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OBSERVABILITY AND CONTROLLABILITY FOR SCHRÖDINGER

EQUATIONS IN THE SEMI-PERIODIC SETTING

JINGRUI NIU AND ZEHUA ZHAO

Abstract. Strichartz estimates, well-posedness theory and long time behavior

for (nonlinear) Schrödinger equations on waveguide manifolds Rm × Tn are in-

tensively studied in recent decades while the corresponding control theory and
observability estimates remain incomplete. The purpose of this short paper is to

investigate the observability and controllability for Schrödinger equations in the

waveguide (semi-periodic) setting.
Our main result establishes local exact controllability for the cubic nonlinear

Schrödinger equations (NLS) on R2 × T, under certain geometric conditions on
the control region. To address the nonlinear control problem, we begin by analyz-

ing the observability properties of the linear Schrödinger operator on a general

waveguide manifold Rm × Tn. Utilizing Hs estimates of the Hilbert Unique-
ness Method (HUM) operator and Bourgain spaces, we then prove local exact

controllability through a fixed-point method.
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1. Introduction

In this paper, we study the internal exact controllability for the semi-periodic
nonlinear Schrödinger equation on the waveguide manifold Rm ×Tn (with dimension
d = m+ n):

(1.1)

{
i∂tu+∆Rm×Tnu+ ϵ|u|p−1u = f on [0,+∞)× Rm × Tn

u|t=0 = u0 on Rm × Tn

where m and n are two positive integers, and ϵ ∈ R. ∆Rm×Tn is the canonical
Laplacian defined in Rm × Tn, and sometimes we may write ∆x,y for short.

1.1. Background and motivations. In the literature, there has been extensive re-
search on the controllability and observability of (nonlinear) Schrödinger equations
on compact manifolds and bounded domains. We begin with the linear setting, par-
ticularly addressing observability problems. When the control region is an open set
satisfying the geometric control condition (GCC), Lebeau [35] proved that observ-
ability is true for an arbitrarily short time T > 0. However, GCC is not always a
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necessary condition. In various contexts, including the torus [2, 7, 9, 27], compact
hyperbolic surfaces [28] (also see [3] for negatively curved manifolds), and the disk [1],
observability has been established for any T > 0 and for any non-empty open control
region, provided the control region encompasses a neighborhood of some portion of
the boundary. It is also worth mentioning that for certain subelliptic Schrödinger
equations, the minimal observability time can be strictly positive (see [8]).

Regarding the controllability of nonlinear Schrödinger equations (NLS), significant
results have been obtained for different dimensions on compact manifolds or bounded
domains (though the list here is not exhaustive). In one dimension, Laurent [32]
proved global internal controllability in large time for NLS on a bounded interval,
while local results were also achieved in [40]. For two dimensions, Dehman, Gérard,
and Lebeau [15] established exact controllability in H1 for the defocusing NLS on
compact surfaces. In the three-dimensional case, Laurent [33] demonstrated global
internal controllability over large time intervals for NLS on certain compact manifolds.
Concerning the boundary controls, we refer to [19, 39] and the references therein. For
a broader overview of these results, we refer to the surveys [52, 34].

More recently, attention has shifted towards understanding observability for Schrödinger
equations in non-compact settings [24, 45, 38]. The specific case of periodic domains
has been explored for the observability of the free Schrödinger equation [42] and for
settings with a periodic potential [4]. Notably, in [4], the control region, although
2πZ2-periodic, might not satisfy GCC. Despite these advances, the study of control-
lability and observability in semi-periodic settings remains largely unexplored.

We now provide a concise overview of our research focus: “(nonlinear) Schrödinger
equations on waveguides”. This area has garnered significant attention over the
past few decades, emerging as a prominent subject within nonlinear dispersive equa-
tions. Our approach blends traditional dispersive techniques with innovative analysis
tools to delve into this intriguing domain.

Waveguide manifolds, denoted as Rm × Tn, represent the product of Euclidean
space with tori and are of particular relevance in nonlinear optics, especially within
telecommunications. Currently, data signals in backbone networks predominantly
travel via optical carriers through fibers, which function as specialized waveguides.
As applications like the internet demand greater bandwidth and cost-effective data
transmission, there is increasing emphasis on optimizing these network infrastruc-
tures. The nonlinear Schrödinger equation plays a pivotal role in modeling nonlinear
effects in optical fibers, essential for enhancing performance and efficiency. In physics,
an optical waveguide directs light along a defined path, and the study of solutions
on waveguide manifolds is particularly intriguing due to the unique combination of
properties inherited from both Euclidean spaces and tori, offering deeper insights into
the underlying physics.

Given the nature of these combined spaces, the nonlinear Schrödinger Equation
(NLS) posed on the waveguide manifold inherits characteristics from both Euclidean
spaces and tori. The Euclidean case is studied and the theory, at least in the defo-
cusing setting, is well established. (See [13, 14, 17, 41] and the references therein.)
Moreover, we refer to [22, 25, 30, 48] for a few works on tori. Due to the nature of
such product spaces, we see NLS posed on the waveguide manifold mixed inheriting
properties from those on classical Euclidean spaces and tori. The techniques used in
Euclidean and tori settings are frequently combined and applied to waveguide prob-
lems. We refer to [10, 11, 12, 20, 22, 43, 44, 23, 25, 26, 47, 49, 50, 51] for some NLS
results in the waveguide setting. At last, we note that, though scattering behavior is
not expected for the periodic case because of the lack of dispersive, for some specific
models of waveguides, modified scattering, and scattering results can be obtained as
in the Euclidean. (See [10, 20, 44, 21] for example.)
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Geometric setting. We work in a d−dimensional waveguide manifold as Rm ×Tn,
wherem and n are two positive integers with (whole dimension) d = m+n (m,n ≥ 1).
We consider a control region Ω of the following type :

(G) Ω = (Ω1,Ω2) ⊂ Rm×Tn1. Let Ω1 ⊂ Rm be a nonempty, open, 2πZm-invariant
set. Let Ω2 ⊂ Td−m be open and nonempty.

This kind of region may not satisfy the Geometric Control Condition, which is
raised in e.g. [35]

1.2. The statement of the main results. In this subsection, we present the main
results of this paper respectively. We note that all of the results can be generalized to
all dimensions in a natural way. Since 3D cubic NLS model is typical and popular2,
in Theorem 1.1 and Theorem 1.2, we adopt 3D cubic NLS model3 to illustrate the
nonlinear results.

Theorem 1.1 (Exact controllability). Let T > 0, and ϵ = ±1. Let Ω = (Ω1,Ω2)
satisfy the condition (G). For any s ≥ 1, there exists δ > 0, such that for all u0, uf ∈
Hs(R2 × T) satisfying that ∥u0∥Hs(R2×T) + ∥uf∥Hs(R2×T) < δ, there exists a control

function f ∈ C([0, T ];Hs(R2×T)) supported in [0, T ]×Ω such that the unique solution

u ∈ Xs,b
T to

(1.2)

{
i∂tu+∆x,yu+ ϵ|u|2u = f on [0, T ]× R2 × T,
u|t=0 = u0 on R2 × T,

fulfils u|t=T = uf .

This is a local exact controllability result for NLS in the semi-periodic setting.
The general strategy to establish the exact controllability is to reduce it to the null
controllability, i.e. the exact controllability with null final data (uf = 0). To be more
specific, we first prove the following result.

Theorem 1.2 (Null controllability). Let T > 0. Let ϵ and Ω be the same as in
Theorem 1.1. For any s ≥ 1, there exists δ > 0, such that for all u0 ∈ Hs(R2 × T)
satisfying that ∥u0∥Hs(R2×T) < δ, there exists a control function g such that the unique

solution u ∈ Xs,b
T to

(1.3)

{
i∂tu+∆x,yu+ ϵ|u|2u = φTχΩ(1−∆x,y)

−sφTχΩg on [0, T ]× R2 × T,
u|t=0 = u0 on R2 × T,

fulfils u|t=T = 0. Furthermore, the control function g verifies the following conditions

(1) g ∈ C([0, T ];H−s(R2 × T))
(2) φT (·) = φ1(·/T ) ∈ C∞(R) where φ1(t) = 1 for t ≤ 1

2 and φ1(t) = 0 for t ≥ 3
4 ;

(3) 0 ≤ χΩ ∈ C∞(R2 × T) satisfies 1Ω′×Ω2
≤ χΩ ≤ 1Ω1×Ω2

, where Ω′ ⊂ Ω1.

To investigate the nonlinear case, a classic approach is to first study the linearized
Schrödinger equation. The following theorem concerns solutions of the stationary
Schrödinger equation and is applicable to high-energy eigenfunctions.

Theorem 1.3 (Stationary estimate). Let Ω = (Ω1,Ω2) satisfy the condition (G).
For all λ ∈ R we have the following estimate: for

(1.4) (∆x,y − λ)u = f,

1This means Ω = {(x, y)|x ∈ Ω1, y ∈ Ω2}.
2We refer to Kenig-Merle [29] for the scattering result in the Euclidean setting. See also the

references therein.
3We consider cubic NLS on R2 × T or R × T2. Since the proofs work in the same way, we only

consider the R2 × T case.
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we have,

(1.5) ∥u(x, y)∥L2(Rn×Tm) ≤ C(∥f(x, y)∥L2(Rn×Tm) + ∥u(x, y)∥L2(Ω)),

with C independent of λ.

Remark 1.4. In particular, if f = 0, this estimate implies a unique continuation
property for the eigenfunctions of −∆x,y. Indeed, if f = 0, the total L2−norm of u
can be bounded by its local L2−norm in Ω. As a consequence, if an eigenfunction
u vanishes in a subdomain Ω, which verifies the condition (G), then, it vanishes
everywhere.

Related to this stationary estimate, we have the following observability estimate
for linear Schrödinger propagator. Once we have it, using Hilbert uniqueness method
(HUM for short, see [36] and Section 4.1), we obtain the controllability result auto-
matically for the linearized equation.

Theorem 1.5 (Observability). Let Ω = (Ω1,Ω2) satisfy the condition (G). For every
T > 0, there exists a constant C = C(T,Ω) such that for ∀u0 ∈ L2(Rn × Tm),

∥u0∥2L2(Rn×Tm) ≤ C

∫ T

0

∥eit∆x,yu0∥2L2(Ω)dt.

1.3. Strategy of the proofs. Now we discuss the strategy of the proofs for the main
theorems stated in the previous subsection.

Our primary objective is to prove Theorem 1.1, i.e., the local exact controllabil-
ity for nonlinear Schrödinger equations on R2 × T. We first reduce it to the null
controllability with certain control in a specific form (Theorem 1.2). Following the
classic approach, we need to analyze the control problem for the corresponding linear
equation: {

i∂tu+∆x,yu = f on [0, T ]× R2 × T,
u|t=0 = u0, u|t=T = 0. on R2 × T,

As a consequence of Hilbert Uniqueness Method (see Section 4.1 for details), con-
structing the control operator L : u0 7→ f is equivalent to proving observability for
any s ∈ R,

(1.6) ∥u0∥2Hs(R2×T) ≤ C

∫ T

0

∥χΩe
it∆x,yu0∥2Hs(R2×T)dt.

In order to prove (1.6) for any s ∈ R, we combine the L2−observability (Theorem
1.5) with a unique continuation property, which is ensured by the resolvent estimate
(Theorem 1.3). Inspired by [46], we prove these two results by reducing them into a
tori setting by the application of Floquet-Bloch transform. After a precise analysis of
the linear problem, we follow the ideas in [16, 33] and decompose the solution u to
(1.3) into u = v +Ψ, where v solves the following equation{

i∂tv +∆x,yv = −ϵ|u|2u,
v|t=T = 0,

and Ψ is the solution to{
i∂tΨ+∆x,yΨ = φTχΩ(1−∆x,y)

−sφTχΩg,
Ψ|t=0 = Ψ0,Ψ|t=T = 0.

The purpose is then to choose the adequate Ψ0, and the system is completely deter-
mined. Let us define J : Ψ0 7→ u0 − v|t=0. Thus, seeking the control function g is
reduced to finding a fixed point for J , provided that ∥u0∥Hs is small enough (see
Section 4 for details). The general result will follow by reversing time (presented in
Section 5).
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1.4. Organization of the rest of this paper. In Section 2, we prove linear observ-
ability and stationary estimates, which includes the proof for Theorem 1.3; in Section
3, we discuss well-posedness theory for NLS which will be used for the nonlinear case;
in Section 4, we show the local null controllability of NLS, which completes the proof
of Theorem 1.2; in Section 5, we obtain the exact controllability, which finishes the
proof of Theorem 1.1.

1.5. Notations. Throughout this paper, we use C to denote the universal constant
and C may change line by line. We say A ≲ B, if A ≤ CB. We say A ∼ B if A ≲ B
and B ≲ A. We also use the notation CB to denote a constant depends on B. We
use the standard notation for Lp spaces and L2-based Sobolev spaces Hs.

We define the Fourier transform on Rn × Tm as follows:

(1.7) (Ff)(ξ) =
∫
Rn×Tm

f(z)e−iz·ξdz,

where ξ = (ξ1, ξ2, ..., ξd) ∈ Rn×Zm and d = m+n. We also note the Fourier inversion
formula

(1.8) f(z) = c
∑

(ξn+1,...,ξd)∈Zm

∫
(ξ1,...,ξn)∈Rn

(Ff)(ξ)eiz·ξdξ1...dξn.

For convenience, we may consider the discrete sum to be the integral with discrete
measure so we can combine the above integrals together and treat them to be one
integral. Moreover, we define the Schrödinger propagator eit∆ by

(1.9)
(
Feit∆f

)
(ξ) = e−it|ξ|2(Ff)(ξ).

At last, we refer to [18, 51] for the definitions and properties of Fourier restriction
spaces (also known as Bourgain spaces) in the waveguide setting. They share very
similar properties as the tori case. For the sake of completeness, we include some
properties of these function spaces in the Appendix A. These spaces are very useful
and frequently used for the study of NLS on tori or waveguide manifolds.4

Acknowledgment. We highly appreciate Prof. N. Burq for helpful suggestions and
insightful discussions. J. Niu is supported by Defi Inria EQIP. Z. Zhao is supported by
the NSF grant of China (No. 12101046, 12271032, 2426205) and the Beijing Institute
of Technology Research Fund Program for Young Scholars.

2. Linear observability and Stationary estimates

2.1. The Floquet-Bloch transform. In this part, we introduce the partial Floquet-
Bloch transform. This tool is instrumental in the proof of Theorem 1.3. For more
details, we refer to [46], [31, Section 4] and [4, Section 2.1]. We first introduce the
partial Floquet transform.

Definition 2.1. We define the partial Floquet-Bloch transform T p : L2(Rn×Tm) →
L2(Tm+n × [0, 1)n) by

T pu(x, y, α) := eix·α
∑
k∈Zn

e2πiα·ku(x+2kπ, y), ∀u ∈ L2(Rn×Tm),∀(x, y, α) ∈ Tn×Tm×[0, 1)n.

Remark 2.2. In particular, if m = 0, we obtain the usual Floquet-Bloch transform.
Furthermore, removing the factor eiα·x, we obtain a partial Floquet transform

Πpu(x, y, α) :=
∑
k∈Zn

e2πiα·ku(x+2kπ, y), ∀u ∈ L2(Rn×Tm),∀(x, y, α) ∈ Tn×Tm×[0, 1)n.

4We also refer to [22, 23] and the references therein for another type of function spaces, which

are also very useful for the study of NLS on tori or waveguide manifolds (especially for the critical
case).
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For convenience, for any α ∈ [0, 1)n and u ∈ L2(Rn×Tm), we define Πα : L2(Rn×
Tm) → L2(Tm+n) by

(2.1) Παu(x, y) := eix·α
∑
k∈Zn

e2πiα·ku(x+ 2kπ, y), ∀(x, y) ∈ Tn × Tm.

The next proposition ensures that the partial Floquet-Bloch transform is an isometry
from L2(Rn × Tm) to L2(Tm+n × [0, 1)n).

Proposition 2.3. The map T p is an isometric isomorphism from L2(Rn × Tm) to
L2(Tm+n × [0, 1)n).

This proposition is based on the following lemma.

Lemma 2.4. We have the equality of L2 norms

(2.2) ∥g∥2L2(Rn×Tm) =

∫
[0,1)n

∥Παg∥2L2(Tn×Tm)dα.

More generally, if Ω1 ∈ Rn is 2πZn-invariant and Ω0 denotes its projection to Tn

(2.3) ∥g∥2L2(Ω1×Tm) =

∫
[0,1)n

∥Παg∥2L2(Ω0×Tm)dα.

Proof. We use Fubini to compute the Fourier coefficients of the periodic functions
Παg on Tm+n.

Π̂αg(k, l) =
1

(2π)
n+m

2

∫
Tm

∫
Tn

e−ix·ke−iy·l
∑
j∈Zn

eix·αe2πiα·jg(x+ 2jπ, y)dxdy

=
1

(2π)
n+m

2

∫
Tm

∫
Rn

eix·(α−k)e−iy·lg(x, y)dxdy

= Fx(ĝ(·, l))(k − α).

Integrating the sum of squares of the right hand side over the unit cube [0, 1)n gives
∥g∥2L2(Rn×Tm) by Fubini and Plancherel theorems on Rn ×Tm, while on the left hand

side, we get ∫
[0,1)n

∑
k∈Zn,l∈Zm

|Π̂αg(k, l)|2dα =

∫
[0,1)n

∥Παg∥2L2(Tn+m)dα

by Plancherel on the torus. The generalization to taking the norm over Ω1 × Ω2 is
proved simply by applying (2.2) to the function 1Ω1×Ω2

g. □

2.2. Observability for partial-twisted Laplacian. Let α ∈ Rn, we set

Hα := (∂x − iα)2 +∆y.

Note that these operators are all self-adjoint with the same domain independent of
α. We first recall the Schrödinger observability on the torus

Theorem 2.5. [2, Theorem 4] For every non-empty open set Ω ⊂ Td and every T > 0
there exists a constant C = C(T,Ω) such that

∥u0∥2L2(Td) ≤ C

∫ T

0

∥eit∆u0∥2L2(Ω)dt

for every initial datum u0 ∈ L2(Td).

We use this classical theorem to prove the following lemma
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Lemma 2.6. For every non-empty open set Ω = (Ω0,Ω2) ⊂ Tn × Tm, and every
T > 0 there exists a constant C = C(T,Ω) such that

∥u0∥2L2(Tn+m) ≤ C

∫ T

0

∥eitHαu0∥2L2(Ω)dt

for every initial datum u0 ∈ L2(Tn+m).

Proof. We point out that this lemma is almost a restatement of [46, Proposition 4].
When m = 0, the twisted Laplacian is defined in [46, Eq. (3)] satisfies a similar
observability. The proof of [46, Proposition 4] can also be applied here without
changes. For the completeness of our paper, we present the proof adapted to our
setting. For Ω0 ⊂ Tn, we can find a nonempty open set ω0 ⊂ Tn such that ω0 ⊂ Ω0.
We set ω = (ω0,Ω2) ⊂ Ω. Hence there exists T > 0 such that x1 ∈ ω0 and d(x1, x2) <
4
√
nT imply x2 ∈ Ω0. Using the operator identity

eitHα = eit(∂x−iα)2ei∆y = e−it|α|2τ(2tα,0)e
it∆x,y ,

where for θ = (θ1, θ2) ∈ Rn+m, τθ denotes the translation operator τθf(x, y) :=
f(x + θ1, y + θ2). Thus, by the H0−observability and the choice of T ≪ 1 so that
τ(−2tα,0)(ω) ⊂ Ω for ∀t ∈ [0, T ], we obtain

∥u0∥2L2(Tn+m) ≤ C

∫ T

0

∥eit∆x,yu0∥2L2(ω)dt

≤ C

∫ T

0

∥e−it|α|2τ(2tα,0)e
it∆x,yu0∥2L2(τ(−2tα,0)(ω))dt

≤ C

∫ T

0

∥e−it|α|2τ(2tα,0)e
it∆x,yu0∥2L2(Ω)dt

≤ C

∫ T

0

∥eitHαu0∥2L2(Ω)dt.

□

Thanks to [37, Theorem 5.1], we have the following proposition.

Proposition 2.7. Let Ω = (Ω0,Ω2) ⊂ Tn × Tm be open and nonempty. For all
α ∈ [0, 1)n and

(2.4) (Hα − λ)u = f,

posed on Tn+m, we have,

(2.5) ∥u∥L2(Tn+m) ≤ C(∥f∥L2(Tn+m) + ∥u∥L2(Ω)),

with constants independent of α and λ ∈ R.

2.3. Stationary estimate: proof of Theorem 1.3.

Proof of Theorem 1.3. First, we notice that

(2.6) Hα − λ = (∂x − iα)2 +∆y − λ = eiα·x(∆x,y − λ)e−iα·x,

where α ∈ [0, 1)n. Thus (∆x,y − λ)u = f yields

(2.7) (Hα − λ)eiα·xu = eiα·xf.

Applying the partial Floquet trnaform Πp on both sides and using translation-invariance
of Hα, we get an equation on the torus:

(2.8) (Hα − λ)Παu = Παf on Tn+m.
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Applying Proposition 2.7, we obtain for every α in a fundamental domain (and with
constants independent of α)

∥Παu∥L2(Tn+m) ≤ C(∥Παf∥L2(Tn+m) + ∥Παu∥L2(Ω0)).

Now by Lemma 2.4 we may integrate both sides in α1 to obtain Theorem 1.3. □

Remark 2.8. The idea of establishing the estimate (1.5) in a periodic setting through
a twisted Laplacian was first raised by Wunsch in [46]. The correspondence between
Hα on tori and ∆ in periodic setting introduced in [46] may look simple but turns
out to be a powerful tool.

2.4. Observability in Rm × Tn: Proof of Theorem 1.5.

Proof of Theorem 1.5. Let u(t) := eit∆x,yu0 and v(t) := Παu(t), for α ∈ [0, 1)n. Then
u is the solution to {

(i∂t +∆x,y)u = 0 in (0, T )× Rn × Tm,
u|t=0 = u0 in Rn × Tm,

and v is the solution to{
(i∂t +Hα)v = 0 in (0, T )× Tn × Tm,
v|t=0 = Παu0 in Tn × Tm.

By Lemma 2.6, we obtain

∥Παu0∥2L2(Tn×Tm) ≤ C

∫ T

0

∥v(t)∥2L2(Ω)dt = C

∫ T

0

∥Παu(t)∥2L2(Ω)dt.

Integrating the LHS over [0, 1)n gives ∥u0∥2L2(Rn×Tm) by Lemma 2.4, while on the

RHS, we get ∫
[0,1)n

∫ T

0

∥Παu(t)∥2L2(Ω)dtdα =

∫ T

0

∥u(t)∥2L2(Ω)dt,

by Fubini and Lemma 2.4. We conclude that

∥u0∥2L2(Rn×Tm) ≤ C

∫ T

0

∥eit∆x,yu0∥2L2(Ω)dt

□

Proposition 2.9. Let Ω = (Ω1,Ω2) satisfy the condition (G). For every T > 0 and
s ≥ 1, there exists a constant C = C(T,Ω, s, χΩ) such that for ∀u0 ∈ Hs(Rn × Tm)

(2.9) ∥u0∥2Hs(Rn×Tm) ≤ C

∫ T

0

∥χΩe
it∆x,yu0∥2Hs(Rn×Tm)dt,

where 0 ≤ χΩ ∈ C∞(Rn × Tm) satisfies 1Ω ≤ χΩ.

Proof. By the definition of χΩ and Theorem 1.5, we can easily derive that ∃C0 =
C0(T,Ω) > 0 such that for ∀u0 ∈ L2(Rn × Tm)

(2.10) ∥u0∥2L2(Rn×Tm) ≤ C0

∫ T

0

∥χΩe
it∆x,yu0∥2L2(Rn×Tm)dt.

For the initial datum u0 ∈ Hs(Rn × Tm),

∥u0∥2Hs(Rn×Tm) = ∥(1−∆x,y)
s
2u0∥2L2(Rn×Tm) ≤ C0

∫ T

0

∥χΩe
it∆x,y (1−∆x,y)

s
2u0∥2L2(Rn×Tm)dt.

Thanks to Cauchy–Schwarz inequality and the fact that

χΩe
it∆x,y (1−∆x,y)

s
2u0 = (1−∆x,y)

s
2χΩe

it∆x,yu0 + [χΩ, (1−∆x,y)
s
2 ]eit∆x,yu0,
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we obtain

∥u0∥2Hs(Rn×Tm) ≤ 2C0

∫ T

0

∥(1−∆x,y)
s
2χΩe

it∆x,yu0∥2L2(Rn×Tm)dt

+ 2C0

∫ T

0

∥[χΩ, (1−∆x,y)
s
2 ]eit∆x,yu0∥2L2(Rn×Tm)dt.

Since the commutator [χΩ, (1−∆x,y)
s
2 ] is a pseudo-differential operator of order s−1,

we know that ∥[χΩ, (1 − ∆x,y)
s
2 ]eit∆x,yu0∥2L2(Rn×Tm) ≤ C∥eit∆x,yu0∥2Hs−1(Rn×Tm) ≤

C∥u0∥2Hs−1(Rn×Tm). Thus,

(2.11)

∥u0∥2Hs(Rn×Tm) ≤ 2C0

∫ T

0

∥χΩe
it∆x,yu0∥2Hs(Rn×Tm)dt+ 2C0CT∥u0∥2Hs−1(Rn×Tm).

This is the so-called weak observability in Hs(Rn × Tm). We apply a standard pro-
cedure based on compactness-uniqueness arguments to derive the observability (2.9)
from the weak observability (2.11). Suppose that (2.9) is false. Then we find a
sequence {uk0}k∈N∗ ⊂ Hs(Rn × Tm) such that

∥uk0∥2Hs(Rn×Tm) = 1,(2.12) ∫ T

0

∥χΩe
it∆x,yuk0∥2Hs(Rn×Tm)dt→ 0.(2.13)

The second statement (2.13) leads to

(2.14) χΩe
it∆x,yuk0 → 0, strongly in L2((0, T );Hs(Rn × Tm)), as k → ∞.

Thanks to (2.12), we can extract a subsequence (still denoted by uk0 for simplicity) such
that uk0 ⇀ u weakly in Hs(Rn × Tm). By the compact inclusion i : Hs(Rn × Tm) →
Hs−1(Rn×Tm), we deduce that uk0 → u strongly in Hs−1(Rn×Tm). Then we define a
subspace NT0 in Hs(Rn×Tm), collecting initial data that generate invisible solutions
in (0, T0), by

(2.15) NT0 := {f ∈ Hs(Rn × Tm) : χΩe
it∆x,yf = 0 for t ∈ (0, T0)}.

Lemma 2.10. NT = {0}.

Using Lemma 2.10, we finish the proof of the observability. Using the weak ob-
servability (2.11) and the condition (2.13), we obtain

1 = lim
k→∞

∥uk0∥2Hs(Rn×Tm) ≤ lim
k→∞

(
2C0

∫ T

0

∥χΩe
it∆x,yuk0∥2Hs(Rn×Tm)dt+ 2C0CT∥uk0∥2Hs−1(Rn×Tm)

)
≤ lim

k→∞
2C0CT∥uk0∥2Hs−1(Rn×Tm)

≤ 2C0CT lim
k→∞

∥uk0∥2Hs−1(Rn×Tm).

By the strong convergence of uk0 in Hs−1(Rn×Tm) and the condition (2.14), we know
that u ∈ NT = {0} and 1 ≤ 2C0CT∥u∥2Hs−1(Rn×Tm), which is a contradiction. Hence,

the observability (2.9) holds.
□

Now we are in a position to prove Lemma 2.10.

Proof of Lemma 2.10. By the definition of NT , for any δ > 0, we deduce that NT+δ ⊂
NT . Then, we claim that NT is of finite dimension ∀T > 0. Indeed, thanks to the
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weak observability and the definition of NT , ∀f ∈ NT ,

∥f∥2Hs(Rn×Tm) ≤ 2C0

∫ T

0

∥χΩe
it∆x,yf∥2Hs(Rn×Tm)dt+ 2C0CT∥f∥2Hs−1(Rn×Tm)

= 2C0CT∥f∥2Hs−1(Rn×Tm).

This implies that NT is of finite dimension. Moreover, combining with the fact that
NT0+δ ⊂ NT0

, ∀δ > 0, there exists δ0 > 0 such that ∀δ ∈ (0, δ0), NT0+δ = NT0
.

For any δ ∈ (0, δ0) and ∀f ∈ NT0+δ = NT0 , χΩe
it∆x,yeiδ∆x,yf = 0, for ∀t ∈ (0, T0).

Consequently, we know that eiδ∆x,yf ∈ NT0 . Thus, ∆x,yf = limδ→0+
eiδ∆x,y f−f

iδ ∈
NT0 , which implies that NT0 is stable under ∆x,y. Suppose NT0 ̸= {0}. Since NT0

is of finite dimension, it must contain an eigenfunction of ∆x,y. Let us denote this
eigenfunction by ϕ ̸= 0 and its associated eigenvalue λ0 ∈ R. Thus, ϕ satisfies

∆x,yϕ = λ0ϕ, χΩe
iλ0tϕ = 0,∀t ∈ (0, T0).

Applying Theorem 1.5, we know that ϕ ≡ 0, which is a contradiction. This leads to
NT0 = {0}. □

3. Well-posedness of NLS

In this section, we include some well-posedness results of NLS. As in Theorem 1.1
and Theorem 1.2, we consider a specific and popular model: 3D cubic NLS in energy
space and higher.

Theorem 3.1. Let T > 0, s ≥ 1, and ϵ = ±1. For every f ∈ L2([−T, T ], Hs) and

u0 ∈ Hs, there is a unique solution u ∈ Xs,b
T to

(3.1)

{
i∂tu+∆u+ ϵ|u|2u = f on [−T, T ]× R2 × T
u|t=0 = u0 on R2 × T

Moreover the flow map is Lipschitz on every bounded subset.

Remark 3.2. We can replace R2 ×T by R×T2 (still 3-dimensional manifold) and the
proof follows in the same way since the corresponding estimates still work.

Proof. The proof is similar to the proof of Theorem 2.1 in [32]. In fact, our case is
easier since we do not have a damping term. We only need to handle the source term
f .

First, we notice that if f ∈ L2([−T, T ], Hs), it also belongs to Xs,−b′

T as b′ ≥ 0 due
to the property of function spaces. Moreover, it suffices to consider positive times.
The solution on [−T, 0] can be obtained similarly.

We consider the functional

Φ(u)(t) = eit∆xu0 − i

∫ t

0

ei(t−τ)∆x

[
λ |u|2 u+ f

]
(τ)dτ.

One can apply a standard fixed point argument on the Banach space Xs,b
T .

We recall that, for T ≤ 1 we have∥∥eit∆xu0
∥∥
Xs,b

T

≤ C ∥u0∥Hs .

This handles the linear term. Next, regarding the source term, one can use∥∥ψ(t/T ) ∫ ei(t−τ)∆xF (τ)
∥∥
Xs,b ≤ CT 1−b−b′ ∥F∥Xs,−b′ to deal with the source term

f .
Then the proof can be reduced to the case without the source. We refer to Bourgain

[5]. □
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For the nonlinear equation (3.1), we can decompose it near a linear solution Ψ
given by

(3.2)

{
i∂tΨ+∆x,yΨ = f,
Ψ|t=0 = Ψ0 ∈ Hs(R2 × T)

We write u = Ψ+ v. Then v satisfies

(3.3)

{
i∂tv +∆x,yv + ϵ

(
|Ψ|2 Ψ+ 2 |Ψ|2 v +Ψ2v̄

)
= −ϵF (Ψ, v),

v|t=T = 0.

where F (Ψ, v) := |v|2 v + 2 |v|2 Ψ+ v2Ψ̄. In the following proposition, we present the
well-posedness of v.

Proposition 3.3. Let T > 0, s ≥ 1, and ϵ = ±1. For every Ψ0 ∈ Hs, there is a

unique solution v ∈ Xs,b
T to the equation (3.3).

Proof. Since the proof is very similar to Theorem 3.1, we only give a sketch for it.
First, we note that, for any Ψ0 ∈ Hs, the solution Ψ to the linear equation (4.4)

satisfies Ψ ∈ Xs,b
T . This observation allows us to control for Ψ.

Then, compared to Theorem 3.1, there is no source term (that is good for us) in
(4.6) and there are more nonlinear terms. We note that all nonlinear terms are cubic
and we can estimate them using Strichartz estimate in a standard way. The proof
can be done as in Bourgain [5] since we already have control for Ψ. □

4. Local null controllability of NLS: Proof of Theorem 1.2

4.1. Control for linear problem: Hilbert uniqueness method. Consider a lin-
ear Schrödinger equation

(4.1)

{
i∂tu+∆u = φTχΩ(1−∆x,y)

−sφTχΩf on R× R2 × T,
u|t=0 = u0 on R2 × T,

such that u(T ) ≡ 0. Define the range operator R by

R : H−s(R× R2 × T) → Hs(R2 × T)
f 7→ u0.

Consider the adjoint system

(4.2)

{
i∂tw +∆w = 0 on R× R2 × T,
w|t=0 = w0 on R2 × T,

Define the solution operator S by

S : Hs(R2 × T) → C0(R;L2(R2 × T)) ⊂ Hs(R× R2 × T)

w0 7→ eit∆w0.

Proposition 4.1. Let s ∈ R. Let f ∈ H−s(R × R2 × T) and w0 ∈ H−s(R2 × T).
Then the duality holds as follows:
(4.3)〈
φTχΩ(1−∆x,y)

−sφTχΩf, Sw0

〉
Hs(R2×T),H−s(R2×T) = ⟨iR(f), w0⟩Hs(R2×T),H−s(R2×T) .

Proof. We only consider f and w0 are smooth in the space variables. Then the general
case is proved by standard approximation arguments.〈
φTχΩ(1−∆x,y)

−sφTχΩf, Sw0

〉
Hs,H−s =

〈
i∂tu+∆u, eit∆w0

〉
Hs,H−s

=
〈
u, (i∂t +∆)eit∆w0

〉
Hs,H−s + ⟨iu0, w0⟩Hs,H−s

= ⟨iR(f), w0⟩Hs,H−s .

□
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Then we can define the HUM operator K = iR ◦ S, which satisfies the following
proposition.

Proposition 4.2. K is an isomorphism from H−s to Hs.

Proof. We define a continuous form by α(u, v) := ⟨Ku, v⟩Hs(R2×T),H−s(R2×T), for

u, v ∈ H−s(R2 × T). By the definition of K, it is easy to verify that K is self-adjoint
operator. Then we check the coercivity of α. Thanks to the observability estimate in
Theorem 1.5, for ∀v ∈ L2(R2 × T),

α(v, v) = ⟨Kv, v⟩Hs,H−s =
(
(1−∆x,y)

− s
2φTχΩSv, (1−∆x,y)

− s
2φTχΩSv

)
L2(R2×T)

= ∥φTχΩSv∥2H−s(R2×T).

By Proposition 2.9, there exists a constant C = C(T,Ω, s, χΩ) > 0 such that

∥φTχΩSv∥2H−s(R2×T) ≥ C∥v∥2H−s(R2×T).

By Lax-Milgram’s theorem, we prove that the HUM operator K is an isomorphism
H−s to Hs. □

Define the control operator L by L = iS ◦ K−1 : Hs → H−s. Since R ◦ LΨ0 = Ψ0,
the solution Ψ to the linear Schrödinger equation with an initial datum Ψ0

(4.4)

{
i∂tΨ+∆x,yΨ = φTχΩ(1−∆x,y)

−sφTχΩLΨ0,
Ψ|t=0 = Ψ0 ∈ Hs(R2 × T)

satisfies that Ψ(T ) = 0.

4.2. Proof of Theorem 1.2. Now we consider the null control problem for NLS.
Recall that we seek a control function g such that the solution u to

(4.5)

{
i∂tu+∆x,yu+ ϵ|u|2u = φTχΩ(1−∆x,y)

−sφTχΩg on [0, T ]× R2 × T,
u|t=0 = u0 on R2 × T,

such that u|t=T = 0.

Proof of Theorem 1.2. First, we decompose u = v + Ψ, where Ψ is defined by (4.4).
Then, v is the solution to

(4.6)

{
i∂tv +∆x,yv + ϵ

(
|Ψ|2 Ψ+ 2 |Ψ|2 v +Ψ2v̄

)
= −ϵF (Ψ, v),

v|t=T = 0.

where F (Ψ, v) := |v|2 v + 2 |v|2 Ψ+ v2Ψ̄. Thus, i∂tv +∆x,yv + ϵ |Ψ+ v|2 (Ψ+ v) = 0.

Thanks to Proposition 3.3, we know that v ∈ Xs,b
T . Let us define a nonlinear solution

operator Sv
N : Hs → Hs associated with the equation (4.6) by Sv

NΨ0 = v|t=0, where
v solves the equation (4.6) and Ψ solves the equation (4.4) with an initial datum Ψ0.
Due to u = v +Ψ, u satisfies

(4.7)

{
i∂tu+∆x,yu+ ϵ|u|2u = φTχΩ(1−∆x,y)

−sφTχΩLΨ0,
u|t=T = v|t=T +Ψ|t=T = 0.

As a consequence, for any Ψ0 ∈ Hs, the control function g = LΨ0 steers the initial
state Ψ|t=0 + v|t=0 to 0.

Define another nonlinear operator J : Hs → Hs by J ϑ = u0 − Sv
Nϑ. If J has a

fixed point Ψ0, i.e., JΨ0 = Ψ0, then, this Ψ0 produces a function g = LΨ0, which
achieves the null controllability, due to u0 = Ψ|t=0 + v|t=0 = Ψ0 + Sv

NΨ0. Hence, the
null controllability of nonlinear Schrödinger equation (1.3) is reduced to the following
lemma.

Lemma 4.3. There exists a constant η > 0 such that J has a fixed point in a ball
BHs(0, η) in Hs.
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□

We complete the proof of Theorem 1.2 by demonstrating Lemma 4.3.

Proof of Lemma 4.3. We only need to prove that J is contracting on a small ball
BHs(0, η) in Hs, provided with ∥u0∥Hs small enough. In this proof, for simplicity,
we can assume that T < 1. Note that our constant C which may depend on T and s
could vary from line to line.

For any Ψ0 ∈ BHs(0, η), we first show that JΨ0 ∈ BHs(0, η) for η sufficiently
small. By the definition of the map J , ∥JΨ0∥Hs ≤ ∥u|t=0∥Hs + ∥v|t=0∥Hs . Thanks
to Proposition 3.3,

∥v∥Xs,b
T

≤ ∥|u|2u∥
Xs,−b′

T

≤ ∥u∥3
Xs,b′

T

.

Applying Theorem 3.1 and Proposition 4.2, we obtain

∥u∥
Xs,b′

T

≤ C∥LΨ0∥H−s ≤ C∥Ψ0∥Hs < Cη.

As a consequence, we obtain

∥v|t=0∥Hs ≤ ∥v∥Xs,b
T

≤ ∥u∥3
Xs,b′

T

< Cη3.

Thus, ∥JΨ0∥Hs ≤ ∥u0∥Hs + ∥v|t=0∥Hs ≤ ∥u0∥Hs + Cη3. Choosing η such that
Cη2 < 1

2 and ∥u0∥Hs < η
2 , we obtain ∥JΨ0∥Hs < η and J reproduces the ball

BHs(0, η).

Let us prove that J is contracting for Hs−norm. For any ϑ, ϑ̃ ∈ BHs(0, η), let u

and ũ be the solutions to (4.5) with g = Lϑ and g = Lϑ̃, respectively. Similarly, we
denote by v and ṽ. Then, u− ũ solves the equation:{

i∂t(u− ũ) + ∆x,y(u− ũ) + ϵ|u|2u− ϵ|ũ|2ũ = φTχΩ(1−∆x,y)
−sφTχΩL(ϑ− ϑ̃),

(u− ũ)|t=0 = (u− ũ)|t=T = 0.

And v − ṽ solves the equation:{
i∂t(v − ṽ) + ∆x,y(v − ṽ) + ϵ|u|2u− ϵ|ũ|2ũ = 0,
(v − ṽ)|t=T = 0.

As we presented in the proof of Theorem 3.1, we have

∥u− ũ∥Xs,b
T

≤ C∥|u|2u− |ũ|2ũ∥
Xs,−b′

T

+ C∥L(ϑ− ϑ̃)∥H−s

≤ C(∥u∥2
Xs,b′

T

+ ∥ũ∥2
Xs,b′

T

)∥u− ũ∥
Xs,b′

T

+ C∥ϑ− ϑ̃∥Hs

≤ Cη2∥u− ũ∥
Xs,b′

T

+ C∥ϑ− ϑ̃∥Hs .

For η sufficiently small, it yields Cη2 < 1
2 , and we obtain ∥u− ũ∥Xs,b

T
≤ C∥ϑ− ϑ̃∥Hs .

Similarly, for v − ṽ, we have

∥v − ṽ∥Xs,b
T

≤ C∥|u|2u− |ũ|2ũ∥
Xs,−b′

T

≤ Cη2∥u− ũ∥
Xs,b′

T

≤ Cη2∥ϑ− ϑ̃∥Hs .

We deduce that ∥v|t=0 − ṽ|t=0∥Hs ≤ ∥v − ṽ∥Xs,b
T

< Cη2∥ϑ − ϑ̃∥Hs . Therefore, we

obtain

∥J ϑ− J ϑ̃∥Hs = ∥(u0 − Sv
Nϑ)− (u0 − Sv

N ϑ̃∥Hs

= ∥v|t=0 − ṽ|t=0∥Hs

≤ Cη2∥ϑ− ϑ̃∥Hs

This yields that J is a contraction on a small ball BHs(0, η) in Hs, which completes
the proof. □
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5. Exact controllability: Proof of Theorem 1.1

In general, in order to Theorem 1.1, we only need to reverse time and glue the
forward and backward solutions together. For the completeness of our paper, we
choose to present the proof as follows.

Proof of Theorem 1.1. We first consider the time-reversed equation (that is, the equa-
tion obtained by the change of variable t 7→ T − t) of (4.5):

−i∂tw +∆x,yw + ϵ|w|2w = φTχΩ(1−∆x,y)
−sφTχΩh,

where w(t, x) = u(T − t, x). For this equation, we repeated the procedure as the
proof for Theorem 1.2. There exists a control function h such that for ∥w0∥Hs small
enough, h achieves null controllability for w. Now we choose u0, uf ∈ Hs), satisfying
that

∥u0∥Hs + ∥uf∥Hs < δ,

with δ sufficiently small. There exists g such that{
i∂tu+∆x,yu+ ϵ|u|2u = φTχΩ(1−∆x,y)

−sφTχΩg
u|t=0 = u0 u|t=T

2
= 0.

And there exists h such that{
−i∂tw +∆x,yw + ϵ|w|2w = φTχΩ(1−∆x,y)

−sφTχΩh
w|t=0 = uf w|t=T

2
= 0.

Moreover, we know that the solutions u,w ∈ C([0, T2 ], H
s). Now we define U ∈

C([0, T ], Hs) and f ∈ C([0, T ], Hs) by

U(t) =

{
u(t) t ∈ [0, T2 ],
w(T − t) t ∈ (T2 , T ].

and

f(t) =

{
φTχΩ(1−∆x,y)

−sφTχΩg, t ∈ [0, T2 ],
φT (T − t)χΩ(1−∆x,y)

−sφT (T − t)χΩh(T − t), t ∈ (T2 , T ].

Indeed, f continues in time, since the cut-off function vanishes near t = T
2 . U

solves the equation:

(5.1)

 i∂tU +∆x,yU + ϵ|U |2U = f,
U |t=0 = u|t=0 = u0,
U |t=T = w(T − t)|t=T = w|t=0 = uf .

This completes the proof of Theorem 1.1. □

Appendix A. Some properties of Xs,b spaces

For the sake of completeness, in Appendix, we include the definitions for Xs,b

spaces in the waveguide setting, together with some useful properties. We refer to
Tao [41] for more details. See also [32]. Since the results are well-known, we only
present them and omit the proofs.

Following [5, 6], one may define Xs,b norm as

(A.1) ∥u∥Xs,b := ∥⟨τ − |ξ|2⟩b⟨ξ⟩sũ∥L2
ξ,τ
,

where u = u(z, t) is a function defined on Rm×Tn×R, and z ∈ Rm×Tn, t ∈ R. And
ũ(ξ, τ) is the space-time Fourier transform of u, where ξ ∈ Rm × Zn, τ ∈ R.

And Xs,b spaces are just all those functions with finite Xs,b norm.
In practice, one mainly works on s ≥ 0, b > 1

2 .

One key property for Xs,b space is that inherits the estimates of linear solutions,
which is known to be “transference principle”.
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Xs,b
T is the associated restriction space with the norm

∥u∥Xs,b
T

= inf {∥ũ∥Xs,b |ũ = u on (0, T )×M } .

We also write ∥u∥Xs,b
I

if the infimum is taken on functions ũ equalling u on an interval

I. The following properties of Xs,b
T spaces are easily verified.

(1) Xs,b and Xs,b
T are Hilbert spaces.

(2) If s1 ≤ s2, b1 ≤ b2 we have Xs2,b2 ⊂ Xs1,b1 with continuous embedding.

(3) For every s1 < s2, b1 < b2 and T > 0, we have Xs2,b2
T ⊂ Xs1,b1

T with compact
embedding.

(4) For 0 < θ < 1, the complex interpolation space
(
Xs1,b1 , Xs2,b2

)
[θ]

isX(1−θ)s1+θs2,(1−θ)b1+θb2 .

We note that (4) can be proved with the interpolation theorem of Stein-Weiss for
weighted Lp spaces.

Then, we list some additional trilinear estimates that will be used all along the
paper.

Lemma A.1. For every r ≥ s > s0, there exist 0 < b′ < 1/2 and C > 0 such that

for any u and ũ ∈ Xr,b′∥∥|u|2u∥∥
Xr,−b′ ≤ C ∥u∥2Xs,b′ ∥u∥Xr,b′(A.2) ∥∥|u|2ũ∥∥
Xr,−b′ ≤ C ∥u∥Xs,b′ ∥u∥Xr,b′ ∥ũ∥Xr,b′(A.3) ∥∥|u|2u− |ũ|2ũ
∥∥
Xs,−b′ ≤ C

(
∥u∥2Xs,b′ + ∥ũ∥2Xs,b′

)
∥u− ũ∥Xs,b′ .(A.4)

Moreover, the same estimates hold with z1z2z3 replaced by any R-trilinear form on
C.
Lemma A.2. For every −1 ≤ s ≤ 1 and any s0 < r ≤ 1, there exist 0 < b′ < 1/2

and C > 0 such that for any u ∈ Xs,b′ and a1, a2 ∈ X1,b′

∥a1a2u∥Xs,−b′ ≤ C ∥a1∥X1,b′ ∥a2∥X1,b′ ∥u∥Xs,b′(A.5) ∥∥|a1|2u∥∥Xs,−b′ ≤ C ∥a1∥X1,b′ ∥a1∥Xr,b′ ∥u∥Xs,b′ .(A.6)

Moreover, the same estimates hold with z1z2z3 replaced by any R-trilinear form on
C.

Let us study the stability of the Xs,b spaces with respect to some particular oper-
ations.

Lemma A.3. Let φ ∈ C∞
0 (R) and u ∈ Xs,b then φ(t)u ∈ Xs,b.

If u ∈ Xs,b
T then we have φ(t)u ∈ Xs,b

T .

In the case of pseudo-differential operators in the space variable, we have to deal
with a loss in Xs,b regularity compared to what we could expect. Some regularity in
the index b is lost, due to the fact that a pseudo-differential operator does not keep
the structure in time of the harmonics.

This loss is unavoidable as we can see, for simplicity on the torus T1 : we take

un = ψ(t)einxei|n
2|t (where ψ ∈ C∞

0 equal to 1 on [−1, 1]) which is uniformly bounded
in X0,b for every b ≥ 0. Yet, if we consider the operator B of order 0 of multiplication
by eix, we get

∥∥eixun∥∥X0,b ≈ nb. Yet, we do not have such loss for operator of the

form (−∆)r which acts from any Xs,b to Xs−2r,b. But if we do not make any further
assumption on the pseudo-differential operator, we can show that our example is the
worst one :

Lemma A.4. Let −1 ≤ b ≤ 1 and B be a pseudo-differential operator in the space
variable of order ρ. For any u ∈ Xs,b we have Bu ∈ Xs−ρ−|b|,b.

Similarly, B maps Xs,bt into X
s−ρ−|b|,b
T .
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We will also use the following elementary estimate.

Lemma A.5. Let (b, b′) satisfying

0 < b′ <
1

2
< b, b+ b′ ≤ 1.(A.7)

If we note F (t) = Ψ
(

t
T

) ∫ t

0
f(t′)dt′, we have for T ≤ 1

∥F∥Hb ≤ CT 1−b−b′ ∥f∥H−b′ .

In the future aim of using a boot-strap argument, we will need some continuity in

T of the Xs,b
T norm of a fixed function :

Lemma A.6. Let 0 < b < 1 and u in Xs,b then the function{
f : (0, T ] −→ R

t 7−→ ∥u∥Xs,b
t

is continuous. Moreover, if b > 1/2, there exists Cb such that

lim
t→0

f(t) ≤ Cb∥u(0)∥Hs .

The following lemma will be useful to control solutions on large intervals that will
be obtained by piecing together solutions on smaller ones.

Lemma A.7. Let 0 < b < 1. If
⋃
(ak, bk) is a finite covering of [0, 1], then there

exists a constant C depending only of the covering such that for every u ∈ Xs,b,

∥u∥Xs,b
[0,1]

≤ C
∑
k

∥u∥Xs,b
[ak,bk]

.
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