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ABSTRACT
This article is dedicated to the development of a model to simulate fast transient compressible flows on solid structures using
immersed boundary method (IBM) and a lattice Boltzmann solver. Ultimately, the proposed model aims at providing an efficient
algorithm to simulate strongly-coupled fluid-structure interactions (FSI). Within this goal, it is necessary to propose a precise
and robust numerical framework and validate it on stationary solid cases first, which is the scope of the present study. Classical
FSI methods, such as body-fitted approaches, are facing challenges with moving or complex geometries in realistic conditions,
requiring computationally expensive re-meshing operations. IBM offers an alternative by treating the solid structure geome-
try independently from the fluid mesh. This study focuses on the extension of the IBM to compressible flows, and a particular
attention is given to the enforcement of various thermal boundary conditions. A hybrid approach, combining diffuse forcing for
Dirichlet-type boundary conditions and ghost-nodes forcing for Neumann-type boundary conditions is introduced. Finally, a sim-
plified model, relying only on diffuse IBM forcing, is investigated to treat specific cases where the fluid solid interface is considered
as adiabatic. The accuracy of the method is validated through various test cases of increasing complexity.

1 | Introduction

The general purpose of the proposed research is set in the
context of transient fluid-structure interactions (FSI), with appli-
cations across diverse industrial sectors, where predicting the
movement or deformation of a solid structure submitted to a
fluid flow is crucial. Particularly, there has been interest in the
simulation of transient fluid-structure dynamics for efficiency
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or safety purposes. Typical examples include applications like:
the aeroelasticity of slender bodies such as aircraft wings, wind
turbine blades suffering severe winds, and energy infrastructures
exposed to blast loading.

These systems involve the interaction of a compressible fluid with
a deformable solid structure, leading to rapid transient phenom-
ena. The simulation of these systems is specifically interesting
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to prevent structure deformations that may lead to severe dam-
age. This is why efforts have been directed towards developing a
robust and efficient algorithm in order to enable accurate simu-
lations for a reasonable computational cost.

This article focuses on the first mandatory step towards the gen-
eral objectives above, dedicated to the design and implementation
of a both robust and accurate method to handle immersed struc-
tural interfaces within a high-performance compressible fluid
solver based on the Lattice Boltzmann Method (LBM). The lat-
ter is chosen in particular for its inherent low-diffusive properties
and the local character of its algorithm yielding efficient compu-
tational properties in parallel architectures.

Imposing boundary conditions directly on the first layer of cells
along the solid surface of the conformal grid is straightforward.
Moreover, body-fitted mesh offers easy control of the grid res-
olution near the solid body. In this framework the Arbitrary
Lagrangian–Eulerian (ALE) method has been explored to model
moving fluid-structure interface [1, 2]. The fluid-solid interface is
modelized as a set of Lagrangian nodes, while the fluid domain is
represented by Eulerian nodes. As shown in previous work [3–5],
the ALE method has proven its capacity to accurately model fast
compressible flows involving FSI. However, the ALE approach
relies on an update of the fluid domain with either a rezon-
ing of the fluid nodes or a complete remeshing process. These
operations exhibit both a significant computational cost and a
lack of robustness regarding large structural motion. In contrast,
including moving solid structures using the Immersed Bound-
ary Method (IBM) is simple, but the enforcement of the bound-
ary condition is not as obvious. In the IBM framework, the solid
structure boundary is represented as a set of discrete point within
a fixed cartesian grid representing the fluid mesh. The immersed
boundary (IB) can move freely on the Eulerian mesh. As a result,
remeshing process is not necessary, which makes it competitive,
in terms of computing performance and robustness. Thus, this
alternative method is usually preferred in the case of large solid
motion or deformation. The use of IBM in industrial applications
involving fast transient FSI was demonstrated for instance in [6,
7], both articles exhibiting simulations of implosion/explosion in
tank containers.

The immersed boundary method was first introduced by Peskin
[8] as he formalized its numerical framework and introduced
a method to spread the effect of the immersed structure on
the fluid grid. Later, the spreading and interpolation functions,
that connect the immersed structure to the fluid grid, were
refined to improve accuracy [8–11]. Simultaneously, new def-
initions of the solid force acting on the fluid grid were pro-
posed to reduce spurious oscillations [12], or to provide direct
enforcement of the boundary condition at the interface [13, 14].
Then, the Ghost-Cell or Ghost-Nodes methods [15–19] emerged
to handle thin boundary layer in high Reynolds flows, allow-
ing a sharper definition of the fluid-solid interface. A funda-
mental review of the subject has been carried out by Mittal
and Iaccarino [20]. Feng et al. combined an Immersed Bound-
ary with a Lattice Boltzmann solver [21] in order to solve prob-
lems related to previously-used boundary conditions in the LBM
framework. More recently, Lu et al. [22] introduced an Immersed
Boundary Lattice Boltzmann Model based on multiple relax-
ation times, which reduces numerical boundary slip compared

to traditional models. Gsell, D’Ortona, and Favier [23] addressed
the viscosity-related errors in the computed Immersed Bound-
ary (IB) force in LBM simulations. They proposed an explicit and
viscosity-independent Immersed Boundary scheme that corrects
these errors without additional computational time, ensuring the
accuracy of the simulations. Recent studies by Abaszadeh et al.
[24] and Afra, Delouei, and Tarokh [25] provided advancements
in the application of IB-LBM to specialized areas such as radiative
heat transfer and non-Newtonian fluid interaction with flexible
structure, respectively. More recently, R. Mittal and R. Bhardwaj
reviewed the application of IBM to thermal fluid simulations [26].

We propose here to differentiate two main approaches: diffuse or
sharp force. This distinction is based on the way the boundary
condition is enforced to the fluid near the immersed solid bound-
ary. In the diffuse forcing approach, the boundary condition is
spread from the solid interface to the neighboring nodes through
a smooth continuous function. In contrast, the sharp forcing
approach consist in strictly enforcing the desired boundary condi-
tions on the first layer of fluid nodes inside the immersed bound-
ary. In the following, let us delve into specific details of these
approaches within the framework of compressible flows and fast
transient FSI.

The first approach, diffuse forcing, is formulated independently
of the spatial mesh. Source terms are introduced into the continu-
ous Navier–Stokes equations to model the influence of the solid.
These terms are exchanged from the Lagrangian to the Eulerian
domain through Interpolation and Spreading operations using
a delta function. The diffuse forcing IBM was initially designed
for incompressible flows. Its extension to compressible flow is
challenging, as density variations and energy equations should
be considered. A first attempt at using a diffuse forcing IBM for
compressible flow can be found in [27], where the implicit veloc-
ity correction model of Wu and Shu [28] is extended to the cor-
rection of pressure and temperature. Validation of the method is
carried out on various cases at transonic or supersonic regimes,
demonstrating the capabilities of the diffuse forcing scheme to
deal with compressible flows. Using a gas kinetic flux solver, the
same approach was employed by Sun et al. [29]. Though, their
approach relies on an implicit scheme and only Dirichlet-type
boundary conditions are treated. This limits the choice of the
thermal boundary conditions, since only cases where the desired
body temperature is known can be handled.

In particular, in the fast transient FSI framework, a common
choice for the thermal boundary condition consist in consider-
ing the fluid-solid interface as adiabatic. This requires, among
other things, imposing a condition, not on the temperature, but
on the temperature gradient, thus a Neumann-type boundary
condition (NBC).

The extension of diffuse forcing IBM to NBC has been a sub-
ject of research for many years, not only in the framework of
compressible flow simulations. The first attempts at using dif-
fuse forcing with NBC aimed at solving thermal flow problems
were performed by [30–32]. Among the proposed solutions, A.
Hosseinjani and Ashrafizadeh [33] distinguished and compared
direct and indirect Neumann diffuse forcing approaches. They
conclude that the first one is more accurate, but also more expen-
sive in terms of computational time. More recently, Guo et al. [34]
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proposed an implicit heat flux correction-based IBM for thermal
flows, using the cell’s face centers as Eulerian points for the tem-
perature gradient interpolation. Finally, Chen et al. [35] exploited
previous research to propose an IBM that may enforce NBC using
diffuse forcing in compressible flows. Their approach lies in the
indirect forcing category [33].

To the best of the author’s knowledge, the latest reported use of
diffuse forcing with NBC can be found in [36–38].

Despite aforementioned work, the enforcement of NBC in the dif-
fuse forcing framework still represents a non-negligible CPU cost.
For instance, Hosseinjani and Ashrafizadeh [33] reported 2 to 3
more computational time when using diffuse forcing to enforce
NBCs. Also, the diffuse nature of this approach does not suit well
with the enforcement of gradients, in particular when the solid
geometry exhibits sharp edges, resulting in inaccurate results.

To address these issues, R. Boukharfane et al. explored a hybrid
method in [39], that involves a diffuse forcing only for Dirich-
let boundary condition enforcement, and a sharp forcing IBM to
handle Neumann boundary condition, referred to as sharp forc-
ing IBM.

Sharp forcing IBM, consists in strictly enforcing the desired
boundary conditions on the first layer of Eulerian nodes inside
the immersed boundary. A summary of the main algorithms can
be found in [40]. Among the existing sharp forcing approaches,
let us focus on the ghost-nodes approach [15, 16, 19, 41–42].
This method implies first identifying the so-called “ghost nodes”.
Image points are then computed from a normal projection
through the immersed boundary. Finally, interpolated variables
at the image node are used to settle the value on the ghost nodes
that respect the boundary condition. While the ghost-nodes
approach offers direct and accurate control over the fluid near
the boundary, it highly depends on the spatial discretization
of the fluid domain. The strict enforcement of the velocity
or temperature value on the ghost nodes may cause spurious
oscillations leading to stability issues in the case of a moving
boundary [43–46], referred to as the fresh/dead cells issue,
contrary to the diffuse forcing approach. The advantages and
drawbacks of each approach were discussed by Kang and Hassan
[47] or by Qin, Yang, and Li [48]. Let us summarize the main
ideas: the diffuse approach is cheaper in terms of computational
time and more stable when dealing with moving fluid-solid
interfaces. Though, it lacks of accuracy due to its diffuse nature,
and it is not well-suited to the enforcement of NBC. On the
other hand, the sharp forcing approach, such as the ghost-nodes
method, enables a strict enforcement of any desired boundary
condition, such as heat flux conditions. Though it may lack of
numerical stability on moving or complex geometries. To address
the limitations of each approach, hybrid methods combining
both diffuse and sharp forcing IBM have been developed. These
methods balance the strengths of each technique to address their
respective limitations. A detailed example can be found in [39],
as they suggested to use diffuse forcing to enforce Dirichlet-type
boundary conditions (e.g., no-slip and isothermal) while sharp
forcing is employed for Neumann-type boundary condition (in
particular, heat-flux condition).

Based on the previously presented works, the present paper
proposes a model for transient compressible flow using an
immersed boundary method and an LBM solver. Similarly
to [39], a diffuse forcing approach will be used to enforce all
Dirichlet-type boundary conditions, while a ghost-nodes (GN)
forcing will be employed to ensure Neumann-type boundary
conditions. The accuracy of this method is assessed on various
test cases.

While the coupling of the diffuse forcing to the GN approach
enables the enforcement of necessary Neumann-type boundary
conditions, it adds more computing steps to the algorithm and
an added computational cost is thus expected.

To prevent this added CPU cost, an alternative simplified IBM
model is also proposed in the present paper, designed specifically
to deal with zero temperature gradient boundary conditions, also
known as the adiabatic boundary condition. Indeed, it has been
observed that in many cases of interest where fluid-solid heat
exchange can be neglected, the strict enforcement of the adiabatic
boundary condition is not necessary to ensure a correct simu-
lation. This simplified model has already been used in [37]. In
the present paper, it will be referred to as the T-Passive boundary
condition. The relevance and accuracy of this approach will be
evaluated in various cases.

The article is organized as follows: after a brief introduction in
Section 1, the numerical framework is presented in Section 2. All
necessary details on the developed immersed boundary method
for compressible flow are given, and a simplified adiabatic IBM
model is introduced. The accuracy of the model is assessed on
various cases in Section 3. Details on the LBM solver adopted in
the present work are given in Appendix A.

2 | Numerical Framework

2.1 | Governing Equations

Let us define a fluid domain Ω and a closed surface Γ ⊂ Ω repre-
senting a solid boundary immersed in the fluid domain.

The fluid motion is described by the conservation laws of mass,
momentum, and energy expressed in the following form in the
whole domain Ω as (i.e., compressible Navier-Stokes equations):

𝜕𝑡Q + 𝜕𝛼F𝐶
𝛼
− 𝜕𝛼F𝑉

𝛼
= SIB (1)

where an implicit summation is done over the index 𝛼 ∈ {𝑥, 𝑦, 𝑧},
Q is the vector of the conservative variable, F𝐶

𝛼
is the tensor of con-

vective fluxes in the direction 𝛼, F𝑉
𝛼

is the tensor of viscous fluxes
in the direction 𝛼 and SIB is the IB source term that represents
the influence of the solid obstacle on the fluid. The conservative
variables and fluxes write:

Q = [𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑦, 𝜌𝑢𝑧, 𝜌E]𝑇 (2)

F𝐶
𝛼
= [𝜌𝑢𝛼, 𝜌𝑢𝛼𝑢𝑥 + 𝑝𝛿𝛼𝑥, 𝜌𝑢𝛼𝑢𝑦 + 𝑝𝛿𝛼𝑦, 𝜌𝑢𝛼𝑢𝑧 + 𝑝𝛿𝛼𝑧, (𝜌E + 𝑝)𝑢𝛼]𝑇

(3)

F𝑉
𝛼
= [0, 𝜏𝛼𝑥, 𝜏𝛼𝑦, 𝜏𝛼𝑧, 𝜏𝛼𝛽𝑢𝛽 + 𝑞𝛼]𝑇 (4)
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where 𝛿𝛼𝛽 is the Kronecker delta. with 𝜌 the density, 𝑢𝛼 the
𝛼-component of the velocity, 𝑇 the temperature, 𝑝 the pressure
and 𝐸 the total energy of the fluid. 𝜏𝛼𝛽 is the stress sensor and 𝑞𝛼
is the 𝛼-component of the conduction heat flux defined as:

𝜏𝛼𝛽 = 𝜇

[
𝜕𝑢𝛼

𝜕𝑥𝛽
+

𝜕𝑢𝛽

𝜕𝑥𝛼
− 𝛿𝛼𝛽

2
3
𝜕𝑢𝛾

𝜕𝑥𝛾

]
(5)

𝑞𝛼 = −𝜆 𝜕𝑇

𝜕𝑥𝛼
(6)

where 𝜆 is the thermal conductivity coefficient and 𝜇 is the
dynamic viscosity.

An equation of state (EOS) is required to close the system. The
proposed IBM does not assume any particular shape for this
equation and in the following, the ideal gas EOS is used: 𝑝 = 𝜌𝑟𝑇

with 𝑟 the specific gas constant defined as 𝑟 = 𝑅

𝑊
where 𝑅 is the

gas constant and 𝑊 is the molar mass.

The total energy may be divided into kinetic and internal
energy as:

E = 1
2
𝑢2
𝛼
+ 𝐶𝑣𝑇 (7)

with 𝐶𝑣 the specific heat capacity.

Finally, the source term SIB is related to the IBM, and will be
described in Section 2.3.

2.2 | Hybrid LBM Solver

This section is dedicated to providing a concise description of the
lattice Boltzmann solver used to solve (1) over Ω.

The lattice Boltzmann method aims at solving the discretized
Boltzmann equation, which describes the evolution of a velocity
distribution function 𝑓 (𝑥, 𝑐, 𝑡). The following formulation of the
equation accounting for the presence of body force is considered:

𝜕𝑓

𝜕𝑡
+ 𝑐𝛼

𝜕𝑓

𝜕𝑥𝛼
+
𝐹𝛼

𝜌

𝜕𝑓

𝜕𝑐𝛼
= Ω(𝑓 ) (8)

where 𝜉 denotes the particle velocity and Ω(𝑓 ) is the collision
operator and F a generic forcing term. In the framework of an
LBM solver, (8) is discretized in the physical space, in time, and in
the velocity space by defining a set of 𝑐𝑖 particle velocities, yield-
ing the following scheme in the general formulation:{

𝑓 coll
𝑖

(𝑥, 𝑡) = 𝑓𝑖(𝑥, 𝑡) + Ω(𝑓𝑖(𝑥, 𝑡)) + 𝐹𝑖(𝑥, 𝑡)
𝑓𝑖(𝑥, 𝑡 + Δ𝑡) = 𝑓 coll

𝑖
(𝑥 − 𝑐𝑖Δ𝑡, 𝑡)

(9)

where 𝐹𝑖(𝑥, 𝑡) is the discretized forcing term, related to the IBM
Force through the Guo’s forcing scheme described in [49]. As
mentioned before, the LBM scheme is applied in the present fluid
solver to the mass and momentum equations. The macroscopic
variables are recovered by computing the moments of 𝑓𝑖 as:

𝜌(𝑥, 𝑡) =
∑
𝑖

𝑓𝑖(𝑥, 𝑡) 𝜌𝑢𝛼(𝑥, 𝑡) =
∑
𝑖

𝑐𝑖,𝛼𝑓𝑖(𝑥, 𝑡) +
Δ𝑡
2
𝐹𝛼 (10)

The collision kernel used in the present work relies on the
unified model of Farag et al. [50], using a Hybrid Recursive

Regularization (HRR) method of Jacob et al. [51]. This solver
has been shown to successfully to simulate compressible flows
around transonic to supersonic regimes [52], which are the sub-
ject of interest here. It consists of a hybrid approach in which
the density and momentum equations are solved through a LBM
scheme while a total energy equation is solved using a specifi-
cally designed finite volume approach, proposed by G. Wissocq
et al. [53], to optimize the efficiency of the method in terms of
computational cost and memory storage.

For all cases presented, parameters of the model were set as fol-
lows: 𝜅 = 0, 𝜉 = 0, 𝜎 = 0.98 (see [50] for details), leading to the
following formulation of the collision step in (9):

𝑓 coll
𝑖

(𝑥, 𝑡) = 𝑓
eq
𝑖
(𝑥, 𝑡) +

(
1 − Δ𝑡

𝜏

)
𝑓

neq
𝑖

(𝑥, 𝑡) + Δ𝑡
2
𝐹𝑖(𝑥, 𝑡) (11)

𝜏 is related to the fluid dynamic viscosity 𝜇 as 𝜇 + 𝜌𝜈𝑠𝑐 =(
𝜏 − Δ𝑡

2

)
𝜌𝑐2

𝑠
and 𝑐𝑠 =

1√
3
Δ𝑥
Δ𝑡

. 𝜈𝑠𝑐 is an artificial viscosity activated
by a shock sensor only near discontinuities, its definition is given
in Appendix A.

𝑓
eq
𝑖

, the equilibrium distribution function and 𝑓
neq
𝑖

, the
off-equilibrium distribution function, are expanded up to third
order on the basis of Hermite polynomials, detailed expressions
being provided in Appendix A. Definition of the equilibrium
coefficients 𝑎

(𝑛)
(eq) related to the corresponding Hermite tensor

𝐻
(𝑛)
𝑖

are based on the macroscopic variable. According to the
unified model [50], the zeroth order equilibrium coefficient is
computed as:

𝑎
(0)
(eq) = 𝜌 +

𝜔𝑖 − 𝛿0𝑖

𝜔𝑖

𝜌(𝜃 − 1) (12)

where 𝜃 = 𝑇 ∕𝑇ref is the dimensionless temperature coming from
the resolution of an energy equation and the EOS. Similarly, defi-
nitions of the off-equilibrium coefficients 𝑎(2)(neq) and 𝑎(3)(neq) are com-
puted following the Hybrid Recursive Regularized model.

2.3 | Diffuse Forcing Immersed Boundary
Method

The general idea of the diffuse forcing IBM is to introduce a
source term in the governing equations of the fluid in order to
account for the influence of the solid over the fluid. In the gen-
eral governing equations for the fluid introduced earlier (1), it is
symbolized by the f term.

Each component of the vector SIB is expected to model the influ-
ence of the solid over the fluid in its respective equation. As a
consequence, let us define the different components of the vector
SIB here as:

SIB = [0, 𝑓 IB
𝑥
, 𝑓 IB

𝑦
, 𝑓 IB

𝑧
,WIB + QIB]T (13)

where:

• the first component, appearing in the continuity equation,
is set to be zero since the solid structure is not expected to
create/destroy any mass in the system.

4 of 20 International Journal for Numerical Methods in Engineering, 2025
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• 𝑓 IB
𝛽

is included in the 𝛽 component of the momentum
equation and corresponds to the volume force of the solid
acting on the fluid, with 𝛽 ∈ {𝑥, 𝑦, 𝑧}.

• the last component is identified as an energy source, and
may be divided into two parts:
– WIB that accounts for the work of the structure over the

fluid, which is zero in the case of a non-moving structure,
– QIB that considers the heat exchange between the fluid

and the solid in the case of a fluid-structure thermal
coupling.

In the proposed method, the primary role of these forcing terms
is to impose Dirichlet-type boundary conditions (BC) on the
fluid near the solid boundary. Examples of such BC include
no-slip and isothermal conditions, where the solid velocity and
temperature are imposed on the fluid, which can be expressed
respectively as:

𝑢𝛼 = 𝑢𝐵
𝛼

(14)

𝑇 = 𝑇𝐵 (15)

with 𝑢𝐵
𝛼

the solid velocity and 𝑇𝐵 the solid temperature.

2.3.1 | Derivation of an Expression for the
Momentum Source Term for Dirichlet Boundary
Condition

First, let us focus on the research of an explicit definition for 𝑓 IB
𝛽

,
the 𝛽-component of the volume force that will enforce the desired
BC to the fluid with 𝛽 ∈ {𝑥, 𝑦, 𝑧} To accomplish this, the 𝛽 com-
ponent of the momentum equation in Equation (1) is discretized
in time using finite difference discretization. This results in:

𝜌𝑢𝑡+Δ𝑡
𝛽

− 𝜌𝑢𝑡
𝛽

Δ𝑡
+
𝜕(𝜌𝑡𝑢𝑡

𝛼
𝑢𝑡
𝛽
+ 𝑝𝑡𝛿𝑡

𝛼𝛽
)

𝜕𝑥𝛼
−
𝜕(𝜏𝑡

𝛼𝛽
)

𝜕𝑥𝛼
= +𝑓 IB,𝑡

𝛽
(16)

where the following convention𝜙𝑡 = 𝜙(x, 𝑡) has been used and an
implicit summation is done over the index 𝛼 ∈ {𝑥, 𝑦, 𝑧}.

A prediction step is considered, that consists in solving
Equation (16) without considering the solid boundary as:

𝜌𝑢∗
𝛽
− 𝜌𝑢𝑡

𝛽

Δ𝑡
+
𝜕(𝜌𝑡𝑢𝑡

𝛼
𝑢𝑡
𝛽
+ 𝑝𝑡𝛿𝑡

𝛼𝛽
)

𝜕𝑥𝛼
−
𝜕(𝜏𝑡

𝛼𝛽
)

𝜕𝑥𝛼
= 0 (17)

where 𝑢∗
𝛽

denotes the predicted velocity field.

By subtracting Equation (17) to Equation (16), an expression for
the forcing term is derived: 𝑓 IB,𝑡

𝛽
=

𝜌𝑢𝑡+Δ𝑡
𝛽

−𝜌𝑢∗
𝛽

Δ𝑡
. Moreover, 𝑢𝑡+Δ𝑡

𝛽
can

be replaced by 𝑢𝐵
𝛽

in order for the source term to enforce the
desired Dirichlet BC (14).

Finally, an explicit expression of the forcing is obtained as:

𝑓 IB,𝑡
𝛽

= 𝜌
𝑢𝐵
𝛽
− 𝑢∗

𝛽

Δ𝑡
(18)

It can be noticed here that incorporating 𝜌 as a factor in the
expression above is only valid since the source term in the conti-
nuity equation is zero, resulting in 𝜌∗ = 𝜌𝑡+Δ𝑡.

2.3.2 | Derivation of an Expression for the Energy
Source Term for Dirichlet Boundary Condition in the
Energy Equation

A similar approach is employed to derive explicit expressions for
the source terms QIB and QIB in the energy equation.

(𝜌E)𝑡+Δ𝑡 − (𝜌E)𝑡

Δ𝑡
+
𝜕((𝜌E𝑡 + 𝑝𝑡)𝑢𝑡

𝛼
)

𝜕𝑥𝛼
−
𝜕(𝜏𝑡

𝛼𝛽
𝑢𝑡
𝛼
+ 𝑞𝑡

𝛼
)

𝜕𝑥𝛼

= WIB,𝑡 + QIB,𝑡 (19)

(𝜌E)∗ − (𝜌E)𝑡

Δ𝑡
+
𝜕((𝜌E𝑡 + 𝑝𝑡)𝑢𝑡

𝛼
)

𝜕𝑥𝛼
−
𝜕(𝜏𝑡

𝛼𝛽
𝑢𝑡
𝛼
+ 𝑞𝑡

𝛼
)

𝜕𝑥𝛼
= 0 (20)

Subtracting the prediction Equation (20) to Equation (19)
results in:

WIB,𝑡 + QIB,𝑡 = (𝜌E)∗ − (𝜌E)𝑡

Δ𝑡
(21)

The total energy 𝜌𝐸 is then decomposed into kinetic and internal
energies according to Equation (7):

WIB,𝑡 + QIB,𝑡 =

(
1
2
𝜌𝑢2

𝛼

)𝑡+Δ𝑡
−

(
1
2
𝜌𝑢2

𝛼

)∗

Δ𝑡
+

(𝜌𝐶𝑣𝑇 )𝑡+Δ𝑡 − (𝜌𝐶𝑣𝑇 )∗

Δ𝑡
(22)

Similarly as before, 𝑢𝑡+Δ𝑡
𝛼

and 𝑇 𝑡+Δ𝑡 are replaced according to the
desired boundary conditions (14) while 𝜌 and𝐶𝑣 are set as factors,
resulting in:

WIB,𝑡 + QIB,𝑡 = 1
2
𝜌
(𝑢𝐵

𝛼
)2 − (𝑢∗

𝛼
)2

Δ𝑡
+ 𝜌𝐶𝑣

𝑇𝐵 − 𝑇 ∗

Δ𝑡
(23)

The above expression is finally separated into two parts, resulting
in the following explicit expressions for the source terms:

WIB,𝑡 = 1
2
𝜌
(𝑢𝐵

𝛼
)2 − (𝑢∗

𝛼
)2

Δ𝑡
(24)

QIB,𝑡 = 𝜌𝐶𝑣

𝑇𝐵 − 𝑇 ∗

Δ𝑡
(25)

It can be noticed here that WIB,𝑡 =
(
𝑢𝐵
𝛼
+𝑢∗

𝛼

2

)
𝑓 IB,𝑡
𝛼

, which corre-
sponds to the work of the force 𝑓 IB,𝑡

𝛼
applied at the mean velocity

between the predicted 𝑢∗
𝛼

and solid 𝑢𝐵
𝛼

velocities.

The diffuse forcing method presented above is then used to
enforce any kind of Dirichlet boundary condition along the solid
boundary. In the present solver, it is implemented through the
following algorithm at every time step:

1. Prediction of 𝑢∗
𝛼
, 𝑇 ∗ computed from (1) by neglecting solid

source terms

2. Computation of the IBM source term from Equations (18),
(24), and (25)

3. Solving the general equations (1)

4. Advance to the next time step 𝑡 = 𝑡 + Δ𝑡

A schematic view of the algorithm is shown in Figure 3, including
sharp forcing, presented further in this article.
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2.3.3 | Spatial Discretization of the IBM

In the present IBM framework, two distinct spatial domains are
considered: Ω is the fluid domain and Γ is the solid boundary as
shown in Figure 1, with the following specificities:

• Ω is discretized by a fixed cartesian mesh,

• Γ is discretized by a set of Lagrangian nodes which are free
to move anywhere within the limits of Ω.

The nodes in Ω that lie inside the solid boundary are not treated
differently from the ones outside, thus ensuring a strict indepen-
dence of the two meshes and as expected, no update of the fluid
mesh is required during the computation. Also, Ω is continuous
through Γ, which will be exploited later to propose the simplified
adiabatic model.

Since the boundary conditions are defined only on the solid
domainΓ, which is not expected to coincide exactly withΩ, trans-
fer operators must be defined and implemented in the numerical
discretization. In the framework of diffuse forcing, the classi-
cal method consists of defining two reciprocal operators, named
Interpolation and Spreading, such that:

Φ(𝑋, 𝑡) =
∑
Ω𝑓

𝜙(𝑥, 𝑡)𝛿IB(𝑥 −𝑋)Δ𝑥3 (26)

𝜙(𝑥, 𝑡) =
∑
Γ𝑠

Φ(𝑋, 𝑡)𝛿IB(𝑥 −𝑋)Δ𝑞Δ𝑟Δ𝑠 (27)

Φ, 𝑋 denotes variables from the solid boundary Γ while 𝜙, 𝑥
denotes variables from the fluid domainΩ.Δ𝑞Δ𝑟Δ𝑠 is the quadra-
ture volume for the solid mesh.

The 𝛿IB function is a discretized approximation of the Dirac delta
function. Here, the following expression is used:

𝛿IB(𝑥, 𝑦, 𝑧) =
1

Δ𝑥3
̃𝛿IB

(
𝑥

Δ𝑥

)
̃𝛿IB

( 𝑦

Δ𝑥

)
̃𝛿IB

(
𝑧

Δ𝑥

)
(28)

̃𝛿IB(𝑟) =
⎧⎪⎨⎪⎩

1
2𝑟

(
1 + cos

(
𝜋𝑟

1.5

)
if 𝑟 < 1.5

0 otherwise.
(29)

FIGURE 1 | Immersed boundary (red) on a cartesian grid.

These two operators must be reciprocal to ensure the conser-
vation of forces on fluid and solid domains, and thus a correct
coupling between fluid and solid dynamics. If this condition on
the reciprocity of operators is not satisfied, the total forces com-
puted in the solid domain will not equal the total force in the fluid
domain, violating Newton third law of motion.

However, an issue arises in the definition of (27) since the quadra-
ture volume is not entirely defined in the discretized space.

Indeed, Γ being a boundary domain, it has one dimension less
than the dimension of Ω. As a consequence, at least one of the
components in Δ𝑞Δ𝑟Δ𝑠 is unknown.

This unknown component, referred to as the Lagrangian weight
𝑊 (𝑋), can be computed by a calibration procedure, as detailed by
Gsell, D’Ortona, and Favier [23] and by Cheylan et al. [54]. The
analytical formulation they proposed for the calculation of𝑊 (𝑋)
is used here. This calibrating ensures a really high level of reci-
procity between the two operators. In the case of a non-moving
solid, this calibration is computed and performed only once at the
first time step.

A simple test is realized to validate the correct calibration of
𝑊 (𝑋): it involves the Spreading of a unity scalar field from Γ to
Ω using (27), and the interpolation of this field back to Γ using
(26). The gap between the initial and result field represents the
so-called SPRINT (Spreading/Interpolation) error, denoted 𝜖𝑆𝑃 of
the method, on each Lagrangian node.

𝜖𝑆𝑃 (𝑋𝑘) =
√

(Φ𝑘 − 1)2 (30)

Φ𝑘 =
∑
Ω𝑓

𝜙𝑖𝛿IB(𝑥𝑖 −𝑋𝑘)Δ𝑥3 (31)

𝜙𝑖 =
∑
Γ𝑠

1 × 𝛿IB(𝑥𝑖 −𝑋𝑘)Δ𝑞Δ𝑟𝑊 (𝑋𝑘) (32)

In all simulations from the results section 3, the Lagrangian
weight was calibrated at the first iteration. As a consequence,
𝜖𝑆𝑃 (𝑋𝑘) < 10−4 ∀𝑋𝑘.

2.4 | Hybridization With the Ghost-Nodes
Forcing Method

The diffuse forcing IBM can not easily be expressed for bound-
ary conditions that differ from Dirichlet-type (such as Neumann
boundary conditions). It was attempted in [31, 32, 34] but this
leaves too many arbitrary parameters (such as the distance of
projection of the Lagrangian node) and it is not clear if the
zero-gradient on temperature boundary condition is well applied.
Therefore, as proposed by Boukharfane et al. in [39] a GN forc-
ing method was implemented in addition to the current diffuse
forcing IBM in order to ensure a strict imposition of boundary
conditions of any kind.

The ghost-nodes forcing method is different from the diffuse
forcing introduced earlier in the way the boundary condition is
enforced. As a matter of fact, the GN forcing is usually classi-
fied as the “sharp interface” method in opposition to the “diffuse

6 of 20 International Journal for Numerical Methods in Engineering, 2025

 10970207, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7647 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



interface” methods as proposed by Mittal and Iaccarino [20]. The
general idea of GN forcing is to classify some Eulerian fluid nodes
that stand near the boundary inside Γ and to enforce directly
the desired boundary conditions on these nodes. The boundary
condition may be of any type, though, in the present framework,
it is used only to enforce Neumann boundary conditions corre-
sponding to heat flux conditions.

In particular, imposing a zero-heat-flux boundary condition is a
common choice when the thermal coupling between the solid
structure and the fluid is neglected and the solid wall is consid-
ered adiabatic:

𝜕n𝑇 = 𝑄𝐵 (33)

with 𝜕n the spatial derivative to the wall normal direction and𝑄𝐵

the heat flux between the fluid and the solid. Imposing 𝑄𝐵 = 0
results in the adiabatic boundary condition, expressed as:

𝜕n𝑇 = 0 (34)

2.4.1 | Node Classification

The first step in the algorithm is to classify each Eulerian node
into one of these categories (Figure 2):

• 𝑥𝐹 , Fluid node: an Eulerian node that stands outside the
solid boundary.

• 𝑥𝑆 , Solid node: an Eulerian node that stands inside the solid
boundary

• 𝑥𝐺𝑁 , Ghost node: an Eulerian node that is a solid node
near the solid boundary. The enforcement of the desired BC
through the GN method happens there.

Initially, the classification of the Eulerian nodes as 𝑥𝐹 or 𝑥𝑆 is
unknown since the solid mesh is independent of the Eulerian
fluid mesh. A method is required to determine for each node if
it is outside or inside the solid boundary.

This problem simply comes down to a point-in-polygon problem
from computational geometry. One of the simplest and more

generic method to solve this is the ray casting algorithm. It
consists in computing how many times a line (ray), starting from
the candidate node into the 𝑥, 𝑦, 𝑧 directions, would cross the
boundary. This number is denoted 𝐶𝑛. If it is odd, then the node
lies inside the boundary, otherwise, it is outside.

The identification of the ghost nodes 𝑥𝐺𝑁 is realized in a sim-
ple manner: among all Eulerian 𝑥𝑆 , if a node has at least one
neighbor which is of the type 𝑥𝐹 , then it is flagged as ghost node,
otherwise, it remains of the 𝑥𝑆 type.

2.4.2 | Image Point

The next step of the GN method consists in projecting each ghost
node in the direction normal to the solid boundary. The resulted
point is denoted as the “image point” 𝑋𝐼𝑃 , which will usually not
coincide with an Eulerian node. The boundary condition on 𝑥𝐺𝑁
will be enforced according to the value of the field at its corre-
sponding image point. Thus, an interpolation should be realized
around 𝑋𝐼𝑃 . In the present work, it is done with the previously
introduced interpolation operator (26), but the nodes classified as
𝑥𝐺𝑁 or 𝑥𝑆 are excluded from the interpolation stencil. In order to
recover a correct interpolation, the results are normalized by the
sum of the 𝛿IB(|𝑥𝑖 −𝑋𝐼𝑃 |) as:

Φ(𝑋𝐼𝑃 , 𝑡) =

∑
Ω𝑓𝑙𝑢𝑖𝑑

𝜙(𝑥, 𝑡)𝛿IB(𝑥𝑓 −𝑋𝐼𝑃 )Δ𝑥3∑
Ω𝑓𝑙𝑢𝑖𝑑

𝛿IB(𝑥𝑓 −𝑋𝐼𝑃 )Δ𝑥3
(35)

2.4.3 | Enforcement of the Neumann Boundary
Condition

Concerning the imposition of the boundary condition on the GN,
let us focus only on the enforcement of Neumann BC on 𝑇 here.
The goal is to ensure the desired boundary condition (33) on the
solid boundary by modifying the value of temperature. A 2nd
order approximation of (33) results in:

𝜕n(𝑇 ) =
𝑇 (𝑋𝐼𝑃 ) − 𝑇 (𝑥𝐺𝑁 )

2ℎ
where ℎ is the distance between

𝑥𝐺𝑁 and the solid boundary (36)

FIGURE 2 | Eulerian nodes status and projection of a ghost-node.
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From (33), the value of temperature to enforce on the 𝑥𝐺𝑁 is
deduced as:

𝑇 (𝑥𝐺𝑁 ) = 2ℎ𝑄𝐵 − 𝑇 (𝑋𝐼𝑃 ) (37)

In the specific case of an adiabatic boundary, 𝑄𝐵 = 0, which
results in the copy of the temperature at the image point to the
ghost node as: 𝑇 (𝑥𝐺𝑁 ) = 𝑇 (𝑋𝐼𝑃 ).

2.4.4 | Implementation of the Hybrid GN-IBM

The proposed numerical framework for a hybrid sharp/diffuse
IBM is illustrated in Figure 3.

2.5 | Introduction of the T-Passive Bboundary
Condition

The hybrid GN-IBM method presented in the previous section is
useful to enforce strictly the Neumann boundary condition while

preserving the advantages of the diffuse forcing for the Dirichlet
boundary condition. Though, the additional computational effort
required by the GN part of the algorithm, see Figure 3, is not neg-
ligible. This is particularly true in the case of a moving boundary,
when the classification of nodes as solid or fluid has to be repeated
each time step. The interpolation of the temperature field on the
image point also represents an additional cost.

In the present section, the particular case of the adiabatic bound-
ary condition is considered. That type of BC is of interest when
the heat exchange between the fluid and the solid is negligible.
As mentioned earlier, the adiabatic boundary condition is a spe-
cial case of Neumann BC where the desired Temperature gradient
should be zero.

When the solid structure is considered as adiabatic, another
IBM model is proposed where no special treatment is applied to
the temperature field, saving CPU time compared to the hybrid
IBM-GN. The validity of this so-called “T-Passive” IBM model to

FIGURE 3 | Schematic view of the hybrid IBM-GN algorithm enforcing adiabatic FS interface. Diffuse and sharp forcing approaches are distin-
guished respectively as green and red.
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simulate the interaction of the flow with adiabatic boundaries is
investigated in the results section 3.

The relevance of this approach is supported by the different time
scales involved in the energy conservation for the fluid close to
the boundary. In most of the situations of interest, the change of
temperature is dominated by convection and conduction and is
only significant for much larger time scales. Taking into account
that the forcing of the velocity field is sufficient to ensure the
correct boundary condition for the energy convection, simply
neglecting any conductive heat exchange through the selected
boundary is likely to be enough to obtain a satisfactory adiabatic
boundary condition.

In the framework of a T-passive boundary, the no-slip condition is
still enforced through diffuse forcing and no additional treatment
is applied to the temperature field, which is simply left uncon-
strained. This means that, contrary to the Hybrid IBM-GN, there
is no need to compute the position of ghost nodes or to interpo-
late a field around any image point. This simplifies greatly the
method and is expected to highly reduce the computational cost
of thermal boundary condition management.

2.5.1 | Analysis of the Heat Conduction Term in the
Dimensionless Energy Equation

In the following, a theoretical analysis is performed to assess the
validity of the simplified T-passive model.

Firstly, the energy equation can be expressed under a dimension-
less form in order to identify a term related to heat conduction.
The validity of the simplified model depends on whether this
term is negligible or not.

𝜕𝑡(�̃��̃�) + 𝜕�̃�(�̃��̃�𝑢𝛼) = −𝜕�̃�(�̃�𝑢𝛼) +
𝑀2

𝑎

𝑅𝑒

𝜕�̃�( ̃𝜏𝛼𝛽 .𝑢𝛼) −
1

𝑅𝑒𝑃𝑟
𝜕�̃�(𝑞𝛼) = 0

(38)
where .̃ denotes dimensionless quantities, 𝑀𝑎 is the Mach num-
ber, 𝑅𝑒 is the Reynolds number, 𝑃𝑟 is the Prandtl number and 𝑞𝛼
is the dimensionless heat flux.

Here, the heat conduction term is identified as 1
𝑅𝑒𝑃𝑟

𝜕�̃�(𝑞𝛼). This
means that the simplification is valid as long as the dimension-
less variable 𝑅𝑒𝑃𝑟 is large enough, and as long as the temperature
delta throughout the boundary is small ⇒ 𝑞𝛼 ≈ 0.

2.5.2 | Analysis of the Characteristic Time

Secondly, an analysis of the characteristic times related to con-
vection and conduction is realized as:

𝜏convection = 𝐿

𝑢∞
(39)

𝜏conduction = 𝐿2

𝛼
=

𝜌𝐶𝑝𝐿
2

𝜆
(40)

with 𝜏 a characteristic time, 𝐿 a characteristic length, 𝑢∞ a char-
acteristic velocity, and 𝛼 the thermal diffusivity.

In the case of a transient simulation, the simplified model is thus
valid if the 𝜏conduction is large to 𝜏convection and the total simulation

time. The ratio of these two characteristic times also reveals a
dependence on the dimensionless number 𝑅𝑒𝑃𝑟, defined from
characteristic variables taken in the bulk flow, which is consis-
tent with the previous analysis. Further investigations would be
needed in cases where the T-Passive model fails due to particular
phenomena encountered inside the boundary layer where these
numbers can take different values. Such situations have not been
encountered in the tests proposed in the current article.

𝜏conduction

𝜏convection
=

𝜌𝑢∞𝐿𝐶𝑝

𝜆
=

𝜌𝑢∞𝐿

𝜇

𝜇𝐶𝑝

𝜆
= 𝑅𝑒𝑃𝑟 (41)

3 | Numerical Results and Validation of the
Proposed IB Model for Compressible Flow

In order to validate the proposed method, a set of 1D and 2D test
cases is carried out, and the results are compared with various
references.

Case 1 Subsonic unsteady flow around a cylinder at Re 100:
standard validation for incompressible flow

Case 2 Thermal Couette flow at Ma 1.3: demonstration of the
validity of the two IBM models in compressible super-
sonic conditions

Case 3 Supersonic laminar flow around a cylinder at Re 300
and Ma 2.0: comparison of the present results with
other works from the IBM literature

Case 4 Supersonic turbulent flow on a wedge at Re 50000 and
Ma 2.0: validation of the method for sharp geometries
and turbulent flows

Case 5 Shock wave impact on a cylinder: Assessment of the
ability of the IBM model to deal with rapid transient
flows

3.1 | Case 1: Subsonic Unsteady Flow Around a
Cylinder

Let us first consider an unsteady flow past a circular cylinder,
neglecting the compressible effect by setting the Mach number
to 0.1. A cylinder, of diameter D is centered at coordinates (0,0)
in a rectangular domain of size [−25D, 75D] × [−30D, 30D],
discretized by a cartesian mesh with D = 80Δ𝑥. The flow at the
inlet is towards the x-direction and its velocity is set according to
the Mach number 𝑀∞ = 0.1 as: 𝑈∞ = 𝑀∞𝑐∞ with 𝑐∞ the speed
of sound.

The free-stream pressure and temperature respectively equal to
𝑝∞ = 1bar and 𝑇∞ = 292 K. The Reynolds number is set to𝑅𝑒∞ =
100, leading to an unsteady wake. The vortex generation fre-
quency is analyzed by computing the Strouhal number:

𝑆𝑡 =
𝑓req𝐷

𝑈∞

where 𝑓req is the vortex shedding frequency.

The boundary condition imposed on the cylinder is: no slip
isothermal, with 𝑇𝐵 = 𝑇∞.
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One advantage of the IBM framework employed here is that it
makes it easy to compute the aerodynamic forces endured by the
solid cylinder as:

𝐶𝑑 =
∑

Γ𝑠
𝐹 IB
𝑥

𝜌∞𝑢∞𝑆eff

𝐶𝑙 =
∑

Γ𝑠
𝐹 IB
𝑦

𝜌∞𝑢∞𝑆eff

where 𝐶𝑑 is the drag coefficient and 𝐶𝑙 is the lift coefficient.

𝐹 IB
𝑥

and 𝐹 IB
𝑦

are the immersed boundary forces respectively in
𝑥 and 𝑦 directions, summed over the lagrangian nodes. 𝑆eff
is the effective aerodynamic surface, equal to 𝐷Δ × Δ𝑥 in the
present case.

The lift coefficient is oscillating around a 0 mean value at the
same frequency as the vortex shedding.

This case represents a classical experiment in the literature as a
number of authors have studied the flow around a cylinder at
Reynolds 100 in the past. Though, despite its simplicity, previous
studies show variability in results, with no clear consensus on the
exact value among numerical or experimental studies, as shown
in [55–57]. Present results fall within the dispersion of results and
agree with most recent IBM simulation reference results as illus-
trated in Table 1.

An instantaneous velocity field is shown in Figure 4.

3.2 | Case 2: Thermal Couette Flow With an
Adiabatic Wall

After validating the present IBM model on a nearly incompress-
ible flow, let us check now its ability to deal with compressible
flow and to enforce thermal BC through the analysis of a ther-
mal Couette flow at 𝑀∞ = 1.3. The present case consists of the
simulation of a 1D shear flow between two walls and is config-
ured as follows:

• The fluid domain is a 1D line placed in the Y-Direction
between the bottom wall at Y=0 and the top wall at Y=H

• The top wall is considered stationary and adiabatic, so that
the boundary conditions for the fluid are 𝑈 = 0 and 𝜕𝑇

𝜕𝑦
= 0

• The top wall is moving and isothermal, leading to the follow-
ing BC: 𝑈 = 𝑈𝐵 and 𝑇 = 𝑇𝐵 .

The fluid domain is discretized with H=100Δ𝑥. The final state
is reached once the thermal dissipation balances out the viscous
heat generated by the shear stress. This test case assesses the
capability of the present IBM model to accurately reproduce the
shear stress on walls, and compares the two thermal models in
providing the correct boundary condition for energy on the adia-
batic wall.

In practice, in order to properly assess the accuracy of the
proposed IBM, the bottom and top walls need to be totally
incorporated into the fluid domain. To satisfy this condition, a
“double” Couette test is set up, with all the domain limits being
periodic. Otherwise, the results would be influenced by the cho-
sen boundary condition on the top and bottom limits of the

TABLE 1 | Cylinder at 𝑀∞ = 0.1 and 𝑅𝑒∞ = 100: Comparison of the
results.

𝑪𝒅 𝑪𝒍 𝑺𝒕

Liu, Zheng, and Sung [58] 1.35 ±0.339 0.164
Zhou, So, Lam [59] 1.49 ±0.248 0.162
Kim, Kim, and Choi [60] 1.33 ±0.320 0.165
Bourguet and Lo Jacono [61] 1.32 ±0.320 0.164
Gsell and Favier [62], IBM 1.37 ±0.340 0.164
Cheylan et al. 2022 [54], IBM 1.41 ±0.330 0.166
Ménez et al. 2023 [37], IBM 1.36 ±0.297 0.161
Norberg [56] empirical — ±0.227 0.164
present 1.31 ±0.316 0.162

FIGURE 4 | Velocity field around a cylinder at 𝑀∞ = 0.1 and 𝑅𝑒∞ = 100.
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domain. In practice, only the 𝑥 = [0,𝐻] section is of interest as
shown in the figures.

The fluid is initialized by: Temperature 𝑇0 = 300, pressure
𝑃0 = 8 × 105 Pa, heat capacity ratio 𝛾 = 1.4, viscosity 𝜇0 = 10−4,
specific gas constant 𝑟 = 287 Prandtl number 𝑃𝑟 = 0.71.
The Reynolds number computed from the channel height
𝐻 = 10−4, initial density 𝜌0 = 𝑃0

𝑟𝑇0
= 9.29 and top wall velocity

𝑈𝐵 = 𝑀𝑎 ∗ 𝑐0 = 451.3 is set to 𝑅𝑒 = 4193. The wall temperature
of the top wall is 𝑇𝐵 = 300K. The dynamic viscosity is following
a power law as:

𝜇

𝜇0
=

(
𝑇

𝑇0

)𝑛

(42)

Analytical solutions for velocity and temperature profiles can be
found in [63]

𝑇

𝑇𝐵
= 1 + 𝜁

[
1 −

(
𝑢𝑥

𝑈𝐵

)2
]

(43)

𝑢𝑥

𝑈𝐵

=
(

1 + 2
3
𝜁
) 𝑦

𝐻
− 𝜁

[
𝑢𝑥

𝑈𝐵

− 1
3

(
𝑢𝑥

𝑈𝐵

)3
]

(44)

Where 𝜁 = 𝑃𝑟(𝛾 − 1)∕2 𝑀2
∞.

The simulation was performed with the hybrid GN-IBM model
and the simplified T-Passive model. The results are compared
to reference solutions in Figure 5. It is found that both models
yield satisfying results on velocity and temperature fields. One
can notice that, because of the diffused nature of the IBM (which
has a radius stencil of 1.5Δ𝑥), the wall velocity is enforced in an
area wider than expected. As a consequence, the shear stress is
overestimated, leading to a more viscous heat. This explains the
higher temperature reached by the fluid on the adiabatic wall,
which can obviously be reduced by refining the mesh.

Finally, the two thermal IBM models are compared. First, as
expected, the two velocity fields are exactly the same. One can
then notice that the temperature field resulting from the simpli-
fied model is further from the reference solution than the one
obtained with the strictly adiabatic model. Though, by computing
the 2 error to the reference solution, it can be concluded that

this difference remains negligible, showing the good ability of the
T-Passive IBM to model an adiabatic wall in the present situation.

The 2 errors on temperature and velocity to the reference solu-
tion are given in Table 2 as:

𝜖
𝜙

2
=

√∑
𝑛 (𝜙∗(𝑥𝑖) − 𝜙(𝑥𝑖))2∑

𝑛 (𝜙∗(𝑥𝑖))2

A grid convergence study is performed by varying the number
of nodes between the two walls. Figure 6 shows a second-order
convergence in temperature, while a first-order is observed for
velocity.

3.3 | Case 3: Supersonic Laminar Flow Around
a Cylinder

Now, let us analyze the configuration of a laminar supersonic
flow around a circular cylinder. The Mach and Reynolds num-
ber are respectively set to 𝑀∞ = 2 and 𝑅𝑒∞

= 300. Pressure and
temperature at the inlet are imposed as 𝑝∞ = 1 bar and 𝑇∞ = 300.

A circular cylinder of diameter 𝐷, centered on coordinates (0; 0),
is modeled by a set of Lagrangian nodes, in a rectangular domain
of dimensions [−2.5D, 17.5D] × [−10D, 10D]. A uniform mesh
is used with Δ𝑥 = 𝐷∕80. The distance between two Lagrangian
nodes is set up to be equal to Δ𝑥.

The imposed boundary condition on the IB is no slip and adia-
batic 𝑈𝐵 = 0, 𝜕n𝑇 = 0.

The density field obtained with the Hybrid IBM-GN method is
shown in Figure 7. A Schlieren representation of the density

TABLE 2 | L2 error on the thermal Couette flow.

𝝐𝑼
2

𝝐𝑻
2

T-Passive IBM 2.1 × 10−2 3.4 × 10−3

Hybrid GN-IBM 2.1 × 10−2 3.3 × 10−3

FIGURE 5 | Thermal Couette flow at Ma 1.3 with an adiabatic wall.
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FIGURE 6 | Thermal Couette flow at Ma 1.3 convergence study.

FIGURE 7 | Flow around a cylinder at Ma 2.0 Re 300, top: density field, bottom: Schlieren representation of the density gradient.

gradient is also shown in Figure 7 to illustrate the shock position
relative to the solid cylinder.

The drag coefficient and shock stand-off distance Δshock are
compared with the results of [27, 29, 37, 64, 65] in Table 3. The
pressure coefficient along the cylinder surface and the pressure
profile on the stagnation are compared and shown respectively
in Figure 8.

Finally, the same simulation is performed using the simplified
T-Passive model. As previously, the temperature field resulting
from the two IBM models is very similar. An illustration is given
in Figure 9 which is a center-line plot of the temperature. The
position of the cylinder is illustrated by the two vertical gray lines.

A grid convergence study is performed by computing the error
of the current simulations with a refined case (𝐷∕Δ𝑠𝑥 = 160).

Figure 10 shows a first-order convergence in temperature and
velocity.

3.4 | Case 4: Supersonic Turbulent Flow on a
Wedge

The next test case consists of a supersonic flow past a wedge of
chord D and half-angle θ = 20∘. The behavior of the proposed
IBM when dealing with sharp edges is investigated. Mach and
Reynolds number are respectively 𝑀∞ = 2 and 𝑅𝑒∞

= 5 × 104.
𝑅𝑒∞

is computed from the wedge length, noted 𝐷.

The triangle front is located at coordinates (0;0), on a rectan-
gular domain of size [−5D, 10D] × [−5D, 5]. A finer mesh is
employed with Δ𝑥 = D∕250. As previously, the distance between
two Lagrangian nodes is set up to be around Δ𝑥.

12 of 20 International Journal for Numerical Methods in Engineering, 2025
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The boundary conditions on the surface of the wedge are no-slip
and adiabatic 𝑈𝐵 = 0, 𝜕𝑇

𝜕𝑛
= 0. The T-Passive IBM is used, since it

was shown that it is valid in this kind of configuration.

An oblique shock is formed at the tip of the wedge. Once the
flow is steady, its angle is computed and compared with refer-
ence results [67, 68] in Table 4. The total drag coefficient is com-
puted using the wedge length 𝐷 as reference length, and com-
pared to theoretical and numerical results of [67]. Here, let us
notice that the theoretical drag value is evaluated using classi-
cal inviscid shock wave and Prandtl–Meyer theory, neglecting the
viscous drag.

The Schlieren representation of the flow is obtained by comput-
ing the density gradient and is presented in Figure 11.

The pressure profile along the x-axis at 𝑦 = 0.88D is also com-
pared in Figure 12, and shows again that the present IBM agrees
with the reference. Also, contrary to the observations of Ménez
et al. [37], the downstream flow computed with IBM is accu-
rate. In particular, the tail shock behind the wedge does converge
towards the center line as expected. The difference between the

TABLE 3 | Cylinder at 𝑀∞ = 2.0 and 𝑅𝑒∞ = 300: Comparison of the
results.

𝚫𝒔𝒉𝒐𝒄𝒌∕𝑫 𝑪𝒅

Takahashi, Nonomura,
and Fukuda [64]

Body-fitted — 1.55

Takahashi, Nonomura,
and Fukuda [64]

Ghost Nodes — 1.53

Qiu et al. 2016 [27] IBM — 1.54
Riahi et al. 2018 [65] IBM 0.69 1.51
Kumar, Sharma, and
Singh [66]

IBM — 1.56

Ménez et al. 2023 [37] Penalization 0.73 1.59
Ménez et al. 2023 [37] IBM 0.72 1.60
Present Hybrid IBM-GN 0.72 1.60

IBM employed by [37] and the present work lies in the definition
of the forcing term. Also, no calibration of the Lagrangian weight
is mentioned, which might explain the lack of accuracy when
dealing with sharp corners. In particular, the back face of the
wedge may suffer from important leaks, degrading the backflow
accuracy.

By enforcing a perfect reciprocity of the Spreading and Inter-
polation operators through calibration of the Lagrangian
weight, the present immersed boundary method is indeed
capable of enforcing strictly the desired boundary condition.
The computed streamline illustrates how the present method
reduces the fluid leaks through the immersed boundary, which
yields accurate results for the simulation of the flow behind
the wedge.

3.5 | Case 5: Shock Wave Impact on a Cylinder

The final test case is the impact of a shock wave on an adia-
batic circular cylinder. The goal is to analyze the accuracy of the
T-Passive model in the case of rapid transient phenomena. A cir-
cular cylinder of diameter D is centered at coordinates (0,0) in
a rectangular domain of size [−3.75D, 3.75D] × [−3.75D, 3.75D].
The mesh size is fixed as Δ𝑥 = D∕160.

The fluid is initialized in order to generate a normal shock wave
traveling at a Mach number of 𝑀𝑠 = 2.81 in the x-positive direc-
tion. The two initial fluid states are set up as:

⎛⎜⎜⎜⎝
𝑃1 = 9.06 × 105 Pa
𝜌1 = 3.68 kg/m3

𝑈1 = 7643.36 m/s

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑃2 = 1.00 × 105 Pa
𝜌2 = 1.0 kg/m3

𝑈2 = 0.0 m/s

⎞⎟⎟⎟⎠ (45)

The shock wave is reflected by the cylinder, forming a bow shock
upstream. Along the surface of the solid, the reflected wave
merges with the incident one, generating a Mach wave.

Trajectories of triple points, where the three shock waves meet,
are observed and compared to [69, 70] in Figure 13.

FIGURE 8 | Cylinder at Ma 2.0 Re 300, left: pressure Coefficient on the cylinder surface, right: pressure profile along the stagnation line in front of
the cylinder.
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FIGURE 9 | 1D center line plot of the Temperature field around a cylinder at Ma 2.0 Re 300 (Position of the IB is symbolized by two vertical dash
lines).

FIGURE 10 | Laminar bow shock convergence study.

TABLE 4 | Wedge 𝑀∞ = 2.0: Comparison of the shock angle.

𝜷 𝑪𝒅

Theory [67] 53.5∘ 0.68
Boiron, Chiavassa, and Donat [67] 54.1∘ 0.73
Abgrall, Beaugendre, and Dobrzynsk [68] 53.8∘ —
Ménez et al. [37] IBM 54.8∘ —
Ménez et al. [37] VP 54.5∘ —
Present 54.6∘ 0.720

An excellent agreement is obtained between the obtained results
and the reference experiments and simulations. Also, no major
difference is observed between the hybrid strictly adiabatic

GN/IBM and the T-Passive simplified model as shown in
Figure 14. An analysis of the characteristic time ratios, proposed
in 2.5.2, reveals why the simplified model performs well in this
particular case:

𝜏conduction

𝜏convection
> 104 (46)

As suggested by the Figure 3, the Hybrid GN-IBM adds a
non-negligible computational cost (measured on a mono pro-
cessor simulation): the CPU time required for the Hybrid
IBM-GN simulation was 1.56 times longer than the one using
the T-Passive. Note that this gap is expected to increase with
the number of Lagrangian nodes and the complexity of the
solid shape.

14 of 20 International Journal for Numerical Methods in Engineering, 2025
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4 | Conclusion

The present study proposes an immersed boundary model
designed for compressible flows computed with the lattice
Boltzmann method. A particular focus is given to enforcing Neu-
mann boundary conditions for the temperature field.

FIGURE 11 | Schlieren representation of the flow over a wedge at
Ma 2.0.

In the usual case with the given fast transient dynam-
ics context where the thermal coupling between the solid
and the fluid is negligible, the boundary condition on the
solid boundary is considered adiabatic. Particular attention
is given to the best method to enforce such a condition,
with a reference solution obtained by an original combi-
nation of diffuse forcing for the velocity and ghost nodes
approach for the temperature. A simplified IBM model for
temperature management with adiabatic boundary, taking
into account the different time scales between convection
and conduction and referred to as “T-Passive” IBM, is also
explored and carefully assessed for the sake of computational
efficiency.

Both models are validated and compared in various cases, rang-
ing from laminar subsonic to turbulent supersonic regimes.
The results demonstrate the capacity of the simplified T-Passive
model to yield similar results compared to the strictly adiabatic
GN method. However, the T-Passive model is only valid when
thermal fluid-structure coupling can be neglected. In high Mach
flows, such as hypersonic regimes where temperature gradients
are extreme, this assumption may not be valid anymore. Addi-
tionally, as suggested in Section 2.5.2, even in cases where the FS
heat exchange is neglected, if the Reynolds-Prandtl (RePr) num-
ber is too low, the T-Passive model may fail to model accurately
the FS thermal interface, limiting its applicability. The proposed
IBM model coupled to a compressible flow LBM solver is demon-
strated to give promising performances, to tackle fast transient
flows with fluid-structure interaction.

FIGURE 12 | Pressure profile on an horizontal line at 𝑦∕𝑑 = 0.88–flow over a wedge at Ma 2.0.
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FIGURE 13 | Schlieren representation of the impact of a shock wave on a circular cylinder at Ma 2.81 Left: experimental result of [69] Right: present
numerical result and comparison of triple point trajectories with [69, 70].

FIGURE 14 | Temperature field of the impact of a shock wave on a
circular cylinder at Ma 2.81 Comparison of a) the T-Passive model and b)
the Hybrid IBM-GN model.

Future work will focus on the coupling of the present fluid
solver with a solid structure solver in order to demonstrate the
applicability of the present IBM approach in coupled FSI sce-
narios. Challenges related to the stability and accuracy of the
coupling scheme should be addressed in the framework of fast
transient FSI.
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Appendix A

Lattice-Boltzmann Solver

Details on the Hyrbid LBM solver are given in the following appendix.
First, let us recall the Boltzmann Equation (8) accounting for the presence
of body force as:

𝜕𝑓

𝜕𝑡
+ 𝑐𝛼

𝜕𝑓

𝜕𝑥𝛼
+
𝐹𝛼

𝜌

𝜕𝑓

𝜕𝑐𝛼
= Ω(𝑓 ) (A1)

where 𝑐 denotes the particle velocity and Ω(𝑓 ) is the collision operator
and F a generic forcing term.

In the framework of an LBM solver, (8) is discretized in the physical space,
in time, and in the velocity space by defining a set of 𝑐𝑖 particle velocities.
Here the usual D3Q19* lattice is used for which

c𝑖,𝑥 = (0, 1, 1, 0,−1,−1,−1, 0, 1, 0, 1,−1, 1,−1, 0,−1, 1, 0)Δ𝑥
Δ𝑡

(A2)

c𝑖,𝑦 = (0, 0, 1, 1, 1, 0,−1,−1,−1, 0, 1,−1,−1, 1, 1,−1, 0, 0)Δ𝑥
Δ𝑡

(A3)

c𝑖,𝑧 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1)Δ𝑥
Δ𝑡

(A4)

As shown earlier in Equation (9), using a unified Hybrid Recursive Reg-
ularized approach from [50, 51, 53] the obtained scheme can be written

in the general formulation:{
𝑓 coll
𝑖

(𝑥, 𝑡) = 𝑓
eq
𝑖
(𝑥, 𝑡) +

(
1 − Δ𝑡

𝜏

)
𝑓

neq
𝑖

(𝑥, 𝑡) + Δ𝑡
2
𝐹𝑖(𝑥, 𝑡)

𝑓𝑖(𝑥, 𝑡 + Δ𝑡) = 𝑓 coll
𝑖

(𝑥 − 𝑐𝑖Δ𝑡, 𝑡)

With 𝜏 being related to the fluid dynamic viscosity 𝜇 as:

𝜇 + 𝜌𝜈𝑠𝑐 =
(
𝜏 − Δ𝑡

2

)
𝜌𝑐2

𝑠
(A5)

An artificial viscosity 𝜈𝑠𝑐 is used to handle discontinuities and is com-
puted as:

𝜈𝑠𝑐 = 𝑠𝑐
1
3
|||𝛿𝑝𝑥 + 𝛿𝑝𝑦 + 𝛿𝑝𝑧

|||
𝛿𝑝𝛼 =

𝑝(𝑥 − Δ𝑥𝛼, 𝑡) − 2𝑝(𝑥, 𝑡) + 𝑝(𝑥 + Δ𝑥𝛼, 𝑡)
𝑝(𝑥 − Δ𝑥𝛼, 𝑡) + 2𝑝(𝑥, 𝑡) + 𝑝(𝑥 + Δ𝑥𝛼, 𝑡)

(A6)

where 𝑠𝑐 is a free parameter that can be tuned to adjust the influence of
the shock sensor.

Regarding the computation of 𝑓 eq
𝑖

, an expansion on the basis of Hermite
polynomials is used:

𝑓
eq
𝑖

= 𝜔𝑖

⎛⎜⎜⎝𝐻 (0)
𝑖
(c𝑖)𝑎

(0)
(eq) +

𝐻
(1)
𝑖,𝛼
(c𝑖)𝑎

(1)
(eq),𝛼

𝑐2
𝑠

+
𝐻

(2)
𝑖,𝛼𝛽

(c𝑖)𝑎
(2)
(eq),𝛼𝛽

2𝑐4
𝑠

+ 1
6𝑐6

𝑠

[
3(𝐻 (3)

𝑖,𝑥𝑥𝑦
+𝐻

(3)
𝑖,𝑦𝑧𝑧

)(𝑎(3)(eq),𝑥𝑥𝑦 + 𝑎
(3)
(eq),𝑦𝑧𝑧)

+ (𝐻 (3)
𝑖,𝑥𝑥𝑦

−𝐻
(3)
𝑖,𝑦𝑧𝑧

)(𝑎(3)(eq),𝑥𝑥𝑦 − 𝑎
(3)
(eq),𝑦𝑧𝑧)

+ 3(𝐻 (3)
𝑖,𝑥𝑧𝑧

+𝐻
(3)
𝑖,𝑥𝑦𝑦

)(𝑎(3)(eq),𝑥𝑧𝑧 + 𝑎
(3)
(eq),𝑥𝑦𝑦)

+ (𝐻 (3)
𝑖,𝑥𝑧𝑧

−𝐻
(3)
𝑖,𝑥𝑦𝑦

)(𝑎(3)(eq),𝑥𝑧𝑧 − 𝑎
(3)
(eq),𝑥𝑦𝑦)

+ 3(𝐻 (3)
𝑖,𝑦𝑦𝑧

+𝐻
(3)
𝑖,𝑥𝑥𝑧

)(𝑎(3)(eq),𝑦𝑦𝑧 + 𝑎
(3)
(eq),𝑥𝑥𝑧)

+(𝐻 (3)
𝑖,𝑦𝑦𝑧

−𝐻
(3)
𝑖,𝑥𝑥𝑧

)(𝑎(3)(eq),𝑦𝑦𝑧 − 𝑎
(3)
(eq),𝑥𝑥𝑧)

]⎞⎟⎟⎠ (A7)

where the Hermite polynomials in the velocity space are:

𝐻
(0)
𝑖

= 1 (A8)

𝐻
(1)
𝑖

= 𝑐𝑖𝛼 (A9)

𝐻
(2)
𝑖

= 𝑐𝑖𝛼𝑐𝑖𝛽 − 𝑐2
𝑠
𝛿𝛼𝛽 (A10)

𝐻
(3)
𝑖

= 𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾 − 𝑐2
𝑠
(𝑐𝑖𝛼𝛿𝛽𝛾 + 𝑐𝑖𝛽𝛿𝛾𝛼 + 𝑐𝑖𝛾 𝛿𝛼𝛽 ) (A11)

And the Hermite coefficients are defined as:

𝑎
(0)
(eq) = 𝜌 +

𝜔𝑖 − 𝛿0𝑖

𝜔𝑖

𝜌(𝜃 − 1) (A12)

𝑎
(1)
(eq),𝛼 = 𝜌𝑢𝛼 (A13)

𝑎
(2)
(eq),𝛼𝛽 = 𝜌𝑢𝛼𝑢𝛽 (A14)

𝑎
(3)
(eq),𝛼𝛽𝛾 = 𝜌𝑢𝛼𝑢𝛽𝑢𝛾 (A15)

Similarly, a definition of 𝑓neq
𝑖

expanded up to third order is proposed as:

𝑓
neq
𝑖

= 𝜔𝑖

⎛⎜⎜⎝
𝐻

(2)
𝑖,𝛼𝛽

(c𝑖)𝑎
(2)
(neq),𝛼𝛽

2𝑐4
𝑠

+ 1
6𝑐6

𝑠
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[
3(𝐻 (3)

𝑖,𝑥𝑥𝑦
+𝐻

(3)
𝑖,𝑦𝑧𝑧

)(𝑎(3)(neq),𝑥𝑥𝑦 + 𝑎
(3)
(neq),𝑦𝑧𝑧)

+ (𝐻 (3)
𝑖,𝑥𝑥𝑦

−𝐻
(3)
𝑖,𝑦𝑧𝑧

)(𝑎(3)(neq),𝑥𝑥𝑦 − 𝑎
(3)
(neq),𝑦𝑧𝑧)

+ 3(𝐻 (3)
𝑖,𝑥𝑧𝑧

+𝐻
(3)
𝑖,𝑥𝑦𝑦

)(𝑎(3)(neq),𝑥𝑧𝑧 + 𝑎
(3)
(neq),𝑥𝑦𝑦)

+ (𝐻 (3)
𝑖,𝑥𝑧𝑧

−𝐻
(3)
𝑖,𝑥𝑦𝑦

)(𝑎(3)(neq),𝑥𝑧𝑧 − 𝑎
(3)
(neq),𝑥𝑦𝑦)

+ 3(𝐻 (3)
𝑖,𝑦𝑦𝑧

+𝐻
(3)
𝑖,𝑥𝑥𝑧

)(𝑎(3)(neq),𝑦𝑦𝑧 + 𝑎
(3)
(neq),𝑥𝑥𝑧)

+ (𝐻 (3)
𝑖,𝑦𝑦𝑧

−𝐻
(3)
𝑖,𝑥𝑥𝑧

)(𝑎(3)(neq),𝑦𝑦𝑧 − 𝑎
(3)
(neq),𝑥𝑥𝑧)

⎤⎥⎥⎦
⎞⎟⎟⎠ (A16)

The second order off-equilibrium Hermite coefficient 𝑎
(2)
(neq),𝛼𝛽 is com-

puted according to the Hybrid Recursive Regularized model as:

𝑎
(2)
(neq),𝛼𝛽 = 𝜎(ã(2),(𝑃𝑅)

(neq),𝛼𝛽 ) + (1 − 𝜎)(𝑎(2),(𝐹𝐷)
(neq),𝛼𝛽 ) (A17)

Where ã(2),(𝑃𝑅)
(neq),𝛼𝛽 is defined by the projection of the distribution function

onto the second-order Hermite polynomials, used in a traceless form:

ã(2),(𝑃𝑅)
(neq),𝛼𝛽 = 𝑎

(2),(𝑃𝑅)
(neq),𝛼𝛽 −

𝛿𝛼𝛽

D
𝑎
(2),(𝑃𝑅)
(neq),𝛾𝛾 (A18)

𝑎
(2),(𝑃𝑅)
(neq),𝛼𝛽 =

∑
𝑖

𝐻
(2)
𝑖,𝛼𝛽

(𝑓𝑖 − 𝑓
𝑒𝑞
𝑖
) (A19)

And where ã(2),(𝐹𝐷)
(neq),𝛼𝛽 is computed directly from the macroscopic variable as

shown in [51]. Finally, the third order moment is recursively computed
from 𝑎

(2),(𝑃𝑅)
(neq),𝛼𝛽 as proposed by [71]:

𝑎
(3)
(neq),𝛼𝛽𝛾 = 𝑢𝛼𝑎

(2)
(neq),𝛽𝛾 + 𝑢𝛽𝑎

(2)
(neq),𝛼𝛾 + 𝑢𝛾𝑎

(2)
(neq),𝛼𝛽 (A20)

The generic forcing term 𝐹𝑖 in (9) may include various corrections or
external forcing. In the present method, it includes the immersed bound-
ary source term from the momentum equation 𝑓 IB

𝛼
. Here the method

proposed by Guo, Zheng, and Shi [49] is used, that relates 𝑓 IB
𝛼

which the
IBM forcing term in the NS Equation (1) to 𝐹 𝐼𝐵

𝑖
the IBM forcing term in

the Boltzmann Equation (8) as:

𝐹 𝐼𝐵
𝑖

=
(

1 − Δ𝑡
2𝜏

)
𝜔𝑖

(
𝑐𝑖,𝛼 − 𝑢𝛼

𝑐2
𝑠

+
𝑐𝑖,𝛽𝑢𝛽

𝑐4
𝑠

𝑐𝑖,𝛼

)
𝑓 IB
𝛼

(A21)

Simultaneously, the total energy equation is advanced in time using finite
difference discretization as:

(𝜌E)𝑡+Δ𝑡 − (𝜌E)𝑡

Δ𝑡
+
𝜕((𝜌E𝑡 + 𝑝𝑡)𝑢𝑡

𝛼
)

𝜕𝑥𝛼
−
𝜕(𝜏𝑡

𝛼𝛽
𝑢𝑡
𝛼
+ 𝑞𝑡

𝛼
)

𝜕𝑥𝛼
= 0 (A22)

The IBM source term has been ignored here for clarity. The convective
flux of (A22) is computed by a 2D MUSCL-Hancock method. Thermal
conduction and viscous heat are computed through second-order cen-
tered finite difference.
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