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A B S T R A C T

Deep neural networks face challenges with distribution shifts across layers, affecting model
convergence and performance. While Batch Normalization (BN) addresses these issues, its
reliance on a single Gaussian distribution assumption limits adaptability. To overcome this, al-
ternatives like Layer Normalization, Group Normalization, and Mixture Normalization emerged,
yet struggle with dynamic activation distributions. We propose "Context Normalization" (CN),
introducing contexts constructed from domain knowledge. CN normalizes data within the
same context, enabling local representation. During backpropagation, CN learns normalized
parameters and model weights for each context, ensuring efficient convergence and superior
performance compared to BN and MN. This approach emphasizes context utilization, offering
a fresh perspective on activation normalization in neural networks. We release our code at
https://github.com/b-faye/Context-Normalization.

. Introduction

Normalization is a standard data processing operation [1] that equalizes variable amplitudes, aiding single-layer network con-
ergence [2]. In multilayer networks, data distribution changes necessitate various normalization techniques, including activation,
eight, and gradient normalization. Batch Normalization (BN) [3] stabilizes multilayer neural network training by standardizing

ayer activations using batch statistics. While it enables higher learning rates, BN is limited by batch size dependence and the
ssumption of uniform data distribution. Specialized variants of BN have been proposed to address batch size-related limitations [4].
ixture Normalization (MN) [5] accommodates data samples from various distributions, enhancing convergence compared to BN,

articularly in convolutional neural networks. MN initially employs the Expectation–Maximization (EM) [6] algorithm to estimate
arameters for each mixture component and subsequently normalizes samples within the same mixture component using these
arameters during deep neural network training. However, the use of the EM algorithm can increase computation time, thus
iminishing efficiency.

To address this issues, we introduce a novel normalization method, Context Normalization (CN). CN incorporates prior knowledge
tructures known as ‘‘contexts’’, grouping similar samples. These contexts, defined by experts or derived from clustering algorithms,
an include classes, superclasses, or domains in domain adaptation scenarios. CN operates on the hypothesis that activations follow
 Gaussian mixture model, normalizing them during training to estimate parameters for each mixture component. While CN assumes
 Gaussian distribution for coherence in comparison, alternative hypotheses can be considered in different scenarios. As an integral
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layer, CN standardizes activations from the same context using parameters learned through backpropagation. This process enhances
data representation’s discriminative capacity for the target task. This study introduces three significant contributions:

• We introduce ‘‘Context Normalization’’ (CN), leveraging expert-defined contexts to supervise and estimate normalization
parameters. CN, integrated as a neural network layer, estimates parameters for latent Gaussian mixture components associated
with these contexts.

• We observe CN’s versatility across diverse deep neural network architectures like Transformers and Convolutional Neural
Networks. Extensive experiments consistently show its ability to accelerate training and improve generalization.

• We propose CN’s application in domain adaptation, addressing the challenge of enhancing model performance across varying
data distributions. CN proves adept at tackling this challenge effectively.

2. Related work

To maintain clarity and consistency in our model and enable easy comparison with prior work, we employ the same notations
s [5]. Consider 𝑥 ∈ R𝑁×𝐶×𝐻×𝑊 , a 4-D activation tensor in a convolutional neural network, where 𝑁 , 𝐶, 𝐻 , and 𝑊 represent batch
ize, channels, height, and width respectively.

Batch normalization (BN) [3] operates on the mini-batch 𝐵 = {𝑥1∶𝑚 ∶ 𝑚 ∈ [1, 𝑁] × [1, 𝐻] × [1, 𝑊 ]}, with 𝑥 flattened across all
dimensions except channels:

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝐵
√

𝜎2𝐵 + 𝜖
, (1)

𝜇𝐵 = 1
𝑚
∑𝑚

𝑖=1 𝑥𝑖 and 𝜎2𝐵 = 1
𝑚
∑𝑚

𝑖=1(𝑥𝑖 − 𝜇𝐵)2 are the mean and variance of 𝐵, where 𝜖 > 0 is a small value addressing numerical
instabilities. Eq. (1) enforces a zero mean and unit variance distribution if mini-batch samples are drawn from the same distribution.

his helps stabilize activation distributions, aiding in training. While effective, BN is sensitive to mini-batch size and assumes a single
aussian distribution. Many variants and alternatives have emerged to tackle these issues: Layer Normalization (LN) [7], Instance

Normalization (IN) [8], Group Normalization (GN) [9], and Mixture Normalization (MN) [5].
LN is designed for recurrent neural networks, IN focuses on style removal in individual samples like images, GN divides

ctivations into groups for normalization, and MN utilizes Gaussian Mixture Models (GMM) to handle multi-modal activation
distributions.

Consider the vector 𝑖 = (𝑖𝑁 , 𝑖𝐶 , 𝑖𝐿) indexing 𝑥 ∈ R𝑁×𝐶×𝐿, where the spatial domain is flattened such that 𝐿 = 𝐻 ×𝑊 . The general
normalization, 𝑥 → 𝑥̂, as proposed in [5], is expressed as follows:

𝑣𝑖 = 𝑥𝑖 − E𝐵𝑖
(𝑥), 𝑥̂𝑖 =

𝑣𝑖
√

E𝐵𝑖
(𝑣2) + 𝜖

, (2)

where 𝐵𝑖 is a set of indices. For instance, in the case of BN, 𝐵𝑖 = {𝑗 ∶ 𝑗𝑁 ∈ [1, 𝑁], 𝑗𝐶 ∈ [𝑖𝐶 ], 𝑗𝐿 ∈ [1, 𝐿]}.
In the MN algorithm, each activation 𝑥𝑖 is normalized using the mean and standard deviation of its corresponding mixture

omponent. The probability density function 𝑝𝜃 is modeled as a Gaussian Mixture Model (GMM).
For 𝜃 = {𝜆𝑘, 𝜇𝑘, 𝛴𝑘 ∶ 𝑘 = 1,… , 𝐾}, the density function is given by:

𝑝(𝑥) =
𝐾
∑

𝑘=1
𝜆𝑘𝑝(𝑥|𝑘), s.t. ∀𝑘 ∶ 𝜆𝑘 ≥ 0,

𝐾
∑

𝑘=1
𝜆𝑘 = 1,

where

𝑝(𝑥|𝑘) = 1
(2𝜋)𝐷∕2

|𝛴𝑘|
1∕2

exp

(

−
(𝑥 − 𝜇𝑘)𝑇𝛴−1

𝑘 (𝑥 − 𝜇𝑘)
2

)

is the 𝑘th component, with 𝜇𝑘 as the mean vector, 𝛴𝑘 the covariance matrix, and 𝐷 the dimensionality of 𝑥. The probability that 𝑥
was generated by the 𝑘th Gaussian component can be defined as follows:

𝜏𝑘(𝑥) = 𝑝(𝑘|𝑥) = 𝜆𝑘𝑝(𝑥|𝑘)
∑𝐾

𝑗=1 𝜆𝑗𝑝(𝑥|𝑗)
.

Based on these assumptions and the general transformation in Eq. (2), the normalization of 𝑥𝑖 is defined as follows:

𝑥̂𝑖 =
𝐾
∑

𝑘=1

𝜏𝑘(𝑥𝑖)
√

𝜆𝑘
𝑥̂𝑘𝑖 , (3)

with

𝑣𝑘𝑖 = 𝑥𝑖 − E𝐵𝑖
[𝜏𝑘(𝑥).𝑥], 𝑥̂𝑘𝑖 =

𝑣𝑘𝑖
√

E𝐵𝑖
[𝜏𝑘(𝑥).(𝑣𝑘)2] + 𝜖

, (4)

where 𝜏𝑘(𝑥𝑖) = 𝜏𝑘(𝑥𝑖)
∑

𝑗∈𝐵𝑖 𝜏𝑘(𝑥𝑗 )
, is the normalized contribution of 𝑥𝑖 in estimating the statistics of the 𝑘th Gaussian component. With this

pproach, MN can be applied in two steps:
2 



B. Faye et al.

d
a

a
T
d

t

i

Data & Knowledge Engineering 155 (2025) 102371 
1. Estimation of the mixture model parameters 𝜃 using the EM algorithm [6].
2. Normalization of each 𝑥𝑖 with respect to the estimated parameters (Eqs. (4),(3))

3. Proposed method: Context Normalization (CN)

This section will be organized as follows: first, we will describe the general concept of CN in Section 3, and then we will provide
detailed instructions on implementing our proposed method for activation normalization in Section 3.2.

3.1. Method description

CN effectively models data assuming a mixture of Gaussian components in activation space. In this approach, a ‘‘context’’ is
efined as a group of samples sharing similar characteristics. Contexts can be defined by experts or derived from clustering algorithms,
nd may include classes, superclasses, or domains in domain adaptation scenarios. Samples within the same context are grouped

and normalized using parameters learned by the neural network during backpropagation, eliminating the need for expensive EM
lgorithms. Each context is identified by a unique identifier 𝑟, and the normalization is handled by trainable parameters 𝜇𝑟 and 𝜎𝑟.
hese parameters, learned during training as neural network weights, can be represented collectively as 𝜃 = {𝜇𝑟, 𝜎𝑟}𝑇𝑟=1, where 𝑇
enotes the number of contexts. CN follows the formulation in Eq. (2), where 𝐵𝑖 = {𝑗 ∶ 𝑗𝑁 ∈ [𝑖𝑁 ], 𝑗𝐶 ∈ [𝑖𝐶 ], 𝑗𝐿 ∈ [1, 𝐿]}.

3.2. Learning parameters for each context

Consider 𝑖 = (𝑖𝑁 , 𝑖𝐶 , 𝑖𝐿) as a vector indexing the tensor of activations 𝑥 ∈ R𝑁×𝐶×𝐿. Each activation 𝑥𝑖 undergoes normalization
using the parameters 𝜃𝑟𝑖 = {𝜇𝑟𝑖 , 𝜎𝑟𝑖}, where 𝑟𝑖 denotes the context identifier associated with 𝑥𝑖:

CN𝜃𝑟𝑖
∶ 𝑥̂𝑖 ←

𝑥𝑖 − 𝜇𝑟𝑖
√

𝜎2𝑟𝑖 + 𝜖
(5)

The mean (𝜇𝑟𝑖 ) and standard deviation (𝜎𝑟𝑖 ) are learned as neural network weights through activation normalization resulting from
ransforming samples of context 𝑟𝑖, as outlined in Algorithm 1.

Algorithm 1: CN- Transformation: Activation Normalization
Input : activation 𝑥𝑖; context 𝑟𝑖 associated with 𝑥𝑖
Output: 𝑥𝑖 = CN𝜃𝑟𝑖

(𝑥𝑖) where 𝜃𝑟𝑖 = {𝜇𝑟𝑖 , 𝜎𝑟𝑖}
𝛼𝑟𝑖 ← 𝑜𝑛𝑒ℎ𝑜𝑡(𝑟𝑖) // encoding the categorical variable 𝑟𝑖

𝜇𝑟𝑖 ← 𝐸 𝑛𝑐 𝑜𝑑 𝑒𝑟𝜇(𝛼𝑟𝑖 ) // mean estimation of context 𝑟𝑖

𝜎2𝑟𝑖 ← 𝐸 𝑛𝑐 𝑜𝑑 𝑒𝑟𝜎 (𝛼𝑟𝑖 ) // variance estimation of context 𝑟𝑖

𝑥̂𝑖 = CN𝜃𝑟𝑖
(𝑥𝑖): Normalize 𝑥𝑖 using Equation (5)

In Algorithm 1, we employ an affine transformation of the form:
⎧

⎪

⎨

⎪

⎩

𝛼𝑟𝑖 ← 𝑜𝑛𝑒ℎ𝑜𝑡(𝑟𝑖)
𝜇𝑟𝑖 ← 𝐸 𝑛𝑐 𝑜𝑑 𝑒𝑟𝜇(𝛼𝑟𝑖 ) ∶ 𝑊𝜇 𝛼𝑟𝑖 + 𝑏𝜇
𝜎2𝑟𝑖 ← 𝐸 𝑛𝑐 𝑜𝑑 𝑒𝑟𝜎 (𝛼𝑟𝑖 ) ∶ 𝑊𝜎 𝛼𝑟𝑖 + 𝑏𝜎

(6)

In Eq. (6), 𝑊 and 𝑏 are the parameters of 𝐸 𝑛𝑐 𝑜𝑑 𝑒𝑟, and 𝑟𝑖 is the context associated with 𝑥𝑖. The function onehot(.) performs one-hot
encoding of the categorical variable 𝑟𝑖, yielding 𝛼𝑟𝑖 .

When training a neural network with a CN layer, following Algorithm 2, it is vital to propagate the gradient of the loss function
𝓁 through the transformation. Additionally, computing gradients with respect to the parameters of the CN transform is crucial. This
nvolves applying the chain rule, as depicted in the following expression (before simplification):

𝜕𝓁
𝜕 𝜇𝑟𝑖

= 𝜕𝓁
𝜕 ̂𝑥𝑖

.
𝜕 ̂𝑥𝑖
𝜕 𝜇𝑟𝑖

= − 𝜕𝓁
𝜕 ̂𝑥𝑖

.(𝜎2𝑟𝑖 + 𝜖)−1∕2

𝜕𝓁
𝜕 𝜎2𝑟𝑖

= 𝜕𝓁
𝜕 ̂𝑥𝑖

.
𝜕 ̂𝑥𝑖
𝜕 𝜎2𝑟𝑖

=
𝜇𝑟𝑖 + 𝑥𝑖

2(𝜎2𝑟𝑖 + 𝜖)3∕2

.

CN normalizes neural network activations, aiding convergence and creating Gaussian mixture components for task-specific
representations in a latent space.
3 
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Algorithm 2: CN- Training on a activations mini-batch
Input : Deep neural network 𝑁 𝑒𝑡 with trainable parameters 𝛩; subset of activations and its contexts {𝑥𝑖, 𝑟𝑖}𝑚𝑖=1, with

𝑟𝑖 ∈ {1, ..., 𝑇 }, where 𝑇 is the number of contexts; randomly initialized mixture components parameters
𝜃 = {𝜇𝑟, 𝜎𝑟}𝑇𝑟=1

Output: Context Normalized deep neural network, 𝑁 𝑒𝑡𝑡𝑟𝐶 𝑁
𝑁 𝑒𝑡𝑡𝑟𝐶 𝑁 = 𝑁 𝑒𝑡 // Initialize deep neural network parameters
for 𝑖 ← 1 to 𝑚 do

• Apply Algorithm 1: 𝑥̂𝑖 = CN𝜃𝑟𝑖
(𝑥𝑖)

• Modify each layer in 𝑁 𝑒𝑡𝑡𝑟𝐶 𝑁 with input 𝑥𝑖 to take 𝑥̂𝑖 instead

Propagate the gradient through 𝑁 𝑒𝑡𝑡𝑟𝐶 𝑁 to optimize: 𝛩 = 𝛩 ∪ {𝜇𝑟, 𝜎𝑟}𝑇𝑟=1

During inference, we can opt to normalize activations using CN when the context of the input is known, or alternatively, we can
consider all contexts collectively when the input context is unknown. This enhancement is referred to as CN+ and is described in
Algorithm 3. For any activation 𝑥𝑖, reformulating Eq. (7), CN+ is expressed as follows:

Algorithm 3: CN- Inference
Input : Deep Neural Network 𝑁 𝑒𝑡𝑡𝑟𝐶 𝑁 with parameters 𝛩 ∪ {𝜇𝑟, 𝜎𝑟}𝑇𝑟=1 (ref. Algorithm 2); subset of activations and its

contexts {𝑥𝑖, 𝑟𝑖}𝑚𝑖=1, with 𝑟𝑖 ∈ {1, ..., 𝑇 }, where 𝑇 is the number of contexts; 𝑐 ℎ𝑜𝑖𝑐 𝑒 ∈ {CN, CN+};
Output: Deep Neural network with frozen parameters 𝑁 𝑒𝑡𝑖𝑛𝑓𝐶 𝑁 ; {𝑥̂𝑖} normalized activations
𝑁 𝑒𝑡𝑖𝑛𝑓𝐶 𝑁 ← 𝑁 𝑒𝑡𝑡𝑟𝐶 𝑁 // Initialization of the deep neural network for inference with frozen parameters
if 𝑐 ℎ𝑜𝑖𝑐 𝑒 = CN then

for 𝑖 ← 1 à 𝑚 do
• Retrieve the parameters associated with the

context of 𝑥𝑖: 𝜃𝑟𝑖
• transform 𝑥̂𝑖 = 𝐶 𝑁𝜃𝑟𝑖

(𝑥𝑖) using Algorithm 1

if 𝑐 ℎ𝑜𝑖𝑐 𝑒 = CN+ then
for 𝑖 ← 1 à 𝑚 do

• Compute 𝑥̂𝑖 using Equation (7) // Normalization + aggregation

𝑥̂𝑖 =
√

𝑇
𝑇
∑

𝑟=1
𝜏𝑟(𝑥𝑖)𝑥̂𝑟𝑖 , (7)

with

𝜏𝑟(𝑥𝑖) = 𝑝(𝑟|𝑥𝑖) =
𝑝(𝑥𝑖|𝑟)

𝑇
∑𝑇

𝑗=1 𝑝(𝑥𝑖|𝑗)
, 𝑥̂𝑟𝑖 =

𝑥𝑖 − 𝜇𝑟
𝜎𝑟

,

assuming that the prior probabilities (𝜆𝑟 = 1
𝑇 , 𝑟 = 1,… , 𝑇 ) are constant.

4. Experiments

In this section, we compare context normalization (CN) with other methods, including batch normalization (BN) and mixture
normalization (MN), across different architectures, including Convolutional Neural Networks (CNNs) (see Sections 4.1 and 4.3) and
Vision Transformers (ViT) [10] (see Section 4.2). We evaluate these approaches on various tasks, including classification and domain
daptation.

The experiments in this study are based on several commonly used benchmark datasets in classification. CIFAR-10 and CIFAR-
100 each contain 50,000 training images and 10,000 test images, with a size of 32 × 32 pixels [11,11]. CIFAR-100, an extension
of CIFAR-10, is divided into 100 classes grouped into 20 superclasses. Tiny ImageNet is a reduced version of ImageNet with 200
classes [12]. MNIST digits contains 70,000 images representing the 10 digits [13]. SVHN focuses on digit recognition in natural
scenes, totaling over 600,000 images [14]. This consolidation optimizes space while preserving essential information.
4 
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Fig. 1. t-SNE is applied for dimensionality reduction in the latent space after 25, 50, 70, and 100 training epochs, with the first two components visualized. This
visualization illustrates the formation and refinement of class-specific clusters throughout the training process with Context Normalization (CN) on CIFAR-10.

Fig. 2. Test error curves when ConvNet architecture is trained under different learning rate.

4.1. Comparative study: Context normalization vs. Mixture normalization

In this experiment, we use a shallow Convolutional Neural Network (ConvNet) architecture described in the MN paper [5]. The
network comprises four convolutional layers with ReLU activation, each followed by a batch normalization layer. We highlight
a challenge of batch normalization (BN) related to the use of non-linear functions (e.g., ReLU) after activation normalization.
By employing ConvNet, we demonstrate how Context Normalization (CN) tackles this issue, enhancing convergence and overall
performance by replacing a BN layer with CN within the ConvNet.

During training on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets, we use the MN method, which estimates a Gaussian
mixture model through Maximum Likelihood Estimation (MLE). To facilitate comparison, we utilize the three components discovered
by the Expectation–Maximization (EM) algorithm on MN as distinct contexts (𝑇 = 3) for CN. This enables the normalization of
activations within each context. We vary the learning rate from 0.001 to 0.005, use a batch size of 256, and train for 100 epochs
with the AdamW optimizer [15,16]. To compare normalization methods, we replace the third BN layer in ConvNet with an MN
layer and repeat this process for CN layer.

During CIFAR-10 training, snapshots were taken every 25 epochs using CN normalization. These snapshots were then applied to a
random CIFAR-10 batch, and the resulting activations were visualized using t-SNE. The visualizations revealed clusters corresponding
to the target classes predicted by the model. Improved clustering was observed with training progression, leading to enhanced
performance, as shown in Fig. 1.

Fig. 2 illustrates that CN achieves faster convergence compared to BN and MN. This accelerated convergence leads to improved
performance on the validation dataset, with an average increase of 2% in accuracy on CIFAR-10, 3% on CIFAR-100, and 4% on
Tiny ImageNet when using CN and CN+ during inference (see Algorithm 3). This positive trend persists across different numbers of
5 
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Table 1
Evaluating CIFAR-100 performance with ViT architecture [17] integrating BN, and CN with
superclasses as distinct contexts.
Model Accuracy Precision Recall f1-score

ViT+BN 55.63 8.96 90.09 54.24
ViT+CN 65.87 23.36 98.53 65.69

Fig. 3. Comparing training and validation error curves: CN in ViT Architecture on CIFAR-100 show faster convergence and lower validation loss, enhancing
learning efficiency and classification compared to BN.

classes (10, 100, 200), even with an increase in the learning rate from 0.001 to 0.005. Increasing the learning rate widens the gap
in convergence, demonstrating the effectiveness of our normalization technique in leveraging higher learning rates during training.

The approach in this experiment uses Gaussian components found via MLE as contexts, but it is cumbersome. In the following
sections, we will simplify the context definition without resorting to complex algorithms. MN will no longer be used, as it requires
preconstruction of Gaussian components (a limitation). Since CN behaves similarly to CN+, it will be favored for inference, being
more resource-efficient.

To assess the impact of the number of contexts in CN, we tested 𝑇 = {4, 6, 8} and found similar performance to 𝑇 = 3. This
suggests that increasing 𝑇 is not always necessary and depends more on dataset complexity, task, and neural network architecture.
In subsequent experiments, we will demonstrate that increasing 𝑇 can be beneficial for a more robust model, particularly on the
CIFAR-100 dataset.

4.2. Image classification: Leveraging CIFAR-100 superclasses as contexts

The key innovation in the experiment is utilizing CIFAR-100 superclasses as distinct contexts (𝑇 = 20) for predicting the dataset’s
100 classes, particularly with the CN method. We used two models: the base ViT model from Keras [17], which includes a Batch
Normalization (BN) layer as its initial component, and a model that replaced the BN layer with a CN layer. Training employed early
stopping based on validation performance, and images were pre-processed by normalizing them with respect to the dataset’s mean
and standard deviation. Data augmentation techniques such as horizontal flipping and random cropping were applied to enhance
the dataset. We employed the AdamW optimizer with a learning rate of 10−3 and a weight decay of 10−4 to prevent overfitting and
optimize model parameters [15,16].

Table 1 illustrates significant performance gains with our novel Context Normalization over BN in training the ViT architecture
from scratch on CIFAR-100. CN yields an accuracy boost of approximately 10% compared to BN, showcasing faster convergence and
superior performance. This is supported by the training and validation error comparison in Fig. 3, indicating accelerated learning
with CN. These results suggest that CN not only stabilizes data distributions and mitigates internal covariate shift but also reduces
training time for enhanced results. ViT+CN achieves outstanding performance, surpassing all known ViT models trained from scratch
on CIFAR-100.

This experiment demonstrates a simple method for creating contexts without algorithms, accelerating convergence and improving
neural network performance. However, establishing superclass structure is not always straightforward. The next section presents a
typical application of CN, where contexts become evident.

4.3. Domain adaptation: Leveraging distinct domains as contexts

In this experiment, we show that context normalization’s ability to enhance local representations can greatly improve domain
adaptation. Domain adaptation, as outlined in [18], involves leveraging knowledge from a related domain with sufficient labeled
data to improve performance in a target domain with limited labeled data. Here, we consider two contexts 𝑇 = 2: the ‘‘source domain’’
and the ‘‘target domain’’.
6 
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Table 2
Comparing model performance: AdaMatch+BN vs. AdaMatch+CN on MNIST (source) and SVHN (target)
datasets.

MNIST (source domain)

Model Accuracy Precision Recall f1-score

AdaMatch+BN 97.36 87.33 79.39 78.09
AdaMatch+CN 99.26 99.20 99.32 99.26

SVHN (target domain)

Model Accuracy Precision Recall f1-score

AdaMatch+BN 25.08 31.64 20.46 24.73
AdaMatch+CN 43.10 53.83 43.10 47.46

Fig. 4. Evolution of gradient variance on the source (MNIST) and target (SVHN) domains. The left figures show the maximum gradient variance across all layers
per epoch, while the right figures display the average gradient variance across all layers per epoch.

To demonstrate this, we utilize CN alongside AdaMatch [19], which combines unsupervised domain adaptation (UDA), semi-
supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In UDA, we have labeled data from the source domain
and unlabeled data from the target domain, aiming to train a model that can generalize effectively to the target dataset despite
distribution variations between the two domains. The objective is to train a model capable of generalizing effectively to the target
dataset.

It is important to note that the source and target datasets exhibit variations in distribution. Specifically, we utilize the MNIST
dataset as the source domain, while the target domain is SVHN. Both datasets encompass various factors of variation, including
texture, viewpoint, appearance, etc., and their domains, or distributions, are distinct from each other.

A reference model (AdaMatch) [20], trained from scratch with wide residual networks [21] using batch normalization on dataset
pairs, is employed. The model is trained with the Adam optimizer and a cosine decay schedule to decrease the initial learning rate
(initialized at 0.03). CN serves as the initial layer in AdaMatch, incorporating the domain information (source and target) into the
image normalization process. Leveraging known labels in the source domain, the model provides a better representation of this
domain compared to the target domain, where labels are unknown. This advantage is utilized during inference to enhance the
model’s performance on the target domain.
7 
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In a broader context, indicates a substantial enhancement in validation metrics with context normalization. This is reflected in
an accuracy increase of 18.02% with CN, notably boosting the performance of the AdaMatch model and accelerating convergence
uring training.

Fig. 4 illustrates the beneficial impact of context normalization in stabilizing the gradient during training, benefiting both the
ource and target domains. This leads to faster convergence and an overall enhancement in model performance.

5. Limitations and future work

The CN framework requires the number of contexts, denoted by 𝑇 , to be specified as a hyperparameter. Similar to many clustering
lgorithms, determining the optimal value for 𝑇 can be challenging. Our experimental results in Section 4 demonstrate that when the

number of contexts is well-defined, such as superclasses in Section 4.2 and domains in Section 4.3, CN exhibits better performance
and faster convergence. However, when the number of contexts is not predefined, as in Section 4.1, a clustering algorithm is used to
group the data into clusters, treating each cluster as a separate context. In such cases, determining the optimal number of contexts
ecomes difficult. A common, yet naive, approach is to vary 𝑇 across a range of values to find the best one.

In future work, we plan to further investigate scenarios where the number of contexts is unknown. We aim to develop methods
or more effectively defining and selecting the optimal number of contexts to maintain performance, while avoiding the need to test
umerous values of 𝑇 , which can be computationally expensive.

6. Conclusion

Context Normalization (CN) represents a significant advancement in neural network training. Sharing a similar philosophy with
Mixture Normalization (MN), CN eliminates the need for the costly Expectation–Maximization (EM) algorithm estimation used
by MN by directly learning the parameters of Gaussian distributions from named data groups called ‘‘contexts’’. Our experiments
demonstrated that CN outperformed both Batch Normalization (BN) and Mixture Normalization (MN), offering better convergence
and improved generalization performance. Three methods were explored to define contexts: using components from a Gaussian
Mixture Model (GMM), identifying superclasses in a dataset, and applying domain adaptation by considering each domain as a
istinct context.

In the short term, our aim is to create an unsupervised variant of CN by eliminating the need for context input, opting instead
or its estimation during neural network training.
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