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PACS 47.20.Ft – Instability of shear flows
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Abstract – We have reconsidered the formation and stability of a vortex street, induced in a
rectangular container by a tape moving at high speed on its free surface. In a certain range of
tape velocity and of geometrical aspect ratios, the liquid recirculates along the lateral sides of the
pool, which induces two shear flows between the tape and these lateral sides, that undergo two
coupled Kelvin-Helmholtz instabilities, giving rise to the vortex street. Contrary to the classical
situation of a wake, behind an obstacle, the double row remains static which allows one to study
its absolute stability in a static framework. In the present paper we have built a model of the
two shear flow instabilities that clarifies the wavelength selection problem, inside the stability
tongue predicted long ago by Rosenhead, and reduced by steric arguments that we found in a
previous paper. In summary, in terms of fig. 1(b) notations, the mean-wavelength favored by
Kelvin-Helmholtz instabilities is given by 2bmax ≈ πc, while the maximal wavelength predicted
by marginal stability is equal to 2bc1 ≈ 5.71 c. Our available experimental data are in very good
agreement with these results and with the resulting phase diagram depicted on fig. 7 .

Introduction : the confined Bénard - von
Kármán vortex street. – The Bénard - von Kármán
vortex street is a structure that can be widely observed in
the wake of an obstacle inside a stationary parallel flow of
large enough velocity : it has been investigated by Bénard
[1] and modeled by von Kármán [2,3] more than a century
ago : in a two-dimensional inviscid flow a vortex street of
point vortices are expected to be stable only if the wave-
length of the street 2b is linked to the width of the street
2a by

a

b
=

1

π
argcosh

(√
2
)
≈ 0.281. (1)

Although this condition is often well satisfied in exper-
iments, the precise nature of this condition is still under
discussion [4–7] ; the stability could be of convective na-
ture and the structure intrinsically unstable in its own
framework [8].

When the entire flow is confined between two lateral
walls, separated by a distance 2c, the stability condition
is deeply modified. In the 30’s theoretical works addressed

Fig. 1: Experimental study of confined Bénard - von Kármán
vortex street (from [10]) : a confined shear flow (a) produces
a stable vortex street of wavelength 2b and width 2a (b). (c)
: typical stream lines of the flow, (d) : typical vorticity distri-
bution.

the question of confined point vortices and in particular,
Rosenhead [9] established that the stability condition 1
had to be replaced by a continuous stability tongue in the
plane (a/c,b/c) of finite extent.
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In a previous paper [10], we have presented experiments
exhibiting a confined Bénard - von Kármán vortex street
by creating a confined shear flow : an endless tape was
pulled with a constant speed at the free surface of a water
layer in a long pool, of length 2 m, of variable width 2c
ranging from a few centimeters to 70 cm and of depth h
of a few centimeters, see figure 1(a). Because of the mass
conservation, a back flow is created in the pool. Under
suitable experimental conditions, shear produces a stable
vortex street of wavelength 2b and width 2a as exhibited
on figure 1(c) and 1(d). Contrary to the classical situation
of a wake, behind an obstacle, the double row remains
static which allows one to study its absolute stability in a
static framework.

In contrast with the well-known selection rule given by
equation 1, we observed that the street system explores
a continuous band of stability, consistent with Rosen-
head calculations ; we also observed that the experimental
points do not cover the whole domain and remain dis-
tributed in a rather narrow area. A steric model based on
the the finite extent of the vortex cores, not taken into ac-
count in the Rosenhead model, can very correctly explain
the restriction of the domain explored by the width of
the street 2a. On the other hand, we had no argument to
explain the limitation of the domain explored by the wave-
lengths 2b of the streets, particularly the largest ones. In
addition, the accumulation of points around mean values
remained unexplained too.

In what follows, we propose a model solving these ques-
tions. We first remind the classical treatment of this kind
of instabilities [11, 12] and then show how to apply this
formalism to our particular geometry.

Kelvin Helmholtz instability. – The destabiliza-
tion of the flow at the origine of the vortex street is here
the Kelvin Helmholtz instability: it is the inertial destabi-
lization of sheared layers of fluid [13, 14]. This instability
leads to vortices patterns in the flow, with a characteristic
length [11, 15, 16] and it appears that these lengths can
often be predicted by linear analysis studying the devel-
opment of a small perturbation at short time. Therefore
we will consider here a linear analysis of inviscid parallel
shear flows.

Rayleigh Equation for the linearized problem. –
We consider a two-dimensional flow since the Squire

theorem [17] shows that two-dimensional perturbations
are suffisant to find an instability condition for a three-
dimensional problem.

In the case of parallel flow along x, the basic velocity
field is Vo(y) = Vo(y) ex and the pressure field Po(y).
Let’s introduce the pertubated fields v(x, y, t) for the ve-
locity and p(x, y, t) for the pressure.

Let us introduce ψ(x, y, t) the stream function for the
pertubated velocity : vx = ∂ψ/∂y and vy = −∂ψ/∂x.

After linearization, incompressibility and Euler equa-
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Fig. 2: Simple basic velocity profiles for inviscid shear flow : (a)
with velocity discontinuity, (b) with a mixing layer of thickness
2d.

tions lead directly to the following equation :

∂∆ψ

∂t
+ Vo

∂∆ψ

∂x
= V ′′o

∂ψ

∂x
(2)

Let us remark that this equation is the transport equation
of vorticity without diffusion.

We are searching normal mode solutions of this equation

ψ(x, y, t) = φ(y) e−iωt+ikx (3)

where k is the wave number and ω is the pulsation. Equa-
tion 2 leads to the Rayleigh equation :(

Vo −
w

k

) (
φ′′ − k2φ

)
= V ′′o φ (4)

When the flow displays different layers, the normal ve-
locity of the fluid is continuous at the interface between
layers while the interface is material. After lineariza-
tion, this condition leads to the continuity of the ratio
φ/(Vo − w/k) through the interface [18].

We can remark here that, if the basic velocity field Vo
is continuous at the interface, then the amplitude of the
stream function φ is also continuous at the interface.

The flow resolution also needs a stresses expression.
In this case, the stress is just the pressure and it can
be derived from Euler equation ; let’s use p (x, y, t) =
π(y) e−iωt+ikx, and we obtain :

π = ρ
(w
k
− Vo

)
φ′ + ρV ′oφ (5)

ρ being the fluid density.

Shear flow with a velocity discontinuity. – The
most basic case is the parallel flow of two fluid layers of
different velocities represented on figure 2(a), with a shear
of ∆U = U1 − U2; at the interface (y = 0) the velocity is
not continuous.

The dispersion relation of the perturbation velocity field
is [18] :

ω = ±ik∆U

2
(6)

As long as this flow is sheared (∆U 6= 0), the pertur-
bation growth rate σ = −iω has a positive solution, so
that the flow is unstable. There is no wavelength selection
since the smaller the disturbance, the more it is amplified.
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Fig. 3: Dispersion relation for Rayleigh model : an inviscid
shear flow with a mixing layer of thickness 2d (flow profil of
figure 2(b)).

Shear flow with a mixing layer. – In practice, a
velocity discontinuity can not persist because of the veloc-
ity diffusion induced by viscosity at small scale. Rayleigh
introduced a more realistic model with a continuous and
piecewise linear velocity field (see figure 2(b)). The thick-
ness of the mixing zone is 2d. While we consider flows
dominated by inertial effects, we assume that d stays con-
stant during the destabilization mechanism.

In this case the dispersion relation becomes [18] :

ω2 =

(
∆U

4d

)2 [
(2kd− 1)2 − e−4kd

]
(7)

As soon as
[
(2kd− 1)2 − e−4kd

]
> 0, w is real and the

perturbation does not amplify. This corresponds to short
wavelengths when k > kc where kc is the marginal stability
wave number. It corresponds to (2kcd− 1)2 − e−4kcd = 0,
i.e. kcd ≈ 0.64. This result is consistant with the existence
of a mixing layer where viscosity effects will stabilize small
scale perturbation.

When k ∈ [0 ; kc], w is pure imaginary. The growth
rate of the instability σ = −iω is positive and the flow is
unstable :

σ =
∆U

4d

√
e−4kd − (2kd− 1)2 (8)

This dispersion relation is plotted on figure 3. The max-
imum growth rate is achieved when kmaxd ≈ 0.4, corre-
sponding to a wavelength selection

λmax ≈ 15.7 d (9)

The size of the mixing zone will select the characteristic
wavelength of the instability.

Some works investigated the linear stability of more re-
alistic mixing layer, with smother profiles [19]. First Car-
rier studied analytically a more complex piecewise linear
profile (with 5 domains instead of 3 for the Rayleigh pro-
file) ; he also studied numerically the case of a perfectly
smooth profile, very close to the one expected in a real

Figure 5.13 – a - Rappel de la forme calculée expérimentalement. b - Modèle linéaire par
morceau sans couches limites.

Si on modélise notre profil base par une un champ de vitesse V0(y) linéaire par morceaux, cette

équation se simplifie en

Ψ′′ − k2Ψ = 0, (5.5)

dont les solutions sont de la forme

Ψ(y) = Aeky + Be−ky, (5.6)

dans chaque zone où V0(y) et ses dérivées sont continues.

L’approximation la plus simple que nous serions tentés de faire est d’ignorer les couches

limites, et de prendre un profil linéaire par morceaux symétrique autour de l’axe y = 0. Le profil

obtenu est représenté sur la figure 5.13.b.

Rayleigh a pu montrer qu’un écoulement de cette forme n’est pas instable [54]. Il est nécessaire,

pour que l’on puisse avoir une déstabilisation, que le profil de vitesses présente un (ou plusieurs)

points d’inflexion.

Sans prise en compte des couches limites, le modèle est stable, nous allons donc les ajouter.

Stabilité linéaire avec des couches limites

On modélise l’écoulement de base par le profil de vitesses linéaire par morceau présenté sur

la figure 5.14. Au centre, le fluide est entrâıné avec une vitesse U0, sa vitesse maximale de recir-

80

x

y

bδ

x

y

c

Uo−U1

c

δ

Fig. 4: (a) Basic velocity profil deduced from our confined
vortex streets experiments. (b) Piecewise linear model without
boundary layer. (c) Piecewise linear model with a boundary
layer of thickness δ.

laminar boundary layer between two streams. In both
cases he obtained a dispersion relation slightly different
from that of the Rayleigh model [20] ; the size of the un-
stable domain is still kc ∼ 1/d and the most unstable
mode kmax ∼ kc/2. Physically, we obtain the same behav-
ior whatever the detailed profile of the mixing layer : it
stabilizes the wavelengths smaller than its size, and this
later select the most amplified wavelength.

Confined shear flow. – We consider now the con-
fined flow described in the first part exhibiting vortex
streets ; a mean flow profil experimentally obtained is rep-
resented on figure 4 (a) : a main flow in the center and a
back flow on each side.

The simplest basic flow that can approximate this ex-
perimental result is a piecewise linear profile without
boundary layer as represented on figure 4 (b). However
Rayleigh [12] established that the destabilization will oc-
cur only if the velocity profile presents at least an inflec-
tion point. Therefore we modelize the basic velocity profil
including boundary layers as represented on figure 4 (c).

At the center, the fluid flows at a maximum velocity Uo.
On each side, the maximum velocity of the back flow U1

occurs at a distance δ from the wall ; δ is the thickness of
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the boundary layer and the velocity is zero on the walls
(y = ±c). The mass conservation in the flow leads to :

U1 = Uo

(
1− δ

c

)
(10)

The basic flow is therefore a piecewise linear flow over
four domains:

i interval V0(y) V ′0(y)

1 y ∈ [c− δ ; c] U1

δ (y − c) U1

δ

2 y ∈ [0 ; c− δ] −U0+U1

c−δ y + U0 −U0+U1

c−δ
3 y ∈ [−c+ δ ; 0] U0+U1

c−δ y + U0
U0+U1

c−δ
4 y ∈ [−c ; δ − c+ δ] −U1

δ (y + c) U1

δ

In each of them, the Rayleigh equation 4 is solved by
φi(y) = Aie

ky + Bie
−ky, (i = 1...4). We have five kine-

matic boundary conditions : the normal velocity vy is zero
on the wall ; while vy = −∂ψ/∂x = −ikφ(y)e−iωt+ikx, we
obtain φ1(c) = φ4(−c) = 0 :

A1 + αB1 = 0 (11)

where α = e−2kc, and

αA4 +B4 = 0 (12)

As pointed out previously, the continuity of the basic flow
Vo(y) at the boundary of each domain leads to the continu-
ity of φ(y) : therefore φ1(c− δ) = φ2(c− δ), φ2(0) = φ3(0)
and φ3(−c + δ) = φ4(−c + δ) leading to the following re-
lations :

A1 + βB1 −A2 − βB2 = 0 (13)

where β = e−2k(c−δ),

A2 +B2 −A3 −B3 = 0 (14)

and

βA3 +B3 − βA4 −B4 = 0 (15)

The stresses (reduced to the pressure in our problem)
are also continuous at the boundary of each domain, which
leads to tree dynamic boundary conditions : π1(c − δ) =
π2(c − δ), π2(0) = π3(0) and π3(−c + δ) = π4(−c + δ)
leading to the following relations :

(ω + k U1 + U1/δ)A1

+β (−ω − k U1 + U1/δ)B1

−[ω − k U1 + (U1 + Uo)/(c− δ)]A2 (16)

+β [ω + k U1 + (U1 + Uo)/(c− δ)]B2 = 0

[ω − k Uo − (U1 + Uo)/(c− δ)]A2

+[−ω + k Uo − (U1 + Uo)/(c− δ)]B2

−[ω − k U1 + (U1 + Uo)/(c− δ)]A3 (17)

+[ω − k Uo − (U1 + Uo)/(c− δ)]B3 = 0
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Fig. 5: Dispersion relation for the confined shear flow for dif-
ferent values of the dimensionless thickness of the boundary
layer δ/c (flow profil of figure 4(c)).

β [ω + k U1 + (U1 + Uo)/(c− δ)]A3

+[−ω − k U1 + (U1 + Uo)/(c− δ)]B3

+β [−ω − k U1 + U1/δ]A4 (18)

+[ω + k U1 + U1/δ]B4 = 0

Equations 11 to 18 form a system of eight linear homoge-
neous equations with eight unknowns ; the corresponding
system matrix A can be found in Appendix A.

The non trivial solution of this system is obtained when
the determinant of the system det(A) = 0 ; this equation
was numerically resolved and we present on figure 5 the
dispersion relation for the confined shear flow for different
values of the dimensionless thickness of the boundary layer
δ/c.

In our experiments, we observe typical value of δ/c be-
tween 0.1 and 0.2 (see figure 4(a)). For such thicknesses,
the dispersion relation presents a maximum growth rate
at kmaxc ≈ 2. The corresponding wavelength λmax = 2b is
therefore related to c by

2b

c
≈ π (19)

In the case of a shear flow with a mixing, we saw that the
most unstable wavelength is controlled by the thickness of
the mixing layer d (eq. 9). For a confined shear flow, this
wavelength is controlled by the size of confinement 2c.
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Fig. 6: Dimensionless selected wavelength λ∗
max = 2b/c : the

mean experimental wavelengths (•) are in good agrement with
the wavelength predicted by the linear analysis λ∗

max = π (- -).

This theoretical prediction can be compared to our ex-
periments. On figure 6, we plotted 2b/c, the selected mean
wavelength, measured for different values of the degree of
confinement c ; they are in good agreement with the pre-
dicted value of π.

The two relevant parameters of this model are the
boundary layer thickness δ and the width of the water
tank 2c. This is consistent with our experiments where
the water height or the fluid velocity Uo have no influence
on observed wavelength.

We plotted the mean experimental wavelength on figure
6 because the measured values are very dispersed around
the mean value for a given confinement as plotted on fig-
ure 4 of our previous paper [10] ; the origin of such a
dispersion is unclear : the flow could be partially turbu-
lent and particularly it is very difficult experimentally to
avoid vertical beating of the tape, inducing fluctuations
on the flow.

Nevertheless the dispersion relation plotted on figure
5 allows us to predict the marginal stability of the flow,
corresponding to the points where the instability growth
rate is zero. For example, if δ/c = 0.2, the growth rate
is positive for wavenumber between kc1 and kc2 where
kc1c ≈ 1.10 and kc2c ≈ 2.72. As mentioned, in ours exper-
iments we observe typical values of δ/c between 0.1 and
0.2, so that [kc1 , kc2 ] corresponds the the largest wavenum-
ber domain where the growth rate is positive. The corre-
sponding wavelengths and positions in the (πa/2c,πb/2c)
plane are :

kc1c ≈ 1.10 λc1 ≈ 5.71 c πbc1/2c ≈ 4, 48

kmaxc ≈ 2.00 λmax ≈ 3.14 c πbmax/2c ≈ 2.46

kc2c ≈ 2.72 λc2 ≈ 2.31 c πbc2/2c ≈ 1.81

(20)

These values and boundaries predicted by the linear
analysis can be compared to our experiments : in the
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Rosenhead’s stability area

Rosenhead’s stability curve

Steric limit

KH marginal stability

KH selected wavelength

Fig. 7: Stabilty diagram : experimental data compared with
theoretical prediction : stability area predicted by Rosenhead,
steric limit induced by the rigid disc model and limit induced by
Kelvin-Helmholtz marginal stability. The experimental data
set satisfy the stability area ( o ) predicted by Rosenhead inside
the steric and Kelvin Helmholtz marginal stability limitations.

(πa/2c,πb/2c) plane, we plotted all our experimental data
on figure 7. As previously pointed out [10], data satisfy
the stability area predicted by Rosenhead and steric lim-
itations induced by the rigid disk model. We can observe
now that the experimental data points are included be-
tween the marginal stability values kc1 and kc2 , where the
growth rate of the instability is positive, and as saw on
figure 6, the value corresponding to the maximum growth
rate passes through the middle of the experimental mea-
surement set.

Conclusion. – In summary, we reconsidered the for-
mation of a double Bénard-von Kármán row of vortices,
induced in a pool of finite width 2c by a tape running
at constant speed on its free surface. As expected by this
kind of flow, Kelvin-Helmhotz instability leads to a typical
wavelength triggered by the sole c, but the possible val-
ues observed are dispersed in a continuous domain limited
by three effects : (1) this Kelvin-Helmhotz mechanism,
(2) the stability of vortex points calculated by Rosenhead,
(3) a possible effect due to the finite size of the vortex
cores. We have thus ran for the first time a complete de-
scription of these phenomena. It would be now interesting
to study more complex arrangements of vortices, such as
these encountered behind swimming bodies [21, 22] with
for instance four rows and possible inversions of the ro-
tation in each row. Also the case of a single vortex row
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could be studied, its mechanisms of destabilization remain
disputed [23].

Appendix A. – Equations 11 to 18 form a system of
eight homogeneous linear equations with eight unknowns
; we present here all the non-zero coefficients of corre-
sponding matrix A used to find numerically the dispersion
relation. The coefficients were adimensionalized using as
time scale c/U0 and U1 was directly derived from U0 and
δ/c from equation 10. Let us remind that α = e−2kc and
β = e−2k(c−δ).

a11 = 1 a27 = α
a12 = α a28 = 1

a33 = 1 a35 = −1
a34 = 1 a36 = −1

a41 = 1 a43 = −1
a42 = β a44 = −β

a55 = β a57 = −β
a56 = 1 a58 = −1

a61 = ωc/U0 + kc (1− δ/c) + (1− δ/c)/(δ/c)
a62 = β [−ωc/U0 − kc (1− δ/c) + (1− δ/c)/(δ/c)]
a63 = −ωc/U0 − kc (1− δ/c) + (2− δ/c)/(1− δ/c)
a64 = β [ωc/U0 + kc (1− δ/c) + (2− δ/c)/(1− δ/c)]

a73 = ωc/U0 − kc− (2− δ/c)/(1− δ/c)
a74 = −ωc/U0 + kc− (2− δ/c)/(1− δ/c)
a75 = −ωc/U0 + kc− (2− δ/c)/(1− δ/c)
a76 = ωc/U0 − kc− (2− δ/c)/(1− δ/c)

a85 = β [ωc/U0 + kc (1− δ/c) + (2− δ/c)/(1− δ/c)]
a86 = −ωc/U0 − kc (1− δ/c) + (2− δ/c)/(1− δ/c)
a87 = β [−ωc/U0 − kc (1− δ/c) + (1− δ/c)/(δ/c)]
a88 = ωc/U0 + kc (1− δ/c) + (1− δ/c)/(δ/c)

∗ ∗ ∗

We are indebted to stimulating discussions with C. Ar-
ratia and J. E. Wesfreid around instability mechanisms.
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