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Abstract

Large databases of climate model simulations are essential to sample climate vari-
ability and estimate how it can evolve in any future. The chaotic nature of climate
has motivated the simulation of large ensembles of simulations, which sample the
uncertainty due to internal climate variability in single models. Exploiting large
ensembles (for impact or attribution studies) implicitly relies on the hypothesis
that simulations are interchangeable. This is not the case for variables like tem-
perature, due to biases (which can be corrected). Some synoptic fields, like SLP,
do not yield obvious biases, which might justify their use to enrich reanalysis
data. In this paper, we examine this hypothesis through a neural network clas-
sification approach. The goal is to determine whether it is possible to recognize
a climate model (among 16 models and a reanalysis) from one single sea-level
pressure (SLP) map over the North Atlantic. We find that models are highly
identifiable in the summer (and less in other seasons), while SLP average struc-
tures are very similar. From this classification, we identify sororities of climate
models, and investigate how climate change can affect SLP daily patterns toward
the end of the 21st century. This study allows identifying which climate models
could be used as input for artificial intelligence model forecasts.

Keywords: Neural Network, classification, Climate models, SLP
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1 Introduction

Describing and understanding climate variability poses major computational, statis-
tical and physical challenges. Some of the issues are treated by considering ensembles
of coupled global climate model (GCM) simulations, i.e., with several climate mod-
els, and running several simulations. Then averages and other statistical moments
are computed from those large datasets [1]. An other ambition that motivates the
generation and use of those large climate datasets is to consider them as surrogates
of the real world to learn how to forecast the weather [2], or provide extreme event
attribution statements [3]. Those endeavors (computing statistical moments, transfer
learning) make the implicit assumption that all climate models yield similar proba-
bility distributions, and that those statistical properties are the same as observations.
There are many ways of removing model biases, in order to get close to this impor-
tant assumption [4, 5], but those methods are rarely devised for fields (with space and
time).

Even if a meteorological field obtained from a GCM does not yield obvious biases,
the question we want to address is whether it is possible recognize a GCM from one
daily map, like sea-level pressure (SLP). If one can provide such a detection, then
learning from one GCM is certainly useless for other models. If GCMs cannot be
distinguished, then one has a good case for pooling them in order to enlarge the set of
observed climate variability that is limited to a few decades. One of the motivations
of this paper stems from the idea of transfer learning [6, 7], from ensembles of climate
model simulations, to actual weather predictions. In this perspective, learning from a
daily timescale is crucial, in order to investigate extreme events [8].

In this paper, we consider the whole CMIP6 archive [9], which contains 47 models
that provide data with daily time steps (Figure A1). We consider daily SLP over the
North Atlantic, between 1970 and 2000. We determine whether it is possible to rec-
ognize a model name from one daily SLP map (over the North Atlantic). We use a
simple artificial intelligence (AI) algorithm of classification (a Multi-Layer-Perceptron
neural network [10]) without any particular tuning to learn how to recognize a model
from SLP features, for each season (summer, autumn, winter and spring). The clas-
sification is done along with the ERA5 reanalysis [11]. Hence, this study extends the
garment identification AI challenge [12] to a more sophisticated setting. The analysis
protocol is described in the methods section.

If an AI algorithm cannot tell models apart (from daily SLP fields) or from reanal-
yses, then pooling model SLP can be considered a promising in order to enlarge sample
size, in order to build statistical confidence. If an AI algorithm can tell models apart,
even though their sample means and standard deviations are similar, then it is not
possible to learn, even from a large simulation ensemble of one model, to infer anything
on the real world.

We evaluate whether GCMs can be identified from simulations that are provided in
a different setting from the learning set (different ocean model, different atmospheric
parameterizations, etc.). This study revisits the analyses of [13, 14] by focusing on
daily time scales, which adds a major difficulty to the classification problem, due to
meteorological variability.
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We determine whether a warmer climate according to SSP scenarios [15] affects
the weather patterns of climate models. This is done with the SSP5-8.5 scenario for
end-of-the century (2070–2100) period. The Methods section explains the analysis
protocols.

2 Results

2.1 SLP Classification of 16 models

Each daily SLP map was classified onto 16 GCMs and the ERA5 [11] reanalysis (see
Methods section, Table A1). The classification was done for the four seasons (Sum-
mer: June-July-August (JJA); Fall: September-October-November (SON); Winter:
December-January-February (DJF); Spring: March-April-May (MAM)), due to the
seasonality of the atmospheric circulation [16].

The training set used ≈ 22 years for each model, and the validation set used the
remaining ≈ 8 years. The training was repeated 20 times, so that 20 AI models are
obtained. We report the resulting scores on the validation periods in Figure 1. This
reflects the variability of classification scores due to the algorithm itself. In the sequel,
we will keep the AI models that yield the best overall scores.

The summer (June-July-August) classification of 16 models and ERA5 reanalysis
shows that the AI algorithm can recognize seven models with a success probability
larger than 0.6 (Figure 1a). It is possible to enhance the classification score by by
repeating the neural network training with random samples of 9 GCMs rather than 16.
This guarantees that the classification scores exceed 80% for daily SLP (not shown).
This procedure is not discussed here, as this study is based on the minimal achievable
result with AI and avoiding technical tuning procedures.

For the other seasons (spring, autumn and winter) the AI algorithm classification
scores are lower, and rarely pass the 0.6 value (Figure 1b–d). This means that the
SLP from 17 models (including ERA5) are difficult to distinguish from one model
to another. For DJF, four GCMs can be classified with probabilities larger than 0.6,
although the ERA5 reanalysis is poorly classified. For intermediate seasons, three
models (for SON) or two models (for MAM) can be classified by probabilities exceeding
0.6. The SLP from the NorCPM1 model is consistently well classified across all seasons.
Conversely, the EC-Earth3 model yields consistent low classification probability rates
across seasons. The ERA5 reanalysis does not stand out as ”recognizable” among the
CMIP6 models.

A test procedure with a distinct run for each model and the best AI model in
Figure 1 is performed. Figure 2 shows the classification probability distributions onto
the 16 CMIP6 models (Table A1) and ERA5, with different historical runs (the test
sets). The diagonals indicate whether AI model clearly identifies models from daily
SLP fields. We note that, with the best AI model (from Figure 1), the JJA true
positive rates exceed p = 0.6, which means that it is possible to identify a GCM from
a daily SLP map, more that 60% of the time, which is better than tossing a coin
(and higher than p0 = 1/17 if all models/ERA5 are equiprobable). We verified that
summer SLP can be recognized, for any run of the training models (not shown) with
probabilities exceeding 0.6. This means that internal variability does not alter the SLP
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identification process. We also verified that no obvious bias among GCMs explained
such a classifiability by comparing mean SLP and standard deviations (SI Figure 2).
The spatial structures of SLP (and its variability) are very similar between GCMs, and
naked eyes would have difficulties identifying a model from a single daily SLP map.

Those classification probabilities drop during intermediate seasons (SON and
MAM), although models are can still be identified, albeit with scores lower than
p = 0.3. GCMs (or ERA5) cannot be identified from winter (DJF) daily SLP maps
(Figure 2c). The ERA5 reanalysis is not more identifiable than the GCMs. There-
fore, North Atlantic SLP maps of GCMs can hardly be distinguished from reanalyses,
especially in the winter.

For all seasons, the EC-Earth model is often confused with the ERA5 reanalysis
(Figure 2), which is explained by the fact that they are based on the same atmospheric
model [17].

2.2 Identification of GCM sororities

Starting from a classification of 16 models in Table A1, we classify the ”sister” models
identified in Figure A1 (black bars). Those GCMs are produced by the same research
groups, but can yield different horizontal resolutions (shown in Supplementary Table
1), or contain different physical configurations [1]. The goal is to check whether the
classification performed on the reference models work for ”sister” models, especially
for the summer season.

With a couple of exceptions, sororities can be identified with SLP classifica-
tion (Figure 3). When GCMs from different research institutes (e.g. UKESM1 and
HadGEM3 models) share the same atmospheric model (e.g., MOHC) and yield similar
horizontal resolutions, then they tend to be classified to HadGem3-GC31-LL, espe-
cially in JJA. Classifiability does not increase during other seasons. Similarly, models
of the EC-Earth consortium (EC-Earth3-Veg and EC-Earth3-Veg-LR) simulations are
classified to the EC-Earth3 model. The CNRM-ESM2-1 and reference CNRS-ESM1
GCMs differ from their atmospheric chemistry models. This difference does not affect
their SLP sorority in the summer. The NorESM2-LM and NorCPM1 GCMs essentially
differ from their vertical resolution, but their sorority can be identified.

The horizontal resolution of MPI-ESM1-2-HR is almost twice the resolution of
MPI-ESM1-2-LR (all submodels are the same, though). This explains that those
two GCMs cannot be classified onto one another in the summer, because the high-
resolution model (which has a fairly high resemblance to ERA5) can yield SLP patterns
that are not obtained with the low reference GCM. Similarly, the FGOALS-I3 model
is nearly twice the resolution of FGOALS-g3, with a different atmospheric code. This
also explains why the summer SLP of the two models (from the same institution) do
not seem similar.

Therefore, the daily SLP maps in the summer season (JJA) allow identifying GCM
sororities (Figure 3a) when horizontal resolutions are comparable, while this is much
less clear for other seasons. This implies that the atmospheric circulation from models
of the same family can be ”pooled” in order to increase ensemble sizes. This feature
is linked to the intrinsic resolution of the atmospheric model, because all models and
ERA5 were re-interpolated on a 1◦ × 1◦ degree grid.
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2.3 Influence of climate change

We investigate the SLP classification from the 16 models in Table A1 toward the end
of the 21st century in scenario simulations [9, 15]. The scenario we consider here is
SSP5-8.5, and we extract the SLP from 2070 to 2100.

The probabilities along the diagonal in JJA (Figure 4a) slightly decrease in the
summer, implying a slight increase of ”misclassification”. This suggests that some
models witness the appearance of new SLP patterns (with respect to their own 1970–
2000 behavior) towards the end of the 21st century, and that those patterns were
sampled in other GCMs.

The highest classification rates for intermediate seasons (SON and MAM) still
appear on the diagonals of Figure 4bd (the NorCPM1 model does not propose daily
SLP for SSP simulations and hence does not appear). This identification no longer
holds for winter SLP (Figure 4c). The overall similarity between Figures 2 and 4
suggests that the SLP patterns of climate models are barely affected by climate change,
even in an extreme SSP5-8.5 scenario. Other SSPs show a similar behavior (not shown).

There is one exception to this stability: the NESM3 model whose SSP5-8.5 winter
classification never finds SLP patterns in historical simulations of the same model in
1970-2000 (upper right corner in Figure 4). This means that this model yields a change
in winter atmospheric circulation.

3 Discussion

The classification results of this study are based on a fairly simple use of a neural
network, without any particular tuning (e.g. low number of layers of neurons, simple
algorithm, no convolutional layer, etc.). For example, only one hidden layer of 256
neurons is sufficient to correctly classify summer SLP. The training sets (2000 days for
each model) are small, compared to what is potentially available in the CMIP6 archive.
This choice is made to avoid overfitting. The classification scores could be improved
by considering larger training sets or tuning neural network parameters, although the
dependence on the season would remain unchanged.

Using other climate fields (temperature, precipitation, wind speed) would be pos-
sible, but since they highly depend on the model horizontal resolution and other
idiosyncrasies like local biases, it is expected that model classifiability could be
enhanced in a fairly trivial way. Hence, this type of analysis would be interesting to
test the effects of multi-variate bias correction on a CMIP6 ensemble and reanalysis
data. [18] used this strategy to design bias correction models, where a bias-correction
model is trained so that a classifier is not able to recognize a bias corrected field from
a reanalysis field.

It has been argued that internal climate variability is a major source of uncer-
tainty for climate assessments [19, 20], as members of ensemble simulations could show
different behavior. Such studies hence suggest that simulations of the same climate
model should be treated separately, as their variability might differ. Our study brings
a nuance by showing that simulation ensembles of the same model do yield an identi-
fiable consistency, while the role of internal variability is more important in the winter
season, which leads to a lack of classification skill.
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4 Conclusion

We outlined the intriguing faculty of identifying a climate model from one daily SLP
map, with a simple neural network. This property is essentially valid for the summer
season. The 16 reference training models we considered are not only different from
each other, but they are also different from the ERA5 reanalysis on the present-day
period. It is much more difficult to differentiate the SLP from models and reanalysis
for other seasons, which is also an interesting feature, because one can pool models in
order to increase the sampling of data in a meaningful way.

This rather simple approach also allows us to identify the sorority of climate mod-
els. This means that different flavors of the same model (increasing resolution, changing
land-use schemes, or even changing the ocean model) lead to similar atmospheric prop-
erties in the midlatitude regions (at least the North Atlantic), and hence shows the
robustness of the atmospheric part of coupled models, especially in the summer.

AI-based weather forecast systems have been trained on the ERA5 reanalysis [8,
21]. It is tempting to use a larger data base for training in order to have a better
sampling of interannual atmospheric variability [7]. This study shows that it would
be misleading to take any climate model, because of the different spatial probability
distributions of atmospheric variables between models, and it would require complex
bias correction. This study has outlined good candidate GCMs (with large ensembles,
similarities with ERA5) for this exercise.

Conversely, this also implies that the statistical properties of the atmospheric cir-
culation from large ensemble model simulations (with the same model [22]) can be
enriched with variations around the same model, provided that the horizontal resolu-
tions are similar. Therefore, it makes sense to ”pool” climate model simulations of the
same family, to perform extreme event attribution analyses.

5 Data and Methods

5.1 Data

This study focuses on North Atlantic [50W–20E; 30N–65N] daily SLP fields from the
CMIP6 [9] archive. The SLP fields were extracted for all runs of global climate models
(GCMs) that propose daily fields for historical and SSP simulations [15]. We restricted
the analysis to the data that is available on the IPSL database server, which is a subset
of the ESGF data https://esgf-node.ipsl.upmc.fr/projects/esgf-ipsl/. For simplicity,
some models (e.g. with only one member) were not used in this study (black lines in
Figure A1).

We focus on the North Atlantic region (SI Figure 1), although other regions of
the world could have been used, because this is where climate models seem to yield a
large consensus [23]. SLP patterns marginally depend on climate change (unlike many
other climate fields) [24], although the patterns yield a seasonal cycle [16]. Hence
investigating North Atlantic SLP classification is deemed a difficult endeavor.

For training, we chose 16 GCMs (out of 47) because they yield the largest number
of runs (and more than 3), and reflect the diversity of atmospheric models, as climate
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modeling groups can provide simulations with variations on the resolution, ocean
model, etc. [1].

In the training set, we considered the first 2000 days (for each season) in historical
simulations, from 1970 to 2000, which corresponds to ≈ 22 years (hence 1970 to 1992).
We used the first simulations in lexicographic order for the training set. For validation,
we used the remaining≈ 8 years of the same simulation. The test set included historical
simulations (1970–2000) from the third simulations in lexicographic order (this choice
was arbitrary). Therefore, the test sets (in Figures 2 to 4) are disjoint from the learning
set.

For all models, the SLP fields were normalized by their average. Therefore, models
cannot be identified by a potential bias in the mean, which is difficult to identify. The
spatial standard deviations are rather similar across models (SI Figure 2).

All SLP fields (CMIP6 and ERA5) are interpolated onto 1◦ × 1◦ degree maps.
Therefore information on the horizontal resolution of each model is not used in the
classification.

The tests sets include other runs from the same model, runs from other models
(black lines in Figure A1), and scenario runs until the end of the 21st century. In this
paper, we focused on the SSP5-8.5 (although computations were done for all SSPs
[25]). This scenario might not be the most relevant for society [26], but it allows a
higher signal-to-noise ratio, to identify responses of climate change.

5.2 Methods

The AI classification model we use is a basic method of image classification [10, 27],
that can be used to identify clothes from pictures [12].

The AI model is a simple dense neural network with a single hidden layer of 256
neurons with relu activation functions and an output layer of 17 neurons (the maximum
number of GCMs) with a softmax activation functions. The dense neural network use
as inputs SLP fields flattened into vectors of 70× 36 = 2520 values.

The neural network model (AI model) is trained over the training set constructed
from models listed in Table A1. 5 epochs are used in the training and sparse categorical
cross-entropy is optimized, with an adam optimizer. The training is repeated 20 times,
because this procedure yields random selections of input data and weight initialization.
At each new training step, we compute the score rate, i.e., the probability of correctly
classifying an SLP field on a validation set, which is different from the training set.
The scores of this procedure are shown in Figure 1, for validation sets that consist of
other historical simulations. For each season, we keep the AI model that yields the
highest score.

Those AI models are used to classify models that are not listed in Table A1.
This helps identifying potential ”sororities”, when GCMs share common atmospheric
components.

Then the AI models (for historical periods) are used to classify scenario simulations
(SSP5-8.5) to track potential drifts in daily SLP patterns.

In Figure 1 we consider an arbitrary score probability of p = 0.6 > 0.5, which
is higher than a ”coin toss” probability and much higher than an equiprobable
classification value over the 17 models of p = 1/17 ≈ 0.06.
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(b) SON
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(c) DJF
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(d) MAM
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Fig. 1 Empirical probabilities that 16 CMIP6 models or ERA5 are correctly classified for each season
(panels a to d). 20 training classifications were performed. The boxplots reflect the variability of the
score probabilities of the training procedure (20 classifications). The horizontal dashed line represents
the threshold probabilities p = 0.6 and p = 1/17 (a uniformly random classification).

Supplementary information. This article comes with supplementary information,
with a table of all CMIP6 models that are considered, and summary figures.
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Fig. 2 Classification test. Empirical probabilities of classifying CMIP6 models in Table A1 or ERA5
onto those models, for the four seasons (panels a to d). Darker colors indicate higher probabilities.
In those diagrams, the sum of probabilities along lines is 1. Model simulations listed on the vertical
axis are classified onto the list of models on the horizontal axis. In this figure, the two lists of names
coincide.
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(d) MAM
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Fig. 3 Sorority classification. Empirical probabilities of classifying CMIP6 models (blue lines in Fig.
A1 onto CMIP6 models in Table A1 or ERA5, for the four seasons (panels a to d). Darker colors
indicate higher probabilities. Model simulations listed on the vertical axis are classified onto the list
of models on the horizontal axis.

• Code availability: the codes for preparing CMIP6 files, and classification are
available on from https://github.com/pascalyiou/CMIP6 CNN-Classification.git.
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(d) MAM
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Fig. 4 Climate change classification. Empirical probabilities of classifying CMIP6 models in Table
A1 or ERA5 for SSP5-8.5 simulations (2070–2100) onto those models (historical period: 1970–2000),
for the four seasons (panels a to d). Darker colors indicate higher probabilities. Model SSP5-8.5
simulations listed on the vertical axis are classified onto historical simulations listed on the on the
horizontal axis.
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Appendix A List of CMIP6 models for training
and testing

Table A1 Reference CMIP6 models that are considered for the
classification of SLP. The ordering follows the research group name (2nd
column). The training runs are the first of available runs (in lexicographic
order). The test runs are the third in lexicographic order.

Model name Group name Training run Test run

BCC-CSM2-MR BCC r1i1p1f1 r3i1p1f1
FGOALS-g3 CAS r1i1p1f1 r4i1p1f1
CanESM5 CCCma r1i1p1f1 r2i1p1f1
CNRM-CM6-1 CNRM-CERFACS r1i1p1f2 r3i1p1f2
ACCESS-ESM1-5 CSIRO r1i1p1f1 r3i1p1f1
EC-Earth3 EC-Earth-Consortium r1i1p1f1 r4i1p1f1
INM-CM5-0 INM r1i1p1f1 r3i1p1f1
IPSL-CM6A-LR IPSL r1i1p1f1 r3i1p1f1
MIROC6 MIROC r1i1p1f1 r3i1p1f1
HadGEM3-GC31-LL MOHC r1i1p1f3 r3i1p1f3
MPI-ESM1-2-LR MPI-M r1i1p1f1 r3i1p1f1
MRI-ESM2-0 MRI r1i1p1f1 r2i1p1f1
CESM2 NCAR r1i1p1f1 r3i1p1f1
NorCPM1 NCC r1i1p1f1 r4i1p1f1
KACE-1-0-G NIMS-KMA r1i1p1f1 r3i1p1f1
NESM3 NUIST r1i1p1f1 r3i1p1f1
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Fig. A1 List of CMIP6 models that are available on the IPSL computing server (horizontal axis)
and number of runs per model. The red lines indicate the reference models that are used in this
study (in Table A1). The black lines are for models with more than 2 simulations and that are used
in the ”sorority” experiments. The blue lines are for models with 1 simulation and are not used in
this paper. The run of UKESM1-0-LL (bottom of the figure) was run by the NIMS-KMA group (who
produced the KACE-1-0-G runs).
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