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Abstract

In this paper we look at the experimental design for multi-objective problems,
where the objectives can be evaluated independently (decoupled) and thus it may
make sense to evaluate different solutions for each objective if the objectives have
different evaluation costs and/or different landscape characteristics. We propose to
iteratively add design points in a way that minimises the total integrated mean squared
prediction error assuming a Gaussian process response surface model, and show that
allowing decoupled evaluations can lead to significantly better Pareto front estimations
than a coupled design of experiments if the evaluation costs of the objectives are
different. We also find that our approach of minimising mean squared prediction error
yields significantly better results than standard Latin Hypercube designs even if the
evaluation costs and landscape characteristics of the objectives are the same.

Keywords— Expensive optimisation, Varying costs, Multi-objective experimental
design

1 Introduction

Fundamental to the performance of surrogate-based optimisation frameworks is the
need to construct an initial model based on a carefully selected set of initial designs
and any prior system knowledge. This is both in the case of Bayesian optimisation
(BO), which uses and iteratively updates model(s) mapping decision vectors to pre-
dicted performance criteria values, and for evolutionary computation approaches which
involve surrogates. The selection and construction of initial designs, which are often
treated separately to the decision vectors queried during the subsequent optimisation
process, are usually referred to as the design of experiments (or DoE for short). This
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is because these decision vectors are selected to—in some fashion—be maximally infor-
mative on the global underlying process, rather than being biased towards particular
regions.

Without any prior information regarding the properties of the objective function(s)
such DoE for model fitting are commonly based around space filling sequences such
as Latin hypercube sampling (LHS) [15] or Sobol sequences [16], as purely random
sampling tends to naturally result in clusters, which do not serve model fitting well,
particularly when the budget for sampling is tight.

Where there are multiple criteria being modelled, this leads to an interesting and
under-explored question: should one evaluate all initial designs fully, or instead selec-
tively evaluate a subset of objectives per design, allowing a greater number of locations
to be partially evaluated when building the model(s)? A few works have looked at
decoupling objective evaluations during the search process—particularly where there
are different costs associated with each objective, but this can also be advantageous
where there is a difference in the complexity of the functions being modelled (e.g. one
being smooth and slowly changing, the other being rugged and fast changing). As
such, this appears to be a promising direction for further investigation and research,
as even small improvements in such areas can effectively lead to large savings for ex-
pensive optimisation problems. A possible drawback, on the other hand, is that the
Pareto dominance cannot be determined for sure on decoupled designs (only with some
confidence depending on the accuracy of the surrogate model prediction).

The remainder of the paper is set out as follows. In Section 2 we introduce existing
work and methods relating to decoupled and cost-aware multi-objective optimisation,
and highlight how our work relates to these. Section 3 presents results of the proposed
approach with different problem configurations, and highlights the circumstances where
there appears to be a significant benefit to decoupling the DoE locations. In Section 4
we discuss the results, and highlight future research directions.

2 Related Work

In single objective optimisation, there are various papers taking into account the cost of
evaluating a solution where this cost depends on the solution evaluated. The de facto
standard is to divide the acquisition function value by the corresponding cost value
(e.g., [17]). [13] demonstrates that this is not always a good choice, and proposes an
alternative mechanism. In particular, they propose an initial space-filling design that
takes cost into account, by iteratively and greedily adding points that are inexpensive
to evaluate but have a large distance from points already chosen. During optimisation,
their algorithm reduces the emphasis on cost, starting with the standard division by
cost, then slowly changing into a standard acquisition function optimisation without
considering cost. In [12], the authors propose a non-myopic approach to BO with cost
considerations.

A small number of existing works have considered decoupled and/or cost-aware
multi-objective optimisation—some of which have considered these factors during the
initial DoE phase. Below we discuss the most relevant approaches. A wider survey on
the topic of objectives with different costs can be found in [2].
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In [1], a user can define a cost ranking of the decision variables, e.g. in the case
that decision variables represent the amount of an ingredient, and the ingredients have
different costs. The acquisition function then favours solutions with small values in
particular for the expensive variables, and this preference is reduced over the course of
the run, eventually removing cost considerations.

Hernández-Lobato and colleagues proposed the Predictive Entropy Search for Multi-
Objective Bayesian Optimization (PESMO) method [10]. PESMO uses predictive en-
tropy search as the acquisition function. This function represents each objective using
an additive component, which enables a decoupled evaluation approach to be adopted.
The approach was subsequently extended to also consider constraints (again where
decoupling is possible) [9].

Suzuki et al. developed the Pareto-frontier entropy search (PFES) approach [18].
PFES is also an entropy approach but considers the entropy in objective-space rather
than decision-space, which is computationally simpler. This method also includes cost
in evaluating the objectives by including cost in the denominator of the acquisition
function. Like PESMO, the approach is easily extended to consider decoupled evalua-
tions.

The Joint Entropy Search (JES) proposed in [19] is also able to take into account
different costs and decoupled evaluations, although the authors did not actually exper-
iment with it because they expected little benefit from decoupled evaluations.

Iqbal and colleagues proposed the Flexible Multi-Objective Bayesian Optimization
(FlexiBo) algorithm [11]. The approach uses a decoupled evaluation in the Bayesian op-
timisation run but a coupled initial DoE procedure. It additionally learns the solution-
dependent cost function for each objective. FlexiBo estimates for each individual op-
timistic and pessimistic objective values, which are identical if the objective has been
evaluated. From that, it computes an optimistic and pessimistic Pareto front as the
boundaries of the “Pareto region”, and uses an acquisition function that estimates the
expected reduction in the volume of this Pareto region, divided by the respective cost.

Buckingham et al. extended the multi-attribute Knowledge Gradient [3] to the case
where objectives can be evaluated independently [6]. The authors demonstrate the
benefit of independent evaluation not only when the computational costs for objec-
tives differ, but also when the lengthscales of the modelled landscapes (which deter-
mine the smoothness of the landscape) differ. Independently, [8] propose to adapt a
hypervolume-based Knowledge Gradient approach to allow for decoupled evaluation of
the objectives.

A slightly different problem is considered in [14, 5], where one objective is much
cheaper (essentially free) to evaluate than the other. They directly incorporate evalua-
tion of the cheap objectives into a pair of hypervolume-based acquisition functions for
BO. Consequently, the cheap objectives are evaluated many times while the acquisition
function is optimised.

A summary of the different approaches is shown in Table 1.
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Table 1: Existing methods for decoupled cost-aware multi-objective optimisation

Design of experiments Optimisation
Approach Decoupled? Cost-aware? Decoupled? Cost-aware? Acquisition

function
PESMO [10] ✓ ✗ ✓ ✗ predictive en-

tropy search
PFES [18] ✗ ✗ ✓ ✓ cost-weighted

Pareto frontier
entropy

FlexiBO [11] ✗ ✗ ✓ ✓ cost-weighted
objective space
entropy

C-MOKG [6] ✗ ✗ ✓ ✓ cost-weighted
multi-objective
knowledge gra-
dient

CA-MOBO [1] ✗ ✓ ✗ ✓ cost-weighted
Tchebycheff
scalarised UCB

HV-KG [8] ✗ ✗ ✓ ✓ cost-weighted
hypervolume
knowlege gradi-
ent

JES [19] ✗ ✗ ✓ ✓ joint entropy
search

This paper ✓ ✓ ✗ ✗ N/A

3 Empirical work

In this section we consider a range of different properties/configurations of a problem
which may influence the effectiveness of a decoupled DoE, and investigate these em-
pirically. LHS designs are generated using the R package lhs [7] with the maximin
option.

3.1 Initial DoE when evaluations are decoupled

We begin with an illustration of a greatly simplified case, where the costs of querying
each of two objectives are the same. The two objective functions are generated by
Gaussian process models (GPs)—so we are assured that emulation by a trained GP
will fit the modelling assumptions, and we also directly utilise the hyperparameters
of the objective function GPs, removing the effect of having to infer these, so there
is no model mismatch (i.e. our model is perfectly capable of modelling the generating
process).
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Figure 1: Top: two realisations of Gaussian process priors, with Matérn 5/2 covariance
kernel, with lengthscale hyperparameters (0.3, 0.4) (resp. (0.4, 0.2)) for f1 (resp. f2), and
unit variance. Bottom: corresponding image in the objective space (grid sampled), with the
estimated Pareto front highlighted in red.

Our goal is to study the effect of coupled versus decoupled designs of experiments
(DoE) on the uncertainty on the Pareto front in this very controlled problem configu-
ration, before moving towards a more realistic scenario. We generate samples from a
GP model for each objective and use it as the ground truth for fitting the GP approx-
imation models. An example of the generating models and respective mapping to the
objective space is given in Figure 1.

In Figure 2 an example is shown where the DoE for the first objective is the same
while the second objective is either coupled (left panel) or decoupled (right panel). The
decoupled DoE of the second objective is obtained by augmenting the first objective
DoE while maintaining the LHS structure. Attainment functions are obtained by
taking a joint sample on a 51 × 51 grid from the GP posterior for each objective
conditioned on the observations, then determining the non-dominated observations.
The q-Attainment front is then representing the area that is dominated by a fraction
q of all the estimated Pareto fronts generated. One visible effect is that when both
objectives are jointly evaluated, the area that is dominated (attainment value = 1)
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Algorithm 1: Pseudo-code for the testing procedure

1: Generate the first design of experiments X1 for objective 1.
2: if Coupled case then

X2 = X1, the DoE of the second objective is the same.
end
else
Generate X2 the second DoE. (Decoupled case)
end

3: Build GP models.
4: Generate s conditional samples on some designs Xs from all GPs.
5: Compute the s sets of non-dominated points on couples of samples from the different

GPs.
6: Compute the corresponding Vorob’ev deviation.

is larger. This is probably because in the decoupled case, solutions are never surely
dominated (even though the domination probability is extremely low), as no location
has been queried under both objective functions (this can be further seen with the left
panel having triangles denoting locations with a pair of known objective values, and
the right panel having no triangles).

To help measure the uncertainty on the Pareto front associated with the fitted
GPs, we use below the so called Vorob’ev deviation (VD), a set based variance metric
that measures the variability of the q-Attainment fronts relative to the true frontier—
see, e.g., [4] for further details on its properties. Algorithm 1 summarises the testing
procedure.
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Figure 2: Attainment function representation in the coupled (left) and decoupled (right)
cases. The blue triangles mark observations in the coupled case, where both objectives are
evaluated. The cyan line represents the estimated Pareto front of the GP while the reference
Pareto front is in blue.

Figure 3 shows the Vorob’ev deviation of the coupled and decoupled designs for two
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cases. In the left panel, the design for each objective is uniformly random, while in the
right panel, a LHS design is used for the first objective, and then an augmented LHS
is used for the second objective. The panels show the results of 11 independent runs,
with 10 replications for the design of the second objective in case of decoupled design
(visualised as boxplots).

As expected, LHS designs (right panel) lead to slightly lower Vorob’ev deviations
than random uniform designs (left panel), in particular for the coupled case. The larger
benefit in case of the coupled design is probably due to the fact that a cluster or gap
in the sample space of the first objective is unlikely to be duplicated for the second
objective in the decoupled design. When LHS is used, the coupled design (red dots)
seems to yield a lower Vorob’ev deviation than the decoupled designs, possibly due to
the effect mentioned above on the size of the known dominated region. This difficulty
in precisely estimating the Pareto front may also pose challenges for the optimisation
procedure, as a reference Pareto front is generally required by acquisition functions.
Note, however, that in these experiments we assume equal cost of sampling the two
objectives, and equal lengthscales of the two objectives. As we see later, in other cases
decoupling may be beneficial.
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Figure 3: Vorob’ev deviation against the true Pareto front. Boxplots are for decoupled
designs, over 11 different runs and 10 replications per run for the second stage design in the
decoupled case; red dots are the coupled designs. In the left figure, the designs are uniformly
sampled, while in the right figure, an augmented LHS is used to complement the first LHS
design. The value of the coupled design is in red.
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3.2 Initial DoE when evaluations have different costs

Now let us assume the cost is different between different objectives f1 and f2. The first
tasks are to define the total time budget for experiments and get relative costs of f1
and f2. We will then consider four alternative approaches to DoE, including a coupled
LHS baseline.

1. (Fixed LHS) Rather than sampling incrementally, we use a fixed coupled LHS
design of the required size.

2. (Coupled) Both objective functions are evaluated together.

3. (Decoupled näıve) Both objective functions are evaluated the same number of
times, but at differing locations (generated by Augmented LHS using the optAugmentLHS
function from the R package lhs [7]).

4. (Decoupled) The allocation of total budget to the two functions depends on
lengthscales and relative costs, according to Eq. 1. Objectives with smaller length-
scales and smaller cost are sampled more often.

Considering how to split the computational budget, let us consider the simplest
case of optimising a (weighted) sum of two objectives. In such a case, if we want to
minimise integrated mean squared prediction error (IMSPE) assuming Gaussian pro-
cess surrogate models with identical lengthscales, then it is not possible to improve
beyond coupled sampling, as the variances of the two functions just add up, and the
optimal design for each function would be the same. However, if the costs or length-
scales are different, then we could use IMSPE to determine an appropriate allocation
of the budget to the two functions by greedily allocating the next sample where it
maximally reduces the total IMSPE:

max

{
max
x

IMSPE1(n1)− IMSPE1(n1 + 1)

c1
, (1)

max
x

IMSPE2(n2)− IMSPE2(n2 + 1)

c2

}
,

where IMSPEi(ni) is the IMSPE of objective i after ni evaluations, and similarly
IMSPEi(ni + 1) is the same after allocating one more sample at location x.

In practice, if the lengthscales are not known, they may be estimated from initial
data and Eq. 1 may be optimised sequentially rather than all at once. That is, in the
coupled case we iteratively sample the solution that, if both its objectives are evaluated,
reduces the IMSPE the most. For the decoupled case, we sample the solution and
objective which maximally reduces the IMSPE as calculated in Eq. 1.

As in the previous section, we rely on GP samples in a two-dimensional decision
variable space to define a ground truth. We start with the same four coupled initial
designs for each objective in the various cases, based on LHS, then add additional
samples in a way that minimises IMSPE. For the coupled option, a discrete search over
a thousand uniformly sampled candidates is performed at each iteration. As for the
decoupled version, a local optimisation is conducted from the best out of one hundred
uniformly sampled candidates.
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Figure 4 shows the results for the case that the lengthscales for both objectives
are equal and known, here, (0.3, 0.4) for the Matérn 5/2 covariance kernel. In the
left column, the evaluation cost for both objectives is the same, in the middle column
the second objective is five times more expensive, and in the right column, the second
objective is 10 times more expensive.

The top row depicts the IMSPE separately for each objective. In the case of equal
cost to evaluate both objectives, also the decoupled designs reduce IMSPE equally for
both objectives. However, if the evaluation cost for the objectives differ, the decoupled
design samples the cheaper f1 (black +) more often, reducing its IMSPE much more
than the IMSPE of the expensive f2 (red +).

The following rows 2-4 show aggregated performance metrics, namely the average
IMSPE, the average root mean squared error (RMSE), and the Vorob’ev deviation. The
results are consistent across all metrics: if the costs of the different objectives are equal,
the IMSPE-minimising coupled and decoupled approaches perform very similarly (and
best), not only with respect to IMSPE but also RMSE and VD. Next best is the fixed
LHS and then, significantly worse, the näıve design. This is interesting as it suggests
that iteratively choosing points to minimise IMSPE (decoupled as well as coupled)
yields not only a lower IMSPE but also a lower Vorob’ev deviation than a standard
LHS of the same size. Decoupling näıvely by two augmenting LHS is clearly worst.

If we look at cases of different costs (f2 five times as expensive (middle column) or
10 times as expensive (right column)), the differences become more pronounced, and
the decoupled design clearly beats the coupled design, as it can sample the cheaper
objective more often and make better use of the available budget.

Similar results are obtained if the lengthscales are estimated and updated every
iteration, see Figure 5. Note, however, that in these experiments we took 20 initial
samples based on LHS, as more data is needed to estimate lengthscales reliably.

Additional experiments (see Appendix) with different lengthscales for the two ob-
jectives ((0.3, 0.4) for the first, (0.4, 0.2) for the second objective) do not seem to show
a significant differences, but this may simply be because the chosen lengthscales were
still quite similar.

Finally, we treat the case when the costs are varying depending on both x and the
objectives, and we know the cost function. The cost functions correspond as well to
samples from GPs, this time with lengthscales (0.5, 0.8) and (0.6, 0.7) for the respective
objectives, while for the objective values we again use (0.3, 0.4) for the first, (0.4, 0.2)
for the second objective. The results are given in Figure 6. The decoupled strategy
is again more efficient to reduce the IMSPE the fastest, but there is no noticeable
difference in terms of Vorob’ev deviation. The näıve decoupled design does not make
use of the cost information and is thus clearly worse. Note that the fixed LHS strategy
is not sensible here, as it is necessary to learn about the evaluation cost and use this
information in an incremental design.

4 Discussion and future research ideas

In this paper, we have examined the possibility of improving the quality of the sur-
rogate models obtained through a DoE in case of multi-objective optimisation where
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Figure 4: Results of different metrics depending on the cost incurred. In the left column,
both objectives have equal cost, in the middle column the cost for f2 is 5 times as high, and
in the right column, the cost for f2 is 10 times as high. In this figure, lengthscales are equal
and assumed known. 10
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Figure 5: Results of different metrics depending on the cost allocated. In the left column,
both objectives have equal cost, in the middle column the cost for f2 is 5 times as high, and
in the right column, the cost for f2 is 10 times as high. In this figure, lengthscales are equal
but unknown (learned and in every iteration).
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the evaluation of the different objectives can be decoupled. We found that for the
case of equal costs and lengthscales for the two objectives, decoupling the evaluations
(i.e. evaluating different solutions on different objectives) did tend to worsen the qual-
ity of the Pareto front estimate as measured by Vorob’ev deviation. However, when
objectives had different costs, decoupling could improve results substantially in terms
of total IMPSE, RMSE, and Vorob’ev deviation. Interestingly, we found that even in
the case of equal costs and lengthscales, allocating samples iteratively by minimising
IMSPE yielded better IMSPE, RMSE and Vorob’ev deviation than using an equally
sized LHS design.

While in this paper we have only considered the case of two objectives, we see no
reason why our conclusions should be any different also for more than two objectives.
Indeed, one might expect that the greater flexibility in terms of which objectives to
evaluate for a solution could lead to even larger benefits of decoupled experimental
designs. However, we leave the experimental confirmation of this hypothesis to future
work. Our results use GP generated functions to avoid the issue of model mismatch.
However, it would be good to confirm results also on other types of functions. Finally, in
the future we plan to investigate other sampling strategies such as taking into account
the posterior of the first objective when deciding where to evaluate the second objective,
or to learn the cost landscape (if the cost depends on the solution evaluated) on the
fly.

The code for reproducing the results is available at https://github.com/mbinois/
DecoupledDoe.
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A Results if objectives have different length-

scales
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Figure 7: Results of different metrics depending on the cost incurred. In the left column,
both objectives have equal cost, in the middle column the cost for f2 is 5 times as high, and
in the right column, the cost for f2 is 10 times as high. In this figure, lengthscales are equal
and assumed known.

[6] observe that allowing decoupled evaluation of objectives is beneficial if the dif-
ferent objective functions have different lengthscales, i.e., if one objective is smooth
and varying slowly, while the other is highly multimodal. Intuitively, one would like to
allocate more samples to the more difficult objective. To test this, we have also run ex-
periments where objectives have different lengthscales, in particular we used (0.3, 0.4)
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for the first, (0.4, 0.2) for the second objective. Results are summarised in Figure 7 for
know lengthscales and Figure 8 for learned lengthscales. The results are very similar
to the results with equal lengthscales reported above, which may be due to the fact
that the lengthscales chosen were too similar to observe a significant difference.
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Figure 8: Results of different metrics depending on the cost allocated. In the left column,
both objectives have equal cost, in the middle column the cost for f2 is 5 times as high, and
in the right column, the cost for f2 is 10 times as high. In this figure, lengthscales are equal
but unknown (learned and in every iteration).
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