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ABSTRACT When model-driven engineering is applied to critical systems, proving the correctness of model transformations
(MT) assumes great importance. For instance, users may want a guarantee that the transformation does not produce models
that break a critical post-condition, or that it preserves the semantics of the transformed model. Methods for automatic proof of
MT correctness have shown their effectiveness for simple transformations and/or correctness properties. However, arbitrarily
complex transformations and properties may require interactive theorem proving, that is a very costly activity.
In this paper we aim at simplifying the development of interactive proofs for MTs written in the CoqTL transformation language,
by providing a set of automated proof tactics for MT certification. The tactics encode reasoning patterns that depend only on
the semantics of the CoqTL engine, hence they are generally applicable to proofs on any CoqTL transformation. Each tactic is
associated to a direction (forward if it derives facts about the target model given facts on the source model, backward if it derives
facts on the source given facts on the target) and a subject (element or link, respectively if the tactic derives facts on elements
or links). They are implemented as a set of lemmas and tactics for the Coq interactive theorem prover. In our experimentation,
we show that these tactics allows us to write shorter and easier proofs. The source code for CoqTL and our tactics is provided
at https://zenodo.org/records/11119867.

KEYWORDS Model Driven Engineering, Model Transformation, ATL, Formal Methods, Proof, Coq, CoqTL, Tactics.

1. Introduction
Model-driven engineering (MDE), i.e. software engineering
centered on software models, metamodels and model trans-
formations (MTs), is being used in critical systems, e.g. in
the automotive industry (Selim et al. 2012), medical data pro-
cessing (Wagelaar 2014), aviation (Berry 2008). MTs need to
be formally verified, to guarantee that they will not produce
faulty models in any case (e.g., models that break a critical
post-condition of the transformation, or do not preserve the
semantics of the original model).

Among the main formal methods for software verification,
the application of theorem proving to transformation verification
has been very limited. Automated theorem proving for MTs
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has shown its effectiveness for simple transformations and/or
correctness properties (Büttner, Egea, Cabot, & Gogolla 2012;
Büttner, Egea, & Cabot 2012; Cheng et al. 2015; Oakes et al.
2015). On the other hand, arbitrarily complex transformations
and properties may require interactive theorem proving, that is
generally very time consuming, and necessitates an expertise
that typically transformation experts do not have.

Recent efforts try to simplify the application of interactive
theorem proving to MTs. Among them, CoqTL (Tisi & Cheng
2018) has been proposed as a domain-specific language to sim-
plify the definition of transformations in the Coq interactive
theorem prover. However, proofs of non-trivial properties on
CoqTL transformations remain long and complex. For instance,
proving that a simple transformation of a graph of UML classes
to a graph of relational tables preserves node reachability1 has
taken the CoqTL authors 1267 lines of proof code in previous
work (Cheng & Tisi 2018b).

1 https://en.wikipedia.org/wiki/Reachability
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Figure 1 Simplified metamodels for state machines in Moore
style (top) and in Mealy style (bottom).

Interactive theorem provers have mechanisms for the par-
tial automation of proofs. For instance, Coq includes the Ltac
language for the definition of automated proof tactics.2 Users
developing proofs for CoqTL transformations may develop spe-
cific tactics to reduce their proof size and effort. While the
Coq tactic language is imperative, it has some fundamentally
distinctive features, e.g. backtracking for proof search and unifi-
cation. So engineering reusable code is much more complex for
Coq proof scripts than imperative programs, and less covered in
literature. In particular, the existence and structure of general
automated proof tactics that can be reused across different MTs
have not yet been studied.

This paper is a first step in the definition of reusable tactics
for the partial automation of proofs on MTs. We define two
general dimensions for model-transformation tactics: direction
(forward or backward) and subject (element or link). We pro-
pose tactics for the CoqTL language, for each direction and
target. The tactics are dependent only on the semantics of the
CoqTL engine, and thus generally applicable. We implement
these tactics in Ltac and discuss their application to existing
transformations and theorems.

Section 2 introduces a running case and uses it for giving
some necessary background on CoqTL. Section 3 describes the
proposed tactics and their application to the motivating example.
Section 4 discusses the application of the tactics on other proofs.
Section 5 outlines related work and Section 6 concludes the
paper.

2. Running Case
We start by introducing a simple running case, to motivate the
paper and illustrate the proof tactics. As a sample transforma-
tion, we consider a simplified version of the transformation of
UML state machines from the Moore style to the Mealy style.
The transformation is intentionally very simple, so that proofs
in Coq can be completely illustrated within this paper.

The metamodels in Fig. 1 are very simplified versions of the
metamodel of UML state machines (for a full metamodel see
2 Several other languages for defining automated proof tactics have been pro-

posed by the Coq community: https://coq.inria.fr/refman/proofs/creating
-tactics/index.html. Here we use Ltac because it was the main one until
quite recently.
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Figure 2 Sample statechart in Moore style (a) and in Mealy
style (b)

the Precise Semantics of UML State Machines OMG specifica-
tion).3 The top and bottom metamodels represent respectively a
machine in Moore and Mealy style, and their metaclasses have
been renamed to highlight the style. A Moore.State has an
id and an output that is produced when the state is entered.
A Moore.Transition is always connected to a single source
and target state, and is associated with an id and an input
that triggers the transition. A Mealy.State has only an id. A
Mealy.Transition is always connected to a single source
and target state, and is associated with an id, an input that
triggers the transition, and an output that is produced when the
transition is triggered.

As an example, Fig. 2 shows two state machines for a switch,
respectively in Moore style (Fig. 2a) and Mealy style (Fig. 2b).
Note that the two machines are equivalent, i.e. they produce the
same output sequences for the same input sequences.

In MDE, MT languages are used to manipulate or translate
models conforming to any metamodel. The user writes a declar-
ative transformation logic, and the language engine applies it
to standardized interfaces for object-oriented models and meta-
models. In our running example we want to translate Moore
machines into equivalent Mealy machines. For instance, we
want to transform the model in Fig. 2a to the one in Fig. 2b. Note
that this transformation is particularly simple for the source and
target state machines have a very similar structure.

Listing 1 presents the transformation code in CoqTL (Tisi
& Cheng 2018), a MT language implemented as an internal
domain-specific language in the Coq theorem prover.4 The
transformation is a Coq Definition. It is made by two rules
in a mapping style: one maps Moore States to Mealy States
(lines 3-8), another one maps Moore Transitions to Mealy
Transitions (lines 10-33). Each rule in CoqTL has a from

3 https://www.omg.org/spec/PSSM/
4 A mapping between each listing of this paper and the corresponding file is

given on the web page of the artifact https://zenodo.org/records/11119867.
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1 Definition Moore2Mealy :=
2 transformation [
3 rule "state"
4 from [Moore.State]
5 to [
6 ELEM "ms" ::: Mealy.State
7 fun _ _ s ⇒ return {| Mealy.State_id := s.(State_id) |}
8 ];
9

10 rule "transition"
11 from [Moore.Transition]
12 to [
13 ELEM "mt" ::: Mealy.Transition
14 fun _ m t ⇒
15 s ← Moore.getTransition_target m t;
16 return {|
17 Mealy.Transition_id := t.(Transition_id);
18 Mealy.Transition_input := t.(Transition_input);
19 Mealy.Transition_output := s.(State_output)
20 |}
21

22 LINK ::: Mealy.Transition_source
23 fun tls _ m moore_t mealy_t⇒
24 t_source← Transition_getSourceObject moore_t m;
25 res← resolve tls "ms" Mealy.State (singleton t_source);
26 return {| src := mealy_t; trg := res |};
27

28 LINK ::: Mealy.Transition_target
29 fun tls _ m moore_t mealy_t⇒
30 t_target← Transition_getTargetObject moore_t m;
31 res← resolve tls "ms" Mealy.State (singleton t_target);
32 return {| src := mealy_t; trg := res |}
33 ]
34 ]

Listing 1 Moore2Mealy transformation in CoqTL

section that specifies the input pattern (i.e. a tuple of model ele-
ments) to be matched in the source model. A boolean expression
in Gallina (i.e. the functional language included in Coq) can be
added as guard. CoqTL searches the source model for tuples
that satisfy the guard, and fires the rule for all of them. Each
rule has a to section which specifies elements and links to be
created in the target model (output pattern) when a rule is fired.
The to section is formed by a list of labeled ELEMs and LINKs
to create. The ELEM section includes standard Gallina code to
instantiate the new element specifying the value of its attributes.
The LINK section contains standard Gallina code to instantiate
links connected to the previously instantiated element.

In Listing 1, the state rule (lines 3-8) matches any Moore
state (line 4) and for each one of them, it constructs a corre-
sponding Mealy state, labeled ms (line 6). The matched Moore
state is referred to as s, and the new Mealy state is assigned the
same id as the state s (line 7).

The transition rule (lines 10-33) transforms Moore tran-
sitions into Mealy transitions. The rule matches any transition
(line 11), and for each match it creates a corresponding Mealy
transition mt (line 13). The new transition is initialized by the
following standard Gallina code (lines 15-20), in monadic (a.k.a.

imperative) style. The source model and matched transition are
referred respectively as m and t (line 14). We first retrieve the
target state of the Moore transition, and name it s (line 15). The
instantiated transition will have the id and input symbol of
the matched transition t and the same output symbol of the
state s (lines 16-20).

In order to connect the generated transition mt to its source
and target Mealy states, two LINKs are created. The first LINK
defines the source of the transition (line 22). In the computa-
tion of CoqTL LINKs we can navigate the list of trace links
for that transformation execution, i.e. pairs of corresponding
source and target elements instantiated by any rule of the trans-
formation. We refer to the list of trace links with tls, to the
source model with m, to the Moore transition matched by the
rule with moore_t and to the generated Mealy transition as
mealy_t (line 23). We first find the source state of the matched
Moore transition (line 24). Then we resolve it, i.e. we find in the
trace links the corresponding Mealy state (line 25). Finally, we
return the pair of the Mealy transition and this resolved Mealy
state (line 26). The target of the Mealy transition is similarly
computed (lines 28-32).

The two simple rules in Moore2Mealy both have arity one,

Automated Proof Tactics for Model Transformation 3



1 Lemma state_element_fw : ∀ sm tm,
2 tm = execute Moore2Mealy sm→
3 ∀ (s:Moore.State),
4 In (Moore.State s) (modelElements sm)→
5 In (Mealy.State {|Mealy.State_id := s.(State_id)|})
6 tm.( modelElements).

Listing 2 Example of lemma in forward direction on
Moore2Mealy

i.e. they both match only singleton tuples. CoqTL transforma-
tions however have often rules with higher arities, in order to
match subgraphs of the source model. The arity of the transfor-
mation is defined as the maximum arity of the included rules.

Listing 2 shows a first simple theorem that predicates on the
structure of the state machine produced by the transformation.
The theorem states that for all the state machines sm in Moore
style and tm in Mealy style (line 1), where tm is generated by
applying the Moore2Mealy transformation to sm (line 2), if a
state s is in the elements of sm (line 3-4), then a state with the
same identifier will be in the elements of tm (lines 5-6). We
say that this theorem is in forward direction since it states that
a property of the source model entails a property of the target
model. Intuitively, we know this theorem to hold because of the
structure of the state rule, that for each Moore state produces
a Mealy state with an identifier copied from the Moore state
(line 8 in Listing 1). The proof is short but difficult to write
because it requires familiarity with the full semantics of the
transformation engine. While several proofs on CoqTL share
similarities with it, they need to be written from scratch. We
want to write reusable tactics that partially automate this kind
of proofs.

Listing 3 shows another lemma on Moore2Mealy. For all
the Moore state machines sm and Mealy states s (lines 1-2) that
are elements of the result of the execution of Moore2Mealy on
sm (lines 3-4), there exists a Moore state s0 that is included in
the elements of sm (lines 5-6), and has the same id as s (line 7).
Intuitively we know this theorem to hold, for a similar argument
of the previous theorem: Mealy states are only produced by the
state rule, with identifiers that are always copied from iden-
tifiers of Moore states. However, this theorem is significantly
different from the previous one, since now we are trying to prove
a property of the source model by looking at the outcome in the
target model. We say that the theorem is in backward direction.
We aim at designing automated tactics that can address this kind
of reasoning too.

The two previous lemmas are simple since they only pred-
icate on the structure of the state machines (and only on their
states). In Listing 4 we show a more complex theorem, that
involves the semantics of state machines. We want to prove that
the transformation produces Mealy machines that are semanti-
cally equivalent to the original Moore machines. Concretely,
for all input sequences i and Moore machines m (line 2), the
output of the execution of the Mealy machine (line 2) that is
generated by the transformation (line 3) of m, is equal to the
output of m on the same input sequence (line 4). While the proof

1 Lemma state_element_bw : ∀ sm,
2 ∀ (s:Mealy.State),
3 In (Mealy.State s) (Model.modelElements
4 (Semantics.execute Moore2Mealy sm))→
5 exists s0, In (Moore.State s0)
6 (Model.modelElements sm) ∧
7 s = {| Mealy.State_id := s0.(State_id) |}.

Listing 3 Example of lemma in backward direction on the
state rule

1 Theorem SemanticsPreservation :
2 ∀ i m, MealySemantics.execute
3 (Semantics.execute Moore2Mealy m) i
4 = MooreSemantics.execute m i.

Listing 4 Semantic preservation theorem for Moore2Mealy

of this theorem has been developed by us, it has analogies to the
already mentioned proof of preservation of node reachability
that took 1267 lines of proof in related work (Cheng & Tisi
2018a). We aim at designing automated tactics that can reduce
this proof effort.

3. Proof tactics for CoqTL
In this paper we propose four automated tactics for CoqTL,
encapsulating four key reasoning patterns for proofs on CoqTL
transformations. We define two dimensions for tactics, direction
and subject, and we organize the tactics along them:

We identify two directions for reasoning in CoqTL proofs:

– Forward direction when starting from assumptions on the
source model we want to derive conclusions on the target
model, i.e. the output of the transformation.

– Backward direction when starting from assumptions on the
target model we want to derive conclusions on the source
model.

Listings 2 and 3 are examples of lemmas in forward and
backward direction. In a general case, even if a property is
purely forward or purely backward, complex proofs may mix
steps in forward and backward direction in different parts of the
proof.

We also identify two subjects for reasoning in CoqTL proofs:

– Element reasoning aims at proving the existence (or not)
of elements with certain properties, either in the source or
target model.

– Link reasoning aims at proving the existence (or not) of
links with certain properties, either in the source or target
model.

While both Listings 2 and 3 are examples of element reason-
ing, the code repository joint to this article contains analogous
examples of link reasoning. Again a given proof can mix ele-
ment reasoning and link reasoning at different points.

4 Cohen et al.



3.1. Forward direction on elements
In this section we isolate a reasoning pattern for proofs on
elements in the forward direction of a CoqTL transformation.
We first illustrate the pattern by example, describing a manual
proof that follows it. While the proof may seem complicated,
the fact that it follows a general pattern allows us to automate a
significant part of it. We encode the automation of the reasoning
pattern as a proof tactic.

In Listing 5 we show a proof for state_element_fw that
uses our reasoning pattern.5 The proof starts (line 38) with the
user applying the in_modelElements_inv_m2m lemma, that
he previously defined and proved (lines 1-11, the proof is not
shown). The lemma states that, in order to prove that a Mealy
state e is included in the resulting elements of the Moore2Mealy
transformation execution (line 10), it is sufficient to prove that
the list of trace links of the Moore2Mealy execution (line 9)
includes a trace link whose produced target state is e (line 6).
In practice, by applying this lemma in the first step of the proof,
the proof goal passes from a property about target elements to a
property about the set of transformation trace links.

In a second proof step (line 39), the user ap-
plies a second lemma that he has previously proved,
in_compute_trace_inv_m2m (lines 13-34). The lemma gives
a sufficient condition to prove the inclusion of a certain trace
link, connecting s in the source model to res in the target
model, in the set of trace links produced by an application of
Moore2Mealy (lines 27-33). The lemma states that to prove this
inclusion, it is sufficient to prove 7 simpler properties:

1. Moore2Mealy has to include a rule r (line 15),

2. that rule r has to include an output pattern element opu_el
(lines 16-21),

3. the source model has to include a set of Moore states s
(line 22),

4. the guard of the rule r has to evaluate to true for s (line
23),

5. the length of s has to be 1 (line 24),

6. (step 6 predicates on the rule iterator, a feature of CoqTL
that we do not discuss for brevity),

7. evaluating the output pattern element opu_el for s has to
produce a target element res (line 26).

Finally in the last step of the reasoning pattern, the user needs
to prove these 7 subgoals over the transformation and the source
model (lines 40-46). We can not automate two of these proofs in
general, since they depend on the specific transformation (steps
4 and 7). We can instead automate two other proofs (steps 5
and 6), and three others can be automated with some help from
the user, who has to give as arguments to the tactic which rule,
which pattern of that rule, or which hypothesis have to be used6

(steps 1, 2 and 3):
5 The reader which is not familiar with Coq builtin tactics can refer to the follow-

ing cheatsheet : https://julesjacobs.com/notes/coq-cheatsheet/coq-cheatsheet
.pdf

6 We explain in Appendix A why the user has to give some information here.

1. the rule r can be directly selected by the user in
Moore2Mealy as the rule named state (line 40),

2. the output pattern element s can be directly selected in
Moore2Mealy as the element named s (line 41),

3. the theorem statement was assuming that a certain state
was in the source model (line 4 in Listing 2), hence it is
trivial to prove that a singleton set containing such a state
is included in the source model (line 42),

4. since the guard of the state rule evaluates to true for
all singletons containing a Moore state, this subgoal is
automatically proved by the standard reflexivity Coq
tactic (line 43),

5. it is obvious to prove that the length of a singleton is 1,
after a few simplifications, by the standard auto Coq tactic
(line 44),

6. the property on rule iterators is trivially proved too, since
the state rule does not use iterators (line 45),

7. the target Mealy state generated from s is computed and
checked for equality with the Mealy state from the theorem
statement (line 5 in Listing 2), this is done automatically
by the standard reflexivity Coq tactic (line 46).

To automate this reasoning pattern, we now define the
in_modelElements_singleton_fw_tac tactic at the ele-
ment level in forward direction. Listing 6 shows that the full
proof in Listing 5 can be replaced by a simple call to the au-
tomatic tactic. In this case the tactic is particularly effective
since the theorem can be proved by reasoning on the elements
produced by a single transformation rule (i.e. the state rule),
disregarding the rest of the model. In more complex cases the
call to the tactic would only partially automate the proof, leav-
ing some subgoals for the user to manually prove. This is a
reason why dedicated tactics are hard to define: they must do
enough work to progress, but not too much to avoid producing
complex forms that may hamper the following steps.

Listing 7 shows the main part of the tactic. Figure 3 rep-
resents the application of the tactic to state_element_fw as
a UML activity diagram. Actions are statements of the tactic.
Object-flow links pass the global state of the proof (or sub-
proof) at that point, as object tokens. For brevity we do not
represent the full global state of the proof in each object token,
but only the part that was updated from the action that generated
the token.

The in_modelElements_singleton_fw_tac tactic pro-
ceeds as follows. It first checks that the statement to prove is in
a specific form (line 7). The tactic is applicable to prove that
an element (with certain properties) is included in the result of
the execution of a transformation. Note that while the tactic
assumes that the full transformation code is available, it does
not assume anything about the element, and tries to compute
what is possible based on the available knowledge.

If the statement to prove matches the supported pattern, the
in_modelElements_inv lemma can be applied (line 8). That

Automated Proof Tactics for Model Transformation 5
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match … ;
eapply <- in_modelElements_inv; 

solve [rule_named r_name]

solve [pattern_named pat_name]

solve_incl_singleton H

sm : Moore.M
s : Moore.State_t
IN : In (Moore.State s) (modelElements sm)

In (Mealy.State (convert_state s)) (modelElements (execute 
Moore2Mealy sm))

…

In ?r (rules Moore2Mealy)

…

In {| opu_name := ?n; opu_element 
:= ?opu_el; opu_link := ?lp |} 
(r_outputPattern ?r)

…

incl ?s (modelElements sm)

?r := {| r_name := "state"; … |}

…

In {| TraceLink.source := (?s, 0, ?n); TraceLink.produced := 
Mealy.State (convert_state s); TraceLink.linkPattern := ?lp |} 
(compute_trace Moore2Mealy sm)

…

evalGuard ?r sm ?s = true

…

Datatypes.length ?s = 1

…

?opu_el 0 sm ?s = Some 
(Mealy.State (convert_state s))

…

In 0 (seq 0 (evalIterator ?r sm ?s))

eapply 
SemanticsTools.in_compute_trace_inv_left 

simpl

solve [simpl ; auto] 

solve [simpl ; auto] 

simpl

?opu_el := {|e_name := "s"; … |}

?s := (Moore.State s :: nil)

Figure 3 Execution of the transform_element_fw_tac tactic on state_element_fw (we omit unchanged contexts).

lemma7 is a generalization of in_modelElements_inv_m2m
from Listing 5, that we proved for any transformation (not only
Moore2Mealy). We state that all the components of the trace
link identified by in_modelElements_inv exist (line 9). As
shown in Figure 3 this step changes the proof goal into an
inclusion of a trace link in the computed set of transformation
traces.

We then apply the in_compute_trace_inv_left
tactic (line 11), a generalization of the
in_compute_trace_inv_m2m from Listing 5, that we
proved for any transformation. This lemma generates 7
subgoals to prove as in the Moore2Mealy example. Figure 3
shows each generated subgoal. The first and second subgoal
require an explicit choice from the user of a specific rule and
pattern element, by the r_name and pat_name parameters of
the tactic (lines 18 and 22). These hints from the user allow us
to avoid some over-automation that may worsen the proof state
(when several assumptions with the correct form are available
in the context, automatic tactics such as eassumption can
select the wrong assumption, and backtracking cannot be
performed in the general case, see Appendix A).

The third subgoal automatically proves the inclusion of the
source pattern instance in the source model, given a hypoth-

7 See in SemanticsTools.v in the artefact.

esis about the inclusion of an element in the source model,
as the parameter H (line 25). Note that because of this,
the in_modelElements_singleton_fw_tac tactic supports
only rules of arity 1. We provide other tactics for rules of arity
up to 5 (see the code repository). Analogous versions of the
same tactic can be produced to support rules of higher arity.

Finally, the last 4 subgoals are handled (lines 30, 33, 36, 41)
by calling standard Coq tactics that perform evaluation (simpl)
and automatic proof search (auto). We expect automated proofs
of steps 5 and 6 to succeed, given the simplicity of the subgoals
in the cases considered by the tactics. Instead for steps 4 and 7
we only perform simplifications, in order to leave a manageable
proof state for manually continuing the proof. For instance, in
Listing 6 it is sufficient for the user to finalize the proof with a
call to the reflexivity tactic (line 4), but proof continuations
are case-dependent in general.

3.2. Forward direction on links
Reasoning on links is more complex than reasoning on single
elements. Indeed, in order to create a link in CoqTL we need to
provide the source element and target element for the link. Such
elements are typically generated by different rules. This is the
key capability that makes graph manipulation by MT languages
effective. For instance, in Listing 1, lines 22-26 link a new
transition to its source state. These lines do not state which

6 Cohen et al.



1 Lemma in_modelElements_inv_m2m :
2 ∀ (sm:Moore.M) e s n lp,
3 In
4 {|
5 TraceLink.source := (s, 0, n);
6 TraceLink.produced := e ;
7 TraceLink.linkPattern := lp
8 |}
9 (compute_trace Moore2Mealy sm)→

10 In e (execute Moore2Mealy sm).(modelElements).
11 Proof. ... Qed.
12

13 Lemma in_compute_trace_inv_m2m (sm:Moore.M) :
14 ∀ s n res l r opu_el,
15 (*1*) In r Moore2Mealy.(rules)→
16 (*2*) In {|
17 opu_name := n ;
18 opu_element := opu_el ;
19 opu_link := l
20 |}
21 r.( r_outputPattern)→
22 (*3*) incl s (modelElements sm)→
23 (*4*) evalGuard r sm s = true→
24 (*5*) length s = 1→
25 (*6*) In 0 (seq 0 (evalIterator r sm s))→
26 (*7*) opu_el 0 sm s = Some res→
27 In
28 {|
29 TraceLink.source := (s, 0, n);
30 TraceLink.produced := res ;
31 TraceLink.linkPattern := l
32 |}
33 (compute_trace Moore2Mealy sm).
34 Proof. ... Qed.
35

36 Lemma state_element_fw:
37 (** statement given above **)
38 Proof.
39 eapply in_modelElements_inv_m2m.
40 eapply in_compute_trace_inv_m2m.
41 − (*1*) ChoiceTools.rule_named "state".
42 − (*2*) ChoiceTools.pattern_named "s".
43 − (*3*) apply ListUtils.incl_singleton; exact IN.
44 − (*4*) reflexivity.
45 − (*5*) simpl ; auto.
46 − (*6*) simpl ; auto.
47 − (*7*) reflexivity.
48 Qed.

Listing 5 Proof for the state_element_fw lemma (List-
ing 2) (proofs of accessory lemmas are omitted).

rule will compute this state (we know it to be the state rule).
The resolve function is responsible to retrieve this element by
looking at all rule applications. This mechanism is generally
called implicit resolution in MT languages. Concretely the
resolve function analyzes a set of trace links connecting each
generated tuple with its originating one.

Listing 9 shows the code of our transform_link_fw tactic
for forward direction on links:

1 Lemma state_element_fw:
2 (** statement given above **)
3 Proof.
4 in_modelElements_singleton_fw_tac
5 "state" "s" 0 IN ;
6 reflexivity.
7 Qed.

Listing 6 Proof of state_element_fw (Listing 2) by tactic

1 Ltac in_modelElements_singleton_fw_tac
2 r_name
3 pat_name
4 i
5 H
6 :=
7 match type of H with ... (** typecheck **) ;
8

9 apply← SemanticsTools.in_modelElements_inv ;
10 eexists; exists i; eexists; eexists;
11

12 eapply
13 SemanticsTools.in_compute_trace_inv_left ;
14

15 (* 7 goals *)
16 [ | | | | | | ] ;
17

18 [ (* 1. Fix the rule under concern following
19 user hint *)
20 solve [ChoiceTools.rule_named r_name]
21

22 | (* 2. Fix the output pattern in the rule
23 following user hint *)
24 solve [ChoiceTools.pattern_named pat_name]
25

26 | (* 3. Fix the source pattern instance *)
27 ListUtils.solve_incl_singleton H
28

29 | (* 4. The guard goal may rely on user
30 expressions and can be arbitrary
31 difficult to prove *)
32 simpl
33

34 | (* 5. arity *)
35 solve [simpl ; auto]
36

37 | (* 6. iteration counter *)
38 solve [simpl ; auto ]
39

40 | (* 7. The make_element goal relies on user
41 expressions and can be arbitrary
42 difficult to prove *)
43 simpl
44 ].

Listing 7 General tactic for FW results on elements

– The tactic is applicable only when we want to prove that
a link (with certain properties) is included in the result of
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1 Lemma in_modelLinks_inv
2 {tc:TransformationConfiguration} tr sm :
3 ∀ l, In l (execute tr sm).(modelLinks)↔
4 exists s i n res lp,
5 In
6 {|
7 source := (s, i, n);
8 produced := res ;
9 linkPattern := lp

10 |}
11 (compute_trace tr sm)
12 ∧ In
13 l
14 (apply_link_pattern
15 (compute_trace tr sm)
16 sm
17 {|
18 source := (s, i, n);
19 produced := res ;
20 linkPattern := lp
21 |}).

Listing 8 Lemma in_modelLinks_inv

the transformation (checked at line 4).
– The in_modelLinks_inv lemma is applied (line 5). That

lemma (shown in Listing 8) gives sufficient and necessary
conditions for a link l to be included in the output of
the transformation execution: there has to exist a suitable
trace link in the result of the computation of the trace links
(lines 4-11), and the link l has to be produced when the
transformation processes that trace link (lines 12-21).

– We state that the suitable elements composing the trace link
needed by in_modelLinks_inv actually exist and we ask
Coq to find them automatically through the rest of the
proof (line 6). This is done by declaring placeholders that
will be filled (mainly by an automatic unification process)
in the rest of the proof.

– The two sufficient and necessary conditions of
in_modelLinks_inv are divided into two subgoals
by the split step at line 8.

– (1st subgoal) We apply the
in_compute_trace_inv_left lemma (line 10),
that gives sufficient conditions for a trace link to be
included in the list of trace links. The lemma is already
used in Listing 7 and is a generalisation of the lemma
in_compute_trace_inv_m2m (Listing 2). This yields 7
branches that are solved as in Listing 7 (lines 13-43).

– (2nd subgoal) The second subgoal introduced before refers
to the user code which typically involves to resolve as
discussed above, and is left to the user because it will gen-
erally involve business logic more than CoqTL machinery
(empty branch line 45).

3.3. Backward direction on elements
Our exploit_element_in_result tactic for backward direc-
tion on elements is shown in Listing 12. In Listing 10 we show

1 Ltac transform_link_fw_tac_singleton
2 r_name pat_name i H :=
3

4 match type of H with ... (** typecheck **) ;
5 apply← SemanticsTools.in_modelLinks_inv ;
6 eexists ; exists i ; eexists ; eexists ; eexists ;
7

8 split ;
9

10 [ eapply
11 SemanticsTools.in_compute_trace_inv_left ;
12

13 (* 7 goals *)
14 [ | | | | | | ] ;
15

16

17 [ (* 1. Fix the rule under concern
18 following user hint *)
19 solve [ChoiceTools.rule_named r_name]
20

21 | (* 2. Fix the output pattern in the rule
22 following user hint *)
23 solve [ChoiceTools.pattern_named pat_name]
24

25 | (* 3. Fix the source piece (any size) *)
26 ListUtils.solve_incl_singleton H
27

28 | (* 4. The guard goal may rely on user
29 expressions and can be arbitrary
30 difficult to prove *)
31 simpl
32

33 | (* 5. arity *)
34 solve [simpl ; auto]
35

36 | (* 6. iteration counter *)
37 solve [simpl ; auto ]
38

39 | (* 7.The make_element goal relies on user
40 expressions and can be arbitrary
41 difficult to prove *)
42 simpl
43

44 ]
45

46 | ].

Listing 9 Tactic for forward direction on links

that its application automatizes most of the proof for the sample
theorem in backward direction that we showed in Listing 3.

We briefly illustrate the main points of the tactic code in
Listing 12:

– The tactic checks that there exists a hypothesis that states
the inclusion of a certain element in the result of the execu-
tion of the transformation (lines 2-3). This is a requirement
for the applicability of the tactic. Indeed, our backward
tactics act on such hypotheses only (they do not act on the
goal, contrarily to forward tactics).
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1 Lemma state_element_bw :
2 (** statement given above **)
3 Proof.
4 intros s H.
5 TacticsBW.exploit_element_in_result H.
6 exists t0.
7 split; auto.
8 Qed.

Listing 10 Proof by tactic of state_element_bw

– We apply the lemma in_modelElements_inv to this hy-
pothesis (line 7). We don’t show the lemma here8 but it
is the analogous lemma of in_modelLinks_inv for el-
ements. Note that the lemma is applied in left to right
direction while in forward tactics it is applied in right to
left direction (Listing 7, Section 3.1). Its application gen-
erates as new hypothesis the consequences of an element
being included in the output of the transformation exe-
cution. One of these consequences is the existence of a
corresponding trace link.

– We separate and name the consequences generated by
in_modelElements_inv (line 8).

– Finally we execute a separate tactic, i.e.
exploit_in_trace, to exploit what we now know
about the existence of a trace link for this element (line
11).

The code of exploit_in_trace is shown in Listing 11.

– The tactic is applicable on an hypothesis that states that
a certain trace link is among the ones computed by the
transformation engine (lines 2-3).

– The first step (lines 7-12) applies in_compute_trace_-
inv,9 which is the reverse counterpart of the
in_compute_trace_inv_left lemma used in for-
ward tactics (Listings 7 and 9), to generate as hypothesis
the consequences of the existence of the trace link.

– The trace link has to be generated by one of the rules of
the transformation. We call a tactic that performs a case
analysis on the transformation rules and generates one
subgoal per rule (line 16).

– We call a tactic that evaluates for each subgoal the guard of
the corresponding rule (line 19). This tactic automatically
filters out the rules that can not match, because this would
contradict the information we know about the trace link.

– Steps 4.a-b (lines 22-30) use dedicated tactics10 to unify
the variables introduced at step 1 (lines 9-11) against the
code of the rule selected at step 2.

– Since the pattern instance is encoded by a list, we transform
(line 33) a hypothesis of the form incl [e_1,...,e_n]
sm.(modelElements) into n hypothesis of the form In
e_i sm.(modelElements) (incl denotes the inclusion
while in denotes membership).

8 See in SemanticsTools.v in the artefact.
9 See in SemanticTools.v in the artifact.

10 See TacticsBW.v for the tactics.

1 Ltac exploit_in_trace H :=
2 match type of H with
3 | In _ (compute_trace _ _)⇒
4 (...) (** generate fresh names **)
5

6 (* 1: inversion *)
7 apply→ in_compute_trace_inv in H;
8 autounfold with tracelink in H;
9 destruct H

10 as (IN_ELTS & _ & r & IN_RULE & MATCH_GUARD
11 & IN_IT & opu & IN_OUTPAT & EV);
12 (* The _ because there is no
13 information here*)
14

15 (* 2: case analysis on the rules
16 in the transformation *)
17 In_rules_inv_tac IN_RULE;
18

19 (* 3: get rid of the rules that
20 cannot match *)
21 evalGuard_inv_tac MATCH_GUARD;
22

23 (* 4.a: unify the iteration number *)
24 In_evalIterator_inv_tac IN_IT;
25

26 (* 4.b.1 : unify the out-pattern with
27 those of the selected rule *)
28 In_outputPattern_inv_tac IN_OUTPAT;
29

30 (* 4.b.2 : unification with the
31 evaluation of the out-pattern *)
32 makeElement_inv_tac EV;
33

34 (* 4.c : destruct incl to In *)
35 repeat ListUtils.explicit_incl IN_ELTS
36

37 (* Remark:
38 4.a, 4.b.(1-2) and 4.c are
39 independent; they can be switched
40 (except 4.b.2 that must occur
41 after 4.b.1) *)
42

43 | (...) (** transform the shape of the
44 hypothesis if needed **)
45 end.

Listing 11 Pivot tactic for backward direction

3.4. Backward direction on links

Our exploit_link_in_result tactic for backward direction
on links is shown in Listing 13. The tactics is structurally
similar to exploit_element_in_result, and leverages the
same pivot tactic exploit_in_trace.

It contains an additional last step (line 14 of Listing 13) that
calls the auxiliary tactic exploit_In_apply_link on a hy-
pothesis introduced by in_modelLinks_inv. That hypothesis
states that the application of the link part of the rule has suc-
ceeded on a given input. The tactic exploit_In_apply_link
unfolds all the machinery of the transformation engine until we
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1 Ltac exploit_element_in_result IN :=
2 match type of IN with
3 | In _ (execute _ _).( modelElements)⇒
4 (...) (** generate fresh names **)
5

6 (* 1: make the trace appear *)
7 apply→ in_modelElements_inv in IN;
8 destruct IN as (s & i & n & p & IN);
9

10 (* 2: exploit the trace *)
11 exploit_in_trace IN
12 end.

Listing 12 Tactic for backward direction on elements

1 Ltac exploit_link_in_result IN :=
2 match type of IN with
3 | In _ (execute _ _).( modelLinks)⇒
4 (...) (** generate fresh names **)
5

6 (* 1: make the trace appear *)
7 apply→ in_modelLinks_inv in IN;
8 destruct IN as (? & ? & ? & ? & ? & IN & IN_L);
9

10 (* 2: exploit the trace *)
11 exploit_in_trace IN;
12

13 (* 3: exploit link creation code *)
14 exploit_In_apply_link IN_L
15 end.

Listing 13 Tactics for backward direction on links

can see the user code applied to all its parameters (the computed
trace, the given pattern instance, the source model, and the pro-
duced element). After that, the user can use this information
and focus on business code instead of machinery.

4. Experimentation

4.1. Using the tactics in proofs
We performed several proofs, to assess the applicability of the
tactics to different theorems and transformations.

Structural theorems on Moore2Mealy. For the Moore2Mealy
transformation we apply the tactic to 4 element-level and 4 link-
level structural theorems, in forward and backward direction.
The tactics were applied in the proof of each one of these the-
orems. In the upper part of Table 2 we show for each theorem
the applied tactics, their direction and subject.

Structural theorems on Class2Relational. In order to assess if
the tactics are effective for structural theorems on different trans-
formations, we apply them to prove a set of theorems for an in-
dependent case study. We choose the Class2Relational transfor-
mation, that transforms class diagrams into relational schemas
(e.g. to create tables that persist a set of domain classes).

In Listings 14 and 15 we show two lemmas at the element
level on Class2Relational, in forward and backward direction,

1 Lemma transform_class_fw :
2 ∀ (cm : ClassModel) (rm : RelationalModel),
3 rm = execute Class2Relational cm→
4 ∀ name, In (ClassElement {| Class_name := name |})
5 cm.( modelElements)→
6 In (TableElement {| Table_name := name |})
7 rm.( modelElements).
8 Proof.
9 intros cm rm H ; subst.

10 intros n H.
11 TacticsFW.transform_element_fw_tac.
12 Qed.

Listing 14 Example of lemma with forward direction on
Class2Relational

1 Lemma transform_class_bw :
2 ∀ (cm : ClassModel) (rm : RelationalModel),
3 rm = execute Class2Relational cm→
4 ∀ id name,
5 In (TableElement {| Table_name := name|})
6 rm.( modelElements)→
7 In (ClassElement {| Class_name := name |})
8 cm.( modelElements).
9 Proof.

10 intros cm rm H ; subst.
11 intros nm H.
12 TacticsBW.exploit_element_in_result H ; [].
13 destruct t0 ; assumption.
14 Qed.

Listing 15 Example of lemma with backward direction on
Class2Relational

with their proofs. The proofs show that besides some manip-
ulations for goals and hypothesis, the core of both proofs is
automatized by the respective tactics.

For Class2Relational, we apply the tactic to 10 element-level
theorems and 1 link-level theorem (lower part of Table 2). Three
proofs required more than one tactic application. One proof
required to mix a backward element-level tactic with a forward
link-level tactic. For one element-level theorem we compare the
proof with another that does not use the tactic, and we observe
that the tactic reduces the proof steps from 21 to 3.

Semantic preservation on Moore2Mealy. To show the appli-
cability of the tactics to complex proofs, we used them in the
proof of semantic preservation on Moore2Mealy (Listing 4).
The proof required 2461 lines of code (1198 lines of definitions
of properties and lemmas, and 1263 lines of proofs) following
the typical structure of bisimulation proofs. Forward tactics
were called 5 times and backward tactics 8 times. The proof
takes into account the full semantics of the state machine. Part
of this semantics involves traversing the edges of the graph, as
in the proof of reachability (Cheng & Tisi 2018b). Hence, while
the two proofs are structurally similar, the first is much more
complex.
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Library Moore2Mealy Class2Relational

Definition LOC 612 1353 997

Proof LOC 120 1263 323

# Calls to FW tactics - 5 7

# Calls to BW tactics - 8 12

Table 1 Development metrics

Other applications. To illustrate and validate further the use of
our tactics, we provide some complementary tests either in sim-
ple situations (see TestTacticsFW.v and TestTacticsBW.v)
or in variations of the main examples. For instance
Class2Relational_TUPLES contains rules that match pairs
of elements. The corresponding code is available at the URL
given in the abstract.

4.2. Discussion and limitations

We start by giving some metrics to quantify the impact of our de-
velopment (Table 1). In total our tactics library counts 612 lines
of Coq definitions and 120 lines of proof. The Moore2Mealy
use case counts 1353 lines of Coq definitions and 1263 lines of
proof. In proofs on Moore2Mealy, forward tactics are called 5
times, backward tactics 8 times. The Class2Relational use case
counts 997 lines of Coq definitions and 323 lines of proof. In
proofs on Class2Relational, forward tactics are called 7 times,
backward tactics 12 times.

During the implementation of the tactics, we also performed
some refactoring of the CoqTL transformation engine to enable
pivot lemmas and simplify tactic mechanisms. This refactoring
may have contributed to shortening proofs in our experimenta-
tion, and may impact the comparison with previous work.

The main limitation of current tactics lies in the limited
support to source-pattern instances of arbitrary sizes. While we
currently support matching up to five elements per rule, we plan
to implement some tactics of variable arity for higher counts.

Another limitation of our tactics is that when they fail, it is
difficult for the user to understand why. We plan to improve
error messages in future work by using a tactic language with
static typing, such as Ltac2.

A more fundamental limitation is that, since the user is free
to use any well-typed Coq/Gallina code in his rules, we cannot
provide tactics that anticipate all the possibilities. This is a
design choice of CoqTL. We plan to explore more powerful
tactics by augmenting CoqTL with a more restricted expression
language.

Finally, much of the tediousness in proving properties of
MTs comes from the need to navigate the object-oriented graphs
that constitute metamodels and models in MDE. For instance,
proofs like Moore2Mealy are more concise if performed over
an ad-hoc data structure for the state machine. The code repos-
itory contains an experimentation in such a sense (see the di-
rectory Moore2MealyALT). However, CoqTL is meant to be
compatible with MDE specifications (e.g. from the OMG), and
consequently directly applicable to software built with MDE
tools.

5. Related Work

5.1. Simplifying the proof of transformation correctness
Several fully automated theorem proving approaches have been
proposed for MTs (e.g. (Büttner, Egea, Cabot, & Gogolla 2012;
Büttner, Egea, & Cabot 2012; Cheng et al. 2015; Oakes et al.
2015)). It would be possible to delegate the verification of
simple goals/transformations from the interactive prover to one
of these automated provers. However, this approach would be
effective only when it is possible to identify simple subgoals
that can be automatically proved. Our work differentiates in
investigating tactics that can automate part of the reasoning
for complex goals/transformation, leaving subgoals for manual
proof.

In the related area of graph transformation, some work inves-
tigated specific proof strategies for semantic preservation (Giese
et al. 2006; Hülsbusch et al. 2010; Dyck et al. 2019), e.g. based
on bi-simulation. Our tactics are more general, since they can be
applied to any property, structural or semantic, that predicates
on the transformed model elements. On the other hand, more
specific proof strategies may increase automation in the cases
they cover.

Validity of a transformation w.r.t. constraints in the source
or target model can be checked by alternative methods to
theorem proving, e.g. by static analysis (Hildebrandt et al.
2012; Cuadrado et al. 2017) or weakest pre-condition computa-
tion (Clarisó et al. 2016). Again the applicability of our tactics
is more general, e.g. the properties we check are not limited
to the expressive power of a constraint language (e.g. OCL).
CoqTL and our tactics can be used to prove any property that
can be expressed in Coq11.

5.2. Interactive theorem proving for MT
We list the related work on interactive theorem proving for
MTs. To our knowledge (partial) proof automation has not been
studied in these approaches. Our proof tactics are specific to the
CoqTL language, but we believe that the paper may inspire the
creation of similar proof tactics for these tools.

Yang et al. interactively verify that a particular MT, i.e. from
AADL to TASM language, is semantic preserving (Yang et
al. 2014). The approach is based on providing a translational
semantics of both languages as timed transition systems in Coq
and then reasoning on their equivalence.

Most previous works focus on giving a translational seman-
tics of a MT language towards the target theorem prover. Gen-
erally they do not investigate a way to formally ensure that the
semantics of the MT language has been axiomatized correctly
in the back-end theorem prover. Calegari et al. encode ATL
MTs and OCL contracts into Coq to interactively verify that
the MT is able to produce target models that satisfy the given
contracts (Calegari et al. 2011). In (Stenzel et al. 2015), a Hoare-
style calculus is developed by Stenzel et al. in the KIV prover
to analyze transformations expressed in (a subset of) QVT Op-

11 Gallina is not Turing-complete, since it does not allow for non-terminating
computation. However the class of computable functions in Gallina is very
large (any function that can be shown to be total in ZFC with countably many
inaccessibles can be defined in Gallina (Werner 2006)).
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Theorem Transformation Applied tactics Direction Subject

state_element_fw M2M in_modelElements_singleton_fw_tac FW Elements

state_element_bw M2M exploit_element_in_result BW Elements

transition_element_bw M2M exploit_element_in_result BW Elements

transition_element_fw M2M in_modelElements_singleton_fw_tac FW Elements

source_link_fw M2M transform_link_fw_tac_singleton FW Links

target_link_fw M2M transform_link_fw_tac_singleton FW Links

source_link_bw M2M exploit_link_in_result BW Links

exploit_in_trace

target_link_bw M2M exploit_link_in_result BW Links

exploit_in_trace

Attribute_name_preservation_fw C2R in_modelElements_singleton_fw_tac FW Elements

c2r_monotonicity C2R exploit_element_in_result BW + FW Elements

in_modelElements_singleton_fw_tac (×2)

Column_name_uniqueness C2R exploit_element_in_result (×2) BW Elements

transform_attribute_fw C2R in_modelElements_singleton_fw_tac FW Elements

transform_class_fw C2R in_modelElements_singleton_fw_tac FW Elements

transform_attribute_bw C2R exploit_element_in_result BW Elements

transform_class_bw C2R exploit_element_in_result BW Elements

Relational_name_definedness C2R exploit_element_in_result BW Elements

wf_stable C2R exploit_link_in_result BW Links

Relational_Column_Reference_definedness_1 C2R exploit_element_in_result BW + FW Elements + Links

transform_link_fw_tac_singleton

Table_name_uniqueness C2R exploit_element_in_result (×2) BW Elements

Table 2 Tactics applied in the proof of structural theorems on Class2Relational (C2R) and Moore2Mealy (M2M).

erational. UML-RSDS is a tool-set for developing correct MTs
by construction (Lano et al. 2014). It chooses well-accepted
concepts in MDE to make their approach more accessible by
developers to specify MTs. Then, the MTs are verified against
contracts by translating both into interactive theorem provers.

Poernomo and Terrell follow the classical approach in type
theory to formally specify MTs as ∀∃ types in interactive theo-
rem provers (Poernomo & Terrell 2010). Their approach does
not target any specific MT languages. In addition, although their
work does not propose a generic MT engine, a corresponding
executable MT program can be extracted once the MT is proved.
The approach is further extended by Fernández and Terrell on
using co-inductive types to encode bi-directional or circular
references (Fernández & Terrell 2013).

Kezadri et al. defines the Coq4MDE framework to formally
embed some key aspects of MDE in Coq (Hamiaz et al. 2014).
While our understanding is that Coq4MDE is capable of embed-
ding MT languages and enabling MT verification, no specific
work has been proposed.

6. Conclusion and Future Work
In this paper we presented four reusable tactics for partially
automatizing interactive proofs over CoqTL transformations.
We observed that reasoning patterns in CoqTL proofs can be
classified by direction (forward/backward) and subject (elemen-
t/link). We proposed tactics for each category, and we tested
them on two transformations and several theorems on structural
and semantic properties. Since the tactics are based only on the

semantics of the CoqTL engine, they are applicable to all our
theorems, and replace a significant number of proof steps.

We plan several lines for future work:

– We will further evaluate the impact of tactics by applying
them to transformations and proofs in an industrial setting,
linked to the verification of transformations for digital
twins.

– This paper focuses on simplifying proofs on the MT, but
also simplifying the definition of the MT itself is an im-
portant concern. We plan to explore the definition of a
compiler of languages like ATL and OCL to CoqTL.

– Among the other possible means for reducing the effort of
developing proofs in CoqTL, we want to develop a library
of useful lemmas including general properties of CoqTL
transformations, like confluence and additivity (Hidaka et
al. 2017).

– CoqTL transformations are computational specifications
that can be evaluated to produce a target model from a
source model. This computationality is generally benefi-
cial for forward reasoning, (when an input is known, some
proof steps can be performed by simple evaluation). A
non-computational axiomatic semantics for CoqTL may
be more abstract, and allow for shorter proofs when com-
putationality is not used (e.g. in backward reasoning). We
plan to define such a semantics and prove its equivalence
to the computational one.
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A. Why the tactics cannot be fully automatic
Consider a situation where several assumptions can be selected
to solve a current goal.

Example :

H1 : In e1 s
H2 : In e2 s
==============
In ?e s

This goal is solved by the tactic eassumption. Contrary
to the assumption tactic, eassumption deals with goal con-
taining an "evar". Not only applying eassumption results
in solving the goal but it also instantiates the evar in all the
sub-goals on the shelve. Here, ?e will be instantiated by e1
or e2, depending on which assumption has been selected by
eassumption. Often, only one of the possible instantiations
will enable to solve the remaining sub-goals.

The usual way to force eassumption to select the correct
assumption is to use the backtracking mechanism of Coq: if the
eassumpion takes place in a sequence of tactics which can fail,
eassumption can try to select another assumption, and thus
instantiate ?e differently, hopefully leading to a success of the
whole tactic.

However, in our situation, failure to instantiate evars with the
correct value cannot be detected within the tactic. Indeed, our
tactic does not completely solve the goal. It is designed to be
used to progress in a proof, to handle CoqTL mechanisms, and
after that the user has to solve the goals that are relevant to the
logic behind his models and transformation.

Relying on backtracking to ensure that the correct assump-
tion has been selected and that the evar has been correctly instan-
tiated is thus not feasible and letting eassumption doing the
wrong instantiation would lead the user in blocking situations
difficult to diagnose.

For this reason, some information regarding the continuation
of the proof need to be given by the user in the general case.
We do this by asking the user to specify which assumptions are
relevant for his use, by the means of a parameter of the tactic (see
for instance tactic in_modelElements_singleton_fw_tac
in Listing 7).
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