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ABSTRACT
This study introduces a flexible macroscopic model for heterogeneous traffic flow on
general road networks, allowing the presence of several vehicle classes with general
speed functions and different maximal densities pertinent to urban environments.
The model, applicable to shared road situations, is designed for describing both
creeping phenomena and class-specific lane discipline. Extended to networks, the
model addresses the dynamics at general m × n junctions by prescribing suitable
coupling conditions. Using the passenger-car-equivalent representation, numerical
experiments demonstrate the model’s effectiveness in handling different real-life traf-
fic scenarios, each with their complexities. The study focuses on the assessment of
total travel time and CO2 emissions in the network, highlighting influences from
various factors and traffic management strategies such as route guidance and modal
shift. Results show that the model can accurately describe scenarios of congested
situations where cyclists navigate past queues of cars and cars overtake queues of
trucks.

KEYWORDS
Multi-class macroscopic traffic flow models on networks; Hyperbolic systems of
conservation laws; Finite volume schemes; Traffic management

1. Introduction

Traffic congestion is a problem that increasingly affects urban road users. In recent
times, the multimodal nature of traffic is surprisignly leading to undesired congestion
patterns due to the different speeds of the different modes of transport, especially in
the absence of dedicated road infrastructure for soft modes or public transport. This
problem is expected to worsen over time if the present pattern persists (Jia et al.
2015). Therefore, it is important to develop heterogeneous models able to capture the
essential features of mixed traffic flows. These models can then be used to assist in
easing the traffic problems commonly found in urban networks.

Since two decades, extensive research has focused on integrating traffic heterogene-
ity and explaining how different vehicles like cars, trucks, motorcycles, and even au-
tonomous vehicles interact on roads. To this aim, the Lighthill-Whitham-Richards
(LWR) model (Lighthill and Whitham 1955, Richards 1956) has been extended to
model multi-class flows (Benzoni-Gavage and Colombo 2003, Chiarello and Goatin
2019, Van Lint et al. 2008, Wong and Wong 2002). Several traffic characteristics can
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be addressed in this framework. For instance, in Chanut and Buisson (2003) hetero-
geneity among vehicles is modeled depending on their length and speed. The model
in Zhang and Jin (2002) addresses a mixed flow of cars and trucks based on the free
flow speed difference. However, in these models, critical and jam density parameters
are the same for all vehicle classes. By allowing more general fundamental diagrams,
it is possible to model mixed bicycle-car traffic as in Wierbos et al. (2021), powered
two-wheelers and cars as in Gashaw et al. (2018), Nair et al. (2011), and even speed
differentials and capacity reduction caused by buses as in Liu et al. (2015).

In this setting, overtaking, that is the maneuver of going past other vehicles on
the road, is the most common phenomenon (Benzoni-Gavage and Colombo 2003,
Tiaprasert et al. 2017). However, other interaction phenomena are more specific to
some vehicle classes, such as creeping of smaller vehicles (e.g. bikes) through the gaps
left by larger vehicles at stop. Fan and Work (2015) presented a heterogeneous traffic
model with two vehicle classes to describe this situation. Their model captures creep-
ing by using a multi-class cell transmission model in the non-creeping phase and a
scalar cell transmission model in the creeping phase. In particular, creeping can also
be seen as flow through porous media, see e.g. Gashaw et al. (2018), Nair et al. (2011).

The multi-class model in Fan and Work (2015) integrates a specific maximum den-
sity for each vehicle class, and the equilibrium speed is expressed as a function of the
total occupied space, yet considering specific linear speed functions that can never in-
tersect for the aim of simplicity and to guarantee the hyperbolicity of the model. The
latter is an essential property of a multi-class traffic model. In Zhang et al. (2003), it
is still unknown and is just assumed to exist. In Benzoni-Gavage and Colombo (2003),
the existence of an entropy function acting as a symmetriser was used to demonstrate
hyperbolicity in the case of linear class-specific speed functions; however, the method
cannot be extended to more general cases. Zhang et al. (2006) proved hyperbolicity
under weaker assumptions, allowing more general, strictly decreasing but possibly in-
tersecting speed functions. Nonetheless, they do not consider non strictly decreasing
speed functions in their work, which is important for the use of a triangular funda-
mental diagram, for example.

Additionally to hyperbolicity, another important property of traffic modeling is
anisotropy, which means that traffic flow is influenced by the traffic state in front
and not from the back. Logghe and Immers (2008) demonstrate that some of the
above models may violate anisotropy, when using speed functions that depend on the
total road density rather than class-specific densities. However, the use of a triangular
fundamental diagram for slow vehicles would prevent their speed in free flow to be
affected by the the presence of faster vehicles. This issue was further discussed by Qian
et al. (2017), who focus on pragmatic road space allocation and perceived densities to
manage cross-class interactions, and Li et al. (2022), who propose a user-equilibrium
framework and a Lagrangian representation to ensure anisotropy, especially for mixed
human and autonomous vehicle traffic. While these approaches are insightful, their
complexity makes them challenging to analyze and adapt for multi-class systems and
networks.

Macroscopic flow models are frequently used to assess the overall traffic perfor-
mance by analyzing specific metrics. They are usually evaluated under the “passenger
car equivalent” (pce) criterion, that converts the heterogeneous traffic flow to a hypo-
thetical homogeneous one (Shalini and Kumar 2014). Pce is the count of passenger cars
that will result in identical operational conditions as a vehicle of a different class (e.g.
trucks), under the same traffic and control conditions on the roadway. The concept
was first introduced by the Highway Capacity Manual (1965) and the values depend on
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the vehicle class and traffic conditions (Praveen and Arasan 2013). It should be chosen
based on vehicles’ size, speed, headway, as well as other variables (Adnan 2014). Nev-
ertheless, only a limited number of models specify the pce value based on the traffic
state, see e.g. Van Lint et al. (2008).

In this paper, we consider a macroscopic multi-class traffic flow model, accounting
for general class-specific speed functions that depend on the total density of vehicles
and can intersect or even (partially) coincide. We then extend the model to general
road networks, providing coupling conditions at generic m × n junctions with class
specific distribution coefficients and priorities based on any given Riemann solver, see
e.g. Daganzo (1995), Garavello et al. (2016) and Jin (2017). We remark that previous
works on multi-class flows on networks (Herty et al. 2006, Li and Li 2017, Tuerprasert
and Aswakul 2010, Van Lint et al. 2008) were restricted to few classes and specific
junction conditions.

For simulation purposes, we show the well-posedness of an adapted Go-
dunov scheme (Godunov 1959) using the corresponding supply-demand formula-
tion (Lebacque 1996). This allows us to run experiments on a network of thirteen
roads, showing the interaction among three classes of vehicles that are characterized
by their different free-flow speeds and maximal densities. The model allows to capture
the dynamics of traffic scenarios commonly encountered on urban roads: it can ac-
count for different lane discipline, creeping effects, and describe complex interactions
between vehicles of different types. For each considered scenario, we compute two traf-
fic metrics (total travel time and CO2 emission) to shed light on the advantages of
different traffic policies.

To summarize, the main contributions of this work are the following:

• We consider a macroscopic model for traffic flow involving any number of differ-
ent vehicle classes characterized by the respective mean speed functions, which
are assumed to be general non-increasing functions depending solely on the to-
tal density of the road, eventually crossing each-other or even locally coinciding.
This flexibility addresses the complexities of real word traffic scenarios, providing
a more accurate representation of heterogeneous traffic dynamics. In particular,
the model can capture class-specific lane discipline and creeping effects.
We provide a general proof of the hyperbolicity of the model, thus extending the
result in Zhang et al. (2006), and the well-posedness of the associated Godunov
scheme, deriving precise stability conditions.

• We propose an extension to road networks, providing coupling conditions at
generic m× n junctions based on the notion of Riemann solver.

• Using the pce concept, we apply the model to evaluate different traffic metrics
like the total travel time (TTT) and the total CO2 emissions (TECO2) under
different realistic traffic policies. We present a numerical study involving three
distinct types of vehicles, in which we explore the proposed model’s sensitivity
to two application scenarios: lane restriction and modal shift. This demonstrates
the versatility and robustness of the proposed approach.

The rest of the paper is organized as follows. In Section 2, we present the model
and prove its hyperbolicity along with the well-posedness of the numerical scheme.
Section 3 extends the model to networks addressing the multi-class dynamics to generic
junctions. We also describe the treatment of inflow and outflow boundary conditions
at origin and destination nodes of the network. In Section 4, we provide numerical
results for a sample network, where we compute the TTT and TECO2 depending on
different parameter choices. Finally, we conclude the paper in Section 5, where we
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discuss future work.

2. Multi-class Traffic Model with General Speed Function

Following Benzoni-Gavage and Colombo (2003), Fan and Work (2015), Garavello et al.
(2010), we consider the M ×M system of conservation laws

ρt + F(ρ)x = 0, (1)

where

ρ = (ρ1, . . . , ρM )T , F(ρ) = (v1(r)ρ1, . . . , vM (r)ρM )T , and r =

M∑
c=1

ρc (2)

are respectively the density, the flux function, and the total density. We assume

dvc

dr
(r) ≤ 0, (3)

where vc(r) is the class specific speed s.t.

vc(0) = V c, ∃Rc s.t. vc(r) = 0 for r ≥ Rc (4)

for c = 1, . . . ,M andRc is the class specific maximal density. Without loss of generality,
we also assume that the free flow speeds satisfy

V 1 ≥ . . . ≥ V M , (5)

while we do not require any ordering of {Rc}Mc=1, see Figure 1.
System (1) is then defined on the convex set:

S =

{
ρ ∈ RM : 0 ≤ ρc ≤ Rc and

M∑
c=1

ρc ≤ R

}
,

where R := max{R1, . . . , RM}.

2.1. Hyperbolicity

In the following, we generalize the result of Zhang et al. (2006), which was restricted
to strictly decreasing speed functions, to prove the hyperbolicity of model (1)-(4).

Theorem 2.1. Under hypotheses (3) and (4), the Jacobian of F has M bounded real
eigenvalues; thus system (1) is hyperbolic on S.
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Figure 1.: Example of family of speed functions vc, c = 1, . . . ,M , considered in this
work

Proof. The jacobian of F(ρ) writes:

DF(ρ) =


v1 + u1 u1 . . . u1 u1

u2 v2 + u2 . . . u2 u2

. . . . . . . . . . . . . . .
uM−1 uM−1 . . . vM−1 + uM−1 uM−1

uM uM . . . uM vM + uM

 , uc = ρc
dvc

dr
≤ 0.

(6)
Here, we note that uc = 0 if and only if ρc = 0 or dvc

dr (r) = 0. We rewrite

PM (λ) := det(DF(ρ)− λI)

=

∣∣∣∣∣∣∣∣∣∣
v1 + u1 − λ u1 . . . u1 u1

u2 v2 + u2 − λ . . . u2 u2

. . . . . . . . . . . . . . .
uM−1 uM−1 . . . vM−1 + uM−1 − λ uM−1

uM uM . . . uM vM + uM − λ

∣∣∣∣∣∣∣∣∣∣
(7)

taking (vc − λ) out as a factor from the c-th row, c = 1, . . . ,M, so that (7) has the
form

PM (λ) =

M∏
c=1

(vc − λ)

∣∣∣∣∣∣∣∣∣∣
1 +K1 K1 . . . K1 K1

K2 1 +K2 . . . K2 K2

. . . . . . . . . . . . . . .
KM−1 KM−1 . . . 1 +KM−1 KM−1

KM KM . . . KM 1 +KM

∣∣∣∣∣∣∣∣∣∣
, Kc =

uc

vc − λ
.

(8)
Then we add the first (M−1) rows to the last row, so that all its elements are identical
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and we have

PM (λ) =

M∏
c=1

(vc − λ)QM (λ), QM (λ) = 1 +

M∑
c=1

Kc(λ) , (9)

since ∣∣∣∣∣∣∣∣∣∣
1 +K1 K1 . . . K1 K1

K2 1 +K2 . . . K2 K2

. . . . . . . . . . . . . . .
KM−1 KM−1 . . . 1 +KM−1 KM−1

1 1 . . . 1 1

∣∣∣∣∣∣∣∣∣∣
= det(I) = 1 .

We distinguish different cases:
Case 1: uc < 0, ∀c and

vσ(1)(r) < vσ(2)(r) < . . . < vσ(M−1)(r) < vσ(M)(r), (10)

for some permutation σ ∈ SM . We can verify that by (9)-(10), we have

sgn (PM (vc)) = (−1)σ(c), c = 1, . . . ,M ; sgn

(
PM (vσ(1) +

M∑
c=1

uc)

)
= 1 (11)

by evaluating PM (λ) at λ = vc as follows. We first observe that the product∏M
c=1(v

c−λ) changes sign depending on the number of negative factors, so using (10),

we consider the intervals defined by the ordered vσ(c)(r):

• for λ < vσ(1)(r) : all vc − λ > 0, so the product
∏M

c=1(v
c − λ) > 0, each Kc(λ) is

finite and negative (since uc < 0 and vc − λ > 0) and QM (λ) = 1 +
∑M

c=1Kc(λ)
is less than 1 but positive, therefore, sgn(PM (λ)) = +1.

• for vσ(c−1)(r) < λ < vσ(c)(r) (with c ≥ 2), we have c−1 negative terms (vσ(i)−λ)

(for i = 1, . . . , c− 1) and M − (c− 1) positive terms, so the product
∏M

c=1(v
c −

λ) has sign (−1)c−1, while Kσ(c−1)(λ) > 0, so QM (λ) is positive. Therefore,

sgn(PM (λ)) = (−1)c−1.

• for λ > vσ(M)(r), all vc − λ < 0, so
∏M

c=1(v
c − λ) > 0 if M is even, and < 0 if

M is odd, each Kc(λ) is finite and positive so QM (λ) = 1 +
∑M

c=1Kc(λ) > 1,
therefore, sgn(PM (λ)) = (−1)M .

Finally, for λ = vc, sgn (PM (vc)) = (−1)σ(c), c = 1, . . . , N ;

As for sgn
(
PM (vσ(1) +

∑M
c=1 u

c)
)
, since uc < 0, ∀ c, then

∑M
c=1 u

c < 0 then vσ(1) +∑M
c=1 u

c < vσ(1), so we are back at the first discussed point when λ < vσ(1), and the
sign is positive.

By the intermediate value theorem, (11) implies that the polynomial PM (λ) has M
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real distinct bounded roots {λc}Mc=1 such that

vσ(1) +

M∑
c=1

uc < λ1 < vσ(1)(r) < λ2 < vσ(2)(r) < . . . < vσ(c−1)(r) < λc < vσ(c)(r) < . . .

(12)

. . . < vσ(M−1)(r) < λM < vσ(M)(r).

In this case, the system is strictly hyperbolic.
Case 2: At least two vc(r) are equal or at least one uc is zero (ρc = 0 or dvc

dr (r) = 0).
We proceed by induction on M . The conclusion is obvious for M = 1, because the
Jacobian matrix DF(ρ) is scalar. Assuming that this is true for all l, l = 1, . . . ,M −1,
we prove it is also true for l = M . By (9), this case is equivalent to having an eigenvalue
λ = vc(r) of multiplicity at least 2. We can always find another permutation τ ∈ SM

such that λ = vτ(M−k)(r) = . . . = vτ(M)(r), for some 0 ≤ k < M . Here, vτ(M)(r) is
not equal to any other vc(r), and {vτ(c)(r)}Mc=1 do not necessarily follow the sequence
of (10). In this case, (9) can be rewritten as

PM (λ) = (vτ(M)(r)− λ)kP̃M−k(λ), (13)

where

P̃M−k(λ) =

M−k∏
c=1

(vτ(c)(r)− λ)Q̃M−k(λ), Q̃M−k(λ) = 1 +

M−k∑
c=1

K̃τ(c).

and

K̃τ(c) = Kτ(c) for c ≤ M−k−1, K̃τ(M−k) =
c̃τ(M−k)

vτ(M−k) − λ
, c̃τ(M−k) =

M∑
i=N−k

uτ(i) ≤ 0

For k ≥ 1, all roots of PM (λ) are real, simply by (12) or the assumption for l on the
polynomial P̃M−k(λ) of (13), since by the induction hypothesis we assumed that P̃l(λ)
has l real roots for l ∈ {1, . . . ,M − 1}, so P̃M−k(λ) has M − k real roots.
For k = 0, λ = vτ(M)(r) being an eigenvalue is equivalent to have uτ(M) = 0. This
means that

PM (λ) = (vτ(M)(r)− λ)PM−1(λ),

So PM (λ) has M real roots. In both cases, the system is hyperbolic.

From the above proof, it is straightforward to conclude the following.

Corollary 2.2. vj(r) ∈ {vc(r)}Mc=1 is an eigenvalue of the Jacobian matrix DF(ρ) if
and only if ρc = 0 or dvc

dr (r) = 0 or ∃ l ̸= c, s.t. vl(r) = vc(r).

Corollary 2.3. If the characteristic polynomial PM (λ) of the Jacobian matrix DF(ρ)
has a multiple root λ, then λ ∈ {vc(r)}Mc=1.
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2.2. Finite volume discretization

Following Bürger et al. (2008) and Briani and Cristiani (2014), we approximate sys-
tem (1) by the Godunov finite volume scheme Godunov (1959) in its supply/demand
formulation Lebacque (1996):

ρc,ν+1
j = ρc,νj − ∆t

∆x

[
F c,ν
j+1/2 − F c,ν

j−1/2

]
, j ∈ Z, ν ∈ N, c = 1, . . . ,M, (14)

where ν is the time step index, j the spatial index, ∆x and ∆t are the space and time
meshes and

F c,ν
j+1/2 :=

ρc,νj

rνj
min

{
Dc(rνj ), S

c(rνj+1)
}
, (15)

with Dc and Sc respectively the demand and supply functions of the total density
relatively to the c-th class speed, which are defined by setting Qc(r) := rvc(r), rccr :=
argmaxr Q

c(r) and

Dc(r) := Qc(min{r, rccr}), (16)

Sc(r) := Qc(max{r, rccr}). (17)

See also (Levin and Boyles 2016, Eq. (4)).
In the following, we provide a refined Courant-Friedrichs-Lewy (CFL) stability con-

dition (Courant et al. 1928) for the numerical scheme (14)-(17), ensuring the positivity
and boundedness of approximate solutions.

Proposition 2.4. Under the CFL condition

max

{
max

c
∥vc∥∞,max

c

∥∥∥∥dQc

dr

∥∥∥∥
∞

}
∆t ≤ ∆x , (18)

for any initial data ρ0 ∈ S the approximate solutions computed by the Godunov scheme
(14) - (17), satisfy the following uniform bounds:

ρν
j ∈ S ∀j ∈ Z, ν ∈ N.

Proof. We proceed by induction: assuming that ρc,νj ∈ [0, Rc] for c = 1, . . . ,M , and∑M
c=1 ρ

c,ν
j ≤ R for all j ∈ Z, we show that the same holds for ρν+1

j . In the following,
we drop the index ν.
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Regarding positivity,

ρc,ν+1
j = ρcj −

∆t

∆x

[
F c
j+ 1

2

− F c
j− 1

2

]
= ρcj −

∆t

∆x

[
ρcj
rj

min {Dc(rj), S
c(rj+1)} −

ρcj−1

rj−1
min {Dc(rj−1), S

c(rj)}
]

≥ ρcj −
∆t

∆x

ρcj
rj

min {Dc(rj), S
c(rj+1)}

≥ ρcj −
∆t

∆x

ρcj
rj
Dc(rj)

= ρcj −
∆t

∆x

ρcj
rj
Qc(min{rj , rccr})

= ρcj −
∆t

∆x

ρcj
rj

min{rj , rccr}vc(min{rj , rccr})

≥ ρcj −
∆t

∆x

ρcj
rj
rjv

c(min{rj , rccr})

= ρcj

(
1− ∆t

∆x
vc(min{rj , rccr})

)
≥ 0

if ∆t∥vc∥∞ ≤ ∆x.
On the other side,

ρc,ν+1
j = ρcj −

∆t

∆x

[
F c
j+ 1

2

− F c
j− 1

2

]
= ρcj −

∆t

∆x

[
ρcj
rj

min {Dc(rj), S
c(rj+1)} −

ρcj−1

rj−1
min {Dc(rj−1), S

c(rj)}
]

≤ ρcj +
∆t

∆x

ρcj−1

rj−1
min {Dc(rj−1), S

c(rj)}

≤ ρcj +
∆t

∆x

ρcj−1

rj−1
Sc(rj) .

Setting

ϕ(ρc) := ρc +
∆t

∆x

ρcj−1

rj−1
Sc(r),

we get ϕ(Rc) = Rc and

dϕ

dρc
(ρc) = 1 +

∆t

∆x

ρcj−1

rj−1

dSc

dr
(r) ≥ 1− ∆t

∆x

ρcj−1

rj−1

∥∥∥∥dSc

dr

∥∥∥∥
∞

≥ 1− ∆t

∆x

∥∥∥∥dSc

dr

∥∥∥∥
∞

≥ 0

if ∆t
∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x. Hence ϕ(ρc) ≤ Rc.
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Finally,

M∑
c=1

ρc,ν+1
j =

M∑
c=1

ρcj −
∆t

∆x

M∑
c=1

[
F c
j+ 1

2

− F c
j− 1

2

]
=

M∑
c=1

ρcj −
∆t

∆x

M∑
c=1

[
ρcj
rj

min {Dc(rj), S
c(rj+1)} −

ρcj−1

rj−1
min {Dc(rj−1), S

c(rj)}
]

≤
M∑
c=1

ρcj +
∆t

∆x

M∑
c=1

ρcj−1

rj−1
min {Dc(rj−1), S

c(rj)}

≤
M∑
c=1

ρcj +
∆t

∆x

M∑
c=1

ρcj−1

rj−1
Sc(rj).

Setting

ϕ(ρ) :=

M∑
c=1

ρc +
∆t

∆x

M∑
c=1

ρcj−1

rj−1
Sc(r),

we get ϕ(ρ) = R if
∑M

c=1 ρ
c
j = R and

∂ϕ

∂ρd
(ρ) = 1 +

∆t

∆x

M∑
c=1

ρcj−1

rj−1

∂Sc(r)

∂ρd

≥ 1− ∆t

∆x

M∑
c=1

ρcj−1

rj−1

∥∥∥∥dSc

dr

∥∥∥∥
∞

≥ 1−max
c

∥∥∥∥dSc

dr

∥∥∥∥
∞

∆t

∆x

M∑
c=1

ρcj−1

rj−1
.

If ∆tmaxc

∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x, then 1 − ∆t
∆x maxc

∥∥dSc

dr

∥∥
∞ ≥ 0 and hence ϕ(ρ) ≤ R for all

ρ ∈ S, where we used that
∑M

c=1
ρc
j−1

rj−1
= 1.

3. Network Modeling

We consider graphs of directed arcs connected at nodes as a representation of road
networks. The main component of the network extension is modeling traffic dynamics
at junctions (Daganzo 1995, Garavello et al. 2016). In particular, junction dynamics
can be formulated as an optimization problem constrained by the demands of incoming
links and the supplies of outgoing roads.

3.1. Junction solver for M classes of vehicles

In the following, we first provide the numerical fluxes for general m× n junctions (m
incoming and n outgoing roads) when M classes of vehicles are involved, and then
detail the formulations for simple 1 × 1 junctions, general m × 1 merges and general
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Figure 2.: Types of junctions considered in this work

1×m diverges, see Figure 2. Note that, in general, the demand and supply functions
given by equations (16) and (17) will be link-specific. Therefore, for any given junction,
let us denote by I the set of incoming roads i ∈ I, and by J the set of outgoing roads
j ∈ J . The type of junction is therefore generally defined by the cardinality of the
two sets, denoted as |I| and |J |, respectively.

3.1.1. Solver for general m× n junction.

Let |I| = m and |J | = n. We denote by P c = (pci )i∈I ∈ Rm, pci ≥ 0,
∑

i∈I p
c
i = 1 the

class specific priority vectors and by Ac the class specific distribution matrices

Ac =

{acji} ∈ Rn×m, 0 ≤ acji ≤ 1,
∑
j∈J

acji = 1


where acji indicates the percentage of vehicles of class c going from road i to road j.
Using a selected Riemann solver (see e.g. Coclite et al. (2005), Delle Monache et al.
(2016), Garavello and Piccoli (2005)), we compute the class specific total fluxes (γ̄ci )i∈I
corresponding to Dc

i (ri,Ni
), i ∈ I, and Sc

j (rj,1), j ∈ J , with Ac and P c as distribution
matrix and priority vector respectively.
We then rescale the fluxes according to the class ratio, so the incoming and outgoing
fluxes for each class are given by:

γ̂ci =
ρci,Ni

ri,Ni

γ̄ci i ∈ I, γ̂cj =

m∑
i=1

acjiγ̂
c
i , j ∈ J . (19)

11



Proposition 3.1. Under the CFL condition (18), the incoming and outgoing fluxes
defined by (19) satisfy mass conservation and the incoming fluxes guarantee the in-
variance of the domain S. Additionally, under the stronger CFL condition

max

{
max

c
∥vc∥∞,M max

c

∥∥∥∥dQc

dr

∥∥∥∥
∞

}
∆t ≤ ∆x , (20)

the outgoing fluxes ensure the invariance of the domain S.

Proof. Concerning mass conservation, we observe that, for each class c, the total
outflow onto the n outgoing roads is:

n∑
j=1

γ̂cj =

n∑
j=1

m∑
i=1

acjiγ̂
c
i =

m∑
i=1

γ̂ci

n∑
j=1

acji =

m∑
i=1

γ̂ci ,

where
∑m

i=1 γ̂
c
i is the total inflow from the m incoming roads. Summing over all classes

c = 1, . . . ,M we get:

M∑
c=1

n∑
j=1

γ̂cj =

M∑
c=1

m∑
i=1

γ̂ci

which confirms total mass conservation at the junction.
To check the invariance of S, we proceed by induction, assuming that at the last cell
Ni of any incoming road i ∈ I, ρc,νi,Ni

∈ [0, Rc
i ] for c = 1, . . . ,M and

∑M
c=1 ρ

c,ν
i,Ni

≤ Ri,

we show that the same holds for ρc,ν+1
i,Ni

.
In the following, we drop the index ν. Regarding positivity, we get

ρc,ν+1
i,Ni

= ρci,Ni
− ∆t

∆x

[
γ̂ci − F c

i,Ni− 1

2

]
≥ ρci,Ni

− ∆t

∆x
γ̂ci

= ρci,Ni
− ∆t

∆x

ρci,Ni

ri,Ni

γ̄ci

≥ ρci,Ni
− ∆t

∆x

ρci,Ni

ri,Ni

Dc
i (ri,Ni

)

= ρci,Ni
− ∆t

∆x

ρci,Ni

ri,Ni

min{ri,Ni
, rci,cr}vci (min{ri,Ni

, rci,cr})

≥ ρci,Ni
− ∆t

∆x

ρci,Ni

ri,Ni

ri,Ni
vci (min{ri,Ni

, rci,cr})

= ρci,Ni

(
1− ∆t

∆x
vci (min{ri,Ni

, rci,cr})
)

≥ 0

where we used the CFL condition (18).

To prove that ρci,Ni
≤ Rc

i and that
∑M

c=1 ρ
c
i,Ni

≤ Ri, the proof follows from the proof

12



of Lemma 2.4.

ρc,ν+1
i,Ni

= ρci,Ni
− ∆t

∆x

[
γ̂ci − F c

i,Ni− 1

2

]
≤ ρci,Ni

+
∆t

∆x
F c
i,Ni− 1

2

= ρci,Ni
+

∆t

∆x

ρci,Ni−1

ri,Ni−1
min {Dc

i (ri,Ni−1), S
c
i (ri,Ni

)}

≤ ρci,Ni
+

∆t

∆x

ρci,Ni−1

ri,Ni−1
Sc
i (ri,Ni

)

Setting

ϕ(ρc) := ρc +
∆t

∆x

ρci,Ni−1

ri,Ni−1
Sc
i (r),

we get ϕ(Rc
i ) = Rc

i and

dϕ

dρc
(ρ) = 1 +

∆t

∆x

ρci,Ni−1

ri,Ni−1

∂Sc
i (r)

∂ρc
≥ 1− ∆t

∆x

ρci,Ni−1

ri,Ni−1

∥∥∥∥dSc

dr

∥∥∥∥
∞

≥ 1− ∆t

∆x

∥∥∥∥dSc

dr

∥∥∥∥
∞

≥ 0

if ∆t
∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x. Hence ρc,ν+1
i,Ni

≤ ϕ(ρci,Ni
) ≤ Rc

i .

Finally,

M∑
c=1

ρc,ν+1
i,Ni

=

M∑
c=1

ρci,Ni
− ∆t

∆x

M∑
c=1

[
γ̂ci − F c

i,Ni− 1

2

]
≤

M∑
c=1

ρci,Ni
+

∆t

∆x

M∑
c=1

F c
i,Ni− 1

2

≤
M∑
c=1

ρci,Ni
+

∆t

∆x

M∑
c=1

ρci,Ni−1

ri,Ni−1
Sc
i (ri,Ni

)

Setting

ϕ(ρ) :=

M∑
c=1

ρc +
∆t

∆x

M∑
c=1

ρci,Ni−1

ri,Ni−1
Sc
i (r),

13



we get ϕ(ρ) = Ri if
∑M

c=1 ρ
c = Ri and

∂ϕ

∂ρd
(ρ) = 1 +

∆t

∆x

M∑
c=1

ρci,Ni−1

ri,Ni−1

∂Sc
i (r)

∂ρd

≥ 1− ∆t

∆x

M∑
c=1

ρci,Ni−1

ri,Ni−1

∥∥∥∥dSc
i

dr

∥∥∥∥
∞

≥ 1− ∆t

∆x
max

c

∥∥∥∥dSc
i

dr

∥∥∥∥
∞

M∑
c=1

ρci,Ni−1

ri,Ni−1

If ∆tmaxc

∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x, then 1− ∆t
∆x maxc

∥∥dSc

dr

∥∥
∞ ≥ 0 and hence ϕ(ρ) ≤ Ri, where

we used that
∑M

c=1

ρc
i,Ni−1

ri,Ni−1
= 1.

Similarly, we assume that at the first cell of any outgoing road j ∈ J , ρc,νj,1 ∈ [0, Rc
j ]

for c = 1, . . . ,M , and
∑M

c=1 ρ
c,ν
j,1 ≤ Rj , we show that the same holds for ρc,ν+1

j,1 .

We have that ρc,ν+1
j,1 = ρc,νj,1 − ∆t

∆x

[
F c
j, 1

2

− γ̂cj

]
.

For positivity, the proof is similar to Lemma 2.4:

ρc,ν+1
j,1 = ρcj,1 −

∆t

∆x

[
F c
j, 1

2

− γ̂cj

]
≥ ρcj,1 −

∆t

∆x
F c
j, 1

2

= ρcj,1 −
∆t

∆x

ρcj,1
rj,1

min
{
Dc

j(rj,1), S
c
j (rj,2)

}
≥ ρcj,1 −

∆t

∆x

ρcj,1
rj,1

Dc
j(rj,1)

= ρcj,1 −
∆t

∆x

ρcj,1
rj,1

Qc(min{rj,1, rcj,cr})

= ρcj,1 −
∆t

∆x

ρcj,1
rj,1

min{rj,1, rcj,cr}vcj(min{rj,1, rcj,cr})

≥ ρcj,1 −
∆t

∆x

ρcj,1
rj,1

rj,1v
c
j(min{rj,1, rcj,cr})

= ρcj,1

(
1− ∆t

∆x
vcj(min{rj,1, rcj,cr})

)
≥ 0

if ∆t∥vc∥∞ ≤ ∆x.
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To prove that ρc,νj,1 ≤ Rc
j , we compute

ρc,ν+1
j,1 = ρcj,1 −

∆t

∆x

[
F c
j, 1

2

− γ̂cj

]
≤ ρcj,1 +

∆t

∆x
γ̂cj

= ρcj,1 +
∆t

∆x

m∑
i=1

acjiγ̂
c
i

= ρcj,1 +
∆t

∆x

m∑
i=1

acji
ρci,Ni

ri,Ni

γ̄ci

≤ ρcj,1 +
∆t

∆x

m∑
i=1

acjiγ̄
c
i

= ρcj,1 +
∆t

∆x
γ̄cj

≤ ρcj,1 +
∆t

∆x
Sc
j (rj,1)

Setting

ϕ(ρc) := ρc +
∆t

∆x
Sc
j (r),

we get ϕ(Rc
j) = Rc

j and

dϕ

dρc
(ρc) = 1 +

∆t

∆x

∂Sc
j (r)

∂ρ

≥ 1− ∆t

∆x

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

≥ 0

if ∆t
∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x. Hence ϕ(ρcj) ≤ Rj
c.
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Finally, as above,

M∑
c=1

ρc,ν+1
j,1 =

M∑
c=1

ρcj,1 −
∆t

∆x

M∑
c=1

[
F c
j, 1

2

− γ̂cj

]
≤

M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

γ̂cj

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

m∑
i=1

ρci,Ni

ri,Ni

acjiγ̄
c
i

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

max
i

ρci,Ni

ri,Ni

m∑
i=1

acjiγ̄
c
i

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

max
i

ρci,Ni

ri,Ni

γ̄cj

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

max
i

ρci,Ni

ri,Ni

Sc
j (rj,1).

Setting

ϕ(ρ) :=

M∑
c=1

ρc +
∆t

∆x

M∑
c=1

max
i

ρci,Ni

ri,Ni

Sc
j (r),

we get ϕ(ρ) = Rj if
∑M

c=1 ρ
c = Rj and

∂ϕ

∂ρd
(ρ) = 1 +

∆t

∆x

M∑
c=1

max
i

ρci,Ni

ri,Ni

∂Sc
j (r)

∂ρd

≥ 1− ∆t

∆x

M∑
c=1

max
i

ρci,Ni

ri,Ni

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

≥ 1− ∆t

∆x
max

c

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

M∑
c=1

max
i

ρci,Ni

ri,Ni

≥ 1− ∆t

∆x
M max

c

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

If M∆tmaxc

∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x, then 1 − ∆t
∆xM maxc

∥∥∥dSc
j

dr

∥∥∥
∞

≥ 0 and hence ϕ(ρ) ≤
Rj .

3.1.2. Solver for 1× 1 junctions.

If |I| = |J | = 1, and we adapt (15) by setting:

γ̂ci = γ̂cj =
ρci,Ni

ri,Ni

min
{
Dc

i (ri,Ni
), Sc

j (rj,1)
}
, c = 1, . . . ,M.
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3.1.3. Solver for m× 1 (merge) junctions.

If |I| = m and |J | = 1, a class specific priority vector P c = (pci )i∈I ∈ Rm, pci ≥ 0,∑
i∈I p

c
i = 1 is required to identify a unique solution (Garavello and Piccoli 2006), so

that γ̂ci = pci γ̂
c
j for i ∈ I. The corresponding fluxes are given by:

γ̂ci =
ρci,Ni

ri,Ni

min
{
Dc

i (ri,Ni
),max

{
pciS

c
j (rj,1), S

c
j (rj,1)−

∑
k∈I\{i}

Dc
k(rk,Nk

)
}}

, (21)

γ̂cj =

m∑
i=1

γ̂ci ,

for c = 1, . . . ,M , see also (Goatin et al. 2016).

3.1.4. Solver for 1×m (diverge) junctions.

If |I| = 1 and |J | = m, let Ac =
(
αc
j

)T
j∈J

, be the class specific distribution matrix,

where αc
j ≥ 0,

∑
j∈J αc

j = 1. For the FIFO (first-in first-out) version (Garavello and

Piccoli 2006), the fluxes at the junction are computed as:

γ̂cj = αc
j γ̂

c
i , j ∈ J , (22)

where

γ̂ci =
ρci,Ni

ri,Ni

min
j∈J

{
Dc

i (ri,Ni
),
Sc
j (rj,1)

αc
j

}
, (23)

for c = 1, . . . ,M .
The non-FIFO fluxes (Goatin et al. 2016, Herty and Klar 2004, Lebacque and Khosh-
yaran 2002) are instead given by:

γ̂cj =
ρci,Ni

ri,Ni

min
{
αc
jD

c
i (ri,Ni

), Sc
j (rj,1)

}
,

γ̂ci =
∑
j∈J

γ̂cj ,
(24)

for c = 1, . . . ,M.

Remark 1. For simple diverges (1×m), the weaker CFL (18) is sufficient to guarantee
the invariance of S. Indeed, let us assume that at the first cell of an outgoing road
j ∈ J ,

∑M
c=1 ρ

c,ν
j,1 ≤ Rj , we show that the same holds for

∑M
c=1 ρ

c,ν+1
j,1 . We consider
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first a diverge following the FIFO rule (22)-(23). On an outgoing road j,

M∑
c=1

ρc,ν+1
j,1 =

M∑
c=1

ρcj,1 −
∆t

∆x

M∑
c=1

[
F c
j, 1

2

− γ̂cj

]
≤

M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

γ̂cj

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

αc
j γ̂

c
i

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

αc
j

ρci,Ni

ri,Ni

Sc
j (rj,1)

αc
j

=

M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

ρci,Ni

ri,Ni

Sc
j (rj,1),

Setting

ϕ(ρ) :=

M∑
c=1

ρc +
∆t

∆x

M∑
c=1

ρci,Ni

ri,Ni

Sc
j (r),

we get ϕ(ρ) = Rj if
∑M

c=1 ρ
c = Rj and

∂ϕ

∂ρd
(ρ) = 1 +

∆t

∆x

M∑
c=1

ρci,Ni

ri,Ni

∂Sc
j (r)

∂ρd

≥ 1− ∆t

∆x

M∑
c=1

ρci,Ni

ri,Ni

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

≥ 1− ∆t

∆x
max

c

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

M∑
c=1

ρci,Ni

ri,Ni

≥ 1− ∆t

∆x
max

c

∥∥∥∥dSc
j

dr

∥∥∥∥
∞

If ∆tmaxc

∥∥∥dQc

dr

∥∥∥
∞

≤ ∆x, then 1− ∆t
∆x maxc

∥∥∥dSc
j

dr

∥∥∥
∞

≥ 0 and hence ϕ(ρ) ≤ Rj .

If the non-FIFO rule (24) holds, we get

M∑
c=1

ρc,ν+1
j,1 =

M∑
c=1

ρcj,1 −
∆t

∆x

M∑
c=1

[
F c
j, 1

2

− γ̂cj

]
≤

M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

γ̂cj

≤
M∑
c=1

ρcj,1 +
∆t

∆x

M∑
c=1

ρci,Ni

ri,Ni

Sc
j (rj,1)
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and we proceed as above.

3.2. Boundary conditions

Let Fin = (F 1
in, . . . , F

M
in )T and Fout = (F 1

out, . . . , F
M
out)

T be respectively the inflow
boundary conditions at an origin node and the outflow boundary condition at a des-
tination node (where we assume F c

in, F
c
out ≥ 0 for all c = 1, . . . ,M).

In order not to miss vehicle counting when congestion spills back to the incoming
nodes of the network, we assume the presence of a buffer of length lc(t) at the beginning
of each entrance road j, see e.g. (Goatin et al. 2016, Samaranayake et al. 2018). The
length of the buffer must be updated at every time step in order to choose the correct
demand function to calculate the effective inflow at the origin node.

From (15), (21), we can define

γ̂cin = min

Dc(lc),max

 1

M
Sc
j (rj,1), S

c
j (rj,1)−

∑
g ̸=c

Dg(lg)


 , (25)

mimicking the presence ofM independent buffers, one for each vehicle class and having
the same priority to enter the network, where

Dc(lc) =

{
Qc

j(r
c
cr) if lc > 0 ,

F c
in if lc = 0 ,

is the class c buffer demand. To update the buffer length at every time step, we set

lc(t+∆t) = max {lc(t) + ∆t (F c
in(t)− γ̂cin(t)) , 0} . (26)

At destination nodes, the effective outflow is computed as

γ̂cout = min

{
ρcJ
ri,Ni

Dc
i (ri,Ni

), F c
out

}
. (27)

Above, rj,1 and ri,Ni
are the density values respectively in the first and last cell of the

concerned roads.

4. Numerical Results

The following tests have the purpose of assessing the capability of our general model
to adapt to different situations and to capture intricate interactions between various
vehicle types, as well as to highlight the differences with the more classical approach
used in Joumaa et al. (2023), where the assumption of equal maximal densities was
used. To this aim, we measure the overall traffic performance using two metrics: the
total travel time and the CO2 emissions. We consider a mix of three classes of vehicles:
light-duty vehicles (e.g. cars), heavy-duty vehicles (e.g. trucks) and two-wheelers (e.g.
bicycles). Then, we select cars as the reference class and represent the other classes
in terms of passenger-car equivalents (pce) based on their impact on traffic flow (see
Shalini and Kumar (2014), Van Lint et al. (2008)). More precisely, pce indicates the
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number of passenger cars a specific vehicle type counts in relation to its capacity. In
this work, unlike Van Lint et al. (2008), we consider for simplicity speed independent
pce values and we assume, without loss of generality, that a truck is equivalent to two
passenger cars and that three bikes take the same capacity as one car. This aligns with
the findings of Pajecki et al. (2019), which report pce values for large heavy vehicles
typically ranging between 1.45 and 2.10, and Prasetijo (2007), where the pce values for
bicycles are generally within the range of 0.3 to 0.5. The pce values are then pcecars =
1, pcetrucks = 2 and pcebikes = 1/3, so if we consider that the maximal densities
of cars, trucks, and bikes are respectively 150 veh/km/lane, 75 veh/km/lane and
450 veh/km/lane, then multiplying by the pce values, the maximal density becomes
150 pce/km/lane for all classes. In this work, we consider also class-specific lane
discipline (i.e. on a two-lane road, cars can travel on both lanes, while trucks must
occupy only the rightmost (or leftmost) lane), and we assume bikes can creep through
larger vehicles when they are stopped, as though they could occupy 2.5 lanes. In this
case, the maximal densities are Rcars = 300 pce/km for cars, Rtrucks = 150 pce/km
for trucks and Rbikes = 375 pce/km for bikes.

Given a network of L roads and a set of entrance nodes Iin, the Total Travel Time
(TTT) of a class c, i.e. the space and time integral of the corresponding density is
defined as:

TTT(ρc) = ∆t∆x

Tf∑
ν=0

L∑
ℓ=1

Nℓ∑
j=0

ρc,νℓ,j

pcec
+∆t

Tf∑
ν=0

∑
o∈Iin

lc,νo

pcec
. (28)

where Nℓ is the number of cells in link ℓ = 1, . . . , L, and Tf the number of time steps
needed to cover the simulation time horizon. The TTT for all vehicle classes can then
be computed directly using the total density r recovered from the simulation:

TTT(r) =

M∑
c=1

TTT(ρc) = ∆t∆x

Tf∑
ν=0

L∑
ℓ=1

Nℓ∑
j=0

M∑
c=1

ρc,νℓ,j

pcec
+∆t

Tf∑
ν=0

∑
o∈Iin

M∑
c=1

lc,νo

pcec
. (29)

The total CO2 emission TECO2 of a given class c, i.e. the space and time integral of
the product of the grams of CO2 emitted per meter (i.e. class-specific emission factor)
and the class-specific density, is defined as:

TECO2(ρ
c) = ∆t∆x

Tf∑
ν=0

L∑
ℓ=1

Nℓ∑
j=0

ρc,νℓ,j

pcec
ec(v

c(rνℓ,j)) + ∆t

Tf∑
ν=0

∑
o∈Iin

lc,νo

pcec
ec(0) , (30)

since vc(Rc) = 0. Above, ec is the function that gives us the grams of CO2 emitted per
meter by class c depending on the class-specific average speed, it is a weighted sum of
the emission factor calculated with Copert model (see Copert v5.6.1) per each type of
considered vehicle (see Appendix A, Figures A1 and A2). The fleet composition can
be found in the report CITEPA (see Appendix A, tables A1 and A2). Notice that we
divide the density by the pce values since we need the real number of vehicles in each
class when calculating the emissions.
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4.1. Network description

In the following tests, we consider the same network studied in Joumaa et al. (2023),
consisting of 13 two-lane roads and 6 junctions, forming a main road and two additional
routes available as secondary itineraries.

Figure 3.: Schematic representation of the network

Figure 3 is an illustration of the network, where we consider that cars enter only
from road 1 and are allowed to circulate on the whole network with a speed of Vcars =
70 km/h on the main path (roads 1-2-3) and Vcars = 50 km/h on the secondary paths
(roads 4-5-6, roads 7-8-9 and roads 10-11). Trucks, on the other hand, can only travel
on the main path (roads 1-2-3) at a speed of Vtrucks = 50 km/h . Finally, bikes can
only travel on roads 12-5-10 and 13-8-11 with a speed of Vbikes = 20 km/h. Road 1
measures 0.1 km, roads 2, 5 and 8 have a length of 1 km, 0.3 km for roads 4 and 6
and finally 0.2 km for roads 3, 7, 9, 10, 11, 12 and 13. We consider a uniform grid
with step size ∆x = 5 m and the time is sampled with steps ∆t = 0.25 s. At the
merge junction J2, we take q1 = q3 = 0.3 and consequently q2 = 0.4 for all classes,
meaning that vehicles coming from the main road have priority over those coming
from the lateral ones. At the merge junctions J3 and J5, we give priority to the cars so
the priority coefficients on roads 12 and 13 are q4 = q6 = 0.1. As for the distribution
coefficients, we consider that cars do not have a preference at the diverge junctions J4
and J6, so we set αcars

4 , αcars
5 , αcars

6 , αcars
7 equal to 0.5. For trucks, since they are only

allowed on the main road, we set αtrucks
2 = 1 and 0 everywhere else, and finally we set

αbikes
4 = αbikes

6 = 1 and 0 everywhere else, because bikes that enter from road 12 can
only exit from road 10, and those that come from road 13 can only exit from road 11.

In the following, we present two different experiments, where we adopt the speed
vc(r) = V c(1− r

Rc ) and we observe the variation of the cars’ TTT and CO2 emissions as
a function of the distribution coefficient α at the diverge junction J1 and the percentage
of cars and trucks θ1 in the first experiment, and as a function of the percentage of
cars and bikes θ2 in the second experiment. Rerouting at J1 consists of gradually
diverting cars from the primary route to the secondary paths. The idea is to improve
the travel time for trucks by easing congestion on the main road. Nevertheless, rerouted
vehicles will need to follow a longer path and share the lateral roads with bikes. To
account for this, we allow the distribution coefficients of the cars at J1 to vary, i.e
we set αcars

1 = αcars
3 = α ∈ [0, 0.5] towards the lateral roads 4 and 7, which implies
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αcars
2 = 1− 2α on road 2.
In both experiments, the inflow at the network origin nodes is nonzero only on the

time interval [0, T ], ensuring that all vehicles can enter in free flow and it is set equal
to 0 on ]T, Tf ], where Tf > T > 0 are prescribed time horizons. We set the supply
F c
out at exit nodes of roads 3, 10 and 11 equal to 20% of the maximal supply to induce

congestion in the network, as if a traffic light was regulating outgoing traffic.

4.2. Experiment 1 (Different lane discipline for trucks)

In this experiment, we show how the model can be used to illustrate two completely
different scenarios. In the first scenario, trucks are confined to one of the two lanes of
the main road (roads 1-2-3), with maximal densities set at Rcars = 300 pce/km for
cars and Rtrucks = 150 pce/km for trucks. In the second scenario, trucks can use both
lanes of the main road, and we thus assume equal maximal densities for both classes,
namely Rcars = Rtrucks = 300 pce/km. We note that our model does not address
lane changing. Instead, we focus on roads with varying numbers of lanes to study lane
discipline. For modeling lane changing in a macroscopic context, lane-specific models
with interfacing terms between adjacent lanes allow for greater flexibility, see e.g. (Pan
et al. 2021)
The network is initially empty and the boundary conditions at the entry and exit
roads are as described in Section 3.2. We vary the proportion between trucks and cars
by a parameter θ1 ∈ [0, 1], as we set a global inflow

F ct
in = 1800 veh/h

and

F cars
in (t) = θ1F

ct
in, F trucks

in (t) = (1− θ1)F
ct
in, for t ∈ [0, T ]

at the origin node at the entrance of road 1. For simplicity of analysis, we focus only
on the interaction between cars and trucks, therefore we take F bikes

in ≡ 0. The inflow
stops at T = 500 s and the TTT and CO2 emissions are calculated for both scenarios
on a time horizon Tf large enough for all the vehicles to leave the network.

In Figures 4 and 5, we display the space-time diagrams of the vehicles’ densities
(in pce) on roads 2 and 3 of the network at T = 600 s for the case of α = 0 (i.e.
there is no rerouting of cars at junction J1) and θ1 = 0.8 (cars represent 80% of the
total vehicle population). We notice the remarkable difference between the densities of
cars and trucks in the first and second scenarios: the congestion of trucks is naturally
much higher in scenario one, where they are allowed to travel on only one lane, than
in the second scenario, where they are allowed two lanes. We also notice that cars
reach the end of the road before trucks do, since they are faster and the network is
initially empty, hence the red and green horizontal lines that we notice for cars and
trucks respectively in scenario 1. However, they are not congested in the first scenario
as much as they are in scenario 2, because they are less disturbed by the trucks and
can keep moving when trucks are fully stopped (i.e. when trucks reach their maximal
density).

Figure 6 shows the TTT for the total population in each scenario. We remark that
the TTT in scenario 1 is maximal when we have trucks only (i.e. for θ1 = 0), then it
decreases but stays higher than the TTT of scenario 2 until θ1 reaches approximately
0.6, where they cross and it keeps decreasing until it reaches its minimum at θ1 = 0.7,
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(a)

(b)

Figure 4.: Experiment 1 - Scenario 1: Trucks are allowed on one lane, cars and trucks
have different maximal densities: Rcars = 300 pce/km, Rtrucks = 150 pce/km, T =
600 s, α = 0 and θ1 = 0.8.
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(a)

(b)

Figure 5.: Experiment 1 - Scenario 2: Trucks are allowed on two lanes, cars and trucks
have equal maximal densities: Rcars = Rtrucks = 300 pce/km, T = 600 s, α = 0 and
θ1 = 0.8.
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then starts increasing again. This is due to the decrease in the number of trucks and
the increase in the number of cars when θ1 increases: since cars are faster, their TTT is
smaller than the TTT of trucks (see Appendix B, Figures B1 and B3). However, when
θ1 becomes greater than 0.6, the TTT of the total population in the case where trucks
are only allowed on one lane becomes lower than the TTT of the total population in
the second case, which can be explained by the fact that cars can keep moving when
trucks are completely stopped, so they can be faster and their TTT will decrease. We
note that this was not the case when θ1 ∈ [0, 0.6[ because trucks are only allowed on
one lane in the first case, while in the second case they are free to circulate on both
lanes of the main road, which leads to a much lower TTT than in scenario 1. Moreover,
the TTT of the total population, defined by the sum of the TTT of cars and trucks,
is constant when θ1 = 0 and slightly decreases when α increases in both cases, when
θ1 ∈ ]0, 0.6[. The decrease w.r.t α becomes more significant when θ1 becomes greater
than or equal to 0.6 because the number of cars that are being rerouted is higher, so
congestion is reduced on the exit road 3 and trucks move faster on the main road.
Figure 7 shows clearly that the CO2 emissions of the total population are much higher
in the first scenario compared to the second, since truck congestion is higher and their
CO2 emissions are dominant (much higher than the CO2 emissions of the cars). The
emissions decrease when α increases because the interaction between cars and trucks
decreases with rerouting. The value of the emissions is constant for all values of α
when θ1 = 0 in the case where trucks are allowed two lanes.

Figure 6.: Sum of the cars and trucks TTT (in hours) on the whole network as a
function of the distribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and
the percentage of cars and trucks θ1 ∈ [0, 1] for scenario 1 (Rcars = 300 pce/km,
Rtrucks = 150 pce/km) and scenario 2 (Rcars = Rtrucks = 300 pce/km).

4.3. Experiment 2 (Modal shift)

The second experiment illustrates the effects of public policies encouraging the uptake
of active transportation modes, by investigating the benefits of gradually shifting traffic
flow from cars to bikes.
In this experiment, we consider three vehicle classes as presented in Figure 3, and we
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Figure 7.: Sum of the cars and trucks CO2 emissions (in kilograms) on the whole
network as a function of the distribution coefficient α ∈ [0, 0.5] at the diverge junction
J1 and the percentage of cars and trucks θ1 ∈ [0, 1] for scenario 1 (Rcars = 300 pce/km,
Rtrucks = 150 pce/km) and scenario 2 (Rcars = Rtrucks = 300 pce/km).

compare two scenarios. More precisely, in the first case we allow bikes to share roads 5,
10, 8 and 11 with cars, whereas the second case models the presence of dedicated lanes
for bikes, so that their presence does not impact car flow. To this aim, in the first case,
we consider an initial density of 100 pce/km for bikes on roads 12, 5, 10 and roads 13,
8, 11, the only roads where bikes can circulate. All other roads are initially empty. For
the second case (with bikes on dedicated lanes), the network is initially empty. The
maximal densities in both cases are Rcars = 300 pce/km, Rtrucks = 150 pce/km, and
Rbikes = 375 pce/km for cars, trucks, and bikes respectively. The boundary conditions
at the entry and exit roads are implemented as in Section 3.2. We set a global inflow

F cb
in = 1800 veh/h,

and we consider that only 70% of the total motorized vehicle population are cars, and
the rest are trucks. Moreover, in order to simulate a modal shift towards active modes
of transport, we progressively shift 20% of cars to bikes by a parameter θ2 ∈ [0, 1],
setting:

F cars
in (t) = (0.8×0.7)F cb

in+(1−θ2)(0.2×0.7)F cb
in , F trucks

in (t) = 0.3F cb
in for t ∈ [0, T ]

on road 1, and for the case without bike-dedicated lanes

F bikes
in (t) = pcebikes ∗

θ2
2
(0.2× 0.7)F cb

in

on roads 12 and 13. The inflow stops at T = 500 s and the TTT and CO2 emissions
are calculated for Tf large enough for all the vehicles to leave the network.

Figures 8 and 9 show the space-time diagrams of the densities on roads 2, 3, 5, 10,
8 and 11 of the three populations at T = 750 s for the case where α = 0.5 (all the
cars are taking the lateral roads) and θ2 = 0.5. In the first scenario, we notice the high
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(a)

(b)

(c)

(d)

Figure 8.: Experiment 2 - Scenario 1: Bikes share the road with cars, T = 750 s,
α = 0.5 and θ2 = 0.5.

27



(a)

(b)

(c)

Figure 9.: Experiment 2 - Scenario 2: Bikes have their dedicated lane, T = 750 s,
α = 0.5 and θ2 = 0.5.
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level of congestion of bikes on roads 10 and 11 (cells 200 to 240), where they reach
their maximal density. Moreover, we notice that even though cars are much faster
than bikes, the latter reach the end of the roads before cars. This can be explained
by the fact that bikes can creep between the cars when they are completely stopped.
On roads 3, 5, 10, 8 and 11, we notice that cars are always in free flow since there
are no interactions with bikes. This also explains the high level of truck congestion in
scenario 2 on roads 2 and 3.

Figure 10.: Sum of the cars and trucks’ TTT in hours on the whole network as a
function of the distribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and
the percentage of cars and bikes θ2 ∈ [0, 1] setting Rcars = 300 pce/km, Rtrucks =
150 pce/km, and Rbikes = 375 pce/km, without bike dedicated lane (left) and with
bike lane (right).

Figure 10 shows the significant difference between the TTT surface of cars and
trucks in the two scenarios. The TTT is remarkably higher when bikes share roads
with cars, due to congestion caused by bikes creeping on roads 5 and 8, which makes
cars move more slowly. It also increases with α, since bikes are only present on the
lateral roads. When bikes have dedicated lanes, the TTT does not depend much on
alpha; however, the sum of the TTT of cars and trucks reaches its maximum point at
α = 0 and θ2 = 0, that is when there are only cars going straight on the main road,
and decreases when θ2 increases, i.e. when the number of cars decreases.
In Figure 11, we remark the significant decrease of the CO2 emissions w.r.t. α in the
second case. Moreover, the emissions of cars and trucks in the presence of bikes are
much higher than in their absence. This reflects the fact that, with dedicated bike
infrastructure, other vehicles can move faster, which decreases their CO2 emissions,
whereas in the presence of bikes sharing roads with cars, the latter experience slow-
downs on roads 5 and 8. When α, i.e. the number of cars rerouted on lateral roads,
increases, trucks can move faster on the main road in both cases. Nevertheless, when
bikes are present, they impede cars, allowing trucks to exit from road 3 before cars
arrive, avoiding slowdowns caused by car congestion. Moreover, we remark that the
surface presenting the CO2 emissions in the case where bikes share roads with cars
has smaller variations, since cars’ CO2 emission increases significantly on roads 5 and
8 but on the contrary trucks’ CO2 emission decreases on roads 2 and 3. The separate
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Figure 11.: Sum of the cars and trucks’ CO2 emissions (in kilograms) on the whole
network as a function of the distribution coefficient α ∈ [0, 0.5] at the diverge junction
J1 and the percentage of cars and bikes θ2 ∈ [0, 1] setting Rcars = 300 pce/km,
Rtrucks = 150 pce/km, and Rbikes = 375 pce/km, without bike dedicated lane (left)
and with bike lane (right).

surfaces for cars and trucks are shown in Appendix C, Figures C1 and C3 for the TTT
and Figures C2 and C4 for the CO2 emissions.

5. Conclusion

This study proposes a macroscopic model for heterogeneous traffic flow on general
road networks that can deal with an arbitrary number of vehicle classes. The model
considers general speed functions depending on the total density of vehicles and allows
a fine tuning of the class-specific maximal densities to capture creeping phenomena
and class-specific lane discipline. These properties are specifically relevant to describe
shared road situations, as it typically occurs in urban environments. The extension to
networks is based on a multi-class generalization of generic Riemann solvers at road
junctions with an arbitrary number of incoming and outgoing links.
Using the “passenger-car-equivalent” notion, numerical experiments were performed,
revealing that the model is able to deal with the complexities of traffic scenarios
from real life. We computed the total travel time and the total emissions of CO2 in
a sample network, and showed how they can be influenced by different parameters,
such as the distribution coefficient of cars (α) at diverge junctions and the rates of
cars and trucks (θ1) and cars and bikes (θ2) entering the network. They differ when
the composition of vehicle fleet varies, taking into account congested situations where
cyclists can maneuver through a queue of cars and cars can pass beside a queue of
trucks.

Future work in this area will include further evaluation of the multi-class macro-
scopic traffic flow model in more realistic and larger scale scenarios. This may ensure
that the traffic flow behavior in real-world settings is accurately reflected by the model
and it may also shed light on the variables that have higher influence on heterogeneous
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traffic flow. Finally, the computational time of the proposed model is sufficiently low
to allow for closed-loop optimization frameworks. This will help us understanding, for
instance, the actions to be taken to reduce the negative effects of transportation on
air quality within urban areas.
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Appendix A. CO2 Emissions, Copert model and CITEPA report

Figure A1.: CO2 emissions of cars in g/Km as function of their average speeds.

Figure A2.: CO2 emissions of trucks in g/Km as function of their average speeds.

Appendix B. Experiment 1 - Separate plots for TTT and CO2 of cars and
trucks

Figure B1 clearly shows that the cars TTT in scenario 2 is higher than their TTT in
scenario 1 for all values of α and θ1. The two surfaces coincide only for θ1 = 0, that is
when there are no cars. However, the difference between the two surfaces is the highest
when α = 0, then it decreases as α increases (i.e. the percentage of cars taking the
secondary paths), since there is no overtaking on the lateral roads. We remark that
the TTT in both models increases when θ1 increases and reaches its maximum for
θ1 = 1 and α = 0, that is when we have only cars going on the main road.
Figure B2 shows the results for the car CO2 emissions, which are consistent with the
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Fuel/Energy Type Euro 1 Euro 2 Euro 3 Euro 4 Euro 5
Euro 6
a/b/c

Euro 6
d-temp

Euro 6
d

-

Diesel 0.4 1 3.5 18.8 22.2 15.1 3.5 2.8 -
Petrol 0.2 0.5 0.9 3.6 6.2 12.4 4.2 3.1 -
LPG Bifuel ∼ Petrol - - - 0.1 0.1 0.3 0.1 0.1 -
Electric - - - - - - - - 0.9

Table A1.: Fleet Composition Data for Cars (in %)

Fuel Type Euro 2 Euro 3 Euro 4 Euro 5
Euro 6
d/e

Diesel 0.2 3.9 8.3 19.1 68.5

Table A2.: Fleet Composition Data for Trucks (in %)

Figure B1.: Cars’ TTT (in hours) on the whole network as a function of the distribution
coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage of cars and trucks
θ1 ∈ [0, 1] for scenario 1 (Rcars = 300 pce/km, Rtrucks = 150 pce/km) and scenario
2 (Rcars = Rtrucks = 300 pce/km).
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Figure B2.: Cars’ CO2 emissions (in kilograms) on the whole network as a function of
the distribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage of
cars and trucks θ1 ∈ [0, 1] for scenario 1 (Rcars = 300 pce/km, Rtrucks = 150 pce/km)
and scenario 2 (Rcars = Rtrucks = 300 pce/km).

results of the TTT: the car CO2 emissions in the second case are higher than in the
first scenario, because they are slower when they cannot overtake queuing trucks and
need longer time to leave the network. Similarly to the TTT, the difference between the
two surfaces decreases as alpha increases. The CO2 emissions of cars are the highest
for θ1 = 1 and α = 0.
In both figures, we remark that for θ1 = 1, the behavior is non-monotone: both TTT
and CO2 decrease until α = 0.4, because the congestion on junction J2 decreases when
α increases, but for α = 0.5 they increase again, because all of cars take a longer path
and thus travel for a longer distance.

The results showing the TTT and CO2 emissions of trucks in Figures B3 and B4
are consistent. The TTT and CO2 emissions of trucks in the case where they circulate
on one lane are higher than their TTT when they are allowed two lanes. Moreover,
both quantities decrease slightly when α increases, i.e. when cars are rerouted.

Appendix C. Experiment 2 - Separate plots for TTT and CO2 of cars and
trucks

Figure C1 shows the car TTT in the two cases (with and without bike dedicated lane).
We can see that it is significantly higher in the case with bikes due to congestion caused
by the presence of bikes on roads 5 and 8. It also increases when α increases, because
bikes are only present on the lateral roads. The surface representing the case where
bikes have their own lane is not very dependent on α; however, the cars’ TTT reaches
its maximum point at α = 0 and θ2 = 0, that is when there are only cars going straight
on the main road, and decreases when θ2 increases, that is when we have less cars.
In Figure C2, we see that the car CO2 emissions for both cases obviously coincide for
α = 0, since it is the same situation for cars in both cases. For α = 0, the surface
with no bikes decreases when θ2 increases, i.e. when the number of cars decreases, and
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Figure B3.: Trucks’ TTT (in hours) on the whole network as a function of the dis-
tribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage of cars
and trucks θ1 ∈ [0, 1] for scenario 1 (Rcars = 300 pce/km, Rtrucks = 150 pce/km)
and scenario 2 (Rcars = Rtrucks = 300 pce/km).

Figure B4.: Trucks’ CO2 emissions (in kilograms) on the whole network as a function of
the distribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage of
cars and trucks θ1 ∈ [0, 1] for scenario 1 (Rcars = 300 pce/km, Rtrucks = 150 pce/km)
and scenario 2 (Rcars = Rtrucks = 300 pce/km).
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Figure C1.: Cars TTT (in hours) on the whole network as a function of the distribution
coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage of cars and
trucks θ1 ∈ [0, 1] setting Rcars = 300 pce/km, Rtrucks = 150 pce/km, and Rbikes =
375 pce/km, without bike dedicated lane and with bike lane.

Figure C2.: Cars CO2 emissions (in kilograms) on the whole network as a function of
the distribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage
of cars and trucks θ1 ∈ [0, 1] setting Rcars = 300 pce/km, Rtrucks = 150 pce/km, and
Rbikes = 375 pce/km, without bike dedicated lane and with bike lane.
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does not vary much w.r.t other values of α. On the contrary, the surface with bikes
increases significantly with α, due to the increase of congestion on roads 5, 10, 8 and
11.

Figure C3.: Trucks’ TTT (in hours) on the whole network as a function of the dis-
tribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage of cars
and trucks θ1 ∈ [0, 1] setting Rcars = 300 pce/km, Rtrucks = 150 pce/km, and
Rbikes = 375 pce/km, without bike dedicated lane and with bike lane.

Figure C4.: Trucks’ CO2 emissions (in kilograms) on the whole network as a function
of the distribution coefficient α ∈ [0, 0.5] at the diverge junction J1 and the percentage
of cars and trucks θ1 ∈ [0, 1] setting Rcars = 300 pce/km, Rtrucks = 150 pce/km, and
Rbikes = 375 pce/km, without bike dedicated lane and with bike lane.

Figures C3 and C4 show that, unlike for cars, the TTT and CO2 emissions of trucks
in the case without bikes are higher than in the case with bikes. This is easily explained
by the fact that in the presence of bikes sharing lateral roads with cars, the latter take
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more time to reach exit road 3, therefore trucks can leave faster before the arrival of
the cars.
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