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Abstract: Numerical simulations of nonlinear partial differential equations often involve solving
large nonlinear systems, for which Newton’s method is widely employed due to its fast convergence
near the solution. However, its performance can deteriorate in the presence of strong nonlinearities
or poor initial guesses. Nonlinear overlapping domain decomposition methods, such as RASPEN
[11] and Substructured RASPEN (SRASPEN) [5], have proven effective in addressing these chal-
lenges. Because SRASPEN reduces the problem size by restricting computations to a substructure,
it does not update the solution outside the substructure, so that no natural initial guesses for the
nonlinear local solution exists that might lead to additional inner subdomain nonlinear iterations or
even prevent the local solvers to converge. In this study, we analyze the convergence of RASPEN.
We show how domain decomposition improves the convergence rate of the Newton’s method by
highlighting the key role of the substructure on the global error contraction. Moreover, our analysis
provides insight into an inexpensive modification to SRASPEN that mitigates the lack of iterations
outside the substructure. The proposed variant significantly reduces computational cost while im-
proving overall efficiency compared to existing techniques in the literature. Numerical experiments
confirm the computational performance and robustness of the improved SRASPEN, establishing
it as a reliable approach for solving large-scale nonlinear systems.
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Analyse de convergence des préconditionneurs de
décomposition de domaine avec recouvrement pour

problèmes non linéaires
Résumé : Les simulations numériques d’équations aux dérivées partielles non linéaires im-
pliquent souvent la résolution de grands systèmes non linéaires, pour lesquels la méthode de
Newton est largement utilisée en raison de sa convergence rapide près de la solution. Cependant,
ses performances peuvent se détériorer en présence de fortes non-linéarités ou de mauvaises sup-
positions initiales. Les méthodes de décomposition de domaines non linéaires par chevauchement,
telles que RASPEN [11] et Substructured RASPEN (SRASPEN) [5], se sont avérées efficaces
pour relever ces défis. Comme SRASPEN réduit la taille du problème en limitant les calculs à
une sous-structure, il ne met pas à jour la solution en dehors de la sous-structure, de sorte qu’il
n’existe pas de suppositions initiales naturelles pour la solution locale non linéaire qui pourraient
conduire à des itérations non linéaires supplémentaires dans le sous-domaine intérieur ou même
empêcher les solveurs locaux de converger. Dans cette étude, nous analysons la convergence de
RASPEN. Nous montrons comment la décomposition du domaine améliore le taux de conver-
gence de la méthode de Newton en mettant en évidence le rôle clé de la sous-structure sur la
contraction de l’erreur globale. En outre, notre analyse donne un aperçu d’une modification
peu coûteuse de SRASPEN qui atténue le manque d’itérations en dehors de la sous-structure.
La variante proposée réduit considérablement les coûts de calcul tout en améliorant l’efficacité
globale par rapport aux techniques existantes dans la littérature. Des expériences numériques
confirment les performances de calcul et la robustesse de la SRASPEN améliorée, l’établissant
comme une approche fiable pour la résolution de systèmes non linéaires à grande échelle.

Mots-clés : Newton, préconditionneur non-linéaire, Schwarz additif



Convergence analysis of nonlinear preconditioner 3

1. Introduction. In many applications, numerical simulations involve solving a nonlinear
system of equations resulting from a discretisation technique (such as the finite element or finite
volume methods) of the associated nonlinear partial differential equations. Generally, Newton’s
method is considered the first choice for solving such problems due to its quadratic convergence
rate when the iterates enter the so called basin of attraction near the solution [20]. However, it can
exhibit slow transient nonlinear convergence in the early stages when the system is characterised
by strong nonlinearities and the initial guess is far from the basin of attraction. Acceleration
techniques, often referred to as preconditioning, have to be considered to improve the robustness
of the Newton iterations. Preconditioning is a general paradigm that appears in many contexts,
originally introduced in numerical linear algebra to speed-up the convergence of iterative methods
for the solution of linear systems or the computation of eigenpairs. The general idea is to
transform the original problem into a preconditioned one that is more easily amenable to the
solution by the selected numerical scheme. For large scale problems, in addition to reducing
the number of iterations, the so-called preconditioner is designed to exhibit natural parallelism
for enabling its implementation on parallel computing facilities. Well-known examples for the
solution of linear systems arising from the discretization of PDE are the domain decomposition
techniques [27, 29, 31], which will play a crucial role in the following.

In the nonlinear context, we aim to find the root u of F such that F (u) = 0 and precon-
ditioning consists in applying a nonlinear operator G to F , which transforms the problem into
one of two possible forms: F (G(v)) = 0 or G(F (v)) = 0, where G(0) = 0. The latter case
(G(F (v)) = 0) corresponds to left preconditioning where the new equation has the same solution
u as the original problem. In the former situation of right preconditioner, (F (G(v)) = 0), the
solution is related to the original one by a change of variables, u = G(v). In both cases, the
new nonlinear equation is constructed to have improved properties to allow Newton’s method
to converge more efficiently. This improvement is achieved when the operator G somehow ap-
proximates F−1, resulting in a transformed function that is closer to linear. As a consequence,
the Jacobian of the new system is closer to the identity matrix, which makes the solution of the
linear systems easier to handle at each step of Newton’s method. Right nonlinear precondition-
ing applies a change of variable using a nonlinear transformation. In [2] is shown that applying
Newton iteration to the preconditioned system essentially results in applying a Newton iteration
to the original system but moving the iterate at each iteration before computing the Newton step
(we refer to [2] for the technical details). Techniques based on this strategy are called nonlinear
elimination [18, 23, 24, 25]. Nonlinear variants of FETI-DP [15, 16] or BDDC [10, 26] were
shown to be effective for the solution of large nonlinear problems [21, 22].

In this work, we consider left preconditioning. This approach was first introduced in [3]
where the overlapping nonlinear additive Schwarz method was considered to enhance the inexact
Newton (IN) method [8, 9, 14, 20]. The resulting Additive Schwarz Preconditioned Inexact New-
ton’s method (ASPIN) has since evolved into the Restricted Additive Schwarz Preconditioned
Exact Newton (RASPEN) approach. RASPEN combines a restricted version of the parallel non-
linear Schwarz method with exact Newton iterations [11], improving both linear and nonlinear
convergence rates due to the availability of exact Jacobian information. Other strategies in-
volve employing advanced preconditioners, such as Dirichlet-Neumann methods, to develop the
Dirichlet-Neumann Preconditioned Exact Newton (DNPEN) method [5].

In their article on the substructured variant of RASPEN (SRASPEN) [4], the authors demon-
strate that the iterates of the RASPEN method, when restricted to the unknowns of the skeleton,
are identical to those generated by their SRASPEN method, which is defined only on the skele-
ton. The key advantage of SRASPEN lies in working with lower-dimensional spaces while still
requiring, like RASPEN, the resolution of nonlinear local problems within the subdomains, in-
cluding the internal vertices that do not belong to the skeleton. In this work, we show that,
RR n° 9575



4 E. M. Ettaouchi, L. Giraud, C. Kruse, N. Tardieu

for the RASPEN method, the convergence to the solution is as fast at interior vertices as it is
on the skeleton. This led us to develop a way to recover the interior iterates of RASPEN from
those of SRASPEN. As a result, we obtain highly effective initial guesses for the nonlinear local
problem resolutions required at each global nonlinear step. These initial guesses ensure that
the computations at the subdomain level start within the Newton’s method’s basin of attraction,
thereby enhancing the robustness of SRASPEN and significantly reducing its computational costs
compared to approaches proposed in the literature.

We begin in Section 2 by introducing the nonlinear Schwarz method and its variants, il-
lustrating their role as left preconditioners within the Newton’s method. Section 3 presents
a convergence analysis of RASPEN, establishing new bounds on both its pre-asymptotic and
asymptotic convergence regimes. Our findings reveal that the convergence for the unknowns
outside the skeleton is as fast as for those on the skeleton. This key observation motivates the
development of a novel strategy to construct effective initial guesses for the subdomain nonlin-
ear solves required at each SRASPEN iteration. As a result, we introduce a new SRASPEN
variant that combines the main advantages of both RASPEN and SRASPEN. Finally, Section 4
presents numerical experiments comparing the performance of RASPEN and the new enhanced
SRASPEN on test models, illustrating the improvements achieved.

2. Nonlinear Overlapping Schwarz Method.

2.1. Model Problem. Let us consider the following partial differential equation (PDE) on
a domain Ω: {

D(u) = 0 u ∈ H1 (Ω) ,

u = uD on ∂ΩD,

where D is a nonlinear differential operator, and uD represents the Dirichlet boundary condition
function on the domain boundary ∂ΩD. Let Ωh denote the finite element mesh of Ω with
element size h, and Vh the finite element space of dimension n associated with this mesh. We
seek a solution u∗

h ∈ Vh such that:∫
Ω

D(u∗
h) v dx = 0 ∀v ∈ Vh, (2.1)

u∗
h = uD on ∂ΩD. (2.2)

This system represents the variational formulation corresponding to the original problem. Pro-
jecting Equation (2.1) onto the function basis of Vh, while incorporating the Dirichlet boundary
condition (2.2), results in a nonlinear system expressed as:

F (u∗
h) = 0. (2.3)

Here, F is a nonlinear function representing the finite element residual, for which we aim to
find the root. For the remainder of the paper, we will omit the subscript h and denote u∗ as the
unique solution of (2.3) in the finite element space V .

2.2. Decomposition of the Domain. Let us begin by introducing the nonlinear overlap-
ping Schwarz method for the solution of (2.3). Let

(
Ω0

i

)
i∈J1,NK be a nonoverlapping partition of

Ω such that:  Ω =
N⋃
j=1

Ω0
j ,

Ω0
j ∩ Ω0

i = ∅ i ̸= j. Inria



Convergence analysis of nonlinear preconditioner 5

For brevity and clarity we will abuse the notation and employ Ω0
i to denote not only a subdomain

but also the mesh points defined on it. Based on this partitioning, we can define overlapping
subdomains by enlarging each of them to include (w.r.t. the connectivity graph) neighboring
nodes within a distance of δ×h, where δ represents the number of neighborhood levels considered.
This allows us to define a subdomain Ωδ

i with an overlap ξ = δ×h. Let V 0
i and V δ

i be respectively
the finite element discretization spaces on Ω0

i and Ωδ
i , we define respectively the prolongations

P 0
i : V 0

i −→ V , P δ
i : V δ

i −→ V such that:
V =

N⊕
j=1

P 0
i V

0
i ,

V =

N∑
j=1

P δ
i V

δ
i .

(2.4)

Given the prolongation operators P 0
i , P

δ
i , the restriction operators R0

i , R
δ
i are defined as their

respective adjoint operators that verify:
Rδ

iP
δ
i = IV δ

i
,

N∑
i=1

Dδ
iP

δ
i R

δ
i = IV ,

R0
iP

0
i = IV 0

i
,

N∑
i=1

P 0
i R

0
i = IV ,

where
(
Dδ

i

)
i∈J1,NK are V → V diagonal operators forming a partition of unity. From now on,

for ease of notation and reading, we will drop the superscript δ from any operator or quantity
associated with the overlapping subdomains. Having decomposed V into (Vi)i∈J1,NK (as in (2.4)),
we can define for each element u of V a local approximation to the original function F , denoted
F

(i)
u , that is given by:

F (i)
u : Vi −→ Vi,

vi 7−→ RiF (u− Pivi) .

With the local approximations
(
F

(i)
u

)
i∈J1,NK

, we seek to solve the following N subproblems:

∀i ∈ J1, NK, Find vi ∈ Vi such that: F (i)
u (vi) = 0Vi

. (2.5)

Let us first discuss the dependencies of these local solutions (vi)i∈J1,NK and then their existence
and uniqueness. In our notation, we indicated only the dependence on the subdomain through
the index i. However, since vi is a solution to F

(i)
u , which in turn depends on F and u, vi will

also depend on these two quantities. Thus, if we want to denote the process of finding these
local solutions as a function, we can denote it as vi = Ci (F, u), where the letter C is chosen to
indicate that vi is a correction. Nevertheless, is Ci, the function that maps F (V ) × V to Vi,
always defined for any function in F (V ) along with any element u in V ? The answer is no. Only
a sufficient condition on F

(i)
u∗ is given in [13], which states that its differential at 0Vi

is nonsingular.
This implies that RidF (u∗)Pi is nonsingular, where dF (u∗) denotes the differential of F at u∗.
This is a local existence condition, meaning that even if it is satisfied by F , Ci (F, u) exists and
is unique only in an open ball neighborhood U = B (u∗, r∗) of the solution u∗; hence, u needs to
RR n° 9575



6 E. M. Ettaouchi, L. Giraud, C. Kruse, N. Tardieu

be in U . Whenever we use the term Ci (F, u), we assume that RidF (u∗)Pi is nonsingular and
u ∈ U . By definition, Ci (F, u) satisfies the following equation:

RiF (u− PiCi (F, u)) = 0. (2.6)

From a finite element perspective, the process of finding Ci (F, u) corresponds to solving the
following system:

Find wi ∈ Vi, such that:
∫
Ω

DVi
(wi) vi dx = 0 ∀vi ∈ Vi,

wi = uD on ΓD
i = ∂Ωi ∩ ∂ΩD,

wi = u on Γint
i = ∂Ωi \ ∂ΩD,

(2.7)

where ΓD
i is the local boundary that corresponds to the natural Dirichlet boundary ∂ΩD,

Γint
i is the internal local boundary induced by the domain decomposition. The solution wi of

(2.7) is the locally corrected solution, and the local correction is simply defined as:

Ci (F, u) = Riu− wi.

The local corrections being defined, we define a nonlinear preconditioner referred to as PAS

representing the action of nonlinear additive Schwarz that is given by:

PAS (F, u) = u−
N∑
i=1

PiCi (F, u) .

A direct way to use PAS is in a fixed point iteration as follows:

uj+1 = PAS (F, uj) . (2.8)

When PAS is used in a fixed point iteration it is considered as a solver. However, in many
cases, it will not consist of a robust solver. For that reason, PAS is commonly considered as a
preconditioner in order to help improving the convergence of other solvers known to be more
robust; this will be the topic of the upcoming section. Both (Ci)i∈J1,NK and PAS depend on
F . Until now, we made this dependence explicit to emphasize that the nonlinear action of the
preconditioner PAS requires knowledge of the function F itself in addition to the element where
it will be applied. Thus, we write PAS (F, u) instead of PAS (F (u)), which is valid only in the
linear case. For the sake of clarity, we will keep this dependency implicit and simply write
Ci (u) = Ci (F, u) and PAS (u) = PAS (F, u).

2.3. Schwarz methods accelerated by Newton. In general, the use of nonlinear pre-
conditioners in fixed point iterations can lead to divergence or very slow convergence rates. To
mitigate this issue, an outer solver is often introduced to accelerate convergence, with the New-
ton’s method being a common choice. This method involves solving a new function associated
with the action of the fixed point iteration induced by the preconditioner. Consequently, the
original function F is replaced with a new one that depends on the preconditioner PAS and its
convergence properties. As recalled in the introduction, the first use of an outer solver for the
fixed point iteration associated with PAS used an inexact Newton’s method [3]. Later, the exact
Newton’s method was employed along with a restricted version of the Schwarz preconditioner
[11]. In the following sections, we will discuss each of these methods, providing the expressions
of their functions and Jacobians.

Inria



Convergence analysis of nonlinear preconditioner 7

2.3.1. Additive Schwarz Preconditioned Exact Newton (ASPEN). We now use the
nonlinear additive Schwarz preconditioner PAS in order to construct a new function denoted FAS

(which admits u∗ as a solution) on which applying Newton’s method would lead to a faster and
robust convergence. For that, FAS is defined by the action of the fixed point iteration induced
by PAS as follows:

FAS (u) = u− PAS (u) =

N∑
i=1

PiCi (u) .

Hence, we are now interested in solving the new nonlinear equation:

FAS (u) = 0V . (2.9)

It is straightforward to prove that u∗ is a solution to FAS (Theorem 5.4 in [3]). However, the
current analysis only establishes the uniqueness of u∗ within a limited neighborhood. Showing
global uniqueness for u∗ in the context of Equation (2.9) for any overlap size remains case
dependent. The approach of solving (2.9) using Newton’s method is referred to as ASPEN. This
method results in the following iterative process:

uj+1 = uj − (dFAS(uj))
−1 FAS (uj) , (2.10)

where dFAS denotes the differential operator of FAS. It is expressed in terms of local correction
differentials (dCi)i∈J1,NK as follows:

dFAS (u) =

N∑
i=1

PidCi (u) . (2.11)

Differentials of the corrections are analytically obtained by differentiation of Equation (2.6),
leading to:

RidF (u− PiCi (u)) (I − PidCi (u)) = 0Vi
,

RidF (u− PiCi (u))PidCi (u) = RidF (u− PiCi (u)) .

Since u ∈ U , the linear operator RidF (u− PiCi (u))Pi is invertible (see [13]). Denoting dFi :
u 7→ dF (u− PiCi (u)), we obtain:

dCi (u) = (RidFi (u)Pi)
−1

RidFi (u) . (2.12)

Now that we expressed all the differential operators of the corrections, the explicit expression of
dFAS (u) is achieved by replacing the expressions of (dCi)i∈J1,NK in (2.11) which leads to:

dFAS (u) =

N∑
i=1

Pi (RidFi (u)Pi)
−1

RidFi (u) . (2.13)

We can see that nonlinear Schwarz preconditioning results in a Jacobian, dFAS(u), expressed in
terms of the local operators RidFi(u)Pi, which are derived from dFi(u). These operators are
subdomain-dependent not only on the restriction and prolongation operators but also on dFi(u),
which corresponds to dF evaluated at a locally corrected position. This dependence on the
specific points where the Jacobians are evaluated is the major difference compared to applying
a linear additive Schwarz preconditioner to dF (u), where, in this case, all local operators will be
derived from the same global operator.
RR n° 9575



8 E. M. Ettaouchi, L. Giraud, C. Kruse, N. Tardieu

2.3.2. Restricted Additive Schwarz Preconditioned Exact Newton (RASPEN).
In [11], the authors considered an exact Newton approach with a restricted variation of FAS,
expressed as follows:

FRAS (u) =

N∑
i=1

P 0
i C

0
i (u) , (2.14)

where C0
i = R0

iPiCi represents the restricted local corrections. The proof of u∗ being a root of
FAS is based on the fact that the corrections are null at u∗. This will also be the case here,
because based on the expression of C0

i , it is null when Ci is null. This ensures that FRAS also
admits u∗ as a solution. The Jacobian in this case is automatically obtained from expressing
dC0

i = R0
iPidCi, hence its full expression is given by:

dFRAS (u) =

N∑
i=1

P̃i (RidFi (u)Pi)
−1

RidFi (u) ,

where P̃i = P 0
i R

0
iPi is the operator consisting of setting the values on the overlap of the subdo-

main to zero before prolongation to the global space. With the function and the Jacobian being
defined, the Newton iteration expresses:

uj+1 = uj − (dFRAS(uj))
−1 FRAS (uj) . (2.15)

The method is referred to as RASPEN. In the remainder of this work, we will focus specifically
on this method and adopt the simplified notation F = FRAS to ease notation.

2.3.3. Additive Schwarz Preconditioned Inexact Newton (ASPIN). We can also
solve (2.9) with an inexact Newton’s method involving the approximation:

∀i ∈ J1, NK, dFi (u) ≈ dF̂ (u) = dF

(
u−

N∑
i=1

PiCi (u)

)
.

This essentially removes the dependency of dFi specifically on the i-th subdomain correction and
chooses to express all the local parts of the Jacobian on the globally corrected approximation
u−

∑N
i=1 PiCi (u). This leads to an inexact Jacobian dF̂AS expressed as:

dF̂AS (u) =

(
N∑
i=1

Pi

(
RidF̂ (u)Pi

)−1

Ri

)
dF̂ (u).

dF̂AS (u) corresponds exactly to left preconditioning dF̂ (u) by a linear additive Schwarz precon-
ditioner. This method, referred to as ASPIN, was introduced in [3]. The Jacobian approximation
in this case does not lead to any computational savings; it mainly aims to recover the usual struc-
ture of the linear Schwarz preconditioning. Here, the point of evaluation involves the aggregation
of all the corrections but this has no additional cost since the term

∑N
i=1 PiCi (u) is computed

once as it corresponds to FAS (u).

3. Convergence Analysis. It has already been shown in [4] that the RASPEN precondi-
tioned function, F , can be formulated on a smaller subspace of V . This subspace is defined using
the mesh connectivity table, where the nodes adjacent to each overlapping subdomain are first
identified. By concatenating these subdomain neighboring nodes, we obtain what is referred to
as the skeleton of the volume. As shown in [4], if we restrict F to this skeleton and solve the

Inria



Convergence analysis of nonlinear preconditioner 9

corresponding low-dimensional problem, we expect to obtain the same iterates on the skeleton
as we would have by solving the full problem on the volume through F . This approach is known
as SRASPEN (Substructured RASPEN), a term that designates the skeleton as a substructure
of the global structure, which is the volume. However, in SRASPEN, since we operate only on
the skeleton, information about the rest of the volume is not computed during the iterations.
Although these values are not required to reach the solution, having a good approximation of
them would provide an effective initial guess for our nonlinear subdomain solvers. This ini-
tial guess, in turn, helps compute the corrections (Ci)1≤i≤N on each subdomain. As Newton’s
method is commonly used for solving subdomain problems, an initial guess that is close to the
solution is crucial—not only to ensure convergence but also to achieve the solution in few iter-
ations. Because the RASPEN iterates are defined on the full subdomains, they can be used as
an initial guess for solving the nonlinear local solution, allowing fewer nonlinear iterations than
what is required for SRASPEN, which has only the current iterate defined on the skeleton and
no guess for the internal unknowns. Hence, the aim of this section is to show that in RASPEN,
the approximation on the rest of the volume is at the same level of precision as on the skeleton,
which justifies its ability to accelerate the nonlinear local convergence. To show this, we shall
establish some inequalities where the error on the full volume will be bounded by the error on the
skeleton, both in the asymptotic and the pre-asymptotic phase. At the end of this section, we
will propose an additional step to add in SRASPEN in order to recover exactly the same iterates
as in RASPEN on the rest of the volume. In that case, SRASPEN will benefit from solving
a substructured linear system at each Newton’s step while converging in the same number of
nonlinear local iterations as RASPEN.

We shall consider the space V equipped with an inner product ⟨., .⟩ and denote by ∥.∥ its
induced norm. For example, we can take the H1 or L2 inner product. As we mentioned earlier,
the skeleton is composed of the neighboring nodes of each subdomain. Since these subdomain
neighboring nodes are not part of the subdomain but impact the correction associated with it, we
shall call them "ghost nodes". Thus, the subspace associated with the skeleton will be referred
to as the ghost subspace. Up until this point, this subspace was only defined geometrically
through the mesh in [4]. However, the rationale behind this geometrical choice was to identify
only the nodes on which there is a nonlinear dependence. Hence, we can reach this subspace in
an algebraic way by first defining, for each subdomain, a subspace where the dependence is linear
and using the sum of their orthogonal complements to characterize the subspace of nonlinear
dependence, that is the ghost subspace. We introduce the subspace Li of directions along which
local corrections evolve linearly within their associated nonoverlapping subdomain:

Li =
{
w ∈ V

∣∣∣ ∀v ∈ U,
(
R0

i − dC0
i (v)

)
w = 0V 0

i

}
. (3.1)

Since, from a geometrical perspective, we have identified the subdomain neighboring nodes as
the source of nonlinearities, can we prove that their corresponding directions are the
only ones missing from Li?

First, we can see from the expression of dCi (v) in (2.12) that dCi (v)Pi = IVi
, which directly

implies Im(Pi) ⊂ Li. Hence, the directions w associated with the subdomain nodes are in
Li. On the other hand, the complement subspace of Im(Pi), that is Im(IV − PiRi), consists of
directions w associated with nodes outside the overlapping subdomain, which satisfy R0

iw = 0V 0
i
.

Consequently, the condition for them to be in Li is dC0
i (v)w = 0V 0

i
for all v ∈ U . Given that

w ∈ Im(IV − PiRi), we are interested in the null space of dC0
i (v)(IV − PiRi), which is equal to

(RidFi(v)Pi)
−1

RidFi(v)(IV − PiRi). As a consequence, it corresponds to the null space of the
operator RidFi(v)(IV − PiRi). If we closely examine the latter, it represents the off-diagonal of
the subdomain part of dFi(v), characterized by zeros in the columns representing nodes that are
RR n° 9575



10 E. M. Ettaouchi, L. Giraud, C. Kruse, N. Tardieu

not neighbors to the subdomain. Consequently, the only directions that we cannot definitively
include in Li are the ones associated with the subdomain ghost nodes. Thus, we define V

(g)
i , the

local ghost subspace that characterizes these nodes, as the orthogonal complement of Li:

V
(g)
i = L⊥

i .

We define the global ghost subspace V (g) as the sum of the local ghost subspaces:

V (g) =

N∑
i=1

V
(g)
i . (3.2)

This indicates that the nonlinearities are restricted to V (g), which generally has a much smaller
dimension than V . By construction, the dimension of this subspace increases with respect to
the number of subdomains. We shall now assume that dim V (g) < n and consider the following
direct decomposition of the full space V :

V = V (g) ⊕ V (g)⊥ ,

where V (g)⊥ denotes the orthogonal complement subspace of V (g). We denote by Πg : V −→ V (g)

the orthogonal projection onto V (g). We also define the characteristic affine subspace V
(g)
∗,⊥

centered on the exact component of u∗ in V (g) and colinear to V (g)⊥ :

V
(g)
∗,⊥ = Πg (u

∗) + V (g)⊥ . (3.3)

Hence, we have defined all the subspaces that will characterize the behavior of F . In the following
section, we will show, through lemmas and theorems, some properties of the action of the function
F and its Jacobian on directions of the subspace V (g)⊥ , showing the impact of these properties
on the Newton iterator, and consequently, the convergence factor in both the pre-asymptotic and
asymptotic phases. In both cases, the global error of the Newton approximation at a given step
will be bounded by proportions of the error of the previous approximation restricted to V (g),
which is typically much smaller than the error on the entire space V .

Before proceeding to the next section, we clarify that while the existence of the local correc-
tions (Ci (u))1≤i≤N depends only on the component of u in V (g), and the domain of definition
of the RASPEN function should, in principle, include the entire subspace V (g)⊥ , we will keep
our domain of definition restricted to the ball U . This restriction accounts for the fact that the
nonlinear solver in each subdomain exhibits only local convergence: convergence occurs only if
the initial guess is sufficiently close to the solution.

3.1. RASPEN convergence analysis. With all the necessary tools now available, we will
analyze the convergence of the RASPEN method and we start by establishing a characterization
of the action of dF on elements of V (g)⊥ as shown in the following Lemma:

Lemma 3.1. Let u ∈ V , if u ∈ V (g)⊥ , then:

∀v ∈ U, dF (v)u = u.

That is, u is a fixed point for the Jacobian dF (v) at any element v of the ball U = B (u∗, r∗).
Inria



Convergence analysis of nonlinear preconditioner 11

Proof. Let u, v ∈ V,U

u ∈ V (g)⊥ =⇒ u ∈

(
N∑
i=1

V
(g)
i

)⊥

=⇒ u ∈ V
(g)⊥

i = Li ∀i ∈ J1, NK

=⇒ dC0
i (v)u = R0

i u (by definition of Li in (3.1)) ∀i ∈ J1, NK (3.4)

=⇒

(
N∑
i=1

P 0
i dC

0
i (v)

)
u =

(
N∑
i=1

P 0
i R

0
i

)
u

Hence, we obtain the final result:

∀v ∈ U dF (v)u = u.

The result of Lemma 3.1 establishes an important property of the subspace V (g)⊥ in regards of
the action of dF . It helps us to characterize the expression of the local corrections as follows:

Lemma 3.2. Let u,w ∈ U , where (u− w) ∈ V (g)⊥ . Then, we have:

C0
i (u) = C0

i (w) +R0
i (u− w) ∀i ∈ J1, NK, (3.5)

and consequently:

F (u) = F (w) + u− w. (3.6)

Proof. Let u,w ∈ U be such that:

(u− w) ∈ V (g)⊥ = 0V

(3.4)
=⇒ dC0

i (v) (u− w) = R0
i (u− w) ∀v ∈ U, ∀i ∈ J1, NK.

By choosing v as a convex combination of u and v such that v = w + t (u− w), t ∈ [0, 1], inside
the ball U , we have:

dC0
i (w + t (u− w)) (u− w) = R0

i (u− w) ∀t ∈ [0, 1] , ∀i ∈ J1, NK.

Denoting the function Ψi : t 7→ C0
i (w + t (u− w)), we have:

Ψ
′

i (t) = dC0
i (w + t (u− w)) (u− w) ∀t ∈ [0, 1] ,

Ψ
′

i (t) = R0
i (u− w) ∀t ∈ [0, 1] . (3.7)

Equation (3.7) itself justifies the integrability of all components of the function Ψ
′

i since each
component remains constant across the interval [0, 1], equaling the corresponding component of
R0

i (u− w). Consequently, we can safely integrate both sides of Equation (3.7) as follows:∫ 1

0

Ψ
′

i (t) dt =

∫ 1

0

R0
i (u− w) dt ∀i ∈ J1, NK,

Ψ(1)−Ψ(0) = R0
i (u− w) ∀i ∈ J1, NK,

C0
i (u)− C0

i (w) = R0
i (u− w) ∀i ∈ J1, NK,

C0
i (u) = C0

i (w) +R0
i (u− w) ∀i ∈ J1, NK.
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Hence, the expressions of the corrections and the expression of F are simply obtained by prolon-
gation and summing over the subdomains:

N∑
i=1

P 0
i C

0
i (u) =

N∑
i=1

P 0
i C

0
i (w) +

(
N∑
i=1

P 0
i R

0
i

)
(u− w) .

This concludes the proof :

F (u) = F (w) + u− w.

Lemma 3.2 has various consequences that are summarized in the following corollary:

Corollary 3.3. The following results are derived directly from Lemma 3.2:

∀u ∈ V
(g)
∗,⊥ ∩ U F (u) = u− u∗, (3.8)

∀u ∈ U, ∀v ∈ V (g)⊥s.t. (u+ v) ∈ U F (u+ v) = F (u) + v, (3.9)

∀u ∈ U, ∀v ∈ V (g)⊥s.t. (u+ v) ∈ U dF (u+ v) = dF (u) . (3.10)

Proof. Let u ∈ V
(g)
∗,⊥ ∩ U , then by definition of V (g)

∗,⊥ in (3.3), we have Πg (u) = Πg (u
∗) and

thus from Lemma 3.2 replacing w by u∗ we get the result (3.8):

F (u) = F (u∗) + u− u∗,

= u− u∗.

In the same manner, we obtain Equation (3.9) due to Πg (v) = 0V , ∀v ∈ V (g)⊥ . Equation
(3.10) is obtained by differentiating (3.9) with respect to u.

Let us now consider Φ the mapping that describes the (j + 1)-th Newton iteration defined
in Equation (2.15):

Φ (u) = u− (dF(u))−1 F (u) . (3.11)

We also define the convex subset Dg given by:

Dg = V
(g)
∗,⊥ ∩ U. (3.12)

Since Φ is a Newton’s method iterator, we know that dΦ (u∗) = 0 which ensures that close
enough to the solution and under some regularity assumptions, the convergence order will be
at least two (see Theorem 10.1.7 in [28]). However, when the initial guess is sufficiently far
from the solution, the convergence rate might be slow at the pre-asymptotic phase before the
basin of attraction is reached. For this reason, we will first establish a first order result where
the mapping Φ is a contraction and try to link for any iterate u(k) generated by Φ, the global
error on V , that is ∥u(k)− u∗∥, to the error restricted on V (g), that is ∥Πg

(
u(k) − u∗) ∥. For the

remainder of this work, we define the mapping V(g)
∗ that gives for any u ∈ U its closest element

on Dg. It is defined by:

V(g)
∗ : U −→ Dg, (3.13)

u 7−→ u−Πg (u− u∗) .

Inria
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Fig. 3.1: An illustration on R2 of the distance between u and V(g)
∗ (u) and of all subspaces and

the subsets involved in our convergence analysis.

In Figure (3.1), the distance between u and V(g)
∗ (u) is illustrated in R2, alongside the subspaces

and subsets introduced earlier. Consequently, the norm of the restricted error ∥Πg(u− u∗)∥ will
be referred to as the distance between u and V(g)

∗ (u): ∥u−V(g)
∗ (u)∥. We now proceed to establish

a characterization of the derivatives of Φ at any order, as described below:

Theorem 3.4. Let (v, w) ∈ U2 with (v − w) ∈ V (g)⊥ , and let h ∈ V be such that v + h and
w + h remain in U . If Φ is p-times Fréchet-differentiable in U , then we have:

∀k ∈ J0, pK, d(k)Φ(v + h) = d(k)Φ(w + h),

where d(k)Φ denotes the k-th derivative of Φ. In particular, this result holds for any (v, w) ∈ D2
g.

Proof. Let us consider k ∈ J0, pK, v and w in U and h any direction of V where ∥h∥ is
small enough so that v + h and w + h stay in U . Assuming that (v − w) ∈ V (g)⊥ , we have from
Equations (3.9) & (3.10) of Corollary 3.3, the following equations:

F (w + h+ (v − w)) = F (w + h) + v − w,

dF (w + h+ (v − w)) = dF (w + h) .
(3.14)

Also from Lemma 3.1 we have:

(dF (w + h))
−1

(v − w) = v − w. (3.15)

Developing the expression of Φ, leads to the following:

Φ (v + h) = v + h− (dF (v + h))
−1 F (v + h) ,

= v + h− (dF (w + h+ (v − w)))
−1 F (w + h+ (v − w)) ,

= v + h− (dF (w + h))
−1 F (w + h)− (dF (w + h))

−1
(v − w) .
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Injecting the Equation (3.15) leads us to the zero order result:

Φ (v + h) = Φ (w + h) . (3.16)

If p > 0, and since the zero order result holds for any direction h, then k successive differentiations
with respect to h of Equation (3.16) lead to the final result:

d(k)Φ (v + h) = d(k)Φ (w + h) .

Particularly, for any (v, w) ∈ D2
g , we have (v − w) ∈ V (g)⊥ and consequently the result.

This theorem proves that the derivatives of Φ at any order remain the same for any trans-
lation inside the ball U parallel to the subspace V (g)⊥ . This approach allows us to study the
contraction of the mapping Φ by considering the distance to the subset Dg rather than directly
to the fixed point u∗. The following theorem addresses this idea, suggesting that the distance
from the image of any element u under the mapping Φ to the fixed point u∗ is bounded by the
distance of u to the subset Dg, specifically ∥u−V(g)

∗ (u)∥, rather than by ∥u−u∗∥. Consequently,
in a region sufficiently close to the solution, where the operator norm of dΦ remains strictly less
than one, Φ acts as a contraction, drawing the approximation Φ(u) closer to u∗ than u is to Dg,
scaled by the contraction factor. Thus, the contraction of the current error, when restricted to
V (g), provides a bound on the error of the next approximation relative to the exact solution over
the global finite element space V . This means that in at most one step, the error on the volume
and particularly on the subdomains interior will be better than what we had only on the skeleton
in the previous iteration. This feature is what distinguishes RASPEN from classical Newton and
serves as a strong motivation to recover the values over the rest of the volume while solving only
on the skeleton, because they are very precise and will allow speeding-up the nonlinear local
solves. To sum up, the RASPEN iteration consists of a two-stage error reduction: the first stage
replaces the distance to u∗ with the distance to Dg, and the second stage applies the contraction
factor to this modified distance.

Theorem 3.5. If Φ is continuously Fréchet-differentiable on U , then for any factor 0 < c <

1, there exists rc > 0 such that for any u ∈ U with ∥u− V(g)
∗ (u) ∥ < rc, we have:

∥Φ (u)− u∗∥ ≤ c ∥u− V(g)
∗ (u) ∥ = c ∥Πg (u− u∗) ∥. (3.17)

Proof. Let u ∈ U and 0 < c < 1, we know that dΦ (u∗) = 0. Hence, by continuity of dΦ on
U , It exists a rc > 0 defined as follows:

rc = sup

{
0 < r < r∗

∣∣∣∣ max
v∈B̄(u∗,r)

∥dΦ (v) ∥ ≤ c

}
. (3.18)

Let us now assume that ∥u−V(g)
∗ (u) ∥ < rc, then by definition of rc there exists an intermediate

value ∥u− V(g)
∗ (u) ∥ < rintc ≤ rc such that:

max
v∈B̄(u∗,rint

c )
∥dΦ (v) ∥ ≤ c.

Let t ∈ [0, 1], by applying Theorem 3.4 for k = 1, v = V(g)
∗ (u) , w = u∗ and h = t

(
u− V(g)

∗ (u)
)
,

Inria
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we have:∥∥∥dΦ(V(g)
∗ (u) + t

(
u− V(g)

∗ (u)
))∥∥∥ =

∥∥∥dΦ(u∗ + t
(
u− V(g)

∗ (u)
))∥∥∥ ,

=⇒ max
v∈

[
V(g)

∗ (u),u
]∥dΦ (v) ∥ ≤ max

v∈B̄(u∗,rint
c )
∥dΦ (v) ∥,

(
with

[
u∗, u∗ +

(
u− V(g)

∗ (u)
)]
⊂ B̄

(
u∗, rintc

))
,

=⇒ max
v∈

[
V(g)

∗ (u),u
]∥dΦ (v) ∥ ≤ c.

Using the inequality of the mean-value theorem on the segment
[
V(g)
∗ (u) , u

]
, we obtain:∥∥∥Φ (u)− Φ

(
V(g)
∗ (u)

)∥∥∥ ≤ max
v∈

[
V(g)

∗ (u),u
]∥dΦ (v) ∥ ∥u− V(g)

∗ (u) ∥,

∥∥∥Φ (u)− Φ
(
V(g)
∗ (u)

)∥∥∥ ≤ c ∥u− V(g)
∗ (u) ∥.

V(g)
∗ (u) is in Dg, then from the result of Theorem 3.4 we have Φ

(
V(g)
∗ (u)

)
= Φ(u∗) = u∗. Thus,

we are able to reach the inequality of Theorem 3.5:

∥Φ (u)− u∗∥ ≤ c ∥u− V(g)
∗ (u) ∥.

Remark 1. We show below that the maximum of ∥dΦ (v)∥ on B̄ (u∗, r) will always be reached
in the affine subspace u∗ + V (g). We can prove that for any v of the ball B̄ (u∗, r), there exists a
vg in the same ball such that (vg − u∗) ∈ V (g) and dΦ (vg) = dΦ (v):

dΦ (v) = dΦ
(
V(g)
∗ (v) +

(
v − V(g)

∗ (v)
))

,

= dΦ
(
u∗ +

(
v − V(g)

∗ (v)
))

, ( using Theorem 3.4 ) ,

= dΦ (vg) ,

where vg − u∗ = v − V(g)
∗ (v) ∈ V (g). In other words, it is only the part of u∗ + V (g) within the

ball B̄ (u∗, r) controls the quality of the contraction (i.e. controls ∥dΦ∥).

Remark 2. Let us define for any u ̸= u∗ the factor γ(u) = ∥u−V(g)
∗ (u)∥

∥u−u∗∥ ≤ 1, which represents,

in a certain way, the inclination of u − u∗ from V
(g)
∗,⊥, and by considering a sequence

(
u(k)

)
k∈N

generated by the iterative process Φ converging to u∗ with
∥∥∥u0 − V(g)

∗ (u0)
∥∥∥ < rc. Then, we have

the following relationship:

∀k ∈ N ∥u(k+1) − u∗∥ ≤ c γk∥u(k) − u∗∥,

where γk = γ(u(k)). Consequently, it can be noted that the convergence is accelerated by the
factors (γk)k∈N. However, these factors may attain a value of one, resulting in some iterations
not being sped-up. Nevertheless, γk = 1 corresponds to ∥u(k)−V(g)

∗ (u(k))∥ = ∥u(k)−u∗∥ meaning
that the error is only on the subspace V (g) and (IV −Πg) (u− u∗) = 0. In practice, since the
error on V (g)⊥ is controlled by the error on V (g), ∥u(k) − V(g)

∗ (u(k))∥, in many cases, the latter
generates a non null error on V (g)⊥ , such that ∥ (IV −Πg)

(
u(k) − u∗) ∥ > 0 which prevents γk

from reaching a value of one.
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The next theorem will present the asymptotic version of Theorem 3.5. When the approximate
solution u is sufficiently close to the exact solution, it enters the Newton’s basin of attraction. In
this phase, we can still have the two-stage reduction described in Theorem 3.5, where the square
of the distance to u∗ is replaced by the square of the distance to Dg. This is more effective
because the reduction factor in that case will be squared. Consequently, the resulting distance,
weighted by a coefficient that depends on the operator norm of the second derivative at u∗, will
bound the error of the next approximation over the global finite element space V . Moreover,
we will show that in the basin of attraction and under a condition on the second derivative of
Φ at u∗, the distance of Φ (u) to u∗ on V (g)⊥ ,i.e., ∥ (IV −Πg) (Φ (u)− u∗) ∥, will not vanish

maintaining a minimum ratio of
∥∥∥u− V(g)

∗ (u)
∥∥∥2.

Theorem 3.6. If Φ is continuously Fréchet-differentiable on U , and twice Fréchet-differentiable
at u∗. Then, it exists a β > 0 and r > 0 such that:

∥Φ (u)− u∗∥ ≤ β
∥∥∥u− V(g)

∗ (u)
∥∥∥2 ∀u ∈ U s.t

∥∥∥u− V(g)
∗ (u)

∥∥∥ < r. (3.19)

If in addition, we have:

(IV −Πg) d
(2)Φ (u∗) (h) (h) ̸= 0 ∀h ∈ V (g)s.t. h ̸= 0. (3.20)

Then, it exists α ∈ ]0, β[, such that:

∥(IV −Πg) (Φ(u)− u∗)∥ ≥ α
∥∥∥u− V(g)

∗ (u)
∥∥∥2 ∀u ∈ U,

∥∥∥u− V(g)
∗ (u)

∥∥∥ < r. (3.21)

Proof. A general result is proven in Theorem 10.1.7 of [28]. In the same spirit, we will use
the properties of the RASPEN mapping to derive the specific result of Theorem 3.6.

Let ϵ > 0 and H be the following error function:

H (u) = dΦ (u)− dΦ (u∗)− d(2)Φ (u∗) (u− u∗) .

By definition of d(2)Φ (u∗), we know that it exists a rϵ > 0 such that:

∥H (v)∥ ≤ ϵ ∥v − u∗∥ , ∀v ∈ B (u∗, rϵ) . (3.22)

We shall now consider u ∈ U such that
∥∥∥u− V(g)

∗ (u)
∥∥∥ < rϵ and start developing the expression

of ∥Φ (u)− u∗∥ in the subsequent manner:

∥Φ (u)− u∗∥ =
∥∥∥Φ (u)− Φ

(
V(g)
∗ (u)

)∥∥∥ ,
(Using Φ

(
V(g)
∗ (u)

)
= Φ(u∗) = u∗ from Theorem 3.4)

=

∥∥∥∥∥∥
1∫

0

dΦ
(
V(g)
∗ (u) + t

(
u− V(g)

∗ (u)
))(

u− V(g)
∗ (u)

)
dt

∥∥∥∥∥∥ ,
(Using the same technique in the proof of Lemma 3.2 through the function Ψ)

=

∥∥∥∥∥∥
1∫

0

[
dΦ
(
V(g)
∗ (u) + t

(
u− V(g)

∗ (u)
))
− dΦ (u∗)

] (
u− V(g)

∗ (u)
)
dt

∥∥∥∥∥∥ ,
( Because dΦ (u∗) = 0V→V ) .
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Given that both u∗ and V(g)
∗ (u) are in Dg, based on Theorem 3.4 with h = t

(
u− V(g)

∗ (u)
)
, we find

that dΦ
(
V(g)
∗ (u) + t

(
u− V(g)

∗ (u)
))

= dΦ
(
u∗ + t

(
u− V(g)

∗ (u)
))

. Consequently, ∥Φ (u)− u∗∥
writes:

∥Φ (u)− u∗∥ =

∥∥∥∥∥∥
1∫

0

[
dΦ
(
u∗ + t

(
u− V(g)

∗ (u)
))
− dΦ (u∗)

] (
u− V(g)

∗ (u)
)
dt

∥∥∥∥∥∥ ,
=

∥∥∥∥∥∥
1∫

0

[
t d(2)Φ (u∗)

(
u− V(g)

∗ (u)
)
+H

(
u∗ + t

(
u− V(g)

∗ (u)
))](

u− V(g)
∗ (u)

)
dt

∥∥∥∥∥∥ ,
(3.23)

≤
1∫

0

t
∥∥∥d(2)Φ (u∗)

(
u− V(g)

∗ (u)
)(

u− V(g)
∗ (u)

)∥∥∥+
∥∥∥H (u∗ + t

(
u− V(g)

∗ (u)
))∥∥∥∥∥∥u− V(g)

∗ (u)
∥∥∥ dt.

Since
∥∥∥u− V(g)

∗ (u)
∥∥∥ < rϵ then u∗ + t

(
u− V(g)

∗ (u)
)

is in the ball B (u∗, rϵ), hence from Equation
(3.22) we have:

∥∥∥H (u∗ + t
(
u− V(g)

∗ (u)
))∥∥∥ ≤ tϵ

∥∥∥u− V(g)
∗ (u)

∥∥∥ .

Injecting this result in the expression of the current upper bound of ∥Φ (u)− u∗∥, leads us to:

∥Φ (u)− u∗∥ ≤
1∫

0

t
∥∥∥d(2)Φ (u∗)

(
u− V(g)

∗ (u)
)(

u− V(g)
∗ (u)

)∥∥∥+ tϵ
∥∥∥u− V(g)

∗ (u)
∥∥∥2 dt, (3.24)

∥Φ (u)− u∗∥ ≤ 1

2

(∥∥∥d(2)Φ (u∗)
∥∥∥+ ϵ

)∥∥∥u− V(g)
∗ (u)

∥∥∥2 . (3.25)

We established a flexible upper bound that depends on ϵ, and by taking any value of this ϵ the
inequality (3.19) is proven. Now, assuming the condition (3.20) and going back to Equation
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(3.23), but considering this time ∥(IV −Πg) (Φ(u)− u∗)∥, we have:

∥(IV −Πg) (Φ(u)− u∗)∥

=

∥∥∥∥∥∥
1∫

0

[
t (IV −Πg) d

(2)Φ (u∗)
(
u− V(g)

∗ (u)
)
+ (IV −Πg)H

(
u∗ + t

(
u− V(g)

∗ (u)
))]

(
u− V(g)

∗ (u)
)
dt
∥∥∥ ,

≥
1∫

0

t dt
∥∥∥(IV −Πg) d

(2)Φ (u∗)
(
u− V(g)

∗ (u)
)(

u− V(g)
∗ (u)

)∥∥∥
−

∥∥∥∥∥∥
1∫

0

H
(
u∗ + t

(
u− V(g)

∗ (u)
))(

u− V(g)
∗ (u)

)
dt

∥∥∥∥∥∥ ,
≥ 1

2

∥∥∥(IV −Πg) d
(2)Φ (u∗)

(
u− V(g)

∗ (u)
)(

u− V(g)
∗ (u)

)∥∥∥
−

1∫
0

∥∥∥H (u∗ + t
(
u− V(g)

∗ (u)
))∥∥∥∥∥∥u− V(g)

∗ (u)
∥∥∥ dt,

≥ 1

2

∥∥∥(IV −Πg) d
(2)Φ (u∗)

(
u− V(g)

∗ (u)
)(

u− V(g)
∗ (u)

)∥∥∥− ϵ

2

∥∥∥u− V(g)
∗ (u)

∥∥∥2 . (3.26)

From the condition (3.20) we have the following property:

∥h∥2 (IV −Πg) d
(2)Φ (u∗) (h0) (h0) ̸= 0, ∀h ∈ V (g), h ̸= 0,

where h0 = 1
∥h∥h is an element of the unity sphere S (0V , 1) and the subspace V (g). Since

S (0V , 1)∩ V (g) is a compact ( intersection between the compact S (0V , 1) and the closed V (g) ),
then the continuous function h0 7→

∥∥(IV −Πg) d
(2)Φ (u∗) (h0) (h0)

∥∥ attains a lower bound m > 0

on S (0V , 1) ∩ V (g). Consequently, we have:∥∥∥(IV −Πg) d
(2)Φ (u∗) (h) (h)

∥∥∥ ≥ m ∥h∥2 ∀h ∈ V (g). (3.27)

We know that u − V(g)
∗ (u) is in V (g), so we can apply the result of (3.27) with h = u − V(g)

∗ (u)
and inject it on the lower bound estimate (3.26) with ϵ = m

2 :

∥(IV −Πg) (Φ(u)− u∗)∥ ≥ 1

4
m
∥∥∥u− V(g)

∗ (u)
∥∥∥2 . (3.28)

Finally, by considering α = 1
4m,β = 1

2

∥∥d(2)Φ (u∗)
∥∥+α and r the distance associated with ϵ = m

2 ,
we directly obtain the result of Theorem 3.6.

In the proof of Theorem 3.6, we selected a specific value for the variable ϵ to obtain a pair
(α, β) satisfying the inequalities. However, depending on the properties of Φ there might be an
optimal choice of ϵ that can keep the size of the domain r sufficiently large while maximizing α

β ,
as we will later see the importance of this ratio.

This asymptotic version indicates that, sufficiently close to the solution, the pondering coef-
ficient c defined in Theorem 3.5—which contracts the previous error on the ghost subspace V (g)
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to bound the current error on the global space—improves as the solution is approached. This
improvement reduces any potential gap between the errors on V (g) and V (g)⊥ , thereby reinforc-
ing the earlier conclusion on the high accuracy of the values outside the skeleton. In the sequel,
we propose a method to recover these values.

We want to see the effect of Theorem 3.6 on the converging sequences generated by the New-
ton mapping Φ. Hence, the next corollary shows the convergence quotient of a sequence starting
in the basin of attraction highlighting the acceleration of the inclination factors squared γ2

k that
are proven to be strictly bounded from one under the condition (3.20). We also highlight that,
while we consider a sequence starting within the basin of attraction, our analysis also applies to
any other converging sequence generated by Φ that did not originate in the basin but is examined
from the moment it enters it.

Corollary 3.7. Let
(
u(k)

)
k∈N be a sequence generated by the iterative process Φ that

converges to u∗. Then, if the initial guess is close enough to the solution we have:∥∥∥u(k+1) − u∗
∥∥∥ ≤ β

∥∥∥u(k) − V(g)
∗ (u(k))

∥∥∥2 = βγ2
k

∥∥∥u(k) − u∗
∥∥∥2 .

Where β is the constant defined in Theorem 3.6 and γk in Remark 2. If the condition (3.20)

holds, then the sequence (γk)k∈N∗
is bounded above by

√
1−

(
α
β

)2
, with α the constant defined

also in Theorem 3.6.

Proof. Let r be the distance defined in Theorem 3.6 and
(
u(k)

)
k∈N a sequence generated by

the iterative process Φ. For an initial guess verifying:∥∥∥u(0) − V(g)
∗

(
u(0)

)∥∥∥ < min

(
r,

1

β

)
.

With a recursive process, we can prove that
∥∥∥u(k) − V(g)

∗
(
u(k)

)∥∥∥ is decreasing and thus we can

apply the result of Theorem 3.6 for every u(k):∥∥∥Φ(u(k)
)
− u∗

∥∥∥ ≤ β
∥∥∥u(k) − V(g)

∗ (u(k))
∥∥∥2 ,∥∥∥u(k+1) − u∗

∥∥∥ ≤ β
∥∥∥u(k) − V(g)

∗ (u(k))
∥∥∥2 ,∥∥∥u(k+1) − u∗

∥∥∥ ≤ β γ2
k

∥∥∥u(k) − u∗
∥∥∥2 .

And if the condition (3.20) holds, we also have:∥∥∥(IV −Πg)
(
u(k+1) − u∗

)∥∥∥ ≥ α
∥∥∥u(k) − V(g)

∗

(
u(k)

)∥∥∥2 .
Let us now write the expression of γ2

k+1 as follows:

γ2
k+1 =

∥∥∥u(k+1) − V(g)
∗
(
u(k+1)

)∥∥∥2∥∥u(k+1) − u∗
∥∥2 ,

γ2
k+1 =

∥∥∥u(k+1) − V(g)
∗
(
u(k+1)

)∥∥∥2∥∥∥u(k+1) − V(g)
∗
(
u(k+1)

)∥∥∥2 + ∥∥(IV −Πg)
(
u(k+1) − u∗

)∥∥2 .
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The function x 7→ x

x+∥(IV −Πg)(u(k+1)−u∗)∥2 is increasing in ]0,+∞[ and since we know that:


∥∥∥(IV −Πg)

(
u(k+1) − u∗

)∥∥∥2 ≥ α2
∥∥∥u(k) − V(g)

∗ (u(k))
∥∥∥4 ,

∥∥∥u(k+1) − V(g)
∗

(
u(k+1)

)∥∥∥2 = γ2
k+1

∥∥∥u(k+1) − u∗
∥∥∥2 ≤ β2γ2

k+1

∥∥∥u(k) − V(g)
∗ (u(k))

∥∥∥4 .
Injecting these two inequalities in the expression of γ2

k+1, we obtain an upper bound on γk+1 in
the subsequent manner:

γ2
k+1 ≤

β2γ2
k+1

β2γ2
k+1 + α2

,

1 ≤ 1

γ2
k+1 +

(
α
β

)2 , (Discarding absolute convergence scenario γk+1 = 0)

γk+1 ≤

√
1−

(
α

β

)2

.

Thus, the sequence (γi)i∈N∗
is bounded above by the term

√
1−

(
α
β

)2
.

Discussion:

The factor α
β gives an idea about the efficiency of the method: the closer to one, the better

the rate of convergence is. The latter represents the worst case scenario of the error ratio on
V (g)⊥ over the global error on V . Consequently, when the error is mainly located out of the
ghost subspace V (g), the convergence gets faster compared to Newton’s method applied directly
on F . We are aware that the condition (3.20) cannot be checked in practice, but it still provides
a theoretical understanding of the factors that influence the acceleration of the process. In
particular, the error in the subspace V (g) controls the error in its orthogonal complement. As
long as the error remains significant in the latter (α is relatively large), the inclination factors
will be smaller, making the acceleration more favorable. In other words, the error restricted to
V (g) governs the nonlinearities (the image of d(2)Φ (u∗)) on both V (g) and V (g)⊥ , and when more
of it is generated on V (g)⊥ than in V (g), we achieve lower values of γ(u).

Now, that we have some insight into how the nonlinear Schwarz method accelerates Newton’s
method, let us discuss the coefficient β. It is, in fact, related to the operator norm of d(2)Φ(u∗),
which is different from what we would get with the second derivative of the mapping induced
by Newton’s method applied to the unpreconditioned function F , that we can reference here by
β′. Therefore, it is possible that by preconditioning, we end up with β > β′. This may result in
some cases, with a well-chosen initial guess, where one converges faster in the unpreconditioned
approach than in the preconditioned one. However, since the potential downgrade concerns a
constant and the upgrade relies on the factors γk that may reach values close to zero, there will
always be a starting point zone where RASPEN is better or similar to the standard approach.
The bottom line here is that with the results we show, we cannot ensure that the error bound
of this preconditioned approach will always be better than the one obtained from the standard
approach. We may encounter special cases where the preconditioning negatively affects the
nonlinear convergence rate. In practice, we are interested in high-scale discretized PDEs where
generally the ghost subspace is of a much lower dimension compared to the global finite element
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space. By leveraging the mismatching scales in terms of dimensions, we usually encounter a very
small γk that mitigates any potential increase in β compared to β′.

3.2. Substructured RASPEN analysis. Let us consider w = w⊥ +wg an element of U ,
where w⊥ and wg are respectively its components on V (g)⊥ and V (g). Based on w⊥, we are going
to define a domain on which the substructured version of F will be defined. We shall denote this
domain by K and define it as follows:

K =
{

vg ∈ V (g)
∣∣∣ w⊥ + vg ∈ U

}
(3.29)

Hence, K is an open convex subset of V (g) on which it is possible to differentiate. Thus, the
substructured function and its corresponding Jacobian are defined as follows:

F (g) : K −→ V (g), dF (g) (vg) : V
(g) −→ V (g), (3.30)

vg 7−→ Πg (F (w⊥ + vg)) , hg 7−→ Πg (dF (w⊥ + vg)hg) .

The function F (g) is defined on the set K, which is a subset of V (g). Consequently, its elements
will be stored in much smaller vectors compared to V . The Jacobian at any element vg ∈ K maps
from V (g) to V (g), resulting in a matrix whose size corresponds to the dimension of V (g). Despite
this, both the substructured function and its Jacobian inherently involve the fine-level function
and Jacobian in their formulations. Therefore, the primary advantage lies in the reduced storage
requirements for the iterates and the residuals, as well as a smaller Krylov subspace basis to or-
thogonalize when solving the linear systems. In the remaining of this section, we will introduce
some properties of the substructured approach.
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Invertibility of the substructured Jacobian:

Newton method applied to the substructured function F (g) will always be well-posed as long
as it is well-posed for F , i.e., dF (v) is invertible for any element v ∈ U . We shall prove that
dF (g) (vg) is also invertible for any vg ∈ K:

Proposition 3.8. Assuming that for any v ∈ U , dF (v) is invertible. Then, dF (g) is also
invertible on K that is:

Ker
(
dF (g) (vg)

)
= {0V } , ∀vg ∈ K. (3.31)

Proof. Let (hg, vg) in
(
V (g),K

)
and v = w⊥ + vg, we have:

dF (g) (vg)hg = 0V =⇒ Πg (dF (v)hg) = 0V ,
(
By definition of dF (g) (vg)

)
=⇒

{
Πg (dF (v)hg) = 0V ,

dF (v)
2
hg = dF (v)hg,

(Using Lemma 3.1 with u = dF (v)hg)

=⇒
{

Πg (dF (v)hg) = 0V ,
dF (v)hg = hg,

=⇒ Πg (hg) = 0V ,

=⇒ hg = 0V ,
(
Since hg ∈ V (g)

)
.

Thus, dF (g) (vg) is invertible, allowing us to safely define the substructured Newton mapping
Φ(g), which is defined for every element vg ∈ K, as follows:

Φ(g)(vg) = vg −
(
dF (g) (vg)

)−1

F (g) (vg) .

Equivalence between Newton and substructured Newton:

Next, we will show the following relationship between the RASPEN mapping Φ and the
SRASPEN mapping Φ(g):

Proposition 3.9. Let vg ∈ K, we have:

Φ(g) (vg) = Πg (Φ (w⊥ + vg)) (3.32)

Proof. Let vg ∈ K and v = w⊥ + vg. In [4] this property was proven for a prolongation to
the volume with zero i.e. w⊥ = 0 . We shall recall the proof for any w⊥ ∈ V (g)⊥ starting from
the definition of Φ(v):

Φ (v) = v − (dF (v))
−1 F (v) ,

dF (v) (v − Φ (v)) = F (v) .

We decompose v − Φ(v) into two orthogonal components using the projection operator Πg:

dF (v) (Πg (v − Φ (v)) + (IV −Πg) (v − Φ (v))) = F (v) ,

dF (v)Πg (v − Φ (v)) + dF (v) (IV −Πg) (v − Φ (v)) = F (v) .

Inria



Convergence analysis of nonlinear preconditioner 23

From Lemma 3.1, we have dF (v) (IV −Πg) = (IV −Πg) leading to:

dF (v)Πg (v − Φ (v)) + (IV −Πg) (v − Φ (v)) = F (v) .

We apply Πg on both sides and because Πg (IV −Πg) = 0V →V , we get:

Πg (dF (v)Πg (v − Φ (v))) = Πg (F (v)) ,

dF (g) (vg) [Πg (v)−Πg (Φ (v))] = F (g) (vg) ,

vg − dF (g) (vg)
−1 F (g) (vg) = Πg (Φ (v)) , ( Πg (v) = vg ) ,

Φ(g) (vg) = Πg (Φ (w⊥ + vg)) .

This concludes the proof.

In terms of converging sequences generated by the mappings Φ and Φ(g), this property
ensures that their corresponding iterates have the same values on the subspace V (g), that is
for any sequence

(
u(k)

)
k∈N generated by Φ, the sequence

(
u
(k)
g

)
k∈N

generated by Φ(g) with the

initial guess u
(0)
g such that u

(0)
g = Πg

(
u(0)

)
, verifies u

(k)
g = Πg

(
u(k)

)
for any k ∈ N. We can

obtain this result recursively as follows:

u(k)
g = Πg

(
u(k)

)
=⇒ Πg

(
w⊥ + u(k)

g

)
= Πg

(
u(k)

)
,

=⇒ Φ
(
w⊥ + u(k)

g

)
= Φ

(
u(k)

)
, ( Using Theorem 3.4 )

=⇒ Πg

(
Φ
(
w⊥ + u(k)

g

))
= Πg

(
u(k+1)

)
,

=⇒ Φ(g)
(
u(k)
g

)
= Πg

(
u(k+1)

)
, (Using Equation (3.32))

=⇒ u(k+1)
g = Πg

(
u(k+1)

)
. (3.33)

Consequently, we can now work only on the function F (g) to obtain an approximation on V (g).
Then, when the latter becomes sufficiently accurate, obtain a global approximation through non-
linear local solves.

Choice of w⊥ for a better performance:

Until now, the choice of w⊥ did not matter in the proof of equivalence between Newton
and substructured Newton. From a theoretical point of view, it is the case, but when it comes
to practise, the choice of w⊥ is crucial. Indeed, for a chosen nonlinear solver of the nonlinear
local problems, the quality of the local initial guess depends on w⊥, which makes it control the
number of iterations needed to obtain the local corrections or even ensure the convergence of the
nonlinear local solver. Hence, we need to choose w⊥ as accurate as possible. Since the iterates
values of the substructured sequence are the same for any w⊥, we can choose a different w⊥ on
each iteration that we denote by w

(k)
⊥ and we will denote the full iterates associated with the

substructured Newton as:

v(k) = w
(k)
⊥ + u(k)

g . (3.34)

For any k ∈ N∗, the value of w(k)
⊥ will be determined by one of the subsequent choices:
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• Strategy 1: First initial guess initialization (used in [4]).

w
(k)
⊥ = (IV −Πg)u

(0).

• Strategy 2: Recovering the action of the nonlinear preconditioner (suggested
in [4]).

w
(k)
⊥ = (IV −Πg)

(
v(k−1) −F

(
v(k−1)

))
,

where v(k) is defined in (3.34).

• Strategy 3: Recovering the Newton iterate (our proposition).

w
(k)
⊥ = (IV −Πg)

(
v(k−1) −F

(
v(k−1)

)
− dF

(
v(k−1)

)
d(k)g

)
, (3.35)

where d
(k)
g = u

(k)
g − u

(k−1)
g is the substructured Newton update, corresponding to the

values update obtained on the skeleton.
The first strategy follows the method used in [4], where the component of the solution on

V (g)⊥ is set to the initial guess u(0) (which is usually zero when no prior approximation of the
solution is available at the start), thus, stays constant throughout the iterations. Although this
approach is straightforward to implement, it carries the risk of not enabling the convergence
of some nonlinear local problems. Even when convergence is achieved, many nonlinear local
iterations may be required to reach the solution. This issue can persist throughout all the
nonlinear global Newton iterations, as no significant improvement is observed as the solution is
approached.

The second strategy also mentioned in [4] involves initializing the local solvers with the
action of the nonlinear preconditioner from the previous step, which is available through the
function image of the previous iterate. By using this approach, we can improve the performance
of the nonlinear local solver, as the initial guess becomes more accurate with each outer Newton
iteration, reducing the number of iterations that the nonlinear local solver requires. However, this
method is still not as effective as the approximation obtained when solving with the full Newton
mapping, i.e., RASPEN, because the approximation provided by the nonlinear preconditioner
accelerated by Newton’s method is generally more accurate than its non-accelerated version,
especially when Newton’s method reaches quadratic convergence.

We propose a third strategy, which allows us to recover the RASPEN iterates on the entire
domain so that the values associated with interior domain unknowns can be used to define the
initial guesses for the nonlinear local subdomain solvers in the next SRASPEN iteration. As we
can see in Equation (3.35), at the end of iteration k − 1, d(k)g is available. Since F (g)

(
u
(k−1)
g

)
and dF (g)

(
u
(k−1)
g

)
have been computed during the k − 1 iteration, F

(
v(k−1)

)
and dF

(
v(k−1)

)
are also accessible by definition of F (g) and dF (g). Therefore, this update is feasible once the
(k − 1)-th iteration is complete, allowing us to define a very good initial guess for the nonlinear
local solves of the k-th iteration. We next prove that the third choice enables us to recover the
full iterates of the fine-level Newton:
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Proposition 3.10. Let
(
u(k)

)
k∈N and

(
u
(k)
g

)
k∈N

be two sequences generated, respectively

by the RASPEN mapping Φ and the SRASPEN mapping Φ(g), such that the following initial
condition is satisfied:

v(0) = w
(0)
⊥ + u(0)

g = u(0). (3.36)

Then, with the definition (3.35) of w(k), the sequence v(k) = w
(k)
⊥ + u

(k)
g is equivalent to u(k),

meaning that:

v(k) = u(k), ∀k ∈ N. (3.37)

Proof. We will demonstrate recursively that v(k) = u(k) for any k ∈ N. By the assump-
tion (3.36), we have v(0) = u(0). Let k ∈ N∗, we shall assume that v(k−1) = u(k−1) and prove
v(k) = u(k). We know from the result (3.33) that for any j ∈ N, u(j)

g = Πg

(
u(j)

)
. Thus, if the

iterates have this property, their corresponding updates
(
d(j)
)
j∈N∗

will maintain it as well and
particularly at the k-th iteration:

d(k)g = Πg

(
d(k)

)
=⇒ d(k) = d(k)g + d

(k)
⊥ , with d

(k)
⊥ = (I −Πg)

(
d(k)

)
,

=⇒ dF
(
u(k−1)

)
d(k) = dF

(
u(k−1)

)
d(k)g + dF

(
u(k−1)

)
d
(k)
⊥ .

We know that the Newton update d(k) verifies dF
(
u(k−1)

)
d(k) = −F

(
u(k−1)

)
, and also from

Lemma 3.1, we have dF(u(k−1)) d
(k)
⊥ = d

(k)
⊥ . Consequently:

−F
(
u(k−1)

)
= dF

(
u(k−1)

)
d(k)g + d

(k)
⊥ ,

d
(k)
⊥ = (I −Πg)

(
−F

(
u(k−1)

)
− dF

(
u(k−1)

)
d(k)g

)
.

Now, we use the expression of w(k)
⊥ in (3.35) where v(k−1) is replaced by u(k−1), which leads to:

d
(k)
⊥ = w

(k)
⊥ − (I −Πg)

(
u(k−1)

)
,

w
(k)
⊥ = (I −Πg)

(
d(k) + u(k−1)

)
,

w
(k)
⊥ = (I −Πg)

(
u(k)

)
,

v(k) = (I −Πg)
(
u(k)

)
+ u(k)

g ,

v(k) = u(k).

This concludes the proof of the equivalence between the full iterates of RASPEN and SRASPEN
with an initial guess of the third strategy.

With this option, we will be able to initialize the nonlinear local problems accurately, as in
RASPEN, while also benefiting from solving a smaller linear system on the skeleton instead of
the volume. Additionally, we highlight that the formulation of the third option is very efficient,
requiring minimal extra computational cost and no additional memory storage, as the values
will be distributed and stored directly in the local vectors corresponding to the solutions of the
subdomains nonlinear problems. Below, an algorithm for the third strategy is provided:
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Algorithm 1 SRASPEN

1: v(0) = u(0)

2: u
(0)
g = Πg

(
u(0)

)
3: for k = 0 until convergence do
4: Compute F

(
v(k)

)
5: Deduce F (g)

(
u
(k)
g

)
as Πg

(
F
(
v(k)

))
6: Compute action of dF

(
v(k)

)
7: Deduce action of dF (g)

(
u
(k)
g

)
as dF (g)

(
u
(k)
g

)
hg = Πg

(
dF
(
v(k)

)
hg

)
, ∀hg ∈ V (g)

8: Solve dF (g)
(
u
(k)
g

)
d
(k)
g = −F (g)

(
u
(k)
g

)
, a linear system on V (g) (on the skeleton)

9: Update u
(k+1)
g ←− u

(k)
g + d

(k)
g

10: Update v(k+1) ←− v(k) + d
(k)
g −F

(
v(k)

)
− dF

(
v(k)

)
d
(k)
g

11: end for

4. Numerical Illustrations.

4.1. Test Models. To evaluate the performance of the numerical convergence properties of
RASPEN and SRASPEN and for the sake of comparison with already published results on these
methods we consider two academic problems. The first problem, also considered in [4, 11], is a
1D Forchheimer porous media problem. The second model problem, borrowed from [4], is a 2D
nonlinear diffusion problem. All convergence histories presented in the numerical experiments
correspond to the relative error of the preconditioned function on the y-axis, defined at the k-th
step as:

Relative error =

∥∥F (u(k)
)∥∥∥∥F (u(0)
)∥∥ , (4.1)

where u(k) represents the iterate at the k-th step. The threshold for the stopping criterion on the
relative error defined by Equation (4.1) is set to 10−10 for the Forchheimer example. In order to
illustrate the nonlinear slow pre-asymptotic phase of classical Newton (which, in our case, will
manifest in the nonlinear local solvers), we choose an initial guess with a large initial norm, i.e.,
∥F(u(0))∥, and consequently set a much smaller threshold of 10−20 for the nonlinear diffusion
problem.

Since we intend to illustrate the impact of the initial guess chosen for the solution of the
nonlinear local problems, we define a different stopping criterion for the nonlinear local solvers
that is independent from the initial guess. Consequently the stopping criterion for the nonlinear
local solver is defined by a threshold on the absolute error associated with the local approximation
functions F

(i)

u(k) when solving the subproblems (2.5). This threshold is set to 10−12 for the
Forchheimer case and 10−16 for the nonlinear diffusion problem. On the latter example, during
the early stages when the initial guess is still far from the solution, the nonlinear local solver
may stagnate. In such cases, convergence is determined based on a small solution step criterion.
Finally, the global linear system to solve at each step is solved by GMRES [30] where the relative
stopping criteria is 10−8 for the Forchheimer problem and 10−12 for the nonlinear diffusion
problem.

The code used in this case is implemented in parallel using Firedrake [19] for mesh generation
and finite element discretization of the PDEs. The solver runs on a parallel distributed MPI
architecture through petsc4py [7], which provides Python bindings for the PETSc toolkit [1].
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In all the parallel experiments, each subdomain is assigned to one MPI process, with no
multi-threading at the subdomain level. At each iteration of the nonlinear subdomain problem,
the corresponding linear system is solved using a direct sparse LU factorization, which is com-
putationally affordable at the subdomain level. These subdomain factorizations are stored and
reused for the subdomain linear solves involved in the GMRES method through the action of
dF . The computations were performed on the Kraken cluster at CERFACS, which comprises
4,284 cores distributed across 119 compute nodes, each equipped with two 18-core Intel Xeon
Gold 6140 processors running at 2.3 GHz.

4.1.1. Forchheimer. In this section, we consider the Forchheimer model [6, 17, 32], which
generalizes Darcy’s Law by adding a deviation term to account for inertial effects. Following
the approach in [4, 11], this model serves as a reference to first demonstrate how the RASPEN
method accelerates nonlinear convergence compared to classical Newton, and to discuss vari-
ous convergence indicators in terms of their cost and scalability with respect to the number of
subdomains.

The Forchheimer model in the interval Ω = [0, L] is expressed as:
(q (−λ (x)u (x)))

′
= f (x) in Ω,

u(0) = u0,

u(L) = uL,

where q (v) = sgn (v)
−1+
√

1+4ρ|v|
2ρ , λ is the permeability of the medium, and ρ is the Forchheimer

coefficient controlling the nonlinear aspect of the equation. When ρ → 0+, Darcy’s Law is
recovered. The model will be discretized using a first-order finite element method. We will
consider the two setups defined in [11] as illustrated in Figure 4.1 and Figure 4.2.

(a) Permeability Function λ(x) (b) Source Term f(x) (c) Solution u(x)

Fig. 4.1: Forchheimer 1 - permeability function, source term, and solution.

4.1.2. Nonlinear Diffusion. Our 2D test model is a nonlinear diffusion problem with
parameters and initial conditions similar to those studied in [4]. It is defined in the unit square
domain Ω = (0, 1)2 and writes:{

−∇ ·
[(
1 + u(x)2

)
∇u(x)

]
= f(x), in Ω,

u(x) = g(x), on ∂Ω,

where f and g are, respectively, the source term and the boundary condition chosen such that
the exact solution is u(x) = sin(πx) sin(πy). The initial guess is set to u0(x) = 105, placing the
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(a) Permeability Function λ(x) (b) Source Term f(x) (c) Solution u(x)

Fig. 4.2: Forchheimer 2 - permeability function, source term, and solution.

starting point far from the solution to illustrate the slow convergence rate in the pre-asymptotic
phase of the standard Newton’s method.

4.2. Numerical performances. In all the numerical experiments below, we will use the
following notations to denote different performance indicators:

N Number of subdomains.
k Number of nonlinear RASPEN iterations.

kNew Number of nonlinear classical Newton iterations.
kC Cumulative number of local Newton iterations for computing the local corrections

Ci. At each outer step, we add the maximum number of nonlinear iterations across
the subdomains, accounting for the nonlinear subdomain solution unbalance.

kG Cumulative number of GMRES iterations to solve the global linear system asso-
ciated with RASPEN.

ktot Cumulative number of linear local solves in a parallel setting: ktot = kG + kC .
Here, kC contributes because each nonlinear local solve includes one linear local
direct solve.

Table 4.1: Notations used to evaluate the performance of the different algorithms.

For the sake of comparison, we will report on these indicators for both methods, RASPEN and
SRASPEN in the next sections.

4.2.1. The performance of RASPEN. In this section, we analyze the results of RASPEN
applied to the Forchheimer problem by discussing each of the cost indicators defined in Table 4.1.
We first investigate the impact of the size of the overlap on the performance of the RASPEN
method in a weak scalability setting. The results are reported in Table 4.2 where it can be
observed that increasing the overlap slightly reduces the number of GMRES iterations while
increasing the number of nonlinear local iterations kC , since the subdomains become larger. The
impact of the overlap on the total number of nonlinear iterations varies. Increasing the overlap
moves the ghost nodes, thereby changing the ghost subspace, which can result in either a larger
or smaller initial residual in a in-predictable fashion. Similarly, in a weak scalability approach,
adding more subdomains changes the location of the ghost nodes, leading to fluctuations in the
number of RASPEN nonlinear iterations k. However, this number does not grow as significantly
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ξ = hN

N k kNew kC kG ktot

2 4 18 29 12 41

4 4 25 33 28 61

8 5 34 36 80 116

16 8 47 75 264 339

32 9 65 128 606 734

64 11 91 124 1496 1620

128 7 127 48 1855 1903

ξ= 4 hN

N k kNew kC kG ktot

2 3 18 26 9 35

4 4 25 31 28 59

8 5 34 37 79 116

16 7 47 72 224 296

32 7 65 134 460 594

64 9 91 107 1188 1295

128 7 127 49 1768 1817

ξ= 6 hN

N k kNew kC kG ktot

2 3 18 26 9 35

4 4 25 32 28 60

8 5 34 37 75 112

16 8 47 85 256 341

32 9 65 137 591 728

64 9 91 108 1169 1277

128 9 127 50 1709 1759

ξ = 10 hN

N k kNew kC kG ktot

2 3 18 28 9 37

4 4 25 34 28 62

8 5 34 39 75 114

16 9 47 104 288 392

32 10 65 159 639 798

64 10 91 125 1238 1363

128 7 127 51 1604 1655

Table 4.2: RASPEN results for the conditions Forchheimer 1 of Figure 4.1 under a weak scala-
bility approach of 100 degrees of freedom per subdomain and different sizes of overlap ξ in terms
of the mesh size hN that is dependent on the number of subdomain due to weak scalability.

as the number of nonlinear exact Newton iterations, kNew. The number of nonlinear local itera-
tions, kC , depends strongly on the nonlinear rate of convergence: the faster the iterates converge
to the solution, the fewer nonlinear local iterations are needed, as the nonlinear local iterations
on the subdomains start from a good local initial guess.

The classical slowdown of information transfer between subdomains as N increases is also
present, as shown by the increasing number of GMRES iterations with respect to N . Both kC and
kG represent the local solves, and their sum gives the total number of local solutions performed
throughout the entire RASPEN process. Since a direct solver is chosen for the local linear
solves of the nonlinear subdomains problems, kC counts for the number of factorizations and the
forward/backward substitutions, with the factorization phase being the most costly. On the other
hand, kG counts only for the forward/backward substitutions since, in the linear system, the local
parts of the Jacobian do not change and need to be factorized only once at the first GMRES
iteration. Consequently, to compare the Newton-Krylov method preconditioned with an additive
Schwarz approach to RASPEN in terms of the number of factorizations, we need to compare
ken with k+kC . However, the number of full non-restarted GMRES iterations incurs additional
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costs due to the quadratic increase of the cost of the modified Gram-Schmidt orthogonalisation
process, which affects both the amount of computations and of communications. Unlike the cost
of factorizations, which remains constant in weak scalability and decreases in strong scalability,
the cost of communications increases with the number of processors. Thus, depending on the
number of subdomains and their size, one cost indicator may be more or less significant than the
other to provide insight on the parallel time to solution.

4.2.2. The performance of SRASPEN. In this section, we present SRASPEN numerical
experiments to illustrate several key points about the initialization strategies for the nonlinear
local solvers. First, we demonstrate the insensitivity of SRASPEN’s nonlinear global convergence
to the choice of initialization strategy due to our choice of the local stopping criterion. Second,
we highlight how these strategies impact the convergence rate of the nonlinear local solves.
Third, we analyze the linear convergence behavior of GMRES, showing that the number of
iterations remains independent of the initial guess of the nonlinear local solves. Fourth, we
investigate the effect of increasing the number of subdomains on the global convergence and
the nonlinear local convergence for each strategy. Fifth, we report on the execution times for
the different strategies. Finally, we compare our version of SRASPEN with standard RASPEN,
demonstrating that SRASPEN provides equivalent nonlinear global convergence while providing
a more effective solution technique thanks to the global memory savings and computational
efficiency of the GMRES iterations that are performed on a lower dimension problem. Impact
of the initial guess in the nonlinear local solves on the overall global nonlinear
convergence: a preliminary interpretation of Figure 4.3 suggests the equivalence of the nonlinear
global convergence, as shown in the left graph. The dots (corresponding to the outer nonlinear
iterations) on each curve (Strategy 1, 2 and 3) align approximately along the same horizontal
lines, indicating that they achieve similar accuracy at each step. However, it can be observed
in the right graph that the dots do not strictly correspond to the same relative error (they are
horizontally slightly misaligned). This difference arises because the nonlinear local solutions vary
slightly; the initial guesses differ, and although the convergence criterion is absolute (meaning it
does not explicitly depend on the initial guess/error), we cannot guarantee that the computed
solution will be identical. In any case, the local initial guess does not significantly affect the
global convergence

Impact of the nonlinear local initial guess on the nonlinear local convergence: in
the graphs of Figure 4.3 showing the nonlinear local iterations for each strategy, the blue curve
corresponding to the first strategy shows a significantly higher number of iterations compared to
the orange and green curves. The orange curve corresponds to the second strategy, where the
action of the nonlinear restricted Schwarz preconditioner from the previous step is reused as an
initial guess in the next iteration. This strategy results in fewer total nonlinear local iterations
compared to the first one, because the initial guess becomes more accurate through the nonlinear
global iterations as it gets closer to the solution. This is reflected in the shape of the curve, which
becomes vertical toward the end of convergence, where the value of kC barely increases. Finally,
the green curve, corresponding to the third strategy, outperforms the other two, as it leverages
the recovery of the full iterates of RASPEN, which are a Newton-accelerated version of the second
strategy iterates. Consequently, the total number of nonlinear local iterations decreases sharply
and stagnates earlier compared to the orange curve.

Impact of the nonlinear local initial guess on the GMRES convergence: Figure 4.4
shows the number of GMRES iterations for each strategy, which should remain unaffected by
changes in the initial guess. This is confirmed, as the points on each curve align closely along
the same vertical lines. However, we still observe differences in the relative error at each step,
similar to those in Figure 4.3, due to the same numerical reasons previously mentioned for the
impact on the global nonlinear convergence.
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While increasing the number of subdomains: in Figure 4.5 and as shown before,
the third strategy initial guess achieves significant savings, maintaining an approximate ratio
of 2.20 compared to the second strategy and around 8.10 compared to the first strategy. Most
importantly, this saving ratio remains consistent as the number of subdomains increases, which
leads to a similar reduction on the cumulative time of the nonlinear local solves throughout
convergence. This is because the cost of each nonlinear local iteration is equivalent to that of a
direct linear local solve of the same local size in a weak scalability approach. In this case, the
first strategy highlights the problem of continuing to initialize with the same poor initial guess
which is in that case u0 = 105. The second strategy improves the nonlinear local convergence
but still can not recover directly the first RASPEN iterate which is very powerful while the third
strategy does.

Execution time for the different local initial guess strategies: Table 4.3 presents
the execution time for the Forchheimer problem under each initial guess strategy as the local
size nloc increases. As anticipated from the previous figures, the execution time reflects the
savings achieved in the nonlinear local iterations. Using the third strategy for the initial guess
results in the best time to solution performance. More importantly, in terms of robusteness,
the table shows that when the number of degrees of freedom per subdomain exceeds 200, both
the first and the second strategies completely lose local and, consequently, global convergence.
Therefore, when the nonlinear convergence rate degrades at high-scale discretizations, as in this
case, having a robust initial guess strategy is crucial to ensure convergence of the nonlinear solver.
In Table 4.4, we compare the execution times of SRASPEN in the 2D nonlinear diffusion problem
for each type of initial guess. As expected, third strategy demonstrates up to a 6.16x speed-up
compared to the first strategy and a 1.88x improvement over the second strategy. Since the local
linear solve associated with each nonlinear local iteration involves not only forward/backward
substitutions but also factorization for each linear local solve, kC is the dominant component
in terms of cost compared to the linear local solves in kG. This makes the reduction in the
number of nonlinear local solves strongly influence the overall execution time. Nevertheless, the
speed-up factor decreases as the number of subdomains increases. This decline is primarily due
to the GMRES solver requiring more iterations, which makes its execution time the dominant
component of the overall runtime, overshadowing the impact on the execution time of nonlinear
local solves.

Execution time comparison between RASPEN and SRASPEN: Now that we have
established that the SRASPEN version with the third strategy for the initial guess is the most
effective, we will compare it with the standard RASPEN in terms of global nonlinear convergence
and execution time. Figure 4.6 illustrates the equivalence of the full iterates between RASPEN
and SRASPEN, as demonstrated in Section 3.2. However, while the full iterates are similar,
Table 4.5 shows that SRASPEN significantly outperforms RASPEN in execution time, especially
as the number of subdomains increases. This performance gain is largely attributed to the fact
that SRASPEN operates in a lower-dimensional space. In SRASPEN, the orthogonalization is
performed on a skeleton-sized Krylov basis rather than a volume-sized one, resulting in faster
execution. Furthermore, SRASPEN benefits from the robust initial guess provided by RASPEN,
which reduces the time required for nonlinear local solves. Using the same initial guess for
both RASPEN and SRASPEN—thus incurring the same cost for computing the subdomain
correction—further highlights the advantages of substructuring, particularly during the GMRES
phase.

5. Conclusion. Throughout the paper, the convergence of the RASPEN method was an-
alyzed, emphasizing the impact of nonlinear domain decomposition on the convergence rate in
both the pre-asymptotic and asymptotic phases. This convergence study revealed that a single
step is sufficient for the volume error to become smaller than the previous error on the skeleton.
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Fig. 4.3: Comparing the nonlinear local iterations kC of SRASPEN with the different initial
guess strategies for the Forchheimer 2 conditions shown in Figure 4.2. The graph on the left
corresponds to 20 subdomains while the one on the right corresponds to 50 subdomains. The
overlap is 8h and the mesh size is h = 10−3.

Fig. 4.4: Comparing the number of GMRES iterations (kG) of SRASPEN with different initial
guess strategies for the Forchheimer 2 conditions shown in Figure 4.2. The left graph corresponds
to 20 subdomains, while the right graph corresponds to 50 subdomains. The overlap is set to
8h, and the mesh size is h = 10−3.

Initial Guess Strategy 1 Strategy 2 Strategy 3
nloc Time(s) nloc Time(s) nloc Time(s)
25 0.89 25 0.47 25 0.21
50 1.12 50 0.69 50 0.31
100 2.14 100 1.67 100 0.41
200 ∞ 200 ∞ 200 0.64

Table 4.3: Parallel execution time comparison between initial guess strategies for the Forchheimer
2 conditions of Figure 4.2 with 16 subdomains and an increasing subdomain size nloc.

This observation led to the conclusion that the values in the rest of the volume remain as accurate
as those on the skeleton.

In the case of SRASPEN, which operates only on the skeleton, these values are not computed.
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Fig. 4.5: Comparing the number of nonlinear local iterations (kC) of SRASPEN with different
choices for the initial guess in the 2D nonlinear diffusion case with 4× 4, 6× 6, 8× 8 and 11× 11
subdomains. The overlap is 8h and each subdomain has 9.104 degrees of freedom.

Subdomains 4 × 4 6 × 6 8 × 8 11 × 11

Strategy 1 411.83 s (6.16) 434.70 s (5.70) 515.43 s (5.64) 643.56 s (4.41)

Strategy 2 125.41 s (1.88) 143.17 s (1.88) 160.25 s (1.75) 230.07 s (1.58)

Strategy 3 66.82 s (1.00) 76.25 s (1.00) 91.40 s (1.00) 145.82 s (1.00)

Table 4.4: Parallel execution time comparison between different initial guess strategies for the
2D nonlinear diffusion problem under a weak scalability approach with 9×104 degrees of freedom
per subdomain and an overlap of 8h. Values in parentheses represent the time ratio relative to
the third strategy initial guess.

As a result, an additional computational cost is incurred due to the initialization of nonlinear
local solvers with inappropriate values (such as zeros). This leads to additional nonlinear local
iterations compared to RASPEN. To address this issue, a simple and inexpensive adjustment
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Fig. 4.6: Outer nonlinear convergence his-
tory of RASPEN and SRASPEN in the
Forchheimer case with 20 subdomains, an
overlap of 8h, and a subdomain size of 200
degrees of freedom.

RASPEN SRASPEN

N = 16 57.38 s 56.40 s

N = 32 65.08 s 61.80 s

N = 64 108.10 s 87.49 s

N = 128 362.22 s 204.04 s

Table 4.5: Execution time comparison be-
tween SRASPEN and RASPEN in the 2D
nonlinear diffusion problem under a weak
scalability approach with 9.104 degrees of
freedom per subdomain (tiles of 30×3000),
an overlap of 8h, and a unidirectional do-
main decomposition.

was proposed in this work to recover the iterates of RASPEN at the interior nodes within the
SRASPEN process. This adjustment accelerates the subdomain nonlinear solves, resulting in
a new variation that combines the high-accuracy iterates of RASPEN with the substructuring
improvements of SRASPEN. Several numerical experiments showed the gains of the proposed
variant on classical problems from the literature. The latter were carried out on up to 128
subdomains. At this scale, the use of a second-level preconditioner is often recommended to
ensure the scalability of the method [12]. This issue will be addressed in a future work.
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