

The second stage consists in estimating the Cox model where Xi(t) is replaced by

its prediction XRC
i (t):

λi(t) = λ0(t) exp(X
RC
i (t) γRC) (4)

This method handles the infrequent timing of the exposure measurements, as well as
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the measurement error. However, in most cases, the observation of X∗(t) is truncated

when the event occurs (Figure 1 panel B) which can induce an informative dropout

mechanism to which the mixed model is not robust, leading to biased parameter es-

timates. In the very specific situations where the exposure is exogenous, and still

observable and meaningful after the event (e.g., air pollution), the mixed model esti-

mates based on the complete exposure process (Figure 1 panel C) do not suffer from

this informative dropout.

The classical regression calibration technique can be easily implemented in any

standard software using a mixed model estimation procedure and then a Cox model es-

timation procedure. In this work, we used hlme and coxph from the lcmm and survival

R packages, respectively. However, the variance estimation of γ̂RC needs attention. The

standard variance estimates reported in the Cox model are not valid as they do not

account for the first stage estimation uncertainty of the calibrated exposure XRC
i (t).

A parametric bootstrap technique with 500 replicates was used to compute the total

variance20 (see section 1 of the supplementary material for details).

In this work, we only investigated the classical regression calibration technique, not

the risk-set regression calibration5 for which no standard software was available.

The imputation-based Cox model

As measurement error, sparsity of measurement times and early truncation lead to X(t)

being unobserved, the analysis could be considered to have a missing data problem,

and a multiple imputation technique can be used. Similar to the regression calibration

technique, this is a two-stage method. However, there are two key differences:

1. The linear mixed model estimated in the first stage now includes information
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about the event:

X∗
ij = X(tij) + εij

= F (tij)
⊤β + F (tij)

⊤ui +G(tij)
⊤ζ + εij

(5)

with G(tij) a vector of covariates describing the event risk and ζ the corresponding

regression coefficients. Following Moreno-Betancur et al19, we included in G(tij)

both the Nelson-Aalen estimator of the cumulative hazard at event time Λ̂i(Ti)

and the indicator Itij=tini
which indicates the last measurement time prior to the

event. Inclusion of these variables handles the problem of informative dropout.

2. The underlying exposure process X(t) is predicted based on samples from the

first stage model: XMI
i (t) = F (t)(β̃ + ũi) + G(t)ζ̃ where ũi is a random draw

sampled from the posterior distribution of the random effects for subject i. The

fixed effects β̃ and ζ̃, and the variance of the random effects are also sampled to

further account for the uncertainty in the first-stage model parameters.

The second stage then consists in estimating the Cox model where Xi(t) is replaced

by its random draw XMI
i (t):

λi(t) = λ0(t) exp(X
MI
i (t) γMI) (6)

The final estimate of γMI is the average estimate across the imputation replicates.

The total variance of γMI is computed using a parametric Bootstrap principle (as for

the regression calibration, see supplementary Section 1) and the Rubin’s rule21.

8



Joint model

In contrast to the regression calibration technique and the imputation-based Cox model,

the joint model simultaneously estimates the exposure trajectory and the survival model

of interest14. As such, it inherently handles their interdependence, the error measure-

ment, the sparse measurement times and the informative dropout. With the same

notations and specifications as before, the model can be defined as follows:

 X∗
ij = Xi(tij) + εij = F (tij)

⊤β + F (tij)
⊤ui + εij

λi(t) = λ0(t) exp(Xi(t)γ
JM)

(7)

The joint model yields an estimate of γ and a valid standard error. Despite user-

friendly software solutions (e.g., JM14, joineRML17, INLAjoint16 or JMbayes218 in R),

the joint model estimation is more complicated than the others and requires special

attention regarding the specification of the estimation algorithm and convergence. The

R package JM combined with a reliable optimization algorithm22 was used in this work.

The variance of the parameters was estimated by the inverse of the Hessian.

NUMERICAL SIMULATIONS

Aim

We conducted a simulation study to assess the performance of the LOCF Cox, Cox

regression calibration, the imputation-based Cox model and the joint model to cor-

rectly estimate the association parameter γ of the time-varying exposure measured at

irregular times with classical measurement error, under a variety of scenarios exploring

the magnitude of association with the event, the rate of truncation by the event, the

magnitude of exposure measurement error and the shape of the exposure trajectory.
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The reporting follows guidelines for conducting and reporting simulation studies23.

Data generation

The data generation procedure is fully described in the supplementary Section 2 and

Figure S1. For all 43 scenarios, the data were generated according to the target joint

model (equation (7)). We defined linear exposure trajectories with mutually indepen-

dent random intercept and random slope. The frequency of visits was every two years

for a maximum of 10 years, and the exposure measurement errors had either smaller or

larger variance compared to the true exposure variance (see Figure S2). In the smaller

error setting, the error variance was equal to the true exposure variance at baseline and

represented about 11% of the exposure variance by time t=4. For the larger error set-

ting, the error variance was 9 times more important than the exposure error at baseline

and these variances became equal by time t=4. We generated three baseline hazard

functions to investigate different frequencies of events and censoring, and considered

two magnitudes of association between the exposure and the risk of event (labeled as

weaker and stronger). These combinations resulted in 12 main scenarios (scenarios 1-

12). Additional scenarios considered correlated random effects, quadratic trajectories,

and intermittent missing visits. See Supplementary Table S1 for a summary of all the

scenarios.

Estimand

The estimand of interest was the association coefficient γ which quantifies the associa-

tion between the time-varying exposure level and the instantaneous risk of event at the

exact same time.
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Models compared

We generated 500 samples of N = 500 subjects. The four methods (LOCF Cox, Cox

regression calibration (RC), Cox model based on multiple imputation (MI) and joint

model) were applied after truncation of the exposure observation at the time of event.

For Cox regression calibration, we also considered the case where the exposure could

still be observed after the event until the maximum of 10 years (denoted as post-event

RC or PE-RC). For all the techniques (except LOCF), the same shape of exposure

trajectory and the same association with the event as in the generation model were

modeled. A replication script can be found here. For Cox RC and the MI Cox, the

total variance was computed using 500 bootstrap vectors.

Performance

The performance measures were the bias shown with the empirical distribution of the

association estimate γ, the empirical coverage rate of its 95% confidence interval, and

the Mean Squared Error (MSE).

Results

Figures 2 and 3 report the results of the 12 main scenarios under weaker (γ = 0.2)

and stronger (γ = 0.4) association, respectively. Under weaker association, smaller

magnitude of measurement error and medium to high baseline survival (scenarios 1-2),

the LOCF approach showed negligible bias. However, as soon as event time censoring

became substantial, i.e. with low baseline survival (scenarios 3, 6, 9, and 12), or as

the magnitude of measurement error increased (scenarios 4-6, 10-12), or the associa-

tion became stronger (scenarios 7-12), the LOCF approach became substantially biased

with effect attenuation up to 81% of the true value in our scenarios. The regression
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calibration technique exhibited biases in the same scenarios although with less attenu-

ation (up to 40%). This bias was largely avoided when the post-event information was

included, thereby eliminating the early informative truncation by the event (post-event

RC), except in scenarios 10-12 with strong association and large measurement errors.

The MI Cox model performed relatively well despite a small amount of bias (around

5%) in scenarios with large measurement error (4-6,10-12). This resulted in coverage

rates slightly below their nominal value (>85%). In comparison, as expected (same

model as the data generating one), the association was correctly estimated with the

joint model in all scenarios. We note, however, a slightly reduced coverage rate (87%)

in scenario 12 with the stronger association, larger measurement error and lower num-

ber of visits due to lower survival. The empirical distributions of estimates from the

MI Cox model and the joint model were consistently wider than those from the other

methods, but led in almost all the scenarios to smaller MSEs.

Additional scenarios (Supplementary Figures S3-S8) considering quadratic trends

of exposure trajectories, 10% intermittent missing data, correlated random effects, or

constant exposure trajectories over time produced findings in line with these results.

APPLICATION

The Bordeaux 3C subcohort

The four methods are illustrated using the 3C cohort (restricted to Bordeaux city),

a prospective population-based cohort aiming to study cerebral aging in the elderly,

which enrolled in 1999 2104 participants aged 65 years and older, who were randomly

selected from the electoral rolls. The participants were interviewed at home by a trained

neuropsychologist at baseline and then at 2, 4, 7, 10, 12, 14, and 17 years of follow-

up. The diagnosis of dementia was established using a three-stage strategy with final
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confirmation by an expert committee of external neurologists.

The aim was to assess the association of two time-varying covariates with the risk

of dementia: Body Mass Index (BMI) and the Trail Making Test part A (TMT-A), a

neuropsychological test evaluating executive functions (score defined as the number of

correct moves per minute). The analytical sample included all the participants from

Bordeaux who were free of dementia at baseline, who had a measurement of both

BMI and TMT-A at baseline and who had no missing data for the three adjustment

covariates: educational level, sex and age at inclusion (flowchart in supplementary

Figure S9). The final sample comprised 6264 repeated visits for 1754 subjects among

which 434 were diagnosed with dementia during the follow-up. The median number of

visits per subject was 4; subjects had an average age of 75.9 years at baseline, with

a majority being women (61.5%) and 40.7% having completed extended secondary

education or higher. Supplementary Figure S10 shows BMI and TMT-A over time for

10 randomly selected subjects.

For ease of implementation, we treated the diagnosis of dementia at follow-up visits

as right-censored rather than interval-censored. We defined dementia as occurring at the

midpoint between the last negative diagnosis and the positive diagnosis. Participants

without a positive diagnosis were censored at their last negative diagnosis. We did not

account for the competing risk of death in these examples.

Specification of the models

The target model was a proportional hazards model for time since baseline. The linear

predictor included the current level of the time-varying covariate of interest (BMI or

TMT-A) and was adjusted for age at baseline, sex and educational level. For TMT-A

only, a binary indicator for the first visit was also included in the model to account for

the practice effect24. The baseline risk was left unspecified for LOCF, RC and MI Cox,
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and parameterized using B-splines for JM (1 interior knot).

The longitudinal exposure trajectories were flexibly modeled for the RC, MI and

JM methods with natural cubic splines on time and with individual random effects on

the intercept and on each spline function (three correlated random effects in total).

Additionally, this model was adjusted for age at baseline, sex and educational level,

including fixed main effects and interactions with the spline functions for time.

Results

The estimated association between current BMI and the instantaneous risk of demen-

tia was virtually identical for all methods, with higher BMI associated with a lower

concomitant risk of dementia (Figure 4, Supplementary Table S2). Log-hazard ratios

(log-HR) ranged from -0.046 (95% CI -0.071,-0.021) to -0.043 (95% CI -0.069,-0.017)

for one unit increase of BMI, suggesting a weak association that is robust across meth-

ods. The estimated association of current executive functioning (TMT-A score) with

dementia risk showed much more variation across methods, but all agreed that higher

executive functioning was associated with lower risk of dementia (Figure 4, Supplemen-

tary Table S2). The LOCF and RC methods resulted in the smallest estimates with

log-HR of -0.071 (95% CI -0.084,-0.058) and -0.088 (95% CI -0.105,-0.070) compared

to JM and MI-Cox with log-HR of -0.106 (95% CI -0.129,-0.084) and -0.122 (95% CI

-0.148,-0.097), indicating an attenuated estimation for the two former methods.

DISCUSSION

Although commonly encountered in epidemiological studies, the association of a sur-

vival endpoint and time-varying exposures that are infrequently measured and prone

to error demands special attention. Acknowledging that joint models require advanced
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statistical expertise and that existing software is not applicable in all situations (e.g.,

limitations in the number of variables and the types of associations), we investigated

the performance of simpler approaches. Our simulations confirmed that classical ap-

proaches such as LOCF and, to a lesser extent, classical RC usually lead to attenuated

associations between exposure and survival, and should therefore be avoided. Although

bias to the null has already been noted by others2;8, LOCF is still quite commonly used

in epidemiology. In contrast to LOCF and RC, the MI technique performs well; note

that we still observed a residual bias and low coverage rates for the 95% confidence

intervals in cases of strong association or large measurement error.

Our work highlights the limitations of the classical regression calibration in longi-

tudinal studies when the event causes informative truncation of the exposure measure-

ments. RC relies on the missing at random assumption for the infrequently observed

exposures to correctly retrieve the underlying process. As shown in the simulations, its

use should be limited to very specific scenarios where the association is weak and the

truncation is mild. Risk-Set Regression Calibration extends the regression calibration

technique to the informative truncation context5. However, it is numerically very de-

manding and requires more advanced expertise in the absence of standard software so

we did not cover it in this work.

In our application, we compared the modeling approaches using two different expo-

sure processes: BMI, which didn’t change much over time and which association with

dementia was weak (although significant at the 5% level), and TMT-A, which changed

more markedly over time and exhibited a stronger significant association with dementia.

While the RC and LOCF showed a pronounced attenuation of the association compared

to MI and JM when applied to TMT-A, both RC and LOCF gave roughly the same

results as the other methods when applied to BMI. Our simulations indeed suggested

that the LOCF and RC may provide correct estimates in very specific cases where the
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association is weak and the measurement error is small. Previous research4;25 has also

demonstrated that LOCF performs relatively well with a time-varying covariate not

associated with the event, and our additional simulation scenarios 38-43 (Figure S8)

confirmed this.

It should be noted that all the results reported here apply to any time-varying

exposure, whether endogenous or exogenous, that is measured infrequently, is subject

to classical measurement error, and whose measurements cease at the event time. For

ease of presentation, we limited our simulations to a proportional hazards model with

a single exposure having a linear and concomitant relation to the log-hazard. However,

we expect our conclusions to extend to any number of time-varying exposures and any

form of association provided the form of association has been carefully assessed and is

correctly specified. In the applications, we also considered, for illustrative purposes only,

the associations of the time-varying exposure with simultaneous dementia risk. This

may explain the protective association observed with BMI, which could reflect reverse

causation, as BMI changes while the disease progresses in its subclinical stages26.

We focused in this work on LOCF and two-stage approaches of RC and MI. Instead

of estimating the true exposure in a first stage as done in RC and MI, Wang et al

proposed to correct the LOCF approach27 by (i) adjusting for the elapsed time since

the last measurement to address sparsity and (ii) using the Simulation-Extrapolation

(SIMEX,28) method to correct for measurement error. A formal comparison with this

correction-based approach is left for future research.

Given the burdensome estimation of joint models and the required advanced sta-

tistical expertise, two-stage techniques offer a promising alternative. By relying on

classical tools for survival data, they scale more easily to high-dimensional contexts

and complex dependency structures. However, it is crucial to account for the specific

characteristics of the longitudinal data (e.g., sparse and irregular visits, measurement
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error) and the informative truncation of the exposure process in the first stage. Im-

putation techniques that incorporate information about the event into the first-stage

longitudinal model proved to be a promising solution. Following19, we included the

cumulative risk as the event variable that needs to be included in the model when MI

is used but alternatives could also be considered.

This comparative study aimed to highlight the consequences of ignoring the infre-

quent measurements and errors of time-varying exposures in survival analyses, a com-

mon issue in epidemiology. Based on the simulations and case studies presented, we

encourage analysts to favor appropriate methods, such as joint models where feasible or

other specifically-tailored techniques including carefully designed two-stage approaches.
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Notations:

i: subject

j: visit

tij  : measurement time

Xi(t) : exposure process

Xij = Xi(tij) + ε(tij)* :

exposure observations
0 2 4 6 8 10

Last Observation Carried Forward (LOCF)

t

X
LO

C
F
(t)

Xi
 LOCF(t) = Xi(tij)* *

for all t in  [ tij , tij+1 )

λi(t) = λ0(t)exp(Xi
 LOCF(t)γLOCF)*

A)

0 2 4 6 8 10

Regression Calibration (RC)

t

X
R

C
(t)

Xij = F(tij)(β + ui) + εij*

Xi
RC(t) = F(t)(β̂ + ûi)

λi(t) = λ0(t)exp(Xi
RC(t)γRC)

B)

0 2 4 6 8 10

with post−event data (PE−RC)

t

X
P

E
−R

C
(t)

Regression Calibration

Xij = F(tij)(β + ui) + εij*

Xi
PE−RC(t) = F(t)(β̂ + ûi)

λi(t) = λ0(t)exp(Xi
PE−RC(t)γPE−RC)

C)

0 2 4 6 8 10

Multiple Imputation (MI)

t

X
M

I (t)

Xij = F(tij)(β + ui) + G(tij)ζ + εij*

Xi
MI(t) = F(t)(β̂ + ûi) + G(t)ζ̂

λi(t) = λ0(t)exp(Xi
MI(t)γMI)

D)

0 2 4 6 8 10

Joint Model (JM)

t

X
(t

)

Xij = Xi(tij) + εij*

= F(tij)(β + ui) + εij

λi(t) = λ0(t)exp(Xi(t)γJM)

E)

Figure 1: Illustration of five methods dealing with time-varying covariates in survival
analyses: last observation carried forward (LOCF), regression calibration (RC), regres-
sion calibration with post-event information (PE-RC), multiple imputation (MI), and
joint model (JM). The orange points represent the observations of a first fictive sub-
ject, the blue crosses the ones of a second subject. Plain lines are the covariate’s values
considered in each approach. Vertical dotted lines represent the event times.
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Figure 2: Estimated association coefficient in the survival model over 500 simulation
replicates when considering last observation carried forward (LOCF), regression cal-
ibration (RC), regression calibration with post-event information (PE-RC), multiple
imputation (MI) and joint model (JM) methods. The true association value 0.2 is in-
dicated by a dashed line. Are reported the results for a measurement error magnitude
of 1 (left column) and 3 (right column) and different baseline survival (high on the top,
medium in the middle and low on the bottom). The coverage rates (CR) of the 95%
confidence intervals and the mean square error (MSE, x1000) are given at the bottom
of each panel.
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Figure 3: Estimated association coefficient in the survival model over 500 simulation
replicates when considering last observation carried forward (LOCF), regression cal-
ibration (RC), regression calibration with post-event information (PE-RC), multiple
imputation (MI) and joint model (JM) methods. The true association value 0.4 is in-
dicated by a dashed line. Are reported the results for a measurement error magnitude
of 1 (left column) and 3 (right column) and different baseline survival (high on the top,
medium in the middle and low on the bottom). The coverage rates (CR) of the 95%
confidence intervals and the mean square error (MSE, x1000) are given at the bottom
of each panel.
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log−HR of BMI(t)
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γLOCF = −0.046   [−0.071, −0.021]

γRC   = −0.043   [−0.069, −0.017]

γMI   = −0.045   [−0.072, −0.018]

γJM   = −0.045   [−0.072, −0.019]

log−HR of TMT−A(t)
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γLOCF = −0.071   [−0.084, −0.058]

γRC   = −0.088   [−0.105, −0.070]

γMI   = −0.122   [−0.148, −0.097]

γJM   = −0.106   [−0.129, −0.084]

Figure 4: Log-hazard ratios (log-HR) with 95% conficence intervals (plain lines) be-
tween the time-varying BMI (top panel) and the TMT-A (bottom panel) and the risk
of dementia estimated using last observation carried forward (LOCF) Cox model, re-
gression calibration (RC) Cox model, multiple imputation (MI) Cox model and joint
model (JM). Estimates are reported for a 1-unit increase and are adjusted for age at
baseline, sex and educational level (Bordeaux 3C subcohort, N=1754).
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