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Abstract
In motor networks, motor inhibition can be driven by sensorimotor mu rhythm (8-
12Hz) or beta bursts (13-30Hz). In this study, we aimed to investigate whether mu or 
beta activity supports efficient anticipatory inhibition, as reflected by a decrease in 
electromyographic (EMG) activity. To test this, we recorded magnetoencephalography 
(MEG) in 16 adults performing a Bimanual Load Lifting Task (BLLT), where participants 
lifted a load with one hand supported by the other. In anticipation of unloading, elbow 
flexors in the supporting arm are inhibited to prevent elbow deflection. We observed 
that optimal postural stabilization occurs when flexor inhibition happens 
approximately 30 ms before unloading begins. Stronger EMG inhibition in this time 
interval correlated negatively with high-gamma power (90-130Hz), reflecting reduced 
neural excitability, and positively with high-beta power in the medial supplementary 
motor area (SMA). In contrast, no significant correlation was observed in the mu-range 
(8-12 Hz). Meanwhile, high-beta and high-gamma power were negatively correlated. 
Mediation analysis confirmed that gamma power significantly mediates the 
relationship between beta power and EMG inhibition. Beta burst probability and 
directed connectivity analysis using the Phase Slope Index indicated that high-beta 
bursts are transmitted from the middle prefrontal cortex (mPFC) and elbow-related 
primary motor cortex (M1) to the SMA. Our findings suggest that, in the voluntary 
unloading task, anticipatory muscle inhibition at the optimal time is driven by a 
reduction in excitability within the SMA, likely facilitated by high-beta bursts originating 
from the mPFC-M1-SMA network.

Significance
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Anticipatory motor processes represent a form of higher-order motor control evolved 
in humans to enable precise hand manipulation. In this study, we used a bimanual 
coordination task where precise force control is achieved by sending an inhibitory 
motor command to the elbow flexors before an anticipated forearm disturbance, 
which requires accurate timing and pattern selection. We demonstrate that timely 
anticipatory inhibition is associated with the transmission of high-beta bursts (22-28Hz) 
to the supplementary motor area, suppression of which enables precise inhibitory 
control over the flexor muscle. These findings suggest the neural mechanisms 
underlying anticipatory postural control and provide the first direct evidence linking 
beta activity to muscle inhibition.

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.24.634650doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634650
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Many voluntary movements cause postural perturbations that can be 
anticipated by adjusting postural muscles before movement (Massion, 1992). A 
common example is the “waiter task”: when a waiter holds a tray of glasses and is 
about to take one with his other hand, the brain must adapt to the upcoming force 
changes on the tray-bearing arm to avoid spillage. This behaviour is achieved through 
anticipatory postural adjustments (APA), which are integral to our daily lives and are 
required for most rapid arm and leg movements (Stone et al., 2014; Kane & Barden, 
2012). 

A commonly used naturalistic paradigm for studying APA in humans is the 
bimanual weight lifting task (BLLT), mimicking the waiter example (Hugon et al., 1982). 
In BLLT, a load is placed on the wrist of the left, postural arm, with the elbow fixed to 
allow only up-down rotation, while the participant lifts the load using the right, motor 
arm.The unloading causes a force imbalance, leading to destabilization of the postural 
arm, observed as upward forearm movement. When a subject moves voluntarily, APA 
precedes the lifting, stabilizing the forearm serving as a reference frame, which results 
in minimal deflection. In contrast, unexpected unloading causes a pronounced upward 
elbow rotation, followed by reflexive inhibition that stabilizes posture (Hugon et al, 
1982).

APA results from precise brain-level coordination between the postural and 
motor arms, which requires engaging the same muscles to support and lift the load 
(Massion, 1992; Kaluzny et al., 1992). Another integral feature of APA is inhibition of 
elbow flexor activity, reflected as decreased electromyography (EMG) signal. This 
inhibition precedes unloading, anticipating forearm imbalance, and presumably 
reflects the suppression of established wrist stabilisation during load maintenance. 
Thus, anticipatory inhibition ensures a smooth transition to a new equilibrium, and its 
timely realisation is crucial for effective bimanual coordination (Hugon et al., 1982; 
Viallet et al., 1987). Impaired APA, measured with the BLLT, has been observed in 
Parkinson’s disease (Viallet et al., 1987), autism spectrum disorder (Schmitz et al., 2003), 
and other motor-related conditions (Jover et al., 2006; Jover et al., 2010).

 The network and mechanisms underlying anticipatory inhibition, distinct from 
its behavioural outcome of elbow stabilisation, have not been thoroughly investigated. 
Studying them, particularly during BLLT, is advantageous for several reasons. First, it 
can help us better understand the neural mechanisms involved in transitioning 
between motor commands. Second, unlike many motor inhibition paradigms, BLLT 
offers direct insight into the mechanisms of neural inhibition, given an explicit EMG-
based measure. Together, a better understanding of these mechanisms may provide 
valuable insights into the neural pathways underlying motor deficits in patients. 
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Additionally, due to the spatial separation between hemispheric effects related to arm 
movement and posture, BLLT provides a unique opportunity to study anticipatory 
postural control in bimanual coordination.

In motor networks, inhibition can be mediated by mu (8-12Hz) or beta (13-30Hz) 
activity. Stronger mu power facilitates active inhibition of information processing in 
motor networks (Bönstrup et al., 2015; Karabanov et al., 2021; Köster & Meyer, 2023). 
Beta oscillations, predominantly in the form of bursts (Lundqvist et al., 2024), have 
been linked to inhibition of motor actions (Picazio et al., 2014; Schaum et al., 2021; Enz 
et al., 2021) or their slowing (Khanna & Carmena, 2017), but are also strengthened 
during tonic muscle contraction (Kilavik et al., 2013).

In this study, we aimed to investigate the neural pathways responsible for 
anticipatory inhibition and the oscillatory mechanisms underlying this process. Based 
on prior research on BLLT and motor inhibition (Kazennikov et al., 2006; Ng et al., 2013; 
Borgomaneri et al., 2020), we hypothesized that anticipatory elbow flexor inhibition in 
BLLT is linked to a decrease in M1 excitability. This decrease, in turn, may be triggered 
by an inhibitory signal expressed at alpha or beta frequencies, originating from the 
prefrontal cortex or subcortical brain regions such as the basal ganglia or cerebellum.

Methods

Participants
Sixteen right-handed adults without neurological or psychiatric conditions (11 

males, mean age 27 ± standard deviation (SD) 3.8 years) participated in this study. 
Handedness was determined using the Edinburgh Handedness Inventory (Oldfield, 
1971). All participants gave written informed consent in accordance with the 
Declaration of Helsinki. The study was approved by the local ethics committee (South 
East IV Committee for the Protection of Persons). A study involving the same 
participants and describing the results of a different task has previously been 
published (Rienzo et al., 2019).

Experimental setting and task
The experimental setup for the voluntary unloading situation in the BLLT was 

described in more details elsewhere (Massion et al. 1999; Barlaam et al. 2011;  Rienzo 
et al., 2019). In short, a wooden table was placed in front of a participant that allowed 
the right arm to be comfortably placed on it. The left arm was chosen as the postural 
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arm, and was positioned adjacent to the trunk with a support, with the elbow being 
fixed to allow only upward and downward rotations. The subject was instructed to 
maintain the left forearm in a horizontal semi-prone position, which served as a 
reference. A metal wristband fitted with a vacuuming switch system (30 kN/m2) strain 
gauge was worn on the wrist which allowed a load of 850g to be placed on the top of it 
(in the voluntary unloading setup of BLLT), or to be suspended with a possibility to be 
released by means of 3.5 kN/m2 air pulses (in the imposed unloading setup). 

In the voluntary (natural) unloading, each trial started with a 2 second fixation 
on an LED located at the base of the load in order to avoid eye movements. Subjects 
had to lift the load placed on top of the wristband with their right hand at any time 
after the light faded out. After a few seconds of maintenance, subjects had to return 
the load in the initial position, which finalized the trial. As the unloading was performed 
by the participants themselves, this allowed anticipation and resulted in very small 
elbow destabilization following unloading. This condition is also expected to be 
characterized by anticipatory EMG inhibition in the elbow flexor muscles (Biceps Brachii 
and Brachioradialis), which typically occurs just before the onset of unloading (Viallet, 
1987; Paulignan, 1989; Barlaam et al., 2011).

In the imposed (control) unloading condition, the load was released at an 
unpredictable time initiated by the experimenter in each trial, making anticipation 
impossible. The imposed unloading results in a visible upward rotation of the elbow 
and passive, reflex-like EMG inhibition in the elbow flexor muscles, which begins after 
the unloading (Viallet, 1987; Paulignan, 1989; Barlaam et al., 2011).

In total, there were 90 trials in both imposed and voluntary unloading 
conditions. To reduce fatigue, they were organised into sessions of 10 trials each, with 
intervals of around 1 minute between the sessions.

Behavioural data acquisition

Detection of load-lifting timing 

The onset of load-lifting (unloading, zero reference time point) was automatically 
identified as the initial deflection in the force signal recorded by the force plate sensor 
attached to the metallic wristband, using a threshold function in CTF® DataEditor 
software. The automatically assigned label was then visually inspected and manually 
corrected if needed. 

Elbow-joint rotation
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Upward rotation of the elbow joint following load release or load lifting was measured 
across all trials and conditions using a potentiometer aligned with the elbow joint axis, 
sampled at 600 Hz. The deflection strength was recorded in arbitrary units provided by 
the equipment. 

Electromyography

Electromyography (EMG) data were collected at a sampling frequency of 600 Hz using 
bipolar surface electrodes (2.5 mm² surface area) positioned over the left 
Brachioradialis, Biceps Brachii, and Triceps Brachii, as well as the right Biceps Brachii. 
For the purposes of this study, only EMG data from the left Biceps Brachii were 
analyzed.

Behavioural data preprocessing

Elbow rotation 

To assess the postural stabilization as a measure of efficacy of anticipatory postural 
control, we estimated two measures: Peak Elbow Rotation and Elbow Rotation Decline, 
which reflect whether the posture was stable after and before the unloading, 
respectively (see Figure 2A, left panel). 

We predicted that when inhibition occurs ‘on-time’, Elbow Rotation Decline and 
Peak Elbow Rotation are negligible, which reflects optimal postural stabilization both 
before and after the unloading in a particular trial. Therefore, both measures of elbow 
rotation stabilization were further used to find the time optimal for Biceps brachii 
inhibition (see the ‘Estimation of the optimal EMG inhibition’ section below).
 To estimate Peak Elbow Rotation and Elbow Rotation Decline in the voluntary 
unloading task, elbow rotation time series were first smoothed using a moving average 
with a window of 5 time points (8.3 ms) and a step size of 1 time point (1.7 ms) to 
reduce noise. The time series were then visually inspected to identify the time of 
maximal elbow deflection using the ‘annotations’ tool in MNE-Python. This step was 
performed manually because, in most trials, the peak elbow rotation was very small 
and difficult to reliably detect using automatic algorithms. The time series were then 
epoched into [-1.7 to 1.2] s relative to the annotated maximum elbow rotation.

Peak Elbow Rotation was calculated as the mean of baseline-corrected values 
within a 33 ms window surrounding the maximal elbow rotation, excluding outliers. 
The baseline for each trial was defined as the mean over the lowest values in a 33 ms 
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window (excluding outliers) in the interval [-0.35 to -0.05 s] relative to the maximum of 
elbow rotation

To estimate Elbow Rotation Decline, the epoched elbow rotation time series 
were used. Elbow Rotation Decline was defined as the difference between the mean of 
the lowest values in a 33 ms window (excluding outliers) from -165 ms to the start of 
unloading, and the mean of the highest values in a 33 ms window (excluding outliers) 
from -165 ms to the time points corresponding to Elbow Rotation Decline (to avoid 
positive elbow deflection following elbow decline). In case of negligible elbow decline, 
time intervals for Elbow Rotation Decline and its baseline could overlap.

Overall, Elbow Rotation Decline and Peak Elbow Rotation values were calculated 
individually for each trial. The resulting plots for each trial with time points used for 
elbow rotation peak, decline and their baselines estimation were visually inspected (see 
Figure 1B for example of data and baseline intervals used), and severe artifact-
containing trials, preventing accurate estimation of elbow rotation measures, were 
detected (the number of such trials in each subject: from 0 to 5, mean=1.25, SD=1.39). 
These trials were excluded from all analyses using elbow rotation data. 

Electromyography (EMG)

For this study, EMG recordings from the left Biceps Brachii were analyzed. 
Preprocessing steps followed the same protocol as in previous work by the group 
(Barlaam et al., 2018) and included epoching from -1 to 0.5 s relative to the unloading 
event, mean subtraction, and band-pass filtering in the 25-150 Hz range using a FIR 
filter with a Hamming window based on the group-averaged muscle Power Spectral 
Density. The filtered data were rectified to allow visualization of EMG inhibition as a 
decrease in EMG power (see Figure 2A, right panel).

The data were then log10-transformed and baseline-corrected using the -1 to -
0.5 s interval. Due to the high noise level, tracking inhibition in individual trials was not 
feasible, but inhibition was clearly visible in the group-averaged signal (see Figure 2A, 
right panel). To quantify the strength of inhibition, a moving average with a 30 ms 
window and 33% overlap was applied to smooth the signal further.

Estimation of the EMG inhibition

Since tracking muscle inhibition in each trial was not feasible due to noise levels, we 
instead aimed to extract the strength of EMG inhibition during the time when its 
occurence was followed by optimal postural stabilization. This involved identifying the 
time interval at which EMG inhibition had the greatest impact on both Elbow Rotation 
Decline and Peak Elbow Rotation, bringing both values close to zero. The inhibition 
may reflect the suppression (or modulation) of the previous motor command in the 
elbow flexor. If so, it must occur at an optimal time - not too early, to ensure elbow 
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stabilization until unloading, and not too late, to prevent destabilization caused by the 
persistence of an old motor command. The potential timing scenarios for inhibition 
(early, on-time, and late) and their behavioral consequences are schematically 
summarized in Figure 1A below. 

To investigate the mechanisms of the most efficient strategy, i.e. on-time 
inhibition, which is dominant in the group of adult participants (Schmitz et al., 1999), 
we aimed to find the time at which the occurrence of inhibition results in the lowest 
negative deflection (Elbow Rotation Decline) before the unloading and lowest Peak 
Elbow Rotation after the unloading (option 1, Figure 1A).

For this, in each subject individually we fitted a linear regression model over 
trials to predict EMG based on two predictors: Elbow Rotation Decline and Peak Elbow 
Rotation. The OLS() function from statsmodels.regression.linear_model module, 
statsmodels library (v. 0.14.1) was used to fit the model at each time point of the 
smoothed data (see above). The F-value was used as the evaluation metric for each 
regression model. The quality of the prediction was assessed using the coefficient of 
determination (R²). The F-values were log10-transformed to normalize the distribution 
and baseline-corrected (-1 to -0.5 s). By this, a time point with positive F-value was 
considered to represent the moment where the combined influence of Elbow Rotation 
Decline and Elbow Rotation Peak had the strongest predictive power on Biceps Brachii 
EMG, associated with muscle inhibition, relative to the general baseline effect. To 
assess the statistical significance of the baseline-corrected F-values, we performed a 
permutation cluster one-sample test over subjects with time adjacency in -0.25 to 0.1 s 
time interval relative to the unloading. 

In the imposed condition, where anticipating load release was impossible, EMG 
decrease occurred reflexively about 100 ms after unloading. To detect EMG decrease in 
each subject, the EMG signal was preprocessed similarly to the voluntary condition and 
baseline-corrected (-1 to -0.5 s). It was then averaged over a 30 ms window centered on 
the latency showing the strongest EMG decrease in the trial-averaged signal.

MRI data acquisition and preprocessing

Structural magnetic resonance imaging (MRI; voxel size 0.9 mm x 0.9 mm x 0.9 
mm; TR=3500 ms, TE=2.24 ms) data were obtained from all the participants using 3T 
Siemens Magnetom scanner (CERMEP, France - MAGNETOM Prisma, Siemens 
HealthCare). The T1-weighted images were preprocessed with the ‘recon-all’ procedure 
from FreeSurfer software (version 6.0.0, Fischl et al., 2002), which particularly included 
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motion correction, intensity normalization, removal of non-brain tissue, cortical surface 
reconstruction, and subcortical segmentation.

The cortical surface was parcellated into 450 regions using the "HCPMMP1" 
atlas (Glasser et al., 2016), as implemented in MNE-Python software (v. 1.7.0, Gramfort 
et al., 2013). To identify brain regions involved in anticipatory motor control, 
contralateral to the postural left forearm, we performed a source-level MEG analysis 
focusing on specific regions in the right hemisphere. These regions included areas of 
the motor network associated with voluntary unloading in the BLLT task (Schmitz et al., 
2005; Ng et al., 2010; Ng et al., 2013a; Ng et al., 2013b), see Table 1. 

In addition to the cortical regions, several subcortical brain structures in the 
right hemisphere were included in the MEG source-level analysis. These regions were 
automatically parcellated using the Aseg atlas in FreeSurfer and included the cerebellar 
cortex and basal ganglia (caudate nucleus, putamen, and globus pallidus).

Cortical parcellation labels from Glasser et al. (2016)

M1 R_4_ROI

SMA R_SCEF_ROI, R_6ma_ROI, R_6mp_ROI

PM R_55b_ROI, R_6d_ROI, R_6a_ROI

CMA R_24dd_ROI, R_24dv_ROI

PrCu R_PCV_ROI, R_7Am_ROI, R_7Pm_ROI

SMar R_PF_ROI, R_Pft_ROI, R_Pfop_ROI, R_Pfm_ROI, R_PFcm_ROI

dlPFC R_8C_ROI, R_8Av_ROI, R_i6-8_ROI,  R_s6-8_ROI, R_SFL_ROI, 
R_8BL_ROI, R_9p_ROI, R_9a_ROI, R_8Ad_ROI, R_p9-46v_ROI, R_a9-
46v_ROI,  R_46_ROI, R_9-46d_ROI

IFC* R_44_ROI, R_45_ROI, R_IFJp_ROI, R_IFJa_ROI, R_IFSp_ROI, 
R_IFSa_ROI, R_47l_ROI, R_p47r_ROI

Table 1. Selected regions of interest (ROIs) used for MEG cluster analysis.
Primary motor cortex, M1; supplementary motor area, SMA; premotor cortex, PM, 
premotor cortex; cingulate motor area, CMA; precuneus, PrCu; supramarginal gyrus, 
SMar;  dorsolateral prefrontal cortex, dlPFC; inferior frontal cortex, IFC.
*IFC involvement was not detected in BLLT, but it was included in the directed 
connectivity analysis due to its well-established role in inhibitory motor control (Swann 
et al., 2012; Xu et al., 2016).
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MEG data acquisition

Magnetoencephalography (MEG) recordings were acquired using a CTF-MEG 
system (CERMEP, France), equipped with 275 radial gradiometers positioned over the 
scalp, along with 33 reference channels for correcting ambient noise. The MEG signals 
were digitized at a 600 Hz sampling rate and low-pass filtered between 0 and 150 Hz. 
Head position was tracked continuously using three coils placed on the nasion and 
preauricular points before recording.

MEG sensor-level data analysis

Preprocessing steps

MEG data preprocessing and analysis were performed using MNE-python 
software (v. 1.7.0; Gramfort et al., 2013). Raw MEG data sessions from the voluntary 
unloading condition (three sessions per subject), aligned to initial head positions in 
each session, were concatenated. Visual inspection of head movements showed that 
shifts in x, y, and z coordinates did not exceed 1 cm. Detailed analysis confirmed that 
head position remained stable across all three coordinates during the anticipatory 
period (-0.5 to 0 s relative to unloading) used in the following analysis. 

Independent component analysis (ICA) decomposition was performed on high-
pass filtered at 1Hz data using ICA() function (number of components: 70, method: 
'picard', maximum number of iterations: 1000, reference channels were included in the 
IC estimation). Components corresponding to biological artifacts (blinks, heart beating, 
muscle activity) were excluded on the basis of visual inspection of components 
timecourses and topographies. MEG reference channels were used to detect 
components contaminated by intermittent noise using find_bads_ref() function with 
threshold=1.5. The selected components were removed from an unfiltered copy of raw 
data. The average number of excluded components (mean ± SD) was as follows: EOG 
components: 2.06 ± 0.24; ECG components: 1.25 ± 0.56; EMG components: 1.44 ± 1.54; 
artificial noise components: 6.56 ± 3.46.

The raw data were then epoched in (-1.7 to 1.2 s) time window relative to the 
unloading. Only those trials where the moment of the start of the unloading was 
possible to detect and elbow rotation time series were not severely contaminated were 
included (number of dropped trials per subject, mean ± SD: 1.19 ± 1.18). Data of 275 
axial gradiometers were selected for the analysis. Epochs were visually inspected and 
those contaminated by instrumental noise and myogenic artifacts were excluded 
(number of dropped trials per subject, mean ± SD: 2.00 ± 2.89). Several trials were 
additionally excluded from the analyses with elbow rotation data due to inability to 

10

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.24.634650doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634650
http://creativecommons.org/licenses/by-nc/4.0/


reliably estimate Peak Elbow Rotation or/and Elbow Rotation decline, see above. The 
final average number of trials for each subject was 86.94 ± 2.97 (mean ± SD).

For the control imposed condition, preprocessing included the same steps, with 
epoching performed in the time interval of -0.5 to 0.5 seconds around the load release, 
resulting in a total of 87.00 ± 5.55 (mean ± SD) trials per subject.  

MEG source-level data analysis

Individual brain models and inverse solution

Three MRI-visible fiducial landmarks (nasion, left auricular, and right auricular) 
were manually positioned and used to define the head coordinate system. Individual 
structural MRI data were coregistered with MEG raw data using 
mne.gui.coregistration() tool. Single layer boundary element model (BEM) was created 
with 20484 vertices for the 2 hemispheres. A mixed source space was defined which 
combined the surface-based source space with ‘ico4’ spacing allowing reconstruction of 
5124 cortical vertices in the two hemispheres and volume source space with 5mm 
spacing including cerebellum and basal ganglia structures reconstruction (see above) 
in the two hemispheres, comprising 1300 sources in total. Forward solution was 
computed for sources with minimal distance from the inner skull surface equal to 
5mm. 

Notch filters at 50 and 100 Hz were applied to raw data to reduce powerline 
noise. Data were band-pass filtered in 25-150Hz for the analysis of gamma activity and 
in 1-90Hz for the analysis of power in the alpha-beta range. The type of filter used in 
both cases was finite impulse response (FIR) filtering, with a Hamming window and 
zero-phase configuration. The filter length was set to ’auto’ using the 'firwin' design 
and a padding type of 'reflect_limited'. The resulting raw data were epoched as 
described at the preprocessing step, and bad trials were excluded based on prior 
annotations. 
 The data rank was computed from the epoched data, with the singular values 
tolerance for considering non-zero values set to 1e-6, and the tolerance kind set to 
’relative’. The data covariance matrix was calculated for the [-1, 0.1] time interval, an 
interval expected to capture the brain response associated with anticipatory motor 
control. It was computed using the predefined rank and the method set to ’empirical’. 
Since only one type of channel — gradiometers — was used and the beamformer 
method was applied, we avoided estimating a noise covariance matrix for source 
reconstruction, as its time interval would be unclear in the current setup. The unit-gain 
Linearly Constrained Minimum Variance (LCMV) beamformer spatial filter was 
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computed to optimize power orientation, with a regularization coefficient of 0.05 and 
the ‘reduce_rank’ parameter set to ‘True’. The filter was then applied individually to 
each epoch.

Time-frequency analysis

Time-frequency analysis was performed over the full time window (-1.7,1.2 s) 
with symmetric padding of 0.5 s added to each side of the array. The resulting data 
were then cropped to the time window of interest, (-0.5,0.25 s).

For gamma power estimation, the Multitaper method was applied to the time 
series of individual trials and brain source data using the tfr_array_multitaper() 
function. The analysis was conducted in the 90-130 Hz frequency range with the 
’time_bandwidth’ parameter set to 4. The resulting power estimates were log10-
transformed and averaged across the frequency dimension, yielding an average high-
gamma power estimate for the 90-130Hz range. For periodic power estimation in the 
alpha-beta range, Superlets algorithm was used (https://github.com/irhum/superlets, 
Moca et al., 2021). For each trial and brain source, the superlets() Python function was 
applied to the time series within the 1-80Hz frequency range, with a base cycle set to 3. 
The (minimum, maximum) upper limit of orders for adaptive superlets was set to (1, 
20).

The Spectparam tool (known as ‘FOOOF’, Donoghue et al., 2020) was then used 
to separate periodic activity from the total 1-80Hz power. A 2-80Hz frequency range 
was selected as appropriate for the Spectparam fit, based on a visual inspection of the 
power spectral densities of a few trial-averaged individual sources across several 
subjects. Periodic power for each trial and source was defined as the difference 
between the total power and the final aperiodic fit obtained from the Spectparam 
model, which was based on trial-averaged power spectra in the 2-80Hz range. For 
analysis, periodic power in the alpha-beta frequency range (8-30Hz) was extracted.

Correlational analyses

Previous research suggests that flexor inhibition during voluntary unloading 
may be linked to reduced excitability rather than increased inhibitory signaling in the 
brain region controlling muscle activity (Kazennikov et al., 2005; 2006). To examine 
whether reduced excitability in a specific brain region relates to EMG inhibition, we 
calculated Spearman’s rank correlation coefficient between EMG inhibition (see details 
in Results section) and high-gamma power (averaged in the 90-130Hz range), 
considered a proxy for excitability. Indeed, high-gamma activity, defined as activity in a 
broad frequency range above 60 or 80 Hz, has been shown to correlate closely with 
spiking activity in both sensory (Ray et al., 2008; Ray et al., 2011; Suffczynski et al., 2014) 
and motor networks (Yazdan-Shahmorad et al., 2013), supporting its role as an 
indicator of regional excitability. The correlations were calculated for each time point (-
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0.25 to 0 s) and each cortical source within the voluntary unloading right motor 
network (see MRI section above). To assess the statistical significance of the observed 
correlations, we performed a spatio-temporal one-tailed permutation cluster test. This 
test was used to identify positive clusters, i.e., brain regions within the motor network 
where a decrease in high-gamma power (indicative of reduced excitability) was 
associated with stronger EMG inhibition (decreased EMG power) near -0.026 s.

To estimate the possible involvement of other brain regions in the regulation of 
on-time inhibition via alpha- or beta-band activity, we computed a Spearman’s rank 
correlation coefficient between periodic power and EMG inhibition in each source 
vertex in the right motor network, each frequency bin in the 8-30Hz range, and each 
time point in the (-0.25 to 0 s) time window. A spatio-temporal one-tailed permutation 
cluster test was again used to identify negative clusters, which would indicate higher 
alpha-beta range power in trials with stronger inhibition.

Additionally, to verify the involvement of subcortical regions in the regulation of 
inhibition, spatio-temporal one-tailed permutation cluster test was performed on the 
Spearman’s rank correlation coefficient between the periodic power in 8-30Hz and EMG 
inhibition individually for the right cerebellum and basal ganglia.

Mediation analysis

To test whether gamma power (mediator, M) mediates the relationship between 
beta power (independent variable, X) and EMG inhibition (dependent variable, Y), a 
mediation analysis was conducted. The analysis focused on the peak vertex within the 
SMA cluster region, defined as the vertex showing the strongest correlation between 
gamma power and EMG inhibition within a cluster. Total (without aperiodic component 
subtraction) beta and gamma powers were averaged over their respective frequency 
bands (24-25Hz for beta and 90-130Hz for gamma) and across the time interval 
showing significant gamma power vs. inhibition correlation (-0.06 to -0.018 s), which 
also overlapped with 24-25Hz beta power vs. inhibition correlation time interval. The 
use of a unique time interval for both the independent variable and the mediator is 
justified by the fast conduction velocity of neural signals (less than 1 ms), which is 
below the time resolution of the current data, making it impossible to differentiate 
their exact timings.

The mediation analysis was performed using the mediate() function (package 
‘mediation’, v. 4.5.0) in R, employing bootstrapping with 10,000 permutations to obtain 
robust estimates of the mediation effects. To account for random effects, a generalized 
additive model (GAM, function bam(), package ‘mgcv’ v. 1.9.0) with linear fixed effects 
(gamma power, beta power), random effects per subject (random intercepts, random 
beta and gamma slopes) were employed. Restricted maximum likelihood (REML) was 
used as the estimation method for the GAM models. The models used as inputs for the 
mediation analysis - models A and C’ - are described in Table 2. To justify the presence 
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of relationships between the mediator and dependent variable, and between the 
independent and dependent variables, two additional models - models B and C (Table 
2) - were specified. 

Model Relationship Formula in mgcv
A X  M→ Gamma ~ Beta+s(Subject,bs='re')+s(Subject,Beta,bs='re')
C’ X + M  Y→ Inhibition ~ Beta+Gamma+s(Subject,bs='re')

+s(Subject,Beta,bs='re')+s(Subject,Gamma,bs='re')
B M  Y→ Inhibition ~ Gamma+s(Subject,bs='re')

+s(Subject,Gamma,bs='re')
C X  Y→ Inhibition ~ Beta+s(Subject,bs='re')+s(Subject,Beta,bs='re')

Table 2. Mediation analysis models.
Inhibition: EMG inhibition; Gamma: gamma power averaged over 90-130Hz; Beta: total 
beta power averaged over 24-25Hz and adjusted for correlation with broad range total 
power (1-130Hz); s(Subject,bs='re'): subject-based random intercept; 
s(Subject,Beta,bs='re'): subject-specific random slope for beta power; 
s(Subject,Gamma,bs='re'): subject-specific random slope for gamma power.

Before fitting the models, beta power was adjusted by regressing out 
(LinearRegression() function, ‘sklearn’, v. 1.4.2) the total power averaged across a broad 
frequency range (1-130Hz) to mimic the partial correlation approach used for the Beta 
power vs. Gamma power correlation (see Statistical analysis). The resulting Beta power 
and Gamma power variables were further scaled between subjects to yield 
standardized mediation parameters. The linearity of the relationships between the 
dependent and independent variables was visually inspected. The Durbin-Watson d-
test (dwtest() function, ‘lmtest’ package, v. 0.9.40) was used to test for autocorrelation 
in the residuals of the estimated GAM models. The test indicated the presence of 
significant positive autocorrelation for model a (DW = 1.89, p = 0.01). However, the DW 
value is close to 2, suggesting that the autocorrelation is mild and may not 
substantially affect the validity of the model. For the other models, no autocorrelation 
was observed (mean DW ± SD: 1.970 ± 0.002, mean p-value ± SD: 0.163 ± 0.011). To 
assess the presence of multicollinearity among the linear predictors in models a and c’, 
the Variance Inflation Factor (VIF) was calculated (mgcv.helper::vif.gam() function, 
‘mgcv.helper’ package, v. 0.1.9). All VIF values were < 2, suggesting an absence of 
multicollinearity.

Beta bursts extraction

To extract bursts of beta activity in the vertices of interest, we used the burst detection 
pipeline developed by Szul et al. (2023; https://github.com/maciekszul/burst_detection). 
For this, time-frequency decomposition and aperiodic component separation were 
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performed using Superlets() and Spectrparam() as described above. One difference in 
the approach was a use of 0.25Hz frequency resolution in the Superlets(), to improve 
burst detection. Beta bursts search time and frequency range was set to -0.8 to 0.4 s 
and 10-33Hz, respectively. To verify that the algorithm worked correctly for bursts 
extraction, the resulting trial-based time-frequency plots and plots with bursts only 
were visually inspected and compared.

For this study, only bursts at the peak of the SMA vertex with a burst center 
frequency between 22-28 Hz and a burst center time within -0.077 to -0.018 seconds 
were considered for analysis. These bursts were individually subtracted for each trial. 
The time window was selected based on the beta power vs. inhibition correlation, while 
the frequency range (25 ± 3 Hz) was chosen to capture the strongest frequency effect 
observed at 25 Hz.

Beta bursts analysis 

To test whether trials containing the selected bursts are associated with 
stronger EMG inhibition, we averaged baseline-corrected and 30-ms smoothed EMG 
power timecourses (see section Estimation of the optimal EMG inhibition above) across 
these trials. A one-tailed permutation cluster test with time adjacency was then 
performed across subjects in the -0.25 to 0.05 s window relative to unloading, to 
determine if there was a significant decrease in EMG power, i.e. stronger inhibition, 
relative to 0.

For further analyses, trials containing bursts were aligned to the times of their 
burst centers. For the baseline, an equal number of trials with the lowest beta power 
within the same time and frequency range used for burst selection were also aligned to 
the burst center times.

To identify brain regions associated with inhibitory bursts in the SMA, we 
calculated the directed connectivity measure, Phase Slope Index (PSI), using the 
phase_slope_index() function from the MNE-Python. PSI was computed between the 
peak SMA vertex and vertices in the right motor network. The spectrum for PSI 
estimation was calculated using Morlet wavelets with 4 cycles. PSI was computed in the 
22–28 Hz frequency range separately for trials with bursts and baseline trials.

A spatio-temporal one-tailed permutation cluster test was conducted to contrast 
PSI-based connectivity in burst trials vs. baseline trials, aiming to identify brain regions 
targeting the SMA specifically during bursts. Separate cluster tests evaluated 
connectivity from the cerebellum and basal ganglia to SMA. To assess the involvement 
of additional regions identified in the literature, PSI connectivity was also tested from 
the left M1 to the peak of the right M1 cluster region, and from the right cerebellum 
and right basal ganglia to the peak of the right M1 cluster region. All analyses were 
performed within the -0.05 to 0 s time window relative to SMA burst centers.
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In the identified cluster regions, beta burst probability was calculated for burst 
trials and baseline trials. It was computed at each time and frequency point in each 
vertex as the ratio of trials with bursts to the total number of trials. To improve 
estimate stability, this ratio was averaged across vertices within each cluster. To test 
whether beta burst probability increased in trials with SMA bursts in the regions 
defined from PSI connectivity analysis, we conducted a one-tailed permutation cluster 
test. The test examined if the beta burst probability averaged over the 22-28Hz 
frequency range increases in burst trials compared to baseline trials within the -0.05 to 
0.05 s time window relative to SMA burst centers.

Statistical analysis

To check the assumptions of linear regression models, several diagnostic tests 
were performed. The Shapiro-Wilk test (shapiro() function, scipy.stats, v. 1.7.3) was 
used to assess the normality of the residuals. The Durbin-Watson test (durbin_watson() 
function, statsmodels.stats.stattools, v. 0.13.5) was employed to check for 
autocorrelation in the residuals. Homoscedasticity was tested with Breusch-Pagan 
Lagrange Multiplier test (het_breuschpagan() function, statsmodels.stats.api, v. 0.13.5). 
Multicollinearity was tested using the Variance Inflation Factor (VIF) 
(variance_inflation_factor() function, from statsmodels.stats.outliers_influence, v. 
0.13.5). 

To assess the relationship between neural activity and behavioural parameters 
at individual time, frequency, and spatial points, we calculated Spearman’s rank 
correlation coefficient (spearmanr() function, scipy.stats, v. 1.7.3). Spearman’s 
correlation was chosen due to the potential presence of non-linear relationships 
between the pairs of variables studied.

To estimate the relationship between alpha-beta band (8-30Hz) and high 
gamma activity (90-130Hz) with adjusting for the total power in the broad frequency 
range (see Supplementary methods, Spaak et al., 2012), we calculated partial 
Spearman’s correlation coefficient (partial_corr() function, from pingouin, v. 0.5.3) with 
total power averaged in the broad frequency range (1-130Hz) taken as a covariate. This 
approach, while having its limitations, allowed us to treat average power variability 
between trials as a common factor between two frequency ranges. This variability is 
primarily driven by the aperiodic component, which is correlated between the two 
frequency bands.

To perform cluster analysis, group-level statistics, or select a common set of 
vertices across all subjects (e.g., SMA cluster region or right motor network), the 
timecourses or correlation coefficients calculated for individual brain models were 
morphed to the template brain, ‘fsaverage’, using the compute_source_morph() 
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function in MNE-Python. For ‘fsaverage’, BEM and source spaces were created with the 
same parameters as those used for the sample data.

A non-parametric permutation cluster one-sample t-test (using 
permutation_cluster_1samp_test() for data with time dimension only and 
spatio_temporal_cluster_1samp_test() for the rest cases implemented in MNE-Python) 
was used for cluster analyses. A total of 1024 permutations were performed to 
generate a null distribution for cluster-level inference. Clusters were formed based on 
spatio-temporal, spatio-time-frequency, time-frequency, or time-only adjacency. One- 
or two-tailed tests were used depending on the hypothesis being tested (see the 
corresponding Methods section for details of each individual test). We applied 
Threshold-Free Cluster Enhancement (TFCE) for cluster-level statistics on two-
dimensional time-frequency data (starting value: 0, step size: 0.2). To reduce 
computational costs, for data with spatial adjacency we used a strict cluster-forming 
threshold based on the t-distribution with a p-value of 0.001. To validate this approach, 
we performed a permutation cluster test for the correlation between gamma power 
and EMG inhibition using both the TFCE-based threshold and the cluster-based 
threshold of p=0.001. Both analyses revealed a significant cluster with overlapping 
spatial distributions, confirming the validity of the chosen statistical thresholds.The 
‘hat’ variance regularization implemented in MNE-Python was applied to estimate the t-
test statistics, compensating for implausibly small variances. 

Results

Behavioural data
Group average of standardized elbow rotation and EMG modulation over time 

with between-subject variability is shown at Figure 2A. The distributions of Peak Elbow 
Rotation and Elbow Rotation Decline in each subject over trials were significantly 
different from normal (Shapiro-Wilk test, p < 0.05 in all subjects), while their median 
and SD were overall low in all the participants, as compared to their reflex-like median 
peak elbow rotation in the control imposed condition (voluntary/imposed *100%; Peak 
Elbow Rotation, median ± SD: 5.46 ± 7.44%; Elbow Rotation Decline, median ± SD: -0.43 
± 2.04%; see Figure 2B for individual variability). The observed 5% for the average ratio 
between maximal elbow deflections in the voluntary vs. imposed condition is 
consistent with the previously reported 8% in adults (Barlaam et al., 2012). Such a 
pattern is expected for the voluntary unloading in adult participants, who exhibit 
mature anticipatory postural control keeping elbow deflection low.

To determine the optimal timing of EMG inhibition in the Biceps brachii, we 
aimed to identify when inhibition occurred 'on-time,' leading to better elbow 
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stabilization, as indicated by smaller deviations from zero in both Peak Elbow Rotation 
and Elbow Rotation Decline (Figure 1A; see Methods for details). While Peak Elbow 
Rotation reflects the magnitude of elbow deflection following load-lifting, Elbow 
Rotation Decline might be associated with too early anticipatory inhibition: stronger 
Elbow Rotation Decline correlated to stronger EMG inhibition around -0.06 s and -0.08 s 
(One-sample t-test for Spearman R’s: t=7.5, p<0.001 and t=5.2, p<0.001, respectively). In 
addition, no Elbow Rotation Decline was observed in the imposed condition, where 
anticipation is not possible.

To identify inhibition time associated with best elbow stabilization, we used F-
values derived from linear regression models that predicted EMG inhibition based on 
the two elbow parameters at individual time points (see Methods). A permutation 
cluster test revealed a significant difference in baseline-corrected F-values, most 
pronounced at three time points (-0.086, -0.066, and -0.026 s relative to unloading), 
indicating moments when EMG activity is strongly related to elbow rotation variables 
(Figure 2C, left panel). The R² values for the linear regression models at each time point 
are presented in Figure 2C, left panel. Inspection of the correlation coefficients of the 
two variables (Figure 2C, right panel) revealed that the effect around -0.086 s and -
0.066 s was mainly driven by a positive correlation between Elbow Rotation Decline and 
EMG, suggesting that earlier inhibition, i.e. more negative EMG, was associated with 
elbow rotation destabilization before the unloading. In contrast, R² around -0.026 s was 
explained by a negative correlation between EMG and Elbow Rotation Decline and a 
positive correlation between EMG and Peak Elbow Rotation, suggesting that stronger 
(more negative) inhibition was related to lower Peak Elbow Rotation and less Elbow 
Rotation Decline, thus overall better postural stabilization both before and after the 
unloading.

The time interval around -0.026 s in the Biceps brachii EMG was thus identified 
as the optimal window for inhibition during the voluntary unloading task, as it was 
associated with the best postural stabilization. Notably, this interval aligns well with 
previous studies on BLLT, which indicate that efficient anticipatory postural control is 
linked to inhibition occurring within the 50 ms interval preceding the onset of 
unloading (Viallet et al., 1987). The “on-time” inhibition measure, referred to as “EMG 
inhibition” below, was therefore estimated as the average of preprocessed and 
baseline-corrected (-1 to -0.5 s) Biceps brachii EMG power within a 30 ms window 
centered around -0.026 s. Stronger EMG inhibition, indicated by a more negative EMG 
value, suggests that in that trial inhibition occurred at the optimal moment for 
anticipatory postural control. Conversely, weaker inhibition, indicated by a more 
positive EMG value, would reflect that inhibition in that trial was either early (likely 
occurring around -0.066 or -0.086 s) or late. In contrast to elbow deflection parameters, 
Biceps Brachii Inhibition values were generally normally distributed (Shapiro-Wilk test, 

18

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.24.634650doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634650
http://creativecommons.org/licenses/by-nc/4.0/


p>0.05 in 14 of 16 subjects) and showed greater variability across trials within 
participants (mean ± SD: -0.018 ± 0.034; see Figure 1C). 

To validate the use of linear regression in this analysis, we tested if the key 
assumptions were met for the subject-based models at -0.026 s time point. The 
linearity of the relationship between independent and dependent variables was 
confirmed through visual inspection of scatterplots. In all the subject-based models, 
the residuals were normally distributed (Shapiro-Wilk tests, p > 0.05 in all participants), 
did not show positive or negative autocorrelation supporting their independence 
(Durbin-Watson test, group-averaged statistics: 1.96 ± 0.19 (SD), min: 1.68, max: 2.36), 
and did not show the presence heteroscedasticity (Breusch-Pagan test, p > 0.05 for all 
participants). To ensure that there was no multicollinearity, the Variance Inflation 
Factor (VIF) was calculated. Both independent variables had acceptable VIF values 
below 5, indicating that the predictors were not highly correlated (group-averaged VIF: 
1.05 ± 0.05 (SD), min: 1.00, max: 1.19). 

Figure 1. Detection of elbow deflection and its hypothetical relationship to the timing 
of Biceps brachii inhibition. A: Schematic representation of three core possible 
situations for Biceps Brachii inhibition timing and its consequences on elbow rotation. 
See detailed explanation in Methods (section Estimation of the optimal EMG inhibition). 
B: Examples of single trials illustrating the time intervals used for estimating Peak 
Elbow Rotation and Elbow Rotation Decline.
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Figure 2. Behavioural data-based hypotheses and analysis. A: Standardized (subtracted 
mean, divided by standard deviation (SD)) Biceps Brachii EMG and elbow rotation 
modulation over time, relative to the start of voluntary unloading (vertical red line): 
trial- and group-average (black thick line) and SD (filled gray area). Colored arrows 
schematically demonstrate magnitudes of three estimated behavioural measures: left 
panel – the Elbow Rotation Decline (green) and Peak Elbow Rotation (purple); right 
panel – the EMG inhibition (blue). B: Mean (black dots) and SD (black whiskers) of the 
three behavioral measures for each subject. The boxplots are representing the 
between-subjects variability: red horizontal line is median; edges of the box are first 
and third quartiles (Q1 and Q3), whiskers are 1.5 times the interquartile range. C: 
Averaged over subjects outputs of the linear regression models, calculated at each 
time point individually (dependent variable: EMG power, independent variables: Peak 
Elbow Rotation, Elbow Rotation Decline). Left panel: R2 values; right panel: linear 
regression coefficients for Peak Elbow Rotation (purple) and Elbow Rotation Decline 
(green) from the models. Red markers and grey dashed lines indicate time points 
where the F-value corresponded to p<0.05.
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MEG data

Correlation with EMG inhibition in contralateral motor network

To determine whether reduced excitability in a specific brain region is 
associated with an EMG decrease, we performed a permutation cluster test on 
correlations between high gamma power (90-130Hz), indicative of greater neural 
excitability (Murthy & Fetz, 1996; Ray et al., 2008; Lundqvist et al., 2016; Riehle et al., 
2018; Brazhnik et al., 2021), and EMG inhibition across vertices of the right anticipatory 
motor network (see Table 1). The test revealed a significant effect (cluster time window: 
-0.25 to 0 s), with a pronounced positive effect in the medial frontal cortex,, 
corresponding to the medial SMA (Figure 2A). This suggests that stronger EMG 
inhibition around -0.026 s is linked to decreased high gamma power in the preceding 
time window (-0.06 to -0.018 s), roughly consistent with the latency of nerve conduction 
(Spiecer et al., 2013; Entakli et al., 2014).
 Estimating high-gamma activity in motor tasks using non-invasive methods may raise 
concerns about muscle activity contamination. We however argue that this is unlikely 
in our setup. First, MEG studies (e.g., Muthukumaraswamy et al., 2010) have shown 
detectable gamma oscillations (60-100 Hz) in motor areas like M1. Second, the 
anticipatory period lacked visible movement, which only became apparent after 
unloading began. Additionally, as described in Methods, participants exhibited minimal 
head motion (<1 cm), indicating limited phasic effects. While tonic muscle activity could 
still contribute, the use of a beamformer for source localization reduces broadband 
gamma artifacts (Manyukhina et al., 2021). Combined with the use of correlation as a 
relative measure and a spatially precise effect in the SMA, located on the medial 
surface where tonic muscle contamination is not expected to be strong, we claim that 
the observed EMG inhibition-high-gamma power correlation reflects a genuine neural 
process. 

In contrast to the anticipatory cortical network, the permutation cluster test did 
not reveal a significant correlation between EMG inhibition and high-gamma power in 
the right basal ganglia or cerebellum.

Similarly, under the imposed unloading condition, no significant positive 
correlation was detected between high-gamma power and the reflex-like EMG 
decrease, unlike in the voluntary unloading condition.

Cluster region-based analysis in SMA

The analysis described above allowed us to identify a cluster region where 
stronger EMG inhibition was associated with reduced high-gamma power. We then 
investigated whether increased alpha and/or beta activity in this region was also linked 
to the observed effects - stronger EMG inhibition and reduced gamma power. Such a 
relationship would suggest that alpha-beta power might regulate the level of 
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excitability in this region, thereby influencing the activity of the muscles it controls.
 In the medial SMA cluster identified from the previous analysis, a permutation cluster 
test revealed a significant negative correlation between periodic power and EMG 
inhibition, pronounced across a broad high beta frequency range (18-25Hz) and an 
extended time window (-0.228 to -0.018 s), as shown in Figure 3B. Notably, within this 
range, the time interval used for EMG inhibition calculation overlapped with the 24-
25Hz power correlation (red dashed line, Figure 3B). This correlation indicates that 
higher beta power occurs during trials with stronger ‘on-time’ inhibition. Given the 
short latency between SMA stimulation and muscle response (mean MEP latency: 
15.7ms in Spiecer et al., 2013; 22.6ms in Entakli et al., 2014), this late high-beta effect 
likely reflects a direct inhibitory influence rather than an earlier lower-frequency 
correlation component, which may be linked to preparatory beta-band synchronization 
facilitating efficient inhibitory communication. However, investigation of this effect is 
beyond the scope of the present study. 

To examine the relationship between late high-beta activity and gamma power 
within the 10 vertices of the SMA cluster region, we computed a partial Spearman’s 
correlation coefficient between 24-25Hz and 90-130Hz power, averaged across 
frequency and over the gamma correlation cluster time interval (-0.06 to -0.018 s), 
while controlling for total 1-130Hz-averaged power to account for shared variance, as 
previously applied in Spaak et al., 2012. Notably, to estimate this correlation, we used a 
common LCMV spatial filter applied to data filtered between 1-150Hz, which ensured 
comparable capture of both low- and high-frequency activity. Individual subjects' 
correlation coefficients were significantly negative (one-sample t-test: t = -7.16, p < 
0.001), indicating that stronger high beta power is associated with a greater reduction 
in high gamma power. A significant negative correlation was also observed when 
periodic beta power (obtained by subtracting the aperiodic component) was directly 
correlated with high-gamma power using Spearman’s correlation. However, the effect 
size for this correlation and the t-test comparing the correlation to 0 were smaller (one-
sample t-test: t = -2.17, p = 0.046).

Since the effect was observed in the SMA, but not in M1 where the correlation 
with EMG inhibition was initially expected, we additionally tested whether a significant 
correlation existed between EMG inhibition and high gamma power decrease and 8-
30Hz power increase in the M1 elbow region, based on literature-defined coordinates. 
Talairach coordinates for the left elbow area (Biceps & Triceps brachii) from Lotze et al. 
(2000) and Plow et al. (2010) ([-28, -24, 64] and [-29, -25, 63], respectively) were 
averaged and converted to MNI305 space, yielding [32, -20, 66] in the right 
hemisphere. The M1 elbow region was defined as the peak vertex and its five adjacent 
vertices, forming a six-vertex label (see Figure 3A, lower panel). In this region, the 
permutation cluster test did not reveal a significant correlation between EMG inhibition 
and either high-gamma power or 8-30Hz power.

We further investigated whether other regions might exhibit alpha or beta 
power related to inhibition. To test this, we performed another permutation cluster 
test on the correlation between 8-30Hz power and EMG inhibition across the right 
motor network. No significant effect was observed for this correlation, either in the 
right motor network, basal ganglia, or cerebellum.
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Mediation analysis

A mediation analysis was conducted to examine whether the effect of high beta 
power on inhibition is mediated through high gamma power. In the defined model, 
beta power was the independent variable (X), EMG inhibition was the dependent 
variable (Y), and gamma power served as the mediator (M). The GAM models, referred 
to as models A, B, C, and C’ (see Methods, Mediation analysis section), included both 
linear fixed effects and random effects. The following significant relationships were 
found: beta power predicted gamma power (model A: estimate (β) = -0.138, standard 
error (SE) = 0.027, 95% confidence interval (CI) = [-0.190,-0.085], t = -5.18, p < 0.001), 
gamma power significantly predicted EMG inhibition (model B: β = 0.106, SE = 0.035, 
95% CI = [0.037,0.175], t = 3.061, p = 0.002), beta power significantly predicted EMG 
inhibition (model C: β = -0.069, SE = 0.025, 95% CI = [-0.120,-0.019], t = -2.725, p = 0.007), 
and beta power and gamma power together predicted EMG inhibition (model C': beta 
power: β = -0.056, SE = 0.025, 95% CI = [-0.108,-0.005], t = -2.188, p = 0.029; gamma 
power: β = 0.092, SE = 0.035, 95% CI = [0.022,0.162], t = 2.609, p = 0.009).

The results of the mediation analysis are presented in Table 3, see also Figure 
3C. The analysis revealed a statistically significant mediation effect (Average Causal 
Mediation Effect, ACME) of gamma power on the relationship between beta power and 
EMG inhibition, as well as a significant total effect. However, the direct effect (Average 
Direct Effect, ADE) of beta power on EMG inhibition, after accounting for the mediator, 
was also significant. The proportion of the total effect of beta power on EMG inhibition 
that was explained by the mediator accounted for 22%, suggesting a partial mediation.

Estimate (β) 95% CI p-value

ACME -0.013 [-0.02, 0.00] 0.006 **

ADE -0.057 [-0.11, -0.01] 0.027 *

Total effect -0.069 [-0.12, -0.02] 0.007 **

Proportion 
mediated

0.183 [0.04, 0.67] 0.013 **

Table 3. Mediation analysis results
*<0.05, **<0.01
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Figure 3. A: Upper panel: a significant cluster showing the correlation between high 
gamma power (averaged in the 90-130 Hz range) and EMG inhibition (estimated within 
a 30 ms window around -0.026 s, marked by red dashed lines), localized in the medial 
SMA (MNI305 peak: [8, 3, 52]). The thick black line represents the time course of the 
correlation within the cluster. The red transparent area highlights the (-0.06 to -0.018 s) 
time window corresponding to the significant cluster. Lower panel: the right M1 elbow 
region (MNI305 peak: [32, -20, 66]), defined using coordinates from the literature (see 
the text above), and its timecourse for the correlation between high gamma power and 
inhibition (not significant). B: Results of the permutation cluster test, limited to the SMA 
cluster region (upper panel) or M1 elbow region (lower panel) and showing the 
Spearman’s correlation coefficient (R) between periodic power in the 8-30Hz range and 
EMG inhibition (estimated in 30ms around -0.026 s, red dashed lines). Thin black lines 
highlight significant clusters. C: Mediation analysis results, demonstrating the 
relationships between Beta power (independent variable), Gamma power (mediator), 
and EMG inhibition (dependent variable). The linear regression coefficients for each 
path in the model, along with their statistical significance, are presented.
*p<0.05; **p<0.01; ***p<0.001

Beta bursts analysis

Brain beta activity is often represented in the form of bursts in humans (Little et 
al., 2019; Lundqvist et al., 2024), which complicates the estimation of connectivity 
measures (Lundqvist et al., 2024). To identify brain regions involved in sending 
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inhibition signal to the medial SMA, we first applied a burst detection algorithm to the 
SMA peak timecourse (see Methods). Beta bursts were selected if their centers fell 
within the interval from (-0.077 to -0.018 s), corresponding to the period when beta 
power correlated to EMG inhibition close to inhibition time estimation. As the strongest 
frequency effect during this interval occurred at 25 Hz, we focused on bursts within the 
22-28Hz range. The percentage of trials containing bursts was low, with a mean ± SD of 
11.6 ± 1.9%. The absolute number of trials with bursts was similarly low (mean ± SD: 
10.1 ± 1.78). Notably, the number of trials with bursts remained consistent when the 
time-frequency signal was extracted from the 10 vertices of the medial SMA cluster 
region and averaged for burst detection.

 
Beta bursts and EMG inhibition

To test whether trials with detected beta bursts also exhibit stronger EMG 
decreases at the time of inhibition, we performed a one-sample permutation cluster 
test on the EMG power averaged over these trials. The test revealed a significant EMG 
decrease at -0.026 s (p = 0.008; Figure 4A), corresponding to the previously defined 
time of inhibition. However, when the same number of trials was selected based on the 
strongest beta power averaged in the same time and frequency window, no significant 
EMG decrease was observed (p > 0.18). This suggests that beta bursts better explain 
the data than beta power alone.

Connectivity analysis

To identify brain regions sending inhibitory signals to the medial SMA, we 
performed directed connectivity analysis using the PSI within the selected burst 
frequency range. PSI was calculated between the right motor network and the peak 
SMA vertex over the trials containing bursts (centered around burst centers) and 
contrasted with PSI computed over the same number of baseline trials that did not 
contain bursts.

The PSI contrast revealed two significant clusters through a permutation cluster 
test: one near the elbow representation in M1 (p = 0.043) and another in the middle 
PFC (p = 0.004) (Figure 4B). The direction of the PSI contrast indicated connectivity from 
the M1 and PFC clusters to the medial SMA. The M1 cluster spanned from -0.043 to -
0.020 s, and the PFC cluster from -0.040 to -0.010 s, relative to the SMA burst center 
(Figure 4C, upper panel). No significant clusters were found in the right basal ganglia 
or cerebellum. 

To investigate the relationship between the observed PFC and M1 clusters 
during the time when they both drive the SMA, we estimated the PSI contrast between 
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these clusters across vertices and time. When averaged over the vertices and the time 
interval of their overlapping effect on the SMA, PSI contrasts were compared to zero 
across subjects. This revealed significant connectivity from the PFC to the M1 cluster 
region (Figure C, lower panel; one-sample t-test, T = 2.33, p = 0.034).

If connectivity from the PFC to SMA and from the M1 to SMA exists, an increase 
in beta burst probability in the PFC and M1 cluster regions, temporally aligned with 
bursts in the SMA, would also be expected. Indeed, a permutation cluster test revealed 
an increase in beta burst probability in both the M1 and PFC cluster regions close in 
time to the SMA burst centers in trials containing bursts compared to no burst trials 
(M1: -0.012 to 0.050 s; PFC: -0.021 to -0.005 s relative to the SMA burst center) (Figure 
4D).

Bimanual coordination suggests a potential link between the M1 regions in the 
right and left hemispheres. To test for connectivity from the left M1 to the identified 
right M1 cluster, we computed the PSI between all vertices in the left M1 (as defined by 
the anatomical atlas; Glasser et al., 2016) and the peak vertex of the right M1 cluster. A 
permutation cluster test contrasting PSI scores in the 22-28Hz range between trials 
with bursts and trials without bursts did not reveal a significant effect. 

Given that the connection between M1 regions is hypothesized to involve 
subcortical pathways (Viallet et al., 1992), we also tested directed connectivity using PSI 
contrasts from the right basal ganglia and cerebellum to the right M1 cluster. While no 
significant clusters were observed for basal ganglia to M1 connectivity, there was a 
tendency for a cluster of cerebellum-to-M1 connectivity when estimated in the -0.05 to 
0 s range relative to burst center (T=3.74, p=0.138; one voxel at -0.028 s, MNI 
coordinates: [20, -90, -35]).

Figure 4. Results of beta bursts analysis. A: Results of the permutation cluster test 
showing a decrease in EMG power at the time corresponding to the inhibition time 

26

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.24.634650doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634650
http://creativecommons.org/licenses/by-nc/4.0/


interval in trials with beta bursts. B: Localization of significant clusters (M1: 3 vertices, 
MNI305 peak: [38,-8,56]; PFC: 10 vertices, MNI305 peak: [31,47,11]) identified based on 
the PSI contrast between trials with SMA bursts and no burst trials. The schematic 
representation highlights connectivity directions between the SMA, M1, and PFC cluster 
regions. C: PSI contrast timecourses for M1-to-SMA, PFC-to-SMA, and PFC-to-M1 
connectivity. The upper panel shows significant time intervals (shaded areas) within the 
cluster analysis window (dashed lines), while the lower panel highlights the time-
averaging window where the contrast was significantly different from zero (shaded 
areas, dashed lines). D: Time-frequency representation of beta burst probability 
dynamics in the M1 and PFC cluster regions, relative to SMA burst centers. Bright 
squares indicate the interval of interest (-0.05 to 0.05 s and 22-28Hz) used for cluster 
analysis over time (averaged in 22-28Hz), with thin black lines marking significant time 
clusters.

Discussion

In this study, we investigated the neural mechanisms of anticipatory muscle 
inhibition  preventing forearm destabilization following voluntary load-lifting. We 
found that stronger EMG inhibition at the optimal time correlated with reduced high-
gamma power reflecting decreased excitability in the SMA. Stronger inhibition also 
correlated with increased high-beta power in the SMA, with the relationship partially 
mediated by the decrease in high-gamma power. Directed connectivity analysis on 
SMA high-beta bursts indicated that M1 and the middle PFC transmit high-beta signals 
to the SMA. These findings suggest that timely anticipatory inhibition in the BLLT is 
driven by high-beta bursts, which inhibit the SMA and release its control over the elbow 
flexors.

In voluntary unloading, lifting a load alters applied forces, while timely 
anticipatory inhibition aims to counteract the disturbance of equilibrium. In adults, 
inhibition in the elbow flexor is time-locked to the activity of the same muscle in the 
load-lifting arm, suggesting a central timing command that coordinates both arms 
(Paulignan et al., 1989; Massion, 1992). However, studies in children show that such 
timed coordination is established through prolonged maturation (Schmitz et al., 2002; 
Barlaam et al., 2012). Furthermore, Bolzoni et al. (2015) demonstrated that APA can be 
modulated without affecting voluntary movement, suggesting a separation of the two 
commands at the SMA level. These data indicate that APA is generated by a separate 

27

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.24.634650doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634650
http://creativecommons.org/licenses/by-nc/4.0/


command that accounts for the upcoming movement and forearm disturbance and 
timely adjusts muscle tone accordingly.

Though APA in adults is time-locked to motor arm activity, there is variability left 
in the latency of anticipatory inhibition (Barlaam et al., 2012). We found that optimal 
forearm stabilization occurs when Biceps brachii inhibition happens 26±15 ms before 
unloading, closely matching the average anticipatory inhibition latencies reported in 
adults (25 ms, Dufossé et al., 1985; 32 ms, Barlaam et al., 2012).

The relationship between anticipatory motor network excitability and elbow 
flexor inhibition in the BLLT was explored by Kazennikov et al. (2005; 2006). Using 
transcranial magnetic stimulation (TMS) they showed reduced M1 excitability, 
measured by Motor Evoked Potentials (MEPs), during anticipatory inhibition. However, 
the same link between MEPs and EMG decrease was also present in control conditions, 
suggesting that the observed effect was not APA-specific.

To assess neural excitability with MEG, we measured high-gamma (90-130Hz) 
power, which closely correlates with neural spiking (Murthy & Fetz, 1996; Ray et al., 
2008; Lundqvist et al., 2016; Riehle et al., 2018; Brazhnik et al., 2021). Surprisingly, we 
found no link between stronger EMG inhibition and reduced excitability in M1, likely 
due to EMG baseline normalization ensuring the inhibition reflected time-specific 
effect. However, stronger EMG inhibition correlated with reduced medial SMA 
excitability, which was characteristic of the voluntary condition as was not observed in 
the control condition. This relationship suggests that the SMA contributes to muscle 
tone control during load holding, while this control is reduced in anticipation of force 
changes.

The role of SMA in BLLT has been consistently demonstrated in MEG and fMRI 
studies (Schmitz et al., 2005; Ng et al., 2011; 2013). APA impairments were linked to 
contralateral SMA lesions, which allowed authors to suggest that SMA contributes to 
gating posture stabilization circuits (Viallet et al., 1992), consistent with the current 
findings. 

 Previous studies have also questioned the extent of M1 involvement in APA 
during voluntary unloading (Kazennikov et al., 2005). Ng et al. (2013) suggested that 
SMA may mediate APA via direct corticospinal projections. Indeed, SMA has precise and 
reliable somatotopic maps (He et al., 1995; Strother et al., 2012), while its corticospinal 
projections are half as extensive as M1’s (Dum & Stick, 1991). In humans, TMS 
stimulation of SMA induced MEPs in arm muscles during motor tasks, with latencies 
and amplitudes comparable to those of M1 (Spieser et al., 2013; Entakli et al., 2013). 
These findings suggest that SMA can directly contribute to precise forearm muscle 
control. SMA-to-muscle communication in the beta-band has been proposed to 
support precise force control when the forthcoming force production is anticipated 
(Chen et al. 2013; Entakli et al., 2013; Spieser et al., 2013). It was speculated that the 
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apparently superior corticospinal projections from the SMA in humans compared to 
non-human primates (Maier et al., 2002) may have evolved to enable advanced 
anticipatory corrections for coordinating complex movements (Chen et al., 2013). 
During load-holding in anticipation of forearm destabilization, the SMA may play a role 
in taking partial selective control over elbow flexors, as reflected in the early 
correlation effect shown in Figure 4B. The release of this control during SMA inhibition, 
seemingly corresponding to a higher-frequency effect peaking at 25 Hz, facilitates a 
smooth transition to a new postural state.

We demonstrated that anticipatory elbow flexor inhibition was mediated by 
stronger high-beta, but not alpha activity, in the SMA. To our knowledge, this is the first 
direct evidence of the inhibitory effect of beta activity on muscle function. The high-
beta effect latency (~20 ms) closely matched SMA stimulation MEP latency (15.7 ms, 
Spiecer et al., 2013; 22.6 ms, Entakli et al., 2014). Reduced high-gamma power partially 
mediated this relationship, suggesting that high-beta activity contributes to EMG 
inhibition by decreasing SMA excitability. While not always consistent (Confais et al., 
2020), this aligns with studies showing an inverse relationship between 
high-gamma/spiking and beta activity in sensorimotor areas (Ray et al., 2008; 
Lundqvist et al., 2016; Riehle et al., 2018), and supports the contrasting roles of beta in 
inhibition and high-gamma in excitation (Ray & Maunsell, 2011; Lundqvist et al., 2024). 

If anticipatory inhibition during voluntary unloading results from suppressed 
SMA activity, one question remains: which brain region/network is transmitting the 
inhibitory signal. To address bursty beta signal connectivity (Lundqvist et al., 2024), 
data were centered on high-beta bursts near inhibition. Directed connectivity revealed 
that the M1 elbow area and middle PFC (Brodmann area 46, BA46) transmit a high-beta 
signal to the SMA, with burst probability increasing in these areas. While either region 
could potentially inhibit SMA activity, this seems unlikely, as neither is part of the 
network underlying action cancellation (Borgomaneri et al., 2020). Additionally, the 
burst frequency of M1 (~22.5Hz) does not match that of the SMA effect (~25Hz, see 
Figures 2B, 3D). M1 likely serves as a source of proprioceptive signals transmitted to 
the SMA (Nasrallah et al., 2019). Alternatively, since lesions of M1 output abolish APA 
(Viallet et al., 1992), M1 may relay motor command from the left hemisphere to adjust 
postural control accordingly. While no link was found between left and right M1, 
communication likely occurs at a subcortical level (Viallet et al., 1992) in a different 
bursting regime, complicating estimation. BA46's burst frequency (~25Hz) matches 
SMA activity in our study, while some studies relate its activity to action inhibition 
processes (Cieslik et al., 2012). However, rather than exerting a direct inhibitory 
function, this area appears to facilitate the integrity and maintain the tone of the 
inhibitory network in a task- and muscle-specific manner (Buschman, et al., 2012; 
Hasan et al., 2013; Khan et al., 2024).
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If not M1 or middle PFC, which region could transmit the inhibitory signal for 
anticipatory postural control? While our results do not provide a direct answer, we 
speculate that the SMA subarea can be involved. The classical “SMA” is divided into two 
areas with distinct connectivity and functions: SMA-proper and pre-SMA (Tanji, 1994). 
SMA-proper is somatotopically organized, projects to the spinal cord, and connects 
with M1 (Coull et al., 2016), consistent with the muscle control discussed above. 

SMA-proper, however, lacks direct connections with prefrontal regions, which 
the pre-SMA is rich in, particularly BA46, while pre-SMA has no direct connections with 
M1 (Luppino et al., 1993). Along with IFC, pre-SMA contributes to the inhibitory network 
for action stopping, driven by beta-band synchronization (Coull et al., 2016; Swann et 
al., 2012; Leunissen et al., 2022) and selectively inhibits motor activation patterns based 
on task instructions (Burle et al., 2004; Carbonnell et al., 2013). Since both SMA 
subareas contribute to motor command timing (Hoffstaedter et al., 2012; Coull et al., 
2016), it can be assumed that the pre-SMA transmits a timely inhibitory signal to SMA-
proper, either directly via adjacent arm fields (Luppino et al., 1993) or indirectly 
through the basal ganglia (Wadsey et al., 2022).

One limitation of this study is the small sample size, which prevents conclusions 
about the involvement of subcortical areas, such as the basal ganglia and cerebellum, 
in anticipatory inhibition due to the lower signal-to-noise ratio for MEG deep sources 
(Attal & Schwartz, 2013). Additionally, while burst-centering partially addressed 
connectivity issues, the high variability of bursts and potential non-linear effects 
highlight the need for new connectivity approaches (Lundquist et al., 2024).

In conclusion, this study enhances the understanding of APA mechanisms in 
bimanual load-lifting.We found that anticipatory inhibition is linked to high-beta bursts 
in the SMA, likely through SMA suppression, emphasizing the SMA's role in forearm 
postural correction. Alongside, M1 and middle PFC transmit high-beta signals that 
support SMA-to-muscle communication. Although pre-SMA may be responsible for the 
signal suppression, further studies are needed to identify its exact source. Future 
studies should use connectivity-based methods (Kim et al., 2010) to differentiate SMA 
subareas and explore their roles, along with M1, in APA, particularly under greater 
behavioral variability, such as in children.
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