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PROJECTIVE UNIFICATION IN BI-INTUITIONISTIC LOGIC

DAMIANO FORNASIERE, QUENTIN GOUGEON, AND MIGUEL MARTINS

Abstract. The bi-intuitionistic propositional calculus bi-IPC is the natural symmetric extension
of the intuitionistic logic IPC. We provide both an axiomatic and semantic characterization of the
consistent axiomatic extensions of bi-IPC which admit projective unification. They are exactly
those which contain a theorem of the form (¬∼)np → (¬∼)n+1p, for some n ∈ N – or, equivalently,
which are valid on Kripke frames of n-bounded zigzag depth, a simple order-theoretic condition.
We also prove that bi-IPC does not have a unitary unification type by showing that while the
formula ¬∼p → (¬∼)p is a unifiable formula in bi-IPC, it cannot have a most general unifier.

1. Introduction

In propositional logics, a formula φ is said to be unifiable if there exists a valid instance σ(φ)
of φ. In this case, the substitution σ is called a unifier of φ, and it is said to be most general if
every unifier of φ is an instance of σ. Some most general unifiers have the stronger property of
being projective [Ghi97], which makes them easier to identify. Unification is closely related to the
problem of admissibility : an inference rule φ

ψ is admissible if every unifier of φ is also a unifier of ψ
– which means, intuitively, that the rule turns theorems into theorems. If φ admits a most general
unifier σ, then checking that φ

ψ is admissible amounts to check that σ is a unifier of ψ. Even better,
if φ admits a projective unifier, then φ

ψ is admissible if and only if ψ is a global consequence of φ.
The problem of recognizing admissible rules attracted the interest of intuitionistic logicians, after

Friedman put it under the spotlight in a 1975 list of mathematical problems [Fri75]. This problem
was eventually solved by Citkin [Cit78] and Rybakov [Ryb84]. Later on, Ghilardi made notable steps
toward understanding unification in the intuitionistic propositional calculus IPC [Ghi99, Ghi04]
and in many of its fragments [Ghi97]. In this paper, we will begin the study of unification in the
bi-intuitionistic propositional calculus bi-IPC, the natural symmetric extension of IPC.

The logic bi-IPC can be obtained by expanding IPC with the co-implication connective← (also
called exclusion, or subtraction), by ensuring that it behaves dually to the intuitionistic implication
→ and by adding the double negation inference rule “from φ infer ¬∼φ” (we use ∼φ as a shorthand
for the formula ⊤ ← φ, and call it the co-negation of φ). This process yields a conservative extension
of IPC with significantly greater expressive power, a feature that can be easily observed in [Wol98],
where Gödel’s embedding of IPC into the modal logic S4 is extended to an embedding of bi-IPC
into the temporal modal logic tense-S4.

As mentioned above, bi-IPC can be thought of as the natural symmetric extension of IPC.
This is because, thanks to the co-implication ←, the logic bi-IPC achieves a symmetry between
its connectives (namely, each of ∧,→,¬,⊥ has its dual ∨,←,∼,⊤, respectively), a property that
IPC notably lacks. Moreover, this symmetry is reflected by the fact that bi-IPC is algebraized
(in the sense of [BP89]) by the variety of bi-Heyting algebras (Heyting algebras whose order duals
are also Heyting algebras). In fact, the lattice of bi-intermediate logics (consistent axiomatic ex-
tensions of bi-IPC) is dually isomorphic to that of nontrivial subvarieties of bi-Heyting algebras
(see, e.g., [Rau74b]). The theory of these algebras was developed by Rauszer and others in a series
of paper [Bea80, Köh80, Rau74a, Rau74b, Rau77, San85], motivated by their connection with bi-
intuitionistic logic. However, bi-Heyting algebras also arise naturally in other fields of research. For
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example, the lattice of open sets of an Alexandrov space is always a bi-Heyting algebra, and so is
the lattice of subgraphs of an arbitrary graph (see, e.g., [Tay16]). Similarly, every quantum system
can be associated with a complete bi-Heyting algebra [Dör16]. Many other examples can be found,
especially in the field of topos theory [Law86, Law91, RZ96].

And although bi-IPC has recently gathered the attention of some logicians (see, e.g., [Bad16,
BGJ22, Gor00, GP10, Shr16]), to our knowledge no advances have been made in the study of its
unification problems. We start filling this vacuum by proving two results: we provide an axiomatic
characterization of all the projective bi-intermediate logics (Section 3), and show that bi-IPC does
not have a unitary unification type (Section 4). In more detail, we prove that the projective bi-
intermediate logics are exactly those whose Kripke models have a natural bound for the size of the
“zigzags”, a property that is definable by a type of formulas in the language of bi-IPC, namely,
those of the form (¬∼)np→ (¬∼)n+1p, for n ∈ N. As for the proof that bi-IPC is not unitary, we
show that the formula p→ ¬∼p is unifiable but does not admit a most general unifier.

Notably, our methods diverge significantly from those used by Ghilardi in his study of unification
in IPC [Ghi04]. In fact, due to the different properties of the two logical systems, most of Ghilardi’s
machinery does not admit an adaptation into the bi-intuitionistic setting. For example, throughout
his paper he makes crucial use of the fact that IPC is sound and complete with respect to finite
rooted Kripke frames. And while bi-IPC also has the finite model property, it does not admit a
completeness result to such a simple class as that of finite rooted frames (or finite co-rooted frames,
or even frames ⟨W,≤⟩ such that W = ↑w ∪ ↓w for some w ∈ W ). Yet another tool that we failed
to adapt to our setting, which was essential for his characterization of projective formulas in IPC,
were the substitutions θaφ. Given a formula φ(p1, . . . , pn) in the language of IPC, Ghilardi defines
for each a ⊆ {p1, . . . , pn} a substitution θaφ by

θaφ(p) :=

{
φ→ p if p ∈ a,
φ ∧ p if p /∈ a,

which all satisfy certain desirable properties. He then proceeds to define θφ as a suitable finite
composition of the above defined θaφ, and prove that φ is projective iff θφ unifies φ. However, after
many attempts, we could not find a general bi-intuitionistic analogue for the θaφ that would satisfy,
for all φ, the aforementioned desirable properties necessary to characterize projective formulas.
While some definitions of θaφ would work (in the sense of satisfying the desirable properties) when
φ was a ←-free formula (and others for →-free formulas), they would fail if this was not the case.

2. Background

2.1. Bi-intuitionistic logics and their models. We fix a denumerable set Var of variables
(which we will usually denote by p, q, r . . . ). The language L of the propositional bi-intuitionistic
logic is then defined by:

φ ::= p | ⊥ | ⊤ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (φ← φ),

where p ∈ Var. Given φ ∈ L, we denote by var(φ) the set of variables occurring in φ. When
P ⊆ Var, we denote by LP the set of all formulas φ such that var(φ) ⊆ P . We use the abbreviations
¬φ := φ → ⊥, ∼φ := ⊤ ← φ and φ ↔ ψ := (φ → ψ) ∧ (ψ → φ). For n ∈ N, we define (¬∼)nφ
recursively as follows:

(¬∼)0φ := φ and (¬∼)n+1φ := ¬
(
∼(¬∼)nφ

)
.

The bi-intuitionistic propositional calculus bi-IPC is the least set of formulas in the language L,
that contains IPC, the axioms below, and is closed under modus ponens, uniform substitutions,
and the double negation rule “from φ infer ¬∼φ”.

(1) p→
(
q ∨ (p← q)

)
,
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(2) (p← q)→ ∼(p→ q),
(3)

(
(p← q)← r

)
→ (p← q ∨ r),

(4) ¬(p← q)→ (p→ q).
Using a straightforward Kripke semantical argument, it can be shown that bi-IPC is a conserva-

tive extension of IPC. Additionally, the classical propositional calculus CPC can be identified with
the proper extension of bi-IPC obtained by adding the law of excluded middle p ∨ ¬p. Notably, in
CPC the co-implication ← is term-definable, since (p← q)↔ (p∧¬q) ∈ CPC. Consequently, the
double negation rule becomes superfluous, as it reduces to “from φ infer φ”.

A super-bi-intuitionistic logic is a set of formulas L in the language L, that contains bi-IPC and
is closed under the three inference rules listed above. In this case, the elements φ ∈ L are called the
theorems of L. We call L consistent if ⊥ /∈ L and inconsistent otherwise. A super-bi-intuitionistic
logic L′ is an extension of L when L ⊆ L′. Consistent super-bi-intuitionistic logics are called bi-
intermediate logics, and it can be shown that a super-bi-intuitionistic logic L is a bi-intermediate
logic if and only if L ⊆ CPC. Given a set of formulas Σ, we denote by L + Σ the least (with
respect to inclusion) bi-intuitionistic logic containing L ∪ Σ (which always exists), and call it an
axiomatic extension of L. If Σ is a singleton {φ}, we simply write L+φ. Two formulas φ and ψ are
L-equivalent when (φ ↔ ψ) ∈ L, in which case we write φ ≡L ψ. Finally, we call L locally tabular
if whenever P ⊆ Var is finite, there are only finitely formulas in LP up to L-equivalence.

Notable bi-intermediate logics include the bi-intuitionistic Gödel-Dummett logic bi-GD := bi-IPC+
(p → q) ∨ (q → p), extensively studied in [BMM24], and, for each n ∈ N, the bi-intermediate logic
of n-bounded zigzag depth BZn := bi-IPC + (¬∼)np → (¬∼)n+1p, known for being connected to
the existence of so-called discriminator terms [Tay16].

In order to introduce the notion of logical consequence that we will use throughout this paper,
we first need to define intuitionistic Kripke frames and models. A frame (for short) is a pair
F = ⟨W,≤⟩, where W is a set and ≤ is a partial order on W (i.e., a binary relation on W that is
reflexive, transitive, and antisymmetric). In other words, a frame is just a poset. Given a frame
F = ⟨W,≤⟩ and a subset U ⊆W , we denote the upset generated by U by

↑U := {w ∈W : ∃u ∈ U s.t. u ≤ w},

and if U = ↑U , then U is called an upset. If U = {u}, we simply write ↑u. The set of upsets of F will
be denoted by Up(F). The notion of a downset and the arrow operator ↓ are defined analogously,
and if U is both an upset and a downset, we call it an updownset. We will always use the convention
that the arrow operators defined above bind stronger than the other set theoretic operations. For
example, the expressions ↑U ∖V and ↓U ∩V are to be read as (↑U)∖V and (↓U)∩V , respectively.

For n ∈ N, we define (↓↑)nU recursively as follows:

(↓↑)0U := U and (↓↑)n+1U := ↓
(
↑(↓↑)nU

)
.

Intuitively, (↓↑)nU is the set of points in W that can be reached from a point in U after n-many
zigzags, in the sense that w ∈ (↓↑)nU if and only if there are u ∈ U and x1, y1, . . . , xn, yn ∈W such
that

u ≤ x1 ≥ y1 ≤ x2 ≥ y2 ≤ · · · ≤ xn ≥ yn = w.

An intuitionistic Kripke model (or model for short) is a tuple M = ⟨W,≤, V ⟩ where F = ⟨W,≤⟩
is a frame and V : P → Up(F), for some P ⊆ Var. We refer to such maps as valuations (of P ) on
F, to such models as models (of P ) on F, and use the shorthand notation M = ⟨F, V ⟩. The notion
of satisfaction of a formula φ at a point w ∈ W is defined as usual when the main connective of φ
is in {⊥,⊤,∧,∨,→}, and if φ is of the form α← β, we define

M, w ⊨ α← β ⇐⇒ ∃u ≤ w s.t. M, u ⊨ α and M, u ̸⊨ β.
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Moreover, the notions of satisfaction and validity of a formula (resp. a set of formulas) in an
intuitionistic model or frame are defined as usual, hence we omit them.

One easily verified equivalence that we will use throughout is the following: for every model
M = ⟨W,≤, V ⟩, every w ∈W , and every formula φ, we have

(1) M, w ⊨ (¬∼)nφ ⇐⇒ ∀u ∈ (↓↑)nw
(
M, u ⊨ φ

)
.

Much like the case of modal logic, bi-intuitionistic logic admits both a local and global semantical
consequence relation. We will only be concerned with the latter, which we proceed to define.

Definition 2.1. Let Γ ∪ {φ} ⊆ L and L be a bi-intermediate logic. We write Γ ⊢L φ when, for
every model M on a frame F that validates L, if M ⊨ Γ then M ⊨ φ. When Γ = ∅, we simply write
⊢L φ.

A proof of the following completeness result can be found in [Rau77].

Theorem 2.2. Let φ ∈ L and L be a bi-intermediate logic. Then φ ∈ L if and only if ⊢L φ.

Next we state the version of the Deduction Theorem we will use in this paper. Many erro-
neous versions of the Deduction Theorem for bi-intuitionistic logic have appeared in the literature.
In [GS20], the authors identify one of the reasons that lead to the existence of these conflicting
results, namely, the fact that in a standard Hilbert calculus system, the double negation rule of bi-
intuitionistic logics admits multiple interpretations. To eliminate these possible ambiguities, they
view bi-intuitionistic logics as consequence relations via the notion of generalized Hilbert calculi
systems in L (we note that this is the same language we defined at the start of this section), and
introduce the strong bi-intuitionistic logic ⊢s. It is then proved in [GS20, Thm. 7.7] that

(2) Γ, φ ⊢s ψ ⇐⇒ ∃n ∈ N s.t. Γ ⊢s (¬∼)nφ→ ψ,

for all Γ∪ {φ,ψ} ⊆ L. Since it follows immediately from [GS20, Thm. 8.8] and from Definition 2.1
that Γ ⊢bi-IPC ψ if and only if Γ ⊢s ψ, we get the Deduction Theorem for bi-IPC:

Γ, φ ⊢bi-IPC ψ ⇐⇒ ∃n ∈ N s.t. Γ ⊢bi-IPC (¬∼)nφ→ ψ.

Now, if L = bi-IPC + Σ is a bi-intermediate logic, let us denote by ⊢Σs the generalized Hilbert
calculus system in L obtained by adding Σ to the set of axioms of ⊢s, and call it a consistent
axiomatic extension of ⊢s. A straightforward adaptation of the proof of [GS20, Thm. 8.8] (which
uses both the standard canonical model construction and an appropriate version of a Truth Lemma)
shows that Γ ⊢L ψ if and only if Γ ⊢Σs ψ, for every Γ ∪ {ψ} ⊆ L. Because of this equivalence, and
since the syntatic argument used to prove (2) can be easily applied to consistent axiomatic extensions
of ⊢s, we obtain the following generalization of [GS20, Thm. 7.7]:

Theorem 2.3 (Deduction Theorem). If Γ ∪ {φ,ψ} ⊆ L and L is a bi-intermediate logic, then

Γ, φ ⊢L ψ ⇐⇒ ∃n ∈ N s.t. Γ ⊢L (¬∼)nφ→ ψ.

Next we introduce the algebraic models of bi-intermediate logics, as well as their duals spaces.

Definition 2.4. A bi-Heyting algebra is a tuple A = ⟨A,∧,∨,→,←, 0, 1⟩ whose (∧,∨, 0, 1)-reduct
is a bounded distributive lattice, and such that A validates the following equations:

(1) p→ p ≈ 1,
(2) p ∧ (p→ q) ≈ p ∧ q,
(3) q ∧ (p→ q) ≈ q,
(4) p→ (q ∧ r) ≈ (p→ q) ∧ (p→ r),

(5) p← p ≈ 0,
(6) p ∨ (q ← p) ≈ p ∨ q,
(7) q ∨ (q ← p) ≈ q,
(8) (q ∨ r)← p ≈ (q ← p) ∨ (r ← p).

A standard example of these structures is Up(F) := ⟨Up(F),∩,∪ →,←,∅,W ⟩, the bi-Heyting
algebra of upsets of a frame F = ⟨W,≤⟩, obtained by defining the implications as:
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• U → V :=W ∖ ↓(U ∖ V ) = {w ∈W : ∀u ∈W, if w ≤ u and w ∈ U, then u ∈ V };
• U ← V := ↑(U ∖ V ) = {w ∈W : ∃u ≤ w s.t. u ∈ U and u /∈ V }.

Definition 2.5. An ordered topological space X = ⟨X, τ,≤⟩ is a bi-Esakia space if it is compact
and satisfies the following conditions (where ClopUp(X ) denotes the set of its clopen upsets):

• if U is clopen, then both ↓U and ↑U are clopen;
• Priestley separation axiom, i.e.,

∀x, y ∈ X
(
x ≰ y =⇒ ∃V ∈ ClopUp(X ) (x ∈ V and y /∈ V )

)
.

Definition 2.6. Let ⟨X,≤⟩ and ⟨Y,≤⟩ be posets. A map f : X → Y is called a bi-p-morphism,
denoted by f : ⟨X,≤⟩ → ⟨Y,≤⟩, if it satisfies the following conditions:

• Order preserving: ∀x, z ∈ X
(
x ≤ z =⇒ f(x) ≤ f(z)

)
;

• Up: ∀x ∈ X,∀y ∈ Y
(
f(x) ≤ y =⇒ ∃z ∈ ↑x (f(z) = y)

)
;

• Down: ∀x ∈ X,∀y ∈ Y
(
y ≤ f(x) =⇒ ∃z ∈ ↓x (f(z) = y)

)
.

A continuous bi-p-morphism f : X → Y between bi-Esakia spaces is called a bi-Esakia morphism.

It is known that the celebrated Esakia duality restricts to a duality between the category of
bi-Heyting algebras and bi-Heyting homomorphisms, and that of bi-Esakia spaces and bi-Esakia
morphisms [Esa75, Esa19]. Here, we will only recall the contravariant functors which establish this
duality. Given a bi-Heyting algebra A, we denote its bi-Esakia dual by A∗ := ⟨A∗, τ,⊆⟩, where A∗
is the set of prime filters of A and τ is the topology generated by the subbasis

{⟨a⟩ : a ∈ A} ∪ {A∗ ∖ ⟨a⟩ : a ∈ A},
where ⟨a⟩ := {F ∈ A∗ : a ∈ F}. Notably, it can be shown that ClopUp(A∗) = {⟨a⟩ : a ∈ A}.
Furthermore, if f : A → B is a bi-Heyting homomorphism, then its dual is the restricted inverse
image map f∗ := f−1 : B∗ → A∗. Conversely, if X is a bi-Esakia space, we denote its bi-Heyting
dual by X ∗ := ⟨ClopUp(X ),∩,∪,→,←,∅, X⟩, where the implications are defined as before, that is,

• U → V := X ∖ ↓(U ∖ V ),
• U ← V := ↑(U ∖ V ),

for every U, V ∈ ClopUp(X ). Moreover, if f : X → Y is a bi-Esakia morphism, then its dual is the
restricted inverse image map f∗ := f−1 : Y∗ → X ∗.

As previously mentioned, bi-Heyting algebras and bi-Esakia spaces are the algebraic and geo-
metric models of bi-intermediate logics, respectively. This is because, for a bi-intermediate logic
L, we have that ⊢L φ if and only if every bi-Heyting algebra that validates L must also validate
φ. Moreover, a formula is valid in a bi-Heyting algebra A if and only if it is valid in its bi-Esakia
dual A∗. For the proofs of these facts, as well as proper definitions of the terminology, see, e.g.,
[Rau74b, Esa75].

2.2. Unification. From now on, all formulas will be assumed to be in the language of bi-intuitionistic
logic. Let L be a bi-intermediate logic. A substitution is any map σ : LP → LQ where P and Q
are finite and σ commutes with all logical connectives. Let σ : LP → LQ and τ : LP → LQ′ be
two substitutions. We say that σ is at least as general as τ , and write σ ⪯ τ , if there exists a
substitution µ : LQ → LQ′′ such that ⊢L τ(p) ↔ µσ(p) for all p ∈ P . Now let φ ∈ L. A unifier of
φ is a substitution σ : Lvar(φ) → L such that ⊢L σ(φ). A set Σ of unifiers of φ is said to be a basis
if it satisfies the following conditions:

• for all unifiers τ of φ, there exists σ ∈ Σ such that σ ⪯ τ ;
• for all σ, σ′ ∈ Σ, if σ ⪯ σ′ then σ = σ′.

In particular, if Σ = {σ} is a one-element basis, then σ is called a most general unifier of φ. A special
kind of most general unifier is that of so-called projective unifiers. A substitution σ : LP → LP
is called φ-projective if we have φ ⊢L p ↔ σ(p) for all p ∈ var(φ). If in addition ⊢L σ(φ), then
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σ is called a projective unifier of φ. In this case, σ is known to be most general for φ. We call φ
unifiable if it admits a unifier, unitary if it admits a most general unifier, and projective if it admits
a projective unifier. Accordingly, the logic L is said to be unitary (resp. projective) if every unifiable
formula is unitary (resp. projective).

Proposition 2.7 ([Ghi00]). A substitution σ : LP → LP is φ-projective if and only if we have
φ ⊢L ψ ↔ σ(ψ) for all ψ ∈ LP .

A recurrent question is that of recognizing unifiable formulas. Formally, the decision problem of
unifiability is defined as follows:

• Input: a formula φ,
• Output: yes if φ admits a unifier, no otherwise.

In intuitionistic logic, unifiability can be reduced to consistency in CPC, and the same trick
also works for bi-intuitionistic logic. This shows that unifiability is NP-complete in all super-
bi-intuitionistic logics.

Theorem 2.8. A formula φ is unifiable in L if and only if φ is consistent with CPC.

Proof. Suppose that φ admits an unifier σ in L. Then ⊢L σ(φ), and since L ⊆ CPC, it follows that
⊢CPC σ(φ). As a consequence, φ is consistent with CPC – for otherwise we would have ⊢CPC ¬φ
and thus ⊢CPC ¬σ(φ).

Conversely, suppose that φ is consistent with CPC. Then there exists a propositional valuation
V : var(φ) → {⊥,⊤} which satisfies φ. The valuation V can be extended to a substitution σ :
Lvar(φ) → L∅, so that ⊢CPC σ(φ). Since σ(φ) is variable-free, it follows that ⊢IPC σ(φ) by [CZ97,
Cor. 2.27], and thus ⊢L σ(φ). □

Closely related to the problem of unification is that of admissibility. An inference rule φ
ψ is said to

be admissible if every unifier of φ is also a unifier of ψ, and derivable if we have φ ⊢L ψ. Formally,
the decision problem of admissibility is defined as follows:

• Input: an inference rule φ
ψ ,

• Output: yes if φ
ψ is admissible, no otherwise.

The condition of being derivable is easier to decide than that of being admissible, since it simply
amounts to check an implication. Every derivable rule is admissible, but the converse does not need
to hold in general. Further, a rule φ

ψ is called passive if its premise φ admits no unifier – which
means that the rule can never be instantiated at all. Passive rules are vacuously admissible and can
thus be safely omitted. All these observations motivate the following definition, introduced by Dzik
in [Dzi06].

Definition 2.9. The logic L is called almost structurally complete if every admissible non-passive
rule is derivable.

This notion echoes that of structural completeness, which originates from [Pog71] and was exten-
sively studied in various logical systems – see [Ryb97] for the modal and intuitionistic case.

Proposition 2.10. If L is almost structurally complete and decidable, then admissibility is decidable
in L.

Proof. The following procedure decides whether φ
ψ is admissible: first, check whether φ is unifiable,

using Theorem 2.8. If not, then φ
ψ is admissible. If yes, then by assumption, φ

ψ is admissible if and
only if φ ⊢L ψ. Since L is decidable, this can be checked effectively. □

The following result connects admissibility to projective unification.

Proposition 2.11 ([Dzi06, Lemma 13]). If L is projective, then L is almost structurally complete.
6



Proof. Let φ
ψ be an admissible non-passive inference rule. By assumption, there exists a projective

unifier σ of φ. Then by Proposition 2.7, we have φ ⊢L ψ ↔ σ(ψ). Since φ
ψ is admissible and σ is a

unifier of ψ, it is also a unifier of ψ. Therefore φ ⊢L ψ, as desired. □

3. Projectivity in bi-intuitionistic logic

We are finally ready to characterize the projective bi-intermediate logics: they are exactly those
which contain a formula of the form (¬∼)np → (¬∼)n+1p, for some n ∈ N. In other words,
extensions of the bi-intermediate logics of n-bounded zigzag depth BZn := bi-IPC + (¬∼)np →
(¬∼)n+1p (it is routine to check that a frame F = ⟨W,≤⟩ validates BZn iff (↓↑)nw = (↓↑)n+1w, for
all w ∈W ). In [Tay16], it is shown that for a bi-intermediate logic, extending BZn is equivalent to
having a discriminator term. For this reason, a result in [Dzi11] already entails that all these logics
will be projective. Nevertheless, we include the following proof to keep the paper self-contained
and to provide a clear intuition on why the presence of a formula (¬∼)np → (¬∼)n+1p in a bi-
intermediate logic ensures its projectivity. We present an adaptation of a similar proof for modal
logic introduced in [BG22], which is based on duality. For the sake of concision, we will only sketch
the main steps of the reasoning, and redirect the reader to the corresponding proofs in [BG22].

Throughout this section, we work with a fixed but arbitrary bi-intermediate logic L. Given P ⊆
Var, we denote by AP the Lindenbaum algebra of L with variables in P , obtained by quotienting the
set LP by the equivalence relation ≡L and equipping it with the appropriate algebraic operations.
Given φ ∈ LP , we denote by [φ] the equivalence class of φ modulo ≡L. We then denote by ≡φ
the smallest equivalence congruence on LP such that [φ] ≡φ [⊤]. Accordingly, every substitution
σ : LP → LQ can be identified to a homomorphism σ : AP → AQ, defined by σ([φ]) := [σ(φ)].
Given a ∈ AP , we denote by πφ(a) the equivalence class of a modulo ≡φ, and this defines a
homomorphism πφ : AP → AP /≡φ.

Lemma 3.1. For all φ,ψ, θ ∈ LP , the following are equivalent:
(1) φ ⊢L ψ ↔ θ,
(2) [ψ] ≡φ [θ].

Proof sketch. From 1 to 2, this follows from Theorem 2.3. From 2 to 1, define a relation ≡ on AP

by [φ] ≡ [ψ] iff φ ⊢L ψ ↔ θ. We can check that ≡ is a congruence, and so by definition it contains
≡φ. □

Proposition 3.2. Let φ ∈ L and P := var(φ). Then:
(1) a substitution σ : LP → LQ is a unifier of φ iff Ker πφ ⊆ Ker σ;
(2) a substitution σ : LP → LP is φ-projective iff πφσ = πφ.

Proof sketch.
(1) If σ is a unifier of φ, then Ker σ contains the pair ([φ], [⊤]), and so it contains ≡φ by

definition. Conversely, if Ker πφ ⊆ Ker σ, then in particular ([φ], [⊤]) ∈ Ker σ and thus
⊢L σ(φ).

(2) Follows from Proposition 2.7 and Lemma 3.1. □

The canonical bi-Esakia space of L on P is the dual XP := (AP )∗ = ⟨WP , τP ,≤P ⟩ of AP .
Given φ ∈ LP we denote by ⟨φ⟩ := {w ∈ WP : [φ] ∈ w} the extension of φ. We then introduce
⟨φ⟩∞ :=

⋂
n∈N⟨(¬∼)nφ⟩.

Lemma 3.3. The set ⟨φ⟩∞ is an updownset.

Proof. Let w ∈ ⟨φ⟩∞ and suppose that w ≤P u or u ≤P w. Given n ∈ N, we know by assumption
that w ∈ ⟨φ⟩∞ ⊆ ⟨(¬∼)n+1φ⟩. Hence, the behavior of the double negation (see (1)) entails
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↓↑w ⊆ ⟨(¬∼)nφ⟩. Thus, for both possibilities on u, it follows u ∈ ↓↑w ⊆ ⟨(¬∼)nφ⟩. Since n was
arbitrary, we now have u ∈ ⟨φ⟩∞, and we conclude that this is indeed an updownset. □

Lemma 3.4. Let w ∈WP . The following are equivalent:
(1) w is closed under ≡φ,
(2) w ∈ Im (πφ)∗.

Proof sketch. The direction from Item 2 to Item 1 is easy. From Item 1 to Item 2, we set u := πφ[w],
and we prove that u is a prime filter on AP /≡φ and that w = (πφ)∗(u). □

Proposition 3.5. We have Im (πφ)∗ = ⟨φ⟩∞.

Proof sketch. Easily follows from Theorem 2.3, Lemma 3.1 and Lemma 3.4. □

Theorem 3.6. Let φ ∈ L and let P := var(φ). Then:
(1) a substitution σ : LP → LQ is a unifier of φ if and only if Im σ∗ ⊆ ⟨φ⟩∞;
(2) a substitution σ : LP → LP is φ-projective if and only if ⟨φ⟩∞ ⊆ fp σ∗.

Proof sketch. Item 1 follows from Proposition 3.2 and an appropriate use of the Prime Filter The-
orem [CZ97, Th. 7.41]. Item 2 is a straightforward consequence of Proposition 3.2 and Proposi-
tion 3.5. □

Accordingly, we will call a dual unifier of φ any morphism f : XQ → XP such that Im f ⊆ ⟨φ⟩∞,
and a projective dual unifier of φ any morphism f : XP → XP such that Im f ⊆ ⟨φ⟩∞ ⊆ fp f .

Proposition 3.7. If BZn ⊆ L, then L is projective.

Proof. Let φ be a formula and suppose it has a unifier τ ′ : LP → LQ, where P := var(φ). We select
an arbitrary substitution µ : LQ → LP , and then set τ := µτ ′ : LP → LP , noting it is also a unifier
of φ. Hence, we have a dual unifier g := τ∗ : XP → XP of φ. We define a map f : XP → XP by
f(w) := w if w ∈ ⟨φ⟩∞ and f(w) := g(w) otherwise.

We prove that f is a bi-p-morphism. Let w, u ∈ XP . We first assume that w ≤P u. By
Lemma 3.3, we have w ∈ ⟨φ⟩∞ iff u ∈ ⟨φ⟩∞. If w, u ∈ ⟨φ⟩∞, then f(w) ≤P f(u) amounts to
w ≤P u. If w, u /∈ ⟨φ⟩∞, then f(w) ≤P f(u) is equivalent to g(w) ≤P g(u) by the definition of f ,
and the latter condition holds because g is a bi-p-morphism. So f is order preserving.

Now suppose that f(w) ≤P u′. If w ∈ ⟨φ⟩∞, then f(w) = w and w ≤P u′, whence u′ ∈ ⟨φ⟩∞
by Lemma 3.3 and thus f(u′) = u′. If instead w /∈ ⟨φ⟩∞, then f(w) = g(w), and since g is a
bi-p-morphism we obtain the existence of u ∈ XP with w ≤P u and g(u) = u′. The aforementioned
lemma now forces u /∈ ⟨φ⟩∞, whence f(u) = g(u) and thus f(u) = u′. The down condition is proved
similarly, hence we omit it.

Now let ψ ∈ LP . We have

f−1[⟨ψ⟩] = (⟨ψ⟩ ∩ ⟨φ⟩∞) ∪ (f−1[⟨ψ⟩]∖ ⟨φ⟩∞).

Since BZn ⊆ L, we have ⟨φ⟩∞ = ⟨(¬∼)nφ⟩ ∈ τP and therefore f−1[⟨ψ⟩] ∈ τP . Finally, it is
immediate that Im f ⊆ ⟨φ⟩∞ ⊆ fp f . This proves that φ is projective. □

To prove the converse of Proposition 3.7, we introduce, for each n ∈ N, the formulas

θn := (¬∼)n+2p→ (¬∼)2n+4¬(¬∼)n¬p.

Lemma 3.8. If θn ∈ L then BZ2n+3 ⊆ L.

Proof. By contraposition, suppose that BZ2n+3 ̸⊆ L. Then there is a model M = ⟨W,≤, V ⟩ whose
frame validates L and such that M, w′ ⊭ (¬∼)2n+3q → (¬∼)2n+4q, for some w′ ∈ W . Hence, we
have M, w ⊨ (¬∼)2n+3q and M, w ⊭ (¬∼)2n+4q for some w ≥ w′, and condition (1) now forces the
existence of a point u ∈ (↓↑)2n+4w such that M, u ⊭ q.
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Let σ be the substitution defined by σ(p) := (¬∼)n+1q, and notice that the above fact M, w ⊨
(¬∼)2n+3q is equivalent to M, w ⊨ (¬∼)n+2σ(p). We will establish M, w ⊭ σ(θn) by proving that

M, w ⊭ (¬∼)2n+4¬(¬∼)n¬σ(p).
To this end, we show M, u ⊭ ¬(¬∼)n¬σ(p), which suffices because u ∈ (↓↑)2n+4w. In fact, we will
prove M, u ⊨ (¬∼)n¬σ(p). For suppose that v ∈ (↓↑)nu and let t ≥ v. Since t ∈ (↓↑)n+1u and
M, u ⊭ q, it follows that M, t ⊭ (¬∼)n+1q, which in turn implies M, v ⊨ ¬(¬∼)n+1q, i.e., that
M, v ⊨ ¬σ(p). Thus, v ∈ (↓↑)nu now entails M, u ⊨ (¬∼)n¬σ(p), as desired.

As we assumed ⟨W,≤⟩ ⊨ L, the above argument ensures ⊬L σ(θn), hence also ⊬L θn. □

Proposition 3.9. If L is projective, then there exists k ∈ N such that BZk ⊆ L.

Proof. Suppose that L is projective. Since the formula φ := p → ¬∼p is unifiable in L (just
substitute ⊤ for p), by our assumption it also admits a projective unifier σ. Then φ ⊢L p ↔ σ(p),
and by Theorem 2.3, there exists n ∈ N such that ⊢L (¬∼)nφ→ (p↔ σ(p)).

Let us assume towards a contradiction that BZ2n+3 ̸⊆ L, so Lemma 3.8 entails ⊬L θn, i.e.,

⊬L (¬∼)n+2p→ (¬∼)2n+4¬(¬∼)n¬p.
Because of this, there must be a model M = ⟨W,≤, V ⟩ whose frame validates L and such that
M, w′ ⊭ θn, for some w′ ∈ W . So, there exists w ≥ w′ satisfying M, w ⊨ (¬∼)n+2p and M, w ⊭
(¬∼)2n+4¬(¬∼)n¬p. Using condition (1), we see that this forces the existence of a point u ∈
(↑↓)2n+4w such that M, u ⊭ ¬(¬∼)n¬p, which in turn yields M, v ⊨ (¬∼)n¬p, for some v ≥ u.

Now, recall that M, w ⊨ (¬∼)n+2p, i.e., (↓↑)n+2w ⊆ V (p), by (1). We claim that this ensures
M, w ⊨ (¬∼)nφ. To see this, notice the following equivalences:

M, w ⊨ (¬∼)nφ ⇐⇒ M, w ⊨ (¬∼)n(p→ ¬∼p)
⇐⇒ ∀x ∈ (↓↑)nw

(
x ∈ V (p)⇒ ↓↑x ⊆ V (p)

)
⇐⇒ ∀x ∈ (↓↑)nw

(
↓↑x ⊆ V (p)

)
⇐⇒ (↓↑)n+1w ⊆ V (p),

where the first and last equivalences follow immediately from the definitions, the second by (1),
and the third from (↓↑)nw ⊆ (↓↑)n+2w ⊆ V (p). Similarly, we claim that the fact M, v ⊨ (¬∼)n¬p
yields M, v ⊨ (¬∼)nφ. This is because (1) implies

M, v ⊨ (¬∼)nφ ⇐⇒ ∀x ∈ (↓↑)nv
(
x ∈ V (p)⇒ ↓↑x ⊆ V (p)

)
,

but M, v ⊨ (¬∼)n¬p is equivalent to (↓↑)nv ⊆ V (¬p). Hence, the right side of the previous display
is vacuously true, and we indeed have M, v ⊨ (¬∼)nφ.

Finally, using our assumption that σ is a projective unifier of φ, in particular, that ⊢L (¬∼)nφ→
(p ↔ σ(p)), it follows from M, w ⊨ (¬∼)n+2p (hence also M, w ⊨ p) and M, w ⊨ (¬∼)nφ that
M, w ⊨ σ(p). As this assumption also ensures that ⊢L σ(p)→ ¬∼σ(p), a straightforward induction
yields ⊢L σ(p)→ (¬∼)2n+5σ(p). Hence M, w ⊨ (¬∼)2n+5σ(p), and since v ∈ (↑↓)2n+5w, it follows
that M, v ⊨ σ(p). But we proved above that M, v ⊨ (¬∼)nφ, so the projectivity of σ forces
M, v ⊨ σ(p)→ p, and from M, v ⊨ σ(p) we can now infer M, v ⊨ p, contradicting M, v ⊨ (¬∼)n¬p.
We conclude BZ2n+3 ⊆ L, as desired. □

From Proposition 3.7 and Proposition 3.9, we finally derive the following result.

Theorem 3.10. The following are equivalent:
(1) L is an extension of BZn = bi-IPC+ (¬∼)np→ (¬∼)n+1p for some n ∈ N,
(2) L has projective unification.

Below we highlight two remarkable consequences of this theorem.
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Corollary 3.11.
(1) All extensions of bi-GD = bi-IPC+ (p→ q) ∨ (q → p) have projective unification.
(2) All locally tabular super-bi-intuitionistic logics have projective unification.

Proof.
(1) From [BMM24, Cor. 3.8], we know that BZ1 ⊆ bi-GD. Then the result follows from

Theorem 3.10.
(2) Assume that L is locally tabular. The set L{p} is then finite up to L-equivalence, and so

there exists n ∈ N and k > 0 such that (¬∼)np ≡L (¬∼)n+kp. In particular, this entails
⊢L (¬∼)np → (¬∼)n+1p, and thus BZn ⊆ L. By Theorem 3.10, it follows that L is
projective. □

The above characterization of the projective bi-intermediate logics is in contrast with the in-
tuitionistic case. In [Wro95], it is shown that the projective intermediate logics (i.e., consistent
axiomatic extensions of IPC) are exactly those which extend the intuitionistic Gödel-Dummett
logic GD := IPC + (p → q) ∨ (q → p). And while it follows from the previous corollary that
being an extension of the bi-intuitionistic Gödel-Dummett logic bi-GD is a sufficient condition for
a bi-intermediate logic to be projective, it is not necessary. For example, since (¬∼)2p → (¬∼)3p
is a theorem of bi-IPC + ¬

(
(q ← p) ∧ (p ← q)

)
, Theorem 3.10 ensures that this bi-intermediate

logic is projective, but it is not an extension of bi-GD (see, e.g., [BMM24]). The result on locally
tabular bi-intermediate logics displays one more discrepancy between the two settings, as many
locally tabular intermediate logics are known to be non-projective and even nullary [DKW24].

We conclude this section with a decidability result that exploits both the results we have just
proved and the material of Section 2.2. We call a bi-intermediate logic L tabular if there exists a
finite intuitionistic frame F such that L is exactly the set of formulas φ with F ⊨ φ. In this case,
we say that L is the logic of the frame F.

Corollary 3.12. Admissibility is decidable in all tabular bi-intermediate logics in polynomial space.

Proof. Let F = ⟨W,≤⟩ be a finite intuitionistic frame and let L be the logic of F. Then L is locally
tabular, hence projective by Corollary 3.11, and thus almost structurally complete by Proposi-
tion 2.11.

Further, we know that unifiability in L is decidable in NP time (Theorem 2.8), and thus also
in polynomial space. Since L is the logic of F, checking that φ ⊢L ψ amounts to check that for
all valuations V of P := var(φ) ∪ var(ψ) on F, if F, V ⊨ φ then F, V ⊨ ψ. Note that the size of
V is |W | × |P |, and thus linear in |P | since |W | is a constant. Hence, this procedure also runs in
polynomial space. As a result, the algorithm described in Proposition 2.10 recognizes admissible
rules in polynomial space, as desired. □

4. bi-IPC is not unitary

Since bi-IPC does not have bounded zigzag depth, we already know from Proposition 3.9 that
it is not projective. In this section we prove the stronger claim that it is in fact not unitary. First,
we introduce the notion of implicational depth of formulas as well as the process of bi-unraveling
an intuitionistic frame, a well-known technique from modal logic that was adapted to intuitionistic
frames in [OB22].

Definition 4.1. We define the implicational depth depth(φ) of a formula φ ∈ L by induction:
• depth(p) := 0 for all variables p,
• depth(⊥) := 0,
• depth(φ ∧ ψ) := depth(φ ∨ ψ) := max {depth(φ), depth(ψ)},
• depth(φ→ ψ) := depth(φ← ψ) := 1 +max {depth(φ),depth(ψ)}.
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The essential information provided by the implicational depth is how far a formula can ‘see’ in a
model. Basically, if φ has implicational depth n, then its truth value in a pointed model ⟨M, w⟩ only
depends on (↓↑)nw, i.e., the points located up to n zigzags away from w. To make this property
precise, we introduce below the notation M, w ▷n M′, w′ to express the fact that the restriction of
M to (↓↑)nw and of M′ to (↓↑)nw′ are isomorphic as models.

Definition 4.2. Let M = ⟨W,≤, V ⟩ and M′ = ⟨W ′,≤′, V ′⟩ be two intuitionistic models on P ⊆
Var. Let w ∈ W , w′ ∈ W ′ and n ∈ N. We write M, w ▷n M′, w′ if there exists a surjection
f : (↓↑)nw → (↓↑)nw′ such that:

(1) f(w) = w′;
(2) for all u, v ∈ (↓↑)nw, we have u ≤ v iff f(u) ≤ f(v);
(3) for all u ∈ (↓↑)nw and p ∈ P , we have u ∈ V (p) iff f(u) ∈ V ′(p).

Proposition 4.3. Let P ⊆ Var. Let ⟨M, w⟩ and ⟨M′, w′⟩ be two intuitionistic pointed models on P ,
and assume that M, w ▷n M′, w′. Then for all φ ∈ LP such that depth(φ) ≤ n, we have M, w ⊨ φ
if and only if M′, w′ ⊨ φ.

Proof. By induction on φ. If φ is a variable, the result follows from Item 3 of Definition 4.2. If φ is
of the form ⊥, ψ∧θ, or ψ∨θ, then it follows immediately from the induction hypothesis. So assume
that φ is of the form ψ → θ. Let f : (↓↑)nw → (↓↑)nw′ be a map with the properties described
in Definition 4.2. Given u ≥ w, we have (↓↑)n−1u ⊆ (↓↑)nw. Since f is surjective, f preserves the
order and f(w) = w′, it follows that (↓↑)n−1f(u) ⊆ (↓↑)nw′. Hence, f specializes to a map from
(↓↑)n−1u to (↓↑)n−1f(u) satisfying the conditions of Definition 4.2, and therefore M, u ▷n M′, f(u).
Since depth(φ) ≤ n, we have depth(ψ), depth(θ) ≤ n− 1, and so the induction hypothesis yields

M, u ⊨ ψ ⇐⇒ M′, f(u) ⊨ ψ and M, u ⊨ θ ⇐⇒ M′, f(u) ⊨ θ.

This holds for all u ≥ w, and since f is surjective, it follows from the semantics of→ that M, w ⊨ φ
iff M′, w′ ⊨ φ. The reasoning for ← is analogous, hence we omit it. □

The bi-unraveling of a pointed model ⟨M, w⟩ consists of all the paths that one can construct by
starting from w and moving up and down throughout the model. This construction is of interest be-
cause it ensures the existence of points that are arbitrarily far from w (in terms of how many zigzags
separate them from w), while preserving the truth of bi-intuitionistic formulas, when evaluated at
w. An example of the first steps of a bi-unraveling is depicted in Figure 1.

Definition 4.4 ([OB22, Sect. 3]). Let M = ⟨W,≤, V ⟩ be an intuitionistic model on P ⊆ Var, and
let w ∈ W . We denote by W ′ the set of finite sequences w0 . . . wn where w0, . . . , wn ∈ W , w0 = w
and for all i ∈ [1, n− 1], we have that wi ̸= wi+1 and that wi ≤ wi+1 or wi ≥ wi+1. We then denote
by ≤′ the smallest reflexive and transitive relation on W ′ satisfying, for all w0 . . . wn ∈ W ′ with
n > 0:

w0 . . . wn−1 ≤′ w0 . . . wn in case wn−1 ≤ wn,
w0 . . . wn−1 ≥′ w0 . . . wn in case wn−1 ≥ wn.

Finally, we define the valuation V ′ : P → Up(W ′) by V ′(p) := {w0 . . . wn ∈ W ′ : wn ∈ V (p)}. The
tuple M

w
:= ⟨W ′,≤′, V ′⟩ is then an intuitionistic model, called the bi-unraveling of M around w.

Lemma 4.5. Let M be an intuitionistic model and suppose that there exists u ≥ w such that w ̸= u.
Then for all n ∈ N, there exists a point v in M

w such that v ∈ (↓↑)n+1w ∖ (↓↑)nw.

Proof. Simply take v := w uw . . . uw︸ ︷︷ ︸
n+ 1 times

. □

Proposition 4.6 ([OB22, Lemma 7]). For all formulas φ, we have M, w ⊨ φ iff M
w
, w ⊨ φ.
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Figure 1. Bi-unraveling of M around u

Theorem 4.7. The logic bi-IPC is not unitary.

Proof. Consider the formula φ := p → ¬∼p. Define the substitutions σ⊥ and σ⊤ by σ⊥(p) := ⊥
and σ⊤(p) := ⊤. It is easy to see that σ⊥ and σ⊤ are unifiers of φ. In fact, we claim that they
form a basis {σ⊥, σ⊤} for φ. To see this, let σ be an arbitrary unifier of φ and set ψ := σ(p). We
start by proving that either ⊢bi-IPC ψ or ⊢bi-IPC ¬ψ, since this leads to either σ⊤ ⪯ τ or σ⊥ ⪯ τ ,
respectively.

Let n := depth(ψ). Towards a contradiction, suppose that ⊬bi-IPC ψ and ⊬bi-IPC ¬ψ. By
Theorem 2.2, there exist two models M0 = ⟨W0,≤0, V0⟩ and M1 = ⟨W1,≤1, V1⟩ as well as w0 ∈W0

and w′
1 ∈ W1 such that M0, w0 ⊭ ψ and M1, w

′
1 ⊭ ¬ψ. Hence, there is w1 ≥ w′

1 such that
M1, w1 ⊨ ψ. We also assume without loss of generality that W0 and W1 are disjoint.

Our strategy is to add a ‘bridge’ connecting the two models M0 and M1. Since ψ = σ(p), where
σ is a unifier of φ = p → ¬∼p, we know that ⊢bi-IPC ψ → ¬∼ψ. Because of this, and using the
fact M1, w1 ⊨ ψ established above, we will be able to ‘propagate’ the truth of ψ from w1 to w0

and obtain a contradiction, since M0, w0 ⊭ ψ. However, this only works if we can ensure that the
truth value of ψ at w0 and w1 remains unaffected by this procedure, and this is where bi-unraveling
comes into play.

First, note that we can always assume the existence of u0 ≥ w0 such that w0 ̸= u0 (if not, it
suffices to introduce a copy u0 of w0 with this property). The same reasoning applies to w1. Hence,
we can apply Lemma 4.5 to obtain the existence of a point v0 in M

w0

0 = ⟨W ′
0,≤′

0, V
′
0⟩ such that

v0 ∈ (↓↑)n+1w0∖(↓↑)nw0, and a point v1 in M
w1

1 = ⟨W ′
1,≤′

1, V
′
1⟩ such that v1 ∈ (↓↑)n+1w1∖(↓↑)nw1.

We now construct a model M = ⟨W,≤, V ⟩ as follows:
• W :=W ′

0 ∪W ′
1 ∪ t, where t is a new point;

• ≤ is the smallest reflexive and transitive relation on W that contains ≤′
0 and ≤′

1, and such
that v0 ≤ t and v1 ≤ t;
• V (p) := V ′

0(p) ∪ V ′
1(p) ∪ {t}.

The procedure is depicted in Figure 2. It is easy to check that M is an intuitionistic model. We also
have Mw0

0 , w0 ▷n M, w0 and M
w1

1 , w1 ▷n M, w1, as a consequence of v0 /∈ (↓↑)nw0 and v1 /∈ (↓↑)nw1.
Since M0, w0 ⊭ ψ and n = depth(ψ), it follows from Proposition 4.6 and Proposition 4.3 that
M, w0 ⊭ ψ. By the same reasoning, we obtain M, w1 ⊨ ψ. Again using the fact that ⊢bi-IPC ψ →
¬∼ψ, Theorem 2.2 now yields M ⊨ ψ → ¬∼ψ. But we now have M, w1 ⊨ ψ and w0 ∈ (↓↑)2n+2w1,
hence an easy argument shows that M, w0 ⊨ ψ, a contradiction.

We have established that {σ⊥, σ⊤} is a complete set of unifiers. It remains to prove that σ⊥ and
σ⊤ are incomparable. For suppose that σ⊥ ⪯ σ⊤. Then we have σ⊤ ≃ µσ⊥ for some substitution
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Figure 2. Construction of the bridge

µ. Since µ(⊥) = ⊥, it follows that ⊤ ≡bi-IPC ⊥, a contradiction. If σ⊤ ⪯ σ⊥, the reasoning is the
analogous, hence we omit it. □
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