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ABSTRACT 

This study describes the implementation and the merits of an Ensemble Kalman Filter algorithm (EnKF) on the 1D-

shallow water model MASCARET for the representation of the hydrodynamics of the "Adour maritime" river in south 

west France. The first part of this work is dedicated to a detailed analysis of the background error covariance functions 

that are stochastically estimated on an ensemble of MASCARET integrations forced by perturbed upstream boundary 

conditions. It is shown that the geometric characteristics of the network have a significant impact on the shape of these 

functions and thus on the data assimilation correction. The data assimilation algorithm is validated in the framework of 

Observating System Simulation Experiment; it is shown that the assimilation of in-situ water level observations allows 

to improve water level and discharge over the entire hydraulic network, where no data are available. Finally, the 

method is applied in the context of real data experiments for recent major flood events of the Adour catchment.  The 

algorithm provides a corrected hydraulic state that can be used as an initial condition for further forecast as well as an 

input for 1D/2D model coupling.  

1. INTRODUCTION 

The hydraulic observing network in France provides water level data at relatively high frequency (usually 

hourly and up to 5 minutes) but with a inhomogenous spatial repartition at 1500 stations over the 21 000 km 

that are under the Service Central d'Hydrométéorologie et d'appui à la Prévision des Inondations (SCHAPI) 

supervision. These data are used for calibration and validation of hydraulic models that are then used for 

real-time forecast and flood risk evaluation. In spite of recent advances in numerical model and observing 

system developments, hydraulic simulation and forecast are limited by uncertainties in the description of 

topography, bathymetry, friction coefficients, rating curves and measurements. In order to overcome these 

                                                      
1
 barthelemy@cerfacs.fr 



SimHydro 2010:Hydraulic modeling and uncertainty, 2-4 June 2010, Sophia Antipolis – Barthélémy et al. – Data assimilation with 

an Ensemble Kalman Filter algorithm on an operational hydraulic network 

 

limitations and allows for a reliable description of flood plains, Data Assimilation (DA) combines 

information from the numerical model with observations, taking into account errors on both model and 

observation, thus reducing the range of uncertainty the model outputs. 

 It has already been demonstrated that DA can make an important contribution in the context of 

hydraulic (Durand et al. [6], Jean-Baptiste et al. [9]), still the application of DA for flood forecasting is not 

operational yet and should be further investigated.   

 In the present study, the key point is to demonstrate how DA allows to correct the entire hydraulic state  

(water level and discharge) using only water level observations located at a limited number of observing 

stations on the network. Consequently, the corrected hydraulic state can be used for flood plain description, 

initial condition for further forecast and also as boundary condition for 1D/2D coupling. 

 Within the DA algorithm, the information available at the observing stations is spread to the entire 

hydraulic network as well as to the unobserved variables thanks to the background error covariance 

functions. The description of these statistics is a major field of research in meteorology or oceanography 

(Weaver and Courtier [15], Pannekoucke et al. [13]). It was also discussed in the context of hydraulic by 

(Ricci et al. [14]) and (Madsen and Skotner [12]). 

 While the classical Kalman Filter algorithm (Kalman and Bucy [10]) requires the formulation of the 

tangent-linear and adjoint codes for the hydraulic model to properly evolve the background error covariance 

matrix, the EnKF algorithm stochastically estimates these statistics among an ensemble of members, i.e, a 

sample of integrations of the hydraulic model that represents the uncertainty in the model state. Here, the 

assumption is made that the uncertainty is mostly due to errors in the upstream forcing. In order to enlarge 

the spread of uncertainty within the ensemble that tends to be under-dispersive, an inflation method based on 

an a posteriori diagnostic is implemented (Desroziers et al. [5]). The resulting algorithm is denoted by 

IEnKF (for Inflated Ensemble Kalman Filter). 

 The IEnKF is applied to the Adour Maritime catchment. The river width, bathymetry and slope vary 

along the river that is approximated by a 1D flow. The outline of the paper is as follows: Section 2 describes 

the numerical model MASCARET and the Adour Maritime hydraulic network. Section 3 presents the IEnKF 

algorithm and its implementation with the dynamic couling software OPALM. Section 4 first illustrates how 

the network properties impact the shape of the covariance functions. Then it presents the data assimilation 

results for OSSE and real data experiments. Some conclusive remarks are finally given in Section 5. 

2. MODELING OF THE ADOUR MARITIM CATCHMENT 

2.1 1D Hydraulic model MASCARET 

MASCARET is a component of the open-source integrated suite of solvers TELEMAC-MASCARET for use 

in the field of free-surface flow that solves the Reynolds Averaged Navier-Stokes equations. TELEMAC-

MASCARET is managed by a consortium of core organizations and used for dimensioning and impact 

studies. MASCARET is mainly developped by EDF and CETMEF (Goutal and Maurel [8]), it solves the 

conservative form of 1D shallow-water equations: 

 � ���� + ���� = 	
���� + �(��/�)�� + �� ���� = − ����������/�
, (1) 

where � is the wetted area (��. ���),   is the discharge (�!. ���), 	
 is the lateral inflow per meter 

(��. ���), � stands for the gravity (�. ���), " is the free surface height (�), #$ is the strickler coefficient 

(��/!. ���) and %& is the hydraulic radius (�). 

 Generally speaking, uncertainties in the model formulation itself due to simplified physics and also in 

the input fields to the model such as the boundary conditions, initial conditions and hydraulic parameters, 

turbulence model, numerical schemes translate into errors in the MASCARET simulated hydraulic variables. 

In spite of constant advances in numerical methods, computational resources and input data acquisition 

(especially topography and bathymetry), a significant part of these uncertainties remain and DA appears as a 

complementary way of improving simulations. 

2.2 The “Adour maritime” hydraulic network 
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The Adour maritime hydraulic network covers 160,98 km, it is composed of 7 reaches with 3 confluences 

and 3 dams located on reaches 3, 6 and 7. The entire network is under tidal influence except upstream of the 

dams. The upstream forcings are described by observed water level converted into discharges by rating 

curves at the stations of Dax, Orthez, Escos and Cambo. Since the rating curves are build from a limited 

number of water level and discharge measurements and are usually extrapolated for higher flows, there are 

significant  uncertainties related to these upstream boundaries. The downstream forcing is given by water 

level at the observing station of Convergent on the Atlantic ocean cost. Water level observations are 

available hourly at Lesseps, Urt, Pont-Blanc, Villefranque and Peyrehorade. The flow is represented within 

the riverbed and infinite banks except in the neighboring of Peyrehorade where floodplains are locally 

modelled. This model was developed by the Service de Prévision des Crues (SPC) of Gironde and ADour 

(GAD) in collaboration with SCHAPI. SPC GAD and SCHAPI provide public and daily color-scaled risk 

maps available on-line (from green for low conditions to red for high risk conditions).  According to the 

statistics computed by SCHAPI, the Adour catchmet is ranked amongst the most challenging catchments 

with a large number of orange and red alerts. 

 

 
Figure 1: Schematic representation of the “Adour maritime” hydraulic network. The black lines on the 

reaches 3, 6 and 7 represent the dams on the “Adour maritime” network. 

2.3 Implementation 

In practice, combining MASCARET with a data assimilation algorithm is managed by the OpenPalm dynmic 

coupling software (Buis et al. [2]) developped by CERFACS and ONERA. It is used as a task parallelism 

manager to handle communications and data exchanges between MASCARET and the different 

mathematical units required to sequentially perform Bayesian prediction and update steps. Since each 

member of the ensemble can be integrated independently the Parasol functionality of OpenPalm is used to 

efficiently launch MASCARET model integrations, in parallel, on the available processors. The Master 

processor of Parasol spawns multiple copies of the same computer program (the slaves), each on one or 

several processors with a different set of input parameters (upstream forcing in the present case), while each 

slave processor is in charge of executing one MASCARET instance and producing the associated hydraulic 

state. 

 As illustrated in Figure 2 all the members are propagated from one assimilation cycle to the other by the 

hydraulic model. Every hour an assimilation is performed using  water level observations only. Still, due to 

the multivariate (between water level and discharge) covariances stochastically estimated in B, the DA 

provides a correction of both water level and discharge hourly. A 12-hour forecast is integrated after each 

DA up-date in order to quantify the impact of the hydrualic state correction at different lead-times. It should 

be noted that there is a time delay of respectively 6h, 10h and 12h between the upstream boundaries and the 

observing stations of Peyrehorade, Urt and Lesseps. Beyond this period the upstream forcings are prescribed 

as constant values since no hydrological model is available upstream of the hydraulic network 

3. ENSEMBLE BASED DATA ASSIMILATION ALGORITHM 
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3.1 Data assimilation methods  

The objective of data assimilation is to estimate the state vector '( using the observation )(* made at time +(. 
In our case '( represents the discretisation of the water level and discharge in each grid point of the domain. 

In the prediction step, the probability density function (denoted hereafter PDF) of the state vector is evolved 

from time +(�� until time +(. We note ,-('() this PDF (also called the background error PDF) at time +(. At 

the analysis time +(, also called the update step, this background PDF is corrected in order to be more 

consistent with the observations )(*. The new PDF, called the analysis and noted ,
('(), is given by 

Bayes’theorem: 

 ,
('() ∝ ,()(*|'0),-('0), (2) 

where the symbol ∝ means “proportional to” and where ,()(*|'0) represents the data likelihood, i-e the 

conditional PDF of having the observations )(* given the state '(. 
 The EnKF algorithm assumes that both the model state '( and the observations 1(* are random variables 

defined by Gaussian PDF with a zero mean value and an error covariance model. Under these assumptions, 

the background PDF may be written as: 

 ,-('() ∝ exp 5− �� ('( − '(-)6��7'( − '(-89:, (3) 

where ;�- is the background estimate of the true state vector and where 6 is the background error covariance 

matrix representing modeling errors. The data likelihood may be similarly expressed as: 

 ,()(*|'() ∝ exp 5− �� ()(* −<('())9=�>()(* −<('()):, (4) 

with = the observation error covariance matrix representing observation errors. Within this framework, the 

analysis PDF is also Gaussian and is written as: 

 ,
('() ∝ ?@, 5− �� ('( − '0
)9A��('( − '0
):, (5) 

where '(
 is the analysis estimate of the true state vector and where A is the analysis error covariance matrix. 

 The classical Kalman filter algorithm assumes that the observation H is linear (denoted by H); in that 

case, it may be shown that the analysis update in Equation (4) leads to the following equations : 

 '(
 = '(- + B()(* −C('(-)), B = 6C97C6CD + =8�>, A = (E − BC)6, (6) 

where B is called the gain matrix. 

 In contrast, the Ensemble Kalman Filter (EnKF) algorithm illustrated in Figure (2) approximates the 

forecasted PDF of the state vector ,-('0) by performing a series (an ensemble) of N independent forward 

model integrations up to the analysis time +(, thereby providing N  forecast estimates of the state vector, 

called the ensemble members, '(,G- = H'(-,�, '(-,�, … , '(-,JK. The EnKF algorithm approximates the mean and 

the covariance of the ensemble, while still making the assumption that all PDF are Gaussian. During the 

analysis, each ensemble member is updated using the classical Kalman filter formulation in Equation (6) 

with the difference that the gain matrix B( is now calculated from an estimate of the background error 

covariance matrix, noted 6(: 
 6( = �J��∑ MN(-,O − NPQQQ-R MN(-,O − NPQQQ-R9JOS� , (7) 

and using the ensemble-based stochastic representation of the relationship between state space and 

observation space. Note that in the present study, we use the EnKF version proposed by Burgers et al. [3] 

where the observation is perturbed for each member: T(* + U(*,O where T(* is the observation at time +(, U(*,O is 

a Gaussian noise with zero mean and variance equal to the prescribed variance of the observation V*. We 

also assume that the observation errors are uncorrelated, i-e the observation error covariance matrix = is 

treated as a diagonal matrix in which each diagonal term is the error variance V*� associated with water level 

measurements. 

 The background error covariance functions in 6( allow to spread the information from the observing 

stations (only 6 locations) to the rest of the simulated domain as well as to the unobserved variables 

(discharge in the present case). These covariances are implicitly evolved in time over the assimilation cycles 

and stochastically estimated amongst the hydraulic states within the ensemble that are generated using 

different forcing conditions. 
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Figure 2: Schematic representation of the EnKF algorithm at assimilation W. 
3.2 Online estimation of the matrices B and R  

The online estimation of the matrices B and R is derived from the consistency diagnostics of B and R 

presented in (Desroziers et al. [5]) and applied in an ensemblist case in (Li et al. [11]). While in (Li et al. 

[11]) those diagnostics are used to tune the values of the variance of the background and the observation at 

the observation points we show in this study how this information can impact the members of the ensemble 

at the observation points and on the domain consistently with the model thus allowing for the improvement 

of the results of the assimilation. The method presented here differs if there is one or several observation 

points, thus for the sake of simplicity we first present the case with only one observation point. 

3.2.1  Case with only one observation point 

Let us denote by : 

• X*�- the vector of the perturbed observations minus the corresponding background at the 

observation point ; 

• X
�- the vector of the analyzed states minus the corresponding background at the observation point ; 

• <.> the mean of a given value over the whole members ; 

 At a given time, if V-� and V*� are the true background and observation error variance then the following 

relationships are verified : 

 <X*�-X*�-9 >=V-� + V*�, (8) 

 <X
�-X*�-9 >=V*�, (9) 

 Because the true background and observation error variance are not always known, the relation (7) is not 

always verified. Hence, following (Anderson [1]), when it’s feasible, we introduce a factor [ > 0 and we 

assume that [V-� and V*� are the true background and observation error variances and then the following 

relation holds : 

 <X*�-X*�-9 >=[V-� + V*�, (10) 

 From (10) we can compute the value of [. The background vectors have then to be tuned using [, 

consistently with the model and such that their variance at the observation point verifies relation (8). Let us 

denote by N]-,O the k-th member tuned, we have : 

N]-,O(^) = _ `1 + ([ − 1)b(^). 7N-,O(^) − Nc-(^)8 + N-,O(^), 1 + ([ − 1)b(^) ≥ 0−`|1 + ([ − 1)b(^)|. 7N-,O(^) − Nc-(^)8 + N-,O(^), 1 + ([ − 1)b(^) < 0, (11) 

where ^ stands for the grid point number and b is the correlation function related to the observation point. 

 Nevertheless the later estimation of [ depends on the prior estimation of V* which may not be the true 

observation standard deviation. By performing an assimilation we can compute X
�- and give an estimate of V* by using (9). 

 We can now give a new estimate of [ using (10) and V* and so on. This leads to an iterative process the N]-,O, V- and V* are successively estimated using (9), (10) and (11). We consider that this process has 

converged when (10) olds for a value of [ close enough to 1 according to an criterion fixed a priori. 



SimHydro 2010:Hydraulic modeling and uncertainty, 2-4 June 2010, Sophia Antipolis – Barthélémy et al. – Data assimilation with 

an Ensemble Kalman Filter algorithm on an operational hydraulic network 

 

3.2.2  Case with several observation points 

In the case with several observation points, if the matrices B and R are the true background and observation 

error covariance matrices then the following relationships are verified : 

 <X*�-X*�-9 >=6 + =, (12) 

 <X
�-X*�-9 >=R, (13) 

 Just as before we introduce a factor [ > 0 and we suppose that [6 is the true background error 

covariance matrix, then the following relation holds : 

 <X*�-X*�-9 >=[6 + =, (14) 

Following Dee [4] we consider the trace of those matrices and [ verifies : 

 Tr(<X*�-X*�-9 >)=[Tr(6) + Tr(=), (15) 

Then we can compute the value of [. The background vectors are tuned using [ consistently with the model 

and such that their variances at the observation point verifies (12) : 

N]-,O(^) = _ `1 + ([ − 1)b′(^). 7N-,O(^) − Nc-(^)8 + N-,O(^), 1 + ([ − 1)b′(^) ≥ 0
−`|1 + ([ − 1)b′(^)|. 7N-,O(^) − Nc-(^)8 + N-,O(^), 1 + ([ − 1)b′(^) < 0, (16) 

Where bh(^) = 	jk;{b�(^); b�(^); b!(^)} where b�, b�	and	b! are the correlation functions related to the 

stations of Peyrehorade, Urt and Lesseps respectively. By performing an assimilation we compute X
�- and 

give an estimate of =. 

 We now give a new estimate of [ using (15) and = and so on. Just as before this leads to an iterative 

process and we consider that it has converged when [ is close enough to 1 according to a criterion fixed a 

priori. 

4. RESULTS 

4.1 Data assimilation results : OSSE experiments  

In this section, we apply the DA method in the framework of OSSE experiments. The synthetical water level 

observations are generated with MASCARET using an additional lateral inflow downstream of the dam on 

reach number 6 with a maximum of 375	�!. ��� at the flood peak, considered as the true run. This forcing is 

correlated in time with the upstream forcings of reaches 6 and 7. The true water level are perturbed with a 

measurement error, then assimilated hourly while the discharge synthetical observations are used for 

validation purpose of the IEnKF algorithm only. 

 We first focus on the correlation functions and the associated analysis increment. Then the results of the 

OSSE are presented. 

4.1.1  Background error correlation functions 

For the “Adour maritime” hydraulic network, the stochastically computed correlation functions are 

characterized by an important spatial extent and do not present a gaussian shape. These functions are 

significanty impacted by the geometry of the network, especially the presence of dams, confluences, slope, 

tide as well as the correlation time scale of the perturbation applied to the forcings. 

 In previous studies by (Ricci et al. [14], Madsen and Stokner [12]), an invariant formulation of the 

background error covariance matrix (the Invariant Kalman Filter is denoted by IKF in the following) is 

proposed following an estimation on an idealized network. While these statistics lead to the improvement of 

the simulated water level at a reduced computational cost, they are not consistent with the realistic geometry 

of the Adour network and hence do not provide an optimal correction. The correlation functions from the 

IKF are represented in Figures 3-(a) and 3-(b) by green lines and display a significanly shorter correlation 

length-scale downstrean of the observation than upstream. Figure 3-(a) displays the water level correlation 

function related to Peyrehorade (red line) computed with the IEnKF along reaches 7-5-2-1. This function 

shows an important discontinuity at the dam of the reach 7. Upstream of this dam the function present a 

small anti-correlation while downstream of this dam it exhibits larger correlation length scale. 
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(a) (b) 

Figure 3: Representation of (a) the water level correlation functions and (b) the discharge/water level 

correlation functions related to Peyrehorade computed with the IEnKF (red lines) and prescribed in an IKF 

in Ricci et al. [14] (green lines). The vertical red dashed line represent the position of the Peyrehorade 

station along the river. The vertical black dashed lines represent the separation between two following 

reaches. 

 

 Figure 3-(b) displays the discharge/waterlevel correlation function related to Peyrehorade (red line) and 

computed with the IEnKF at a given time along reaches 7-5-2-1. This function presents discontinuities at the 

confluences between reaches since discharge is an additive variable. 

 

  
(a) (b) 

Figure 4: (a) Water level correlation functions and (b) discharge/water level correlation functions related to 

Peyrehorade computed at two different times (red first and green second) by the IEnKF. 

 

 Figure 4 displays the water level (4-(a)) and discharge/water level (4-(b)) correlation functions 

computed at two different time steps with the IEnKF showing the evolution of the correlation functions over 

time and more specifically the influence of tide. 

 The DA increment in water level and discharge resulting from the analysis with previsously described 

correlation functions are shown in Figures 5 and 6 for both IKF and IEnKF and at different time steps. The 

correction from IEnKF is influenced by the presence of the dam on reach number 7 (Figure 5-(a), red line ) 

as well as by the presence of the confluence between reaches (Figure 5-(b), red line) while the corrections 

from IKF are not influenced by the geometric properties of the network. It shoudl be noted that the discharge 

increment exhibits a discontinuity at the confluence between the reaches 7 and 5 so that  the discharge 

computed at the confluence between those two reaches is equal to the sum of the discharges computed on 

reaches 6 and 7. As the univariate (water level/water level) and multivariate (discharge/water level) 

covariance functions are in coherence with the real hydraulic network and its temporal behavior, the DA 

increments from IEnKF are optimal. They provide a spatial correction to water level and discharge that 

allows to describe a corrected hydraulic state over the entire hydraulic network. 
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(a) (b) 

Figure 5: Representation of (a) the analysis water level increment and (b) the analysis discharge increment 

computed with the IEnKF (red lines) and computed within an IKF with a steady correlation function in 

Ricci et al. [14] (green line). 

 

 Figure 6 shows the analysis increment of water level and discharges  computed with the IEnKF at two 

different times showing the evolution of the analyzed increments from one time to an other. 

 

  
(a) (b) 

Figure 6: (a) Analysis water level increment and (b) analysis discharge increment computed with the 

IEnKF at two different times (red first green next). 

 

 Those results show that the correlation functions have an important spatial extent and the related 

analysis increment are in agreement with the numerical model and the geometry of the “Adour maritime” 

network. As a consequence the more important the spatial extent of the analysis increment isthe more 

reliable the forecast. On the other hand the large extent of the analysis increment allows for providing flood 

maps far from observation points or inputs for local 2D models in ungauged areas with important issues such 

as cities or nuclear plants. 

4.1.2  Data assimilation results for the correction of the hydraulic state 

In this experiment, the DA algorithm is sequentially applied using synthetical observations of water level at 

Peyrehorade from the first time step of the flood event, to the end of the flood peak. 
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(a) (b) 

Figure 7: Analyzed water level (red line) computed with the IEnKF at (a) Peyrehorade and (b) Urt. The 

observations are plotted in blue and the free run without assimilation in black. 

 

 Figure 7-(a) shows that the analyzed water level at the station of Peyrehorade is brought closer to the 

observations than the free run (no assimilation). As the inflation factor from equation (8) is greater than 1, 

the background error variance is increased, resulting in a proportionally smaller uncertainty in the 

observations when the inflation is used. 

  The correction of water level computed at Peyrehorade is spread over the domain consistently with the 

model state error statistics through the covariance functions. Hence the observation assimilated at 

Peyrehorade translates into a correction at Urt and the water level is also improved at Urt as displayed in 

Figure 7-(b). 

 

  
(a) (b) 

Figure 8: Analyzed discharges computed with the IEnKF (red line) at (a) Peyrehorade and (b) Urt. The 

observations are plotted in blue and the free run without assimilation in black. 

 

  Figure 8-(a) displays the analyzed discharges at Peyrehorade and Urt. Here again the analyzed 

discharges are brought closer to the observations by the DA algorithm which means that the correlation 

between the errors in discharges and the water levels are correctly estimated in the IEnKF algorithm. This 

correction is then spread over the domain to unobserved locations. Still, it should be noted that in the 

framework of OSSE, the relation between water level and discharge prescribed by the model are consistent 

with the relation between water level and discharge prescibed by the observation (as the observations are 

synthetically generated). This assumption may no longer hold in real case study as the model usually suffers 

from errors in the bathymetry and friction coefficients that locally impact the relation between water level 

and discharge. The same remark is valid for the spatial correction: the model state error at different locations 

is coherent with the observation error at different observing stations, thus the assimilation of observations 
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from one location leads to an improvement at other locations, but this result may hot hold for real case 

experiments. 

  
(a) (b) 

Figure 9: Forecasted water level computed with the IEnKF (red line) at (a) Peyrehorade at 3h forecast and 

(b) Urt at 5h forecast. The observations are plotted in blue and the free run without assimilation is plotted in 

black. 

 

 After each assimilation cycle a 12 hours forecast is performed. Figure 9-(a) displays the 3h forecast at 

Peyrehorade. We notice that as the lead time increases, the analyzed water level drifts towards the free run 

results since the impact of a correction to the hydraulic state (i.e the initial condition for further forecast) is 

limited in time. Nevertheless the forecast is improved for short-range forecast compared to the run without 

assimilation.This demonstrates the need to extent the control vector of the DA to more than the instantaneous 

hydraulic state, for instance correcting upstream forcings or hydraulic parameters in order to improve 

medium and long range forecasts. 

4.3 Data assimilation results : real data experiments 

In the case of real data experiments discharge observations are not available, thus only water level results are 

shown here. The IEnKF is applied to five flood events on the Adour catchment. 

 

  
(a) (b) 

Figure 10: Analyzed water level (red lines) at Peyrehorade for two different flood events. The observations 

are plotted in blue and the free run without assimilation is plotted in black. 

 

 Figure 10 displays analyzed water level for two different flood events. Figure 10-(a) represents a small 

flood event whereas Figure 10-(b) represents an important flood event.  
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(a) (b) 

Figure 11: Analyzed water level (red lines) at Urt for the two same events as Figure 6. The observations are 

plotted in blue and the free run without assimilation in black. 

 

 Figure (11) displays the analyzed water level at Urt for the two events presented in Figure (10). As 

expected in the framework of real data experiments, the improvement of water level at Urt is smaller than 

what was obtained in the framework of OSSE. Indeed, due to the imperfect modeling of the “Adour 

maritime” hydraulic network in the neighbourhood of Urt (with infinite banks and missing flood plains), the 

model tends to over estimate water level at Urt more than at Peyrehorade when major flood events occur. 

 Nonetheless in every case the data assimilation results in an improvement of the root-mean-square 

(RMS) of the analyzed water at the stations where the assimilation is performed. Table (1) summarizes the 

mean improvement on the five flood events considered here of the RMS at each station for different forecast 

range. 

 

Forecast range Peyrehorade Forecast range Urt Forecast range Lesseps 

0h 77% 0h 58% 0h 38% 

1h 61% 2h 39% 2h 6% 

3h 34% 5h 13% 6h -2% 

6h 11% 10h 3% 12h -2% 
 

Table 1: Mean improvement of the RMS at the stations of Peyrehorade, Urt and Lesseps for different 

forecast range. 

 

The mean improvement of the RMS of the analyzed water level at the stations is correlated to the ability of 

the model to compute correct water level without assimilation. Hence at Peyrehorade where the model is 

usually not good during flood peaks the mean improvement of the RMS with the IEnKF is about 77%. For 

each station the mean improvement of the analyzed water level decreases during the forecast period. In the 

case of Lesseps the mean improvement of the RMS during the forecast period is negative. This is because the 

computed water level at Lesseps are under a strong tidal influence. Hence during the forecast period where 

the forcings ar set constant the computed water level can not match with the observations. 

5.CONCLUSION 

This study describes the applicationof an EnKF algorithm on “Adour maritime” network using the 

hydraulic code MASCARET. This allows for the study of the model error correlation functions. 

Those functions are closely related to the geometry of the model and the forcings and are 

characterized by important spatial extent. An additional algorithm that estimates the background 

and observation error covariances at the observing stations was implemented and shows good 

results over the entire network in terms of analyzed and forecasted water level for short range 

forecast compared to a free run without assimilation. A direction application of this work is to 

provide inputs for local 2D models. 
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