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Quadratic obstructions to Small-Time Local
Controllability for the multi-input bilinear

Schrödinger equation

Théo Gherdaoui∗

February 19, 2025

Abstract

We investigate the small-time local controllability (STLC) near the ground state of
a bilinear Schrödinger equation when the linearized system is not controllable. It is
well known that, for single-input systems, quadratic terms in the state expansion can
then lead to obstructions to the STLC of the nonlinear system. In this work, we extend
this phenomenon to the multi-input setting, presenting the first example of multi-input
quadratic obstructions for PDEs. Our results build upon our previous study of such
obstructions for ODEs and provide a functional framework for analyzing them in the
bilinear Schrödinger equation.

Keywords: Bilinear Schrödinger equation, quadratic obstructions, small-time local
exact controllability, power series expansion.

1 Introduction

1.1 Model and problem
Let r ∈ N∗. In this article, we study the following Schrödinger equation i∂tψ(t, x) = −∂2xψ(t, x)− (u(t), µ(x))ψ(t, x), t ∈ (0, T ), x ∈ (0, 1),

ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ),
ψ(0, x) = ψ0(x), x ∈ (0, 1),

(1.1)

where T > 0, µ : (0, 1) → Rr, u : (0, T ) → Rr, ψ : (0, T ) × (0, 1) → C and ∥ψ0∥L2 = 1. We
will use the notations u =

(
u1, · · · , ur

)
and µ = (µ1, · · · , µr) in all the document. When

well defined, the solution is denoted ψ. When required, we will write ψ(·;u, ψ0) to refer to
this solution to emphasize its dependence on the different parameters.

This equation describes the evolution of the wave function ψ of a quantum particle, in
a 1D infinite square potential well (0, 1), subjected to r electric fields with amplitudes uℓ(t).
The functions µℓ, called "dipolar moments", model the interaction between the particle’s
wave function ψ and the electric fields uℓ(t).

This is a multi-input nonlinear control system:
- the state is the wave function ψ : (0, T ) → S, where S denotes the L2(0, 1) sphere,
- the controls are uℓ : (0, T ) → R, they act bilinearly on the state.

The ground state is the particular free – with u ≡ 0 – trajectory ψ1(t, x) := φ1(x)e
−iλ1t

where φ1(x) :=
√
2 sin(πx) and λ1 := π2. We are interested in the small-time local control-

lability around the ground state.
∗Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
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1.2 Notations and definitions
We consider, for k ∈ N, the Sobolev space Hk((0, T ),R), equipped with its usual norm and
Hk

0 ((0, T ),R) the adherence of C∞
c ((0, T ),R) for this norm.

Except explicit precision, we will work with complex valued space-dependent functions.
We consider the space L2(0, 1), endowed with the hermitian scalar product. We define the
operator

A := −∂2x with domain D(A) := H2(0, 1) ∩H1
0 (0, 1). (1.2)

The eigenvalues and eigenvectors of A are

λj := (jπ)2, φj :=
√
2 sin(jπ·), j ≥ 1. (1.3)

The family (φj)j≥1 is an orthonormal basis of L2(0, 1). We denote by

ψj(t, x) := φj(x)e
−iλjt, (t, x) ∈ (0, T )× (0, 1), j ≥ 1,

the solutions to the free – i.e. with controls u ≡ 0 – Schrödinger equation (1.1) with initial
data φj at time t = 0. The solution ψ1 is called the fundamental state, or ground state. We
finally define the spaces Hs

(0)(0, 1) := D(As/2) for s ≥ 0, equipped with the norm

∥φ∥Hs
(0)

:=

+∞∑
j=1

|js⟨φ,φj⟩|2
1/2

.

With theses notations, the equation (1.1) is well-posed, in the sense of the following propo-
sition, proved for the single-input case in [6, Proposition 2] and which can be adapted to
the case of (1.1).

Proposition 1.1 (Well-posedness). Let T > 0, µ ∈ H3((0, 1),R)r, u ∈ L2((0, T ),R)r

and ψ0 ∈ H3
(0)(0, 1). There exists a unique weak solution ψ ∈ C0

(
[0, T ], H3

(0)(0, 1)
)

to the
equation (1.1).

We can now define the notion of small-time local controllability we are working on.

Definition 1.2. Let ET be a family of normed vector spaces of functions defined on [0, T ]
for T > 0. The bilinear Schrödinger equation (1.1) is E-STLC in H3

(0)(0, 1) around the
ground state if for every T, ε > 0, there exists δ > 0 such that for every ψf ∈ H3

(0)(0, 1) ∩ S
with ∥ψf −ψ1(T )∥H3 < δ, there exist u ∈ (ET )

r such that ∥u∥ET
≤ ε and ψ(T ;u, φ1) = ψf .

Under appropriate assumptions on the dipolar moments µℓ, the STLC around the
ground state of (1.1) can be proved by applying the linear test. This is the purpose of the
following statement, that can be proved by adapting with r controls the strategy developed
in [6, 17] with one control.

Proposition 1.3. Let µ ∈ H3((0, 1),R)r be such that

∃C > 0, ∀j ∈ N∗,

r∑
ℓ=1

|⟨µℓφ1, φj⟩| ≥
C

j3
. (1.4)

The Schrödinger equation (1.1) is L2-STLC in H3
(0)(0, 1) around the ground state.

Idea of proof for Proposition 1.3. Assumption (1.4) guarantees that the linearized system –
see (2.2) – is controllable with states in H3

(0)(0, 1) ∩ S and controls in L2. Then, one can
prove that the end-point map is of class C1 between the following spaces

ΘT : u ∈ L2((0, T ),R)r 7→ ψ(T ;u, φ1) ∈ H3
(0)(0, 1) ∩ S.

Consequently, by applying the inverse mapping theorem, we obtain the local controllability
of the nonlinear system (1.1).
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1.3 Main result
For all the document, k,K, r ∈ N∗ are fixed integers. To ensure that equation (1.1) is
well-posed in H3

(0)(0, 1) – see Proposition 1.1 – we assume that

(H)reg : µ ∈ H3((0, 1),R)r.

In this article, we study the case where the linearized system around the ground state – see
(2.2) – is not controllable, so we consider an integer K ≥ 1 and we assume

(H)lin : ⟨µℓφ1, φK⟩ = 0, 1 ≤ ℓ ≤ r.

In this case, the linearized system misses one direction ⟨ψ(t;u, φ1), φK⟩ ∈ C, i.e. the first
order term in the Taylor expansion at 0 of the map u 7→ ⟨ψ(t;u, φ1), φK⟩ vanishes. To prove
an obstruction to STLC, we will use a "power series expansion" of order 2, i.e. the second
order term in the Taylor expansion at 0 of u 7→ ⟨ψ(t;u, φ1), φK⟩. We make assumptions
about the quadratic expansion of the solution. To state them, we need to introduce the
following definitions.

Definition 1.4. For all 1 ≤ ℓ, L ≤ r, we define the following sequences

cℓ,L :=
(
cℓ,Lj

)
j≥1

:= (⟨µℓφK , φj⟩ ⟨µLφ1, φj⟩)j≥1 .

We will denote cℓ,ℓ = cℓ and cℓ,ℓj = cℓj for j ≥ 1 and 1 ≤ ℓ ≤ r.

Quadratic hypotheses are formulated as properties on series. To ensure convergence,
we assume the following

(H)conv :

+∞∑
j=1

∣∣∣cℓ,Lj

∣∣∣ j4k < +∞, 1 ≤ ℓ, L ≤ r.

Remark 1.5. By Cauchy–Schwarz’s inequality, (H)conv holds when µℓφK and µLφ1 belong
to H2k

(0)(0, 1), for every 1 ≤ ℓ, L ≤ r. In particular, it is enough that µℓ ∈ H2k(0, 1) with
vanishing odd derivatives, or µℓ ∈ C∞

c (0, 1), for every 1 ≤ ℓ ≤ r.

Definition 1.6 (Quadratic brackets). Assuming (H)conv, we define the following series
which converge,

γℓ,Lp :=

+∞∑
j=1

(
(λK − λj)

⌊ p+1
2 ⌋(λj − λ1)

⌊ p
2 ⌋cℓ,Lj − (λK − λj)

⌊ p
2 ⌋(λj − λ1)

⌊ p+1
2 ⌋cL,ℓ

j

)
,

for 0 ≤ p ≤ 2k − 1 and 1 ≤ ℓ ≤ L ≤ r. When ℓ = L, we will note γℓp instead of γℓ,ℓp .

Remark 1.7. When p is even, γℓp = 0 for every 1 ≤ ℓ ≤ r.

We are now able to state the hypotheses concerning the quadratic terms:

(H)null : ∀1 ≤ ℓ ≤ L ≤ r, ∀0 ≤ p ≤ 2k − 2, γℓ,Lp = 0,

(H)pos : q : a ∈ Rr 7→
r∑

ℓ=1

γℓ2k−1

a2ℓ
2
+

∑
1≤ℓ<L≤r

γℓ,L2k−1aℓaL is a definite quadratic form on Rr.

Remark 1.8. If (H)pos holds, sgn(γ12k−1)q is a positive–definite quadratic form on Rr.

Remark 1.9. When r = 2, (H)pos holds iff
(
γ1,22k−1

)2
< γ12k−1γ

2
2k−1.

At first glance, these assumptions may seem mysterious and technical, but they can
be interpreted in terms of Lie brackets as detailed in Section 1.5.

The main result of this article is the following theorem. It can be seen as a generaliza-
tion to the case r > 1 of quadratic obstructions known in the scalar-input r = 1 case – see
Section 1.6.
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Theorem 1.10. Let k,K, r ∈ N∗, µ1, · · · , µr satisfying (H)reg, (H)lin, (H)conv, (H)null
and (H)pos. Then, the multi-input bilinear Schrödinger equation (1.1) is not H2k-STLC in
H3

(0)(0, 1) around the ground state.

Ideas for proving the existence of such functions µ1, · · · , µr are given in Appendix A.1.

Remark 1.11. When r = 1, hypothesis (H)pos is equivalent to γ12k−1 ̸= 0. This is the same
assumption as in [18, Theorem 1.3]. In this statement, Bournissou concludes the non-H2k−3-
STLC (resp. non-W−1,∞-STLC) for k ≥ 2 (resp. k = 1). Her result hints that H2k might
not be the weakest control regularity for which one can deny STLC under our assumptions.
However, her proof uses arguments specific to the r = 1 case (namely an auxiliary system)
to estimate the cubic remainder as

(∫
u
)3 – whereas we obtain u3 – see (2.7). The optimal

norm with which one can estimate the cubic remainder for multi-input systems is already a
difficult question for ODEs.

1.4 Heuristic
The essence of Theorem 1.10 can be found in the following example of a finite-dimensional
control-affine system

x′1 = u1

x′2 = x1
x′3 = u2

x′4 =
(
x21 +

1
2x1x3 + 2x23

)
− 2u2x3 − x22 − u2x21

. (1.5)

Let T > 0, u11(t) :=
∫ t

0
u1 and u21(t) :=

∫ t

0
u2 for t ∈ [0, T ]. Explicit integration from 0 yields

x4(T ) =

∫ T

0

((
u11
)2

+
1

2
u11u

2
1 + 2

(
u21
)2)− u21(T )

2 −
∫ T

0

(∫ t

0

u11

)2

dt−
∫ T

0

u2
(
u11
)2

≥
(
3

4
− T 2 −

∥∥(u1, u2)∥∥
L∞

)∥∥(u11, u21)∥∥2L2(0,T )
− u21(T )

2

≥ C
∥∥(u11, u21)∥∥2L2(0,T )

− u21(T )
2,

for any C ∈ (0, 34 ), for small enough times and controls in L∞. As x3(T ) = u21(T ), all final
states in {(x1, · · · , x4) ∈ R4; x4+x

2
3 < 0} are not reachable from 0. The system (1.5) is not

L∞-STLC around 0 - see Definition 1.13.

To prove Theorem 1.10, we use a "power series expansion" of order 2, i.e. we are
interested in the Taylor expansion of order 2 at 0 of the map u 7→ ψ(T ;u, φ1). To give more
details, we need the following definition.

Definition 1.12. For T > 0 and f ∈ L1((0, T ),R), one defines the iterated primitives fn
vanishing at t = 0 by induction as

f0 := f and ∀n ∈ N, t ∈ [0, T ], fn+1(t) :=

∫ t

0

fn(τ)dτ. (1.6)

When f = (f1, · · · , fr) ∈ L1((0, T ),R)r, fn will denote (f1n, · · · , frn).

Then, it is as if the following terms are the dominant part of the quadratic expansion
of the solution in the direction φKe

−iλ1T

r∑
ℓ=1

k∑
p=1

i2p−1γℓ2p−1

∫ T

0

uℓp(t)
2

2
dt+

∑
1≤ℓ<L≤r

2k−1∑
p=0

ipγℓ,Lp

∫ T

0

uℓ⌊ p
2 ⌋+1(t)u

L
⌊ p+1

2 ⌋(t)dt.

The cancellation assumption (H)null reduces this sum to the simpler expression

i(−1)k+1
r∑

ℓ=1

γℓ2k−1

∫ T

0

uℓk(t)
2

2
dt+ i(−1)k+1

∑
1≤ℓ<L≤r

γℓ,L2k−1

∫ T

0

uℓk(t)u
L
k (t)dt, (1.7)
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and (H)pos allows use to take advantage of a signed term because (1.7) and (H)lin lead to

(−1)k+1sgn(γ12k−1)ℑ
〈
ψ(T ;u, φ1), φKe

−iλ1T
〉
≃ sgn(γ12k−1)

∫ T

0

q(u1k, · · · , urk)(t)dt ≥ 0.

Using the interpretation of the series in terms of Lie brackets given by (1.9), we can recognize
the leading terms of the Magnus-type representation formula, that is used to prove Theorem
1.19. See [7] for more details.

1.5 Comparison with the finite-dimensional case
Theorem 1.10 is an adaptation to the multi-input bilinear Schrödinger equation of a theorem
that proves quadratic obstructions to small-time local controllability for multi-input control-
affine systems in [34] for r = 2. Here is the framework and key definitions. One considers
the system

x′(t) = f0(x(t)) +

r∑
ℓ=1

uℓ(t)fℓ(x(t)), (1.8)

where the state is x(t) ∈ Rd, the controls are scalar functions uℓ(t) ∈ R and fℓ are real-
analytic vector fields on a neighborhood of 0 in Rd such that f0(0) = 0. The last hypothesis
ensures that 0 is an equilibrium of the free system, i.e. with u ≡ 0.

For each t > 0, u ∈ L1((0, t),R)r, there exists a unique maximal mild solution to (1.8)
with initial data 0, which we will denote by x(·;u). As we are interested in small-time and
small controls, the solution is well-defined up to time t.

Definition 1.13 (Wm,p-STLC). Let m ∈ J−1,+∞J and p ∈ [1,+∞]. The system (1.8)
is Wm,p-STLC around 0 if for every T, ε > 0, there exists δ > 0, such that, for every
x∗ ∈ B(0, δ), there exist u ∈Wm,p((0, T ),R)r with ∥u∥Wm,p ≤ ε and x(T ;u) = x∗.

The historical definition of STLC is the case where m = 0 and p = ∞ – see [26]. Let
X := {X0, · · · , Xr} be a set of r + 1 non-commutative indeterminates.

Definition 1.14 (Free Lie algebra). We consider A(X) the unital associative algebra of
polynomials of the indeterminates Xℓ. For a, b ∈ A(X), one defines the Lie bracket of a and
b as [a, b] := ab− ba. Let L(X) be the free Lie algebra generated by X over the field R.

Definition 1.15 (Lie bracket of vector fields). Let f, g : Ω → Rd be C∞ vector fields on an
open subset Ω of Rd. One defines

[f, g] : x ∈ Ω 7→ Dg(x) · f(x)−Df(x) · g(x).

Definition 1.16 (Evaluated Lie bracket). Let f0, · · · , fr be C∞(Ω,Rd) vector fields on an
open subset Ω of Rd. For b ∈ L(X), we define fb := Λ(b), where Λ : L(X) → C∞(Ω,Rd) is
the unique homomorphism of Lie algebras such that Λ(Xℓ) = fℓ, for 0 ≤ ℓ ≤ r.

For example, if b = [[[X1, Xr], X0], [Xr−1, X0]], one has fb = [[[f1, fr], f0], [fr−1, f0]].

Definition 1.17 (Bracket integration b0ν). For b ∈ L(X) and ν ∈ N, we use the uncon-
ventional short-hand b0ν to denote the right-iterated bracket [· · · [b,X0], . . . , X0], where X0

appears ν times.

For example, if b = [[Xr, X0], [X0, Xr]], then b02 = [[[[Xr, X0], [X0, Xr]], X0], X0].

Definition 1.18. We define the following brackets

a. M ℓ
l := Xℓ0

l; (ℓ, l) ∈ J1, rK × N,

b. W ℓ
p,l :=

[
M ℓ

p−1,M
ℓ
p

]
0l; (ℓ, p, l) ∈ J1, rK × N∗ × N,

c. Cℓ,L
p,l := (−1)p

[
M ℓ

⌊ p+1
2 ⌋,M

L
⌊ p

2 ⌋

]
0l; (ℓ, L) ∈ J1, rK2 such that ℓ < L, (p, l) ∈ N2.
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The following theorem generalizes [34, Theorem 1.15], originally stated for r = 2. By
applying the same methods, we obtain the extended result presented here, which relies on
a Magnus-type representation formula of the state.1 The proof is designed to prepare an
easier transfer to PDEs.

Theorem 1.19. Let k, r ∈ N∗. Let f0, · · · , fr be real-analytic vector fields over Rd such
that f0(0) = 0. We define the set

Nk := Span
{
fMℓ

l
(0); (ℓ, l) ∈ J1, rK × N

}
∪ Span

{
fW ℓ

p,l
(0); (ℓ, p, l) ∈ J1, rK × J1, k − 1K × N

}
∪Span

{
fCℓ,L

p,l
(0); (ℓ, L) ∈ J1, rK2 such that ℓ < L, (p, l) ∈ J0, 2k − 2K × N

}
.

If there exists P : Rd → R a linear form such that P Nk
≡ 0 and

(a1, · · · , ar) ∈ Rr 7→
r∑

ℓ=1

P
(
fW ℓ

k,0
(0)
) a2ℓ

2
+

∑
1≤ℓ<L≤r

P
(
fCℓ,L

2k−1,0
(0)
)
aℓaL is a definite

quadratic form on Rr,

then, the affine system (1.8) is not H2k-STLC around 0.

Remark 1.20. The example of system (1.5) can be studied again using this statement. In
this case, r = 2, k = 1 and

Nk = Span (e1, e2, e3) .

Moreover, [f1, f2](0) = 0. Then, for every l ∈ N, fC1,2
0,l

(0) = 0. Finally, one has fW 1
1,0

(0) =

2e4, fW 2
1,0

(0) = 4e4 and fC1,2
1,0

(0) = 1
2e4. Then, the linear form P := ⟨·, e4⟩ is suitable

because, for every (x, y) ∈ R2,

x2 +
1

2
xy + 2y2 ≥ 3

4
x2 +

7

4
y2,

so the associated quadratic form is a positive–definitive quadratic form on R2.

Let us make the link between Theorem 1.19 and the main result of this article. When
ℓ < L, the Lie brackets γℓ,Lp are specific to the multi-input system (1.1) (r > 1), they can be
used to recover a complex lost direction at linear order – see [35] with r = 2. They can be
considered as good in a STLC point of view. A contrario, the Lie brackets γℓ,ℓ2k−1 are known
to be potential obstructions to small-time local controllability for the bilinear Schrödinger
equation in the single-input case, in an appropriate functional setting – see [18].

We now give an interpretation of the series γℓ,Lp in terms of Lie brackets. For A and
B two operators, we define adlA(B) as: ad0A(B) = B and adl+1

A (B) = adlA(B)A−AadlA(B).
Under appropriate assumptions on the function µℓ for domain compatibility (a finite number
of derivatives of odd order have to vanish on the boundary) the assumption (H)null can be
interpreted as Lie brackets because

∀0 ≤ p ≤ 2k − 1, 1 ≤ ℓ ≤ L ≤ r, γℓ,Lp = (−1)p
〈
[ad

⌊ p+1
2 ⌋

A (Bℓ), ad
⌊ p

2 ⌋
A (BL)]φ1, φK

〉
, (1.9)

where A is defined in (1.2) and Bℓ is the multiplication operator by µℓ in L2(0, 1). We refer
to [35, Propositions A.7, A.8, A.10 and A.11] for a precise proof.

Assume that µℓ ∈ C∞
c (0, 1) are smooth functions. Heuristically, we can think of the

bilinear Schrödinger equation (1.1) as a control-affine system on the form (1.8) with f0 =
A, where the operator A is defined in (1.2) and fℓ = Bℓ with 1 ≤ ℓ ≤ r, where Bℓ is
the multiplication operator by µℓ in L2(0, 1). The equilibrium is no longer 0 but the free
trajectory ψ(T ; 0, φ1) = φ1e

−iλ1T . In this situation, the linear form is P := ⟨·, φK⟩. The
hypotheses are the same in the finite and infinite-dimensional cases.

1A proof of the theorem in the case where r is an arbitrary nonzero natural integer is available in Appendix
F of my thesis manuscript.
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1. The equality (1.9), [35, Lemma A.9] and the assumptions (H)lin and (H)null give

∀(ℓ, l) ∈ J1, rK × N,

P
(
adlA(Bℓ)φ1

)
=
〈
adlA(Bℓ)φ1, φK

〉
= (λ1 − λK)l⟨µℓφ1, φK⟩ = 0,

∀(ℓ, p, l) ∈ J1, rK × J1, k − 1K × N,

P
(
adlA

(
[adp−1

A (Bℓ), ad
p
A(Bℓ)]

)
φ1

)
= (λ1 − λK)lγℓ2p−1 = 0,

∀(ℓ, L) ∈ J1, rK2 such that ℓ < L, ∀(p, l) ∈ J0, 2k − 2K × N,

P
(
adlA

(
[ad

⌊ p+1
2 ⌋

A (Bℓ), ad
⌊ p

2 ⌋
A (BL)]

)
φ1

)
= (λ1 − λK)l(−1)pγℓ,Lp = 0.

This is the equivalent of the condition P Nk
≡ 0.

2. The equality (1.9) and the hypothesis (H)pos ensure that the hypotheses about the
quadratic forms are the same.

1.6 State of the art
1.6.1 Topological obstructions to exact controllability

In [1], Ball, Marsden and Slemrod proved obstructions to local exact controllability of linear
PDEs with bilinear controls. For instance, if the multiplicative operators µℓ are bounded
on Hs

(0)(0, 1), then system (1.1) is not exactly controllable in S ∩ Hs
(0)(0, 1), with controls

u ∈ Lp
loc(R,R)

r and p > 1. The fundamental reason behind is that, under these assumptions,
the reachable set has empty interior in Hs

(0)(0, 1). The case of L1
loc-controls (p = 1) was

incorporated in [19] and extensions to nonlinear equations were proved in [23, 24]. Turicini
adapted this statement to Schrödinger equations in [44]. After the important work [1],
different notions of controllability were studied for the single-input bilinear Schrödinger
equation such as

- exact controllability in more regular spaces, on which the µℓ do not define bounded
operators – see [6, 16, 35],

- approximate controllability.

1.6.2 Exact controllability in more regular spaces, by linear test

For the single-input bilinear Schrödinger equation, local exact controllability was first proved
in [2, 3] with Nash-Moser techniques, to deal with an apparent derivative loss problem and
then in [6] with a classical inverse mapping theorem, thanks to a regularizing effect. By
grafting other ingredients onto this core strategy, global (resp. local) exact controllability in
regular spaces was proved for different models in [38, 40] (resp. [17]). This strategy has also
been used to obtain local controllability results for nonlinear Schrödinger equations, as in
[30], or for coupled Schrödinger equations, as in [37].

1.6.3 Power series expansion of order 2 or 3

First, let us look at the case of single-input systems. A power series expansion of order
2 allows to recover a lost direction in large time: this strategy is used in [12] for the single-
input bilinear Schrödinger equation. This method is also used for other equations, such as
KdV, in [20]. If the order 2 vanishes, a power series of order 3 can be used to recover the
small-time local controllability, for example in [27], for KdV. If the order 2 doesn’t cancel
out, but the term of order 3 is strong enough, this expansion can also give the small-time
local controllability – see [16], for the single-input bilinear Schrödinger equation.

In the context of multi-input systems, we use a power series expansion of order 2
in [35] to recover in small-time a direction that is lost at the linear order. The purpose of
this article is to give other algebraic assumptions to prove obstructions for STLC.
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1.6.4 Quadratic obstructions to STLC

In [25], Coron denied the L∞-small-time local controllability result for the single-input
bilinear Schrödinger equation, with a particular dipolar moment µℓ, thanks to a drift. In
[12], Beauchard and Morancey gave general assumptions on µ1 to deny L∞-STLC for the
same system. In [18], Bournissou proved that this drift also occurs with small control in
W−1,∞. In [11], Beauchard, Marbach and Perrin proved an obtruction for the single-input
bilinear Schrödinger equation with Neumann boundary conditions, using a power series of
order 2. Quadratic terms have also been used to create obstructions to the controllability
of other single-input systems, for example in [8] for ODEs, in [36] for the Burgers’ equation,
[9] for the heat equation, [28] for KdV and [41] for KdV-Neumann. With the exception of a
non-physical PDE designed for, [9, Section 5 and 6] for single-input systems, the quadratic
terms generally do not recover small-time controllability.

In [34], we prove quadratic obstructions for multi-input control-affine systems in the
finite-dimensional case (ODEs). Our strategy is to adapt [34, Theorem 1.15] for the multi-
input bilinear Schrödinger equation. The strong analogy has already been developed in
Section 1.5.

1.6.5 Approximate controllability

The first results of global approximate controllability of bilinear Schrödinger equations were
obtained in large time – see [14, 21, 32, 39, 43]. For particular systems, a large time is indeed
necessary for the approximate controllability – see [4, 5]. Small-time approximate control-
lability between eigenstates for Schrödinger equations on the torus is proved by Duca and
Nersesyan in [29], by means of an infinite-dimensional geometric control approach (satura-
tion argument). Related results have been subsequently established in [15, 22, 31]. Recently,
Beauchard and Pozzoli provided the first examples of small-time globally approximately con-
trollable bilinear Schrödinger equations in [13].

2 Proof of the main theorem
One recalls that λj and φj are defined in (1.3). In all the document, for j ∈ N∗, we will note

ωj := λj − λ1 and νj := λK − λj . (2.1)

2.1 Expansion of the solution
We are going to make an asymptotic expansion of the solution to (1.1). Let u ∈ L2(0, T )r

be fixed controls. The first-order term Ψ ∈ C0
(
[0, T ], H3

(0)(0, 1)
)

is the solution to the
linearized system of (1.1) around the free trajectory (ψ1, u ≡ 0), i.e. i∂tΨ(t, x) = −∂2xΨ(t, x)− (u(t), µ(x))ψ1(t, x), t ∈ (0, T ), x ∈ (0, 1),

Ψ(t, 0) = Ψ(t, 1) = 0, t ∈ (0, T ),
Ψ(0, x) = 0, x ∈ (0, 1).

(2.2)

The solution is given by: ∀t ∈ [0, T ],

Ψ(t) = i

r∑
ℓ=1

+∞∑
j=1

(
⟨µℓφ1, φj⟩

∫ t

0

uℓ(τ)eiωjτdτ

)
ψj(t). (2.3)

We expand the development of the solution to the quadratic term. The second-order term
ξ ∈ C0

(
[0, T ], H3

(0)(0, 1)
)

is the solution to the following system i∂tξ(t, x) = −∂2xξ(t, x)− (u(t), µ(x))Ψ(t, x), t ∈ (0, T ), x ∈ (0, 1),
ξ(t, 0) = ξ(t, 1) = 0, t ∈ (0, T ),
ξ(0, x) = 0, x ∈ (0, 1).
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The idea is that ψ(T ;u, φ1) ≃ ψ1(T ) + Ψ(T ) + ξ(T ). Thus,

ℑ
〈
ψ(T ;u, φ1), φKe

−iλ1T
〉
≃ 0 + 0 + ℑ

〈
ξ(T ), φKe

−iλ1T
〉
, (2.4)

the first term being 0 since it is real and the second one by hypothesis (H)lin. For 1 ≤

ℓ, L ≤ r, one defines Hℓ,L : (t, s) ∈ [0, T ]2 7→ −e−iωKT

+∞∑
j=1

cℓ,Lj eiνjt+iωjs.

Remark 2.1. The kernels introduced in this article differ by a phase e−iωKT , compared with
those introduced in [35] in the case where r = 2.

We finally use the notation, for f, g ∈ L2((0, T ),R), 1 ≤ ℓ, L ≤ r,

Fℓ,L
T (f, g) :=

∫ T

0

f(t)

(∫ t

0

Hℓ,L(t, τ)g(τ)dτ

)
dt.

With these notations,

〈
ξ(T ), φKe

−iλ1T
〉
=

r∑
ℓ=1

Fℓ,ℓ
T (uℓ, uℓ) +

∑
1≤ℓ<L≤r

(
Fℓ,L

T (uℓ, uL) + FL,ℓ
T (uL, uℓ)

)
. (2.5)

To quantify the error term in the equation (2.4), we use the following classical estimates.
The reader will find proof of this, for example, in [35, Lemma 3.7].

Proposition 2.2. Assume that µ1, · · · , µr satisfy (H)reg. Then, as ∥u∥L2 → 0,

∥ψ(·;u, φ1)− ψ1 −Ψ∥
L∞

(
(0,T ),H3

(0)

) = O
(
∥u∥2L2(0,T )

)
, (2.6)

∥ψ(·;u, φ1)− ψ1 −Ψ− ξ∥
L∞

(
(0,T ),H3

(0)

) = O
(
∥u∥3L2(0,T )

)
. (2.7)

2.2 A new expression for the quadratic expansion
We recall that the sequences cℓ,L are introduced in Definition 1.4 and the iterated primitives
of a function are defined in (1.6). Finally, the quantities ωj and νj are defined in (2.1).
The purpose of this section is to show the following proposition, already proved in [18,
Proposition 5.1] for ℓ = L.

Proposition 2.3. Let T > 0, 1 ≤ ℓ ≤ L ≤ r and f, g ∈ L2((0, T ),R). If (H)conv and
(H)null hold, then,

ℑ
(
Fℓ,L

T (f, g) + FL,ℓ
T (g, f)

)
= (−1)k+1γℓ,L2k−1

∫ T

0

fk(t)gk(t) cos(ωK(t− T ))dt

+O

(
k∑

p=1

(
|fp(T )|2 + |gp(T )|2

)
+ T ∥(fk, gk)∥2L2

)
.

(2.8)

We first prove the following lemma.

Lemma 2.4. Let n ∈ N and H ∈ C2n(R2,C). There exists a quadratic form Sn on C3n such
that for all T > 0 and f, g ∈ L1(0, T ),∫ T

0

f(t)

(∫ t

0

g(τ)H(t, τ)dτ

)
dt = −

n∑
p=1

∫ T

0

fp(t)gp−1(t)∂
p−1
1 ∂p−1

2 H(t, t)dt

−
n∑

p=1

∫ T

0

fp(t)gp(t)∂
p
1∂

p−1
2 H(t, t)dt+

∫ T

0

fn(t)

(∫ t

0

gn(τ)∂
n
1 ∂

n
2H(t, τ)dτ

)
dt

+Sn

(
f1(T ), · · · , fn(T ), g1(T ), · · · , gn(T ), Cn

0 (g), · · · , Cn
n−1(g)

)
,

where Cn
p (g) :=

∫ T

0

gn(τ)∂
p
1∂

n
2H(T, τ)dτ.
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Proof. We prove this lemma by induction on n. It holds for n = 0 with S0 = 0. Assume
that the result is true for n ∈ N, fixed. Let H ∈ C2(n+1)(R2,C), f, g ∈ L1(0, T ). With an
integration by parts,∫ T

0

fn(t)

(∫ t

0

gn(τ)∂
n
1 ∂

n
2H(t, τ)dτ

)
dt = fn+1(T )

∫ T

0

gn(τ)∂
n
1 ∂

n
2H(T, τ)dτ

−
∫ T

0

fn+1(t)

(
gn(t)∂

n
1 ∂

n
2H(t, t) +

∫ t

0

gn(τ)∂
n+1
1 ∂n2H(t, τ)dτ

)
dt.

Another integration by parts finally leads to∫ T

0

fn(t)

(∫ t

0

gn(τ)∂
n
1 ∂

n
2H(t, τ)dτ

)
dt = fn+1(T )C

n
n (g)−

∫ T

0

fn+1(t)gn(t)∂
n
1 ∂

n
2H(t, t)dt

−
∫ T

0

fn+1(t)gn+1(t)∂
n+1
1 ∂n2H(t, t)dt+

∫ T

0

fn+1(t)

(∫ t

0

gn+1(τ)∂
n+1
1 ∂n+1

2 H(t, τ)dτ

)
dt.

For all i ∈ J0, nK, Cn
i (g) = gn+1(T )∂

i
1∂

n
2H(T, T ) − Cn+1

i (g), thanks to an integration by
parts. Using the induction hypothesis, we obtain the result.

Thanks to this lemma, we are now able to prove Proposition 2.3.

Proof of Proposition 2.3. Let T > 0, 1 ≤ ℓ ≤ L ≤ r. Using (H)conv, one has Hℓ,L, HL,ℓ ∈
C2k(R2,C). First, note that for all p ∈ J1, kK, for all t > 0,

∂p−1
1 ∂p−1

2 (HL,ℓ −Hℓ,L) (t, t) = (−1)p−1eiωK(t−T )γℓ,L2p−2,

∂p−1
1 ∂p2HL,ℓ(t, t)− ∂p1∂

p−1
2 Hℓ,L(t, t) = i(−1)p−1eiωK(t−T )γℓ,L2p−1.

(2.9)

Let f, g ∈ L2(0, T ) and p ∈ J1, kK. With an integration by parts,∫ T

0

fp−1(t)gp(t)∂
p−1
1 ∂p−1

2 HL,ℓ(t, t)dt = fp(T )gp(T )∂
p−1
1 ∂p−1

2 HL,ℓ(T, T )

−
∫ T

0

fp(t)gp−1(t)∂
p−1
1 ∂p−1

2 HL,ℓ(t, t)dt−
∫ T

0

fp(t)gp(t)
(
∂p1∂

p−1
2 + ∂p−1

1 ∂p2

)
HL,ℓ(t, t)dt.

Then, applying Lemma 2.4 with f → g, g → f , HL,ℓ → H, k → n and using the last
equality, one gets∫ T

0

g(t)

(∫ t

0

f(τ)HL,ℓ(t, τ)dτ

)
dt =

k∑
p=1

∫ T

0

fp(t)gp−1(t)∂
p−1
1 ∂p−1

2 HL,ℓ(t, t)dt

+

k∑
p=1

∫ T

0

fp(t)gp(t)∂
p−1
1 ∂p2HL,ℓ(t, t)dt+

∫ T

0

gk(t)

(∫ t

0

fk(τ)∂
k
1∂

k
2HL,ℓ(t, τ)dτ

)
dt

+O

(
k∑

p=1

(
|fp(T )|2 + |gp(T )|2

)
+ T ∥fk∥2L2

)
.

(2.10)

To estimate Ck
p (f), we used the boundness of HL,ℓ and the Cauchy–Schwarz’s inequality.

Applying Lemma 2.4 again with Hℓ,L → H, k → n, using (2.9), (2.10) and the assumption
(H)null, one gets

(−1)k+1eiωKT
(
Fℓ,L

T (f, g) + FL,ℓ
T (g, f)

)
= iγℓ,L2k−1

∫ T

0

fk(t)gk(t)e
iωKtdt

+

+∞∑
j=1

ωk
j ν

k
j

∫ T

0

eiνjt

(
cℓ,Lj fk(t)

(∫ t

0

gk(τ)e
iωjτdτ

)
+ cL,ℓ

j gk(t)

(∫ t

0

fk(τ)e
iωjτdτ

))
dt

+O

(
k∑

p=1

(
|fp(T )|2 + |gp(T )|2

)
+ T ∥(fk, gk)∥2L2

)
.

Taking the imaginary part, we obtain the result.
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2.3 Vectorial relations
The equations (2.5) and (2.8) give a quadratic expansion of the solution to (1.1). We then
estimate the boundary terms |uℓp(T )|2 that appear. To do that, we need the following lemma,
which is an equivalent in the infinite-dimensional case of [34, Lemma 3.12].

Lemma 2.5. Assume that the hypotheses (H)conv, (H)null and (H)pos hold. Then, the
following family is R-linearly independent in CN∗

(
(⟨µℓφ1, φj⟩(−iωj)

p)j≥1

)
(p,ℓ)∈J0,k−1K×J1,rK

Proof. By contradiction, assume that there exist (αp,ℓ)(p,ℓ)∈J0,k−1K×J1,rK ∈ Rk×r \ {0} s.t.

∀j ≥ 1,
∑

p∈J0,k−1K

∑
ℓ∈J1,rK

αp,ℓ⟨µℓφ1, φj⟩(−iωj)
p = 0.

Let l0 := max{p ∈ J0, k − 1K; (αp,1, · · · , αp,r) ̸= 0}. By hypothesis, the following quantities
are zero

C :=
∑

p,q∈J0,l0K

∑
ℓ,L∈J1,rK

αp,ℓαq,L(−i)p+q
+∞∑
j=1

(
cL,ℓ
j ωp+k−l0

j νq+k−l0−1
j

)
=

∑
ℓ,L∈J1,rK

Cℓ,L,

D :=
∑

p,q∈J0,l0K

∑
ℓ,L∈J1,rK

αp,ℓαq,L(−i)p+q
+∞∑
j=1

(
cℓ,Lj ωq+k−l0−1

j νp+k−l0
j

)
=

∑
ℓ,L∈J1,rK

Dℓ,L.

Let v := (vj)j≥1 be a sequence of real numbers and m,n ∈ N be two integers. Subject to
convergence, we define

Rm,n(v) :=

+∞∑
j=1

vjω
m+k−l0−1
j νn+k−l0−1

j .

By definition of R, one has, for all 1 ≤ ℓ ≤ L ≤ r,

Cℓ,L −Dℓ,L =

l0∑
p=0

αp,ℓαp,L(−1)p+1γℓ,L2(p+k−l0)−1

+

l0∑
p,q=0,
p ̸=q

αp,ℓαq,L(−i)p+q
(
Rp+1,q(cL,ℓ)−Rq,p+1(cℓ,L)

)
.

For all p ∈ J0, l0−1K, for all q ∈ Jp+1, l0K, Corollary A.5 with q−p−1 → ν and p+k− l → p
gives

Rp+1,q(cL,ℓ)−Rq,p+1(cℓ,L) ∈ Span
(
γℓ,L2(p+k−l0)+r, r ∈ J0, q − p− 1K

)
⊂ R.

Moreover, as 2(p + k − l0) + r ≤ 2k − 2, using (H)null, this sum is zero. Finally, for all
p ∈ J1, l0K, for all q ∈ J0, p− 1K, Corollary A.5 with p− q+1 → ν and q+k− l− 1 → p gives

Rp+1,q(cL,ℓ)−Rq,p+1(cℓ,L) ∈ Span
(
γℓ,L2(q+k−l0−1)+r, r ∈ J0, p− q + 1K

)
.

As 2(q + k − l0 − 1) + r ≤ 2k − 2, using (H)null, this sum is zero. Finally,

Cℓ,L −Dℓ,L = αl0,Lαl0,ℓ(−1)l0+1γℓ,L2k−1. (2.11)

With similar computations, we prove that for all 1 ≤ L ≤ ℓ ≤ r,

Cℓ,L −Dℓ,L = αl0,ℓαl0,L(−1)l0+1γL,ℓ
2k−1. (2.12)
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As C = D = 0, C −D = 0 and the equations (2.11) and (2.12) lead to
r∑

ℓ=1

γℓ2k−1

α2
l0,ℓ

2
+

∑
1≤ℓ<L≤r

γℓ,L2k−1αl0,ℓαl0,L = 0, i.e. q(αl0,1, · · · , αl0,r) = 0.

Using (H)pos, q is a definite quadratic form on Rr so (αl0,ℓ)ℓ∈J1,rK = 0. This is a contradiction
with the choice of l0. We then obtain the result.

Remark 2.6. The proof of Lemma 2.5 may seem a little mysterious at first sight, but there
is a strict analogy with the result proved in the finite-dimensional case – see [34, Lemma
3.12]. Note that, if µ ∈ C∞

c ((0, 1),R)r, then using [35, Lemma A.9],

∀1 ≤ ℓ ≤ r, 0 ≤ p ≤ k − 1, (⟨µℓφ1, φj⟩(−iωj)
p)j≥1 = ip (⟨adpA(µℓ)φ1, φj⟩)j≥1 .

Consequently, we proved that the family (adpA(µℓ)φ1)(p,ℓ)∈J0,k−1K×J1,rK is linearly indepen-
dent. This is the same family as in the finite-dimensional case. In [34], we consider
(αp,ℓ)(p,ℓ)∈J0,k−1K×J1,rK ∈ Rk×r scalars, not all zero, such that

Bφ1 :=
∑

p∈J0,k−1K

∑
ℓ∈J1,rK

αp,ℓi
padpA(µℓ)φ1 = 0.

Then, we define l0 := max{p ∈ J0, k − 1K; (αp,1, · · · , αp,r) ̸= 0}. As Bφ1 = 0, one has[
adk−l0−1

A (B), adk−l0
A (B)

]
φ1 = 0, and we expand this term. Actually, this is exactly what

we did in the proof of Lemma 2.5, in a disguised way, by not assuming regularity on µℓ since〈
adk−l0−1

A

(
adk−l0

A (B)
)
φ1, φK

〉
= −C,

〈
adk−l0

A

(
adk−l0−1

A (B)
)
φ1, φK

〉
= −D,

where C and D have been introduced in the proof of Lemma 2.5.

2.4 Closed-loop estimates
Using Lemma 2.5, we are now able to estimate the boundary terms. This is what we need
in the following statement.

Proposition 2.7. Assume that (H)conv, (H)reg, (H)null and (H)pos hold. Then, as
∥u∥L2 → 0,∑
p∈J1,kK

∑
ℓ∈J1,rK

∣∣uℓp(T )∣∣ = O
(
∥u∥2L2(0,T ) +

√
T ∥uk∥L2(0,T ) + ∥ψ(T ;u, φ1)− ψ1(T )∥L2(0,1)

)
.

Proof. By Lemma 2.5, there exist j1, · · · , jkr ∈ N∗, pairwise distinct such that

M := (⟨µℓφ1, φjn⟩(−iωjn)
p)((p,ℓ),n)∈J0,k−1K×J1,rK×J1,rkK ∈ GLkr(C).

Then, using the remainder estimate (2.6) and the expansion of the linearized system given
by (2.3), one has for all j ≥ 1, as ∥u∥L2 → 0,

〈
ψ(T ;u, φ1)− ψ1(T ), φje

−iλ1T
〉
= i

r∑
ℓ=1

⟨µℓφ1, φj⟩
∫ T

0

uℓ(t)eiωj(t−T )dt+O
(
∥u∥2L2(0,T )

)
.

Using integrations by parts and Cauchy–Schwarz’s inequality, one gets, for all j ≥ 1,〈
ψ(T ;u, φ1)− ψ1(T ), φje

−iλ1T
〉
= i

∑
p∈J0,k−1K

∑
ℓ∈J1,rK

⟨µℓφ1, φj⟩(−iωj)
puℓp+1(T )

+O
(
∥u∥2L2(0,T ) +

√
T ∥uk∥L2(0,T )

)
.

Focusing on j ∈ {j1, · · · , jkr}, we finally obtain

M
(
uℓp(T )

)
p∈J1,kK
ℓ∈J1,rK

= O
(
∥u∥2L2(0,T ) +

√
T ∥uk∥L2(0,T ) + ∥ψ(T ;u, φ1)− ψ1(T )∥L2(0,1)

)
.

As M is invertible, one obtains the desired result.
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2.5 Interpolation inequality
In this paper, we expand the solution to the Schrödinger equation (1.1) to the second-order
term. The remainder term is given by (2.7) and is estimated as O

(
∥u∥3L2(0,T )

)
. The purpose

of the following proposition is to compare this error term with the drift size ∥uk∥2L2(0,T ).

Proposition 2.8. There exists C > 0 s.t. for all T > 0, f ∈ H2k((0, T ),R),

∥f∥3L2 ≤ C
(
1 + T−2k

)
∥f∥H2k ∥fk∥2L2 .

Proof. We apply the Gagliardo–Nirenberg interpolation inequalities given in Proposition
A.7 with j = k, l = 3k, α = 1

3 , p = q = r = s = 2 et φ = fk to obtain

∥f∥3L2 ≤ C
∥∥∥f (2k)∥∥∥

L2
∥fk∥2L2 + CT−3k ∥fk∥3L2 .

Moreover,
∥fk∥L2 ≤ T k ∥f∥L2 ≤ T k ∥f∥H2k .

Thus, we obtain the desired result.

2.6 Proof of the drift
We prove Theorem 1.10 as a consequence of the following more precise statement.

Theorem 2.9. Let k,K, r ∈ N∗, µ1, · · · , µr be functions satisfying (H)conv, (H)reg, (H)lin,
(H)null and (H)pos. There exist C, T ∗ > 0 such that for all T ∈ (0, T ∗), there exists η > 0
such that for all u ∈ H2k((0, T ),R)r with ∥u∥H2k ≤ η, the solution ψ(·;u, φ1) of (1.1)
satisfies

(−1)k+1sgn(γ12k−1)ℑ
〈
ψ(T ;u, φ1), φKe

−iλ1T
〉
≥ C ∥uk∥2L2 − C ∥ψ(T ;u, φ1)− ψ1(T )∥2L2 .

(2.13)

Remark 2.10. Theorem 2.9 shows that there exists 0 < R < 1 such that the following
targets cannot be reached by the solution to (1.1)

∀δ ∈ (0, R), ψf :=
(√

1− δ2φ1 + i(−1)ksgn(γ12k−1)δφK

)
e−iλ1T .

Indeed, if there exist controls u ∈ H2k(0, T )r such that ψ(T ;u, φ1) = ψf , the equation (2.13)
leads to

−δ ≥ K ∥uk∥2L2 − 2K(1−
√
1− δ2) ≥ −2Kδ2.

This is impossible when δ → 0. Thus, we obtain Theorem 1.10.

Proof of Theorem 2.9. Using (H)lin and the remainder estimate (2.7), the quadratic expan-
sion of the solution gives, as ∥u∥L2 → 0,

ℑ
〈
ψ(T ;u, φ1), φKe

−iλ1T
〉
= ℑ⟨ξ(T ), φKe

−iλ1T ⟩+O
(
∥u∥3L2

)
.

Using (2.5) and Proposition 2.3, one gets

ℑ⟨ψ(T ;u, φ1), φKe
−iλ1T ⟩ = O

 ∑
p∈J1,kK

∑
ℓ∈J1,rK

|uℓp(T )|2 + T ∥uk∥2L2 + ∥u∥3L2


+(−1)k+1

∫ T

0

 r∑
ℓ=1

γℓ2k−1

uℓk(t)
2

2
+

∑
1≤ℓ<L≤r

γℓ,L2k−1u
ℓ
k(t)u

L
k (t)

 cos(ωK(t− T ))dt
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We use Proposition 2.7 to estimate the boundary terms uℓp(T ) and the interpolation inequal-
ity proved in Proposition 2.8 to obtain, as ∥u∥L2 → 0,

ℑ
〈
ψ(T ;u, φ1), φKe

−iλ1T
〉
= (−1)k+1

∫ T

0

q(u1k, · · · , urk)(t) cos(ωK(t− T ))dt

+O
(
(T + (1 + T−2k) ∥u∥H2k) ∥uk∥2L2 + ∥ψ(T ;u, φ1)− ψ1(T )∥2L2

)
.

Then, there exist C1, T1 > 0 such that, for all T ∈ (0, T1), there exists η1 > 0 such that, for
all u ∈ H2k(0, T ) satisfying ∥u∥L2 < η1,∣∣∣∣∣ℑ 〈ψ(T ;u, φ1), φKe

−iλ1T
〉
− (−1)k+1

∫ T

0

q(u1k, · · · , urk)(t) cos(ωK(t− T ))dt

∣∣∣∣∣
≤ C1

(
(T + (1 + T−2k) ∥u∥H2k) ∥uk∥2L2 + ∥ψ(T ;u, φ1)− ψ1(T )∥2L2

)
.

(2.14)

Let T ∗ := π
3ωK

if K ̸= 1, T ∗ = +∞ else. Let T ∈ (0, T ∗). By (H)pos and Remark 1.8, there
exists C2 > 0 such that sgn(γ12k−1)q(a) ≥ 4C2 ∥a∥2, for every a ∈ Rr. Thus,

sgn(γ12k−1)

∫ T

0

q(u1k, · · · , urk)(t) cos(ωK(t− T ))dt ⩾ 2C2 ∥uk∥2L2 . (2.15)

Let Tf := min
(
T1, T

∗, C2

3C1

)
. For all T ∈ (0, Tf ), we define η := min(η1,

C2

3C1
, C2

3C1
T 2k).

Then, for all u ∈ H2k(0, T )r with ∥u∥H2k ≤ η, the estimate (2.14) leads to∣∣∣∣∣ℑ 〈ψ(T ;u, φ1), φKe
−iλ1T

〉
− (−1)k+1

∫ T

0

q(u1k, · · · , urk)(t) cos(ωK(t− T ))dt

∣∣∣∣∣
≤ C2 ∥uk∥2L2 + C1 ∥ψ(T ;u, φ1)− ψ1(T )∥2L2 .

This equation together with (2.15) conclude the proof.

A Postponed proofs

A.1 Existence of µ1, · · · , µr verifying the hypotheses
Theorem A.1. Let k,K, r ∈ N∗. There exist µ1, · · · , µr satisfying (H)reg, (H)conv, (H)lin,
(H)null and (H)pos.

We use arguments very similar to those developed in [16, 18, 35]. That is why we will
only give a proof skeleton for r = 2.

Ideas of proof. We prove more precisely the existence of µ1, µ2 ∈ C∞
c (0, 1) such that the

previous assumptions are satisfied. If µ1, µ2 ∈ C∞
c (0, 1), (H)reg is already verified. This

is also the case for (H)conv by Remark 1.5. In [35], using a trick that divides function
supports into two parts, we have explained how to guarantee the existence of functions
µ1, µ2 ∈ C∞

c (0, 1) so that the following equalities hold

⟨µ1φ1, φK⟩ = ⟨µ2φ1, φK⟩ = 0, (A.1)
∀1 ≤ p ≤ 2k − 2, ∀1 ≤ ℓ ≤ L ≤ 2, γℓ,Lp = 0, (A.2)

γ1,22k−1 = 0 (A.3)

As a consequence, (H)lin and (H)null are satisfied. Moreover using Remark 1.9, as γ1,22k−1 = 0,
the assumption (H)pos becomes

γ12k−1γ
2
2k−1 > 0.

Then, we want to guarantee that (A.1), (A.2), (A.3), γ12k−1 > 0 and γ22k−1 > 0 can be
satisfied simultaneously to conclude the proof. This is what Bournissou did in [18, Theorem
A.4]. By adapting her method to our setting, we obtain the claimed result.
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A.2 Some series expansions
We recall that ωj and νj are defined in (2.1).

Definition A.2. Let a := (aj)j≥1, b := (bj)j≥1 be sequences of real numbers and l ∈ N s.t.(
ajj

2l
)
j≥1

,
(
bjj

2l
)
j≥1

∈ ℓ1(N∗). We define γl(a, b) :=
+∞∑
j=1

(
ajω

⌊ l
2 ⌋

j ν
⌊ l+1

2 ⌋
j − bjω

⌊ l+1
2 ⌋

j ν
⌊ l
2 ⌋

j

)
.

Remark A.3. We recall that (γℓ,Lp ) are specified in Definition 1.6. If (H)conv holds,

∀0 ≤ p ≤ 2k − 1, 1 ≤ ℓ ≤ L ≤ r, γℓ,Lp = γp
(
cℓ,L, cL,ℓ

)
.

Lemma A.4. Let ν ∈ N. There exist coefficients (βν
l )l∈J0,νK ∈ Zν+1 such that, for every

p ∈ N and a := (aj)j≥1, b := (bj)j≥1 ∈ RN∗
verifying

+∞∑
j=1

(|aj |+ |bj |) j2(2p+ν) < +∞,

+∞∑
j=1

(
ajω

p+ν
j νpj − bjω

p
j ν

p+ν
j

)
=

ν∑
l=0

βν
l (−1)lγ2p+l (a, b)ω

ν−l
K .

Proof. We prove this statement by induction on ν ∈ N. Initialisation. For ν = 0, the desired
equality is true by definition with β0

0 = 1. For ν = 1, one can notice that ωK − νj = ωj .
Then, by definition,

+∞∑
j=1

(
ajω

p+1
j νpj − bjω

p
j ν

p+1
j

)
=

+∞∑
j=1

ajω
p
j ν

p
j (ωK − νj)−

+∞∑
j=1

bjω
p
j ν

p
j (ωK − ωj)

= ωKγ2p(a, b)− γ2p+1(a, b).

We obtain the result with β1
0 = β1

1 = 1. Induction step: assume that the result holds for ν

and ν + 1. Let p ∈ N, (aj)j≥1, (bj)j≥1 ∈ RN∗
be such that

+∞∑
j=1

(|aj |+ |bj |) j2(2p+ν+2) < +∞.

Using the same strategy,

+∞∑
j=1

(
ajω

p+ν+2
j νpj − bjω

p
j ν

p+ν+2
j

)
=ωK

+∞∑
j=1

(
ajω

p+ν+1
j νpj − bjω

p
j ν

p+ν+1
j

)

−
+∞∑
j=1

(
(ajωjνj)ω

p+ν
j νpj − (bjωjνj)ω

p
j ν

p+ν
j

)
.

We use the equality γ2p+l

(
(ajωjνj)j≥1 , (bjωjνj)j≥1

)
= γ2(p+1)+l(a, b) and the induction

hypothesis to obtain the result, with βν+2
l = βν+1

l − βν
l−2.

Corollary A.5. Assume that (H)conv holds. Let ν ∈ N, there exist (βν
l )l∈J0,νK , (δ

ν
l )l∈J0,νK ∈

Zν+1 such that, for every p ∈ N satisfying 2p+ ν ≤ 2k − 1, for every 1 ≤ ℓ ≤ L ≤ r,

+∞∑
j=1

(
cℓ,Lj ωp+ν

j νpj − cL,ℓ
j ωp

j ν
p+ν
j

)
=

ν∑
l=0

βν
l (−1)lγℓ,L2p+lω

ν−l
K ,

+∞∑
j=1

(
cL,ℓ
j ωp+ν

j νpj − cℓ,Lj ωp
j ν

p+ν
j

)
=

ν∑
l=0

δνl (−1)lγℓ,L2p+lω
ν−l
K .

Proof. The first point is a direct consequence of Lemma A.4 with a = cℓ,L and b = cL,ℓ.
The second one can be proved in the same way (induction).
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Remark A.6. Assume that µ1, · · · , µr ∈ C∞
c (0, 1) so that (H)conv holds by Remark 1.5.

Then, for all p, ν ∈ N with 2p + ν ≤ 2k − 1, for all 1 ≤ ℓ ≤ L ≤ r, a bracket computation
gives

〈
[adpA(µℓ), ad

p+ν
A (µL)]φ1, φK

〉
= (−1)ν

+∞∑
j=1

(
cℓ,Lj ωp+ν

j νpj − cL,ℓ
j ωp

j ν
p+ν
j

)
. (A.4)

Using (A.4) and [35, Proposition A.11], the first expansion of Corollary A.5 can be written〈
[adpA(µℓ), ad

p+ν
A (µL)]φ1, φK

〉
=

ν∑
l=0

βν
l (−1)l

〈
adν−l

A

([
ad

p+⌊ l+1
2 ⌋

A (µℓ), ad
p+⌊ l

2 ⌋
A (µL)

])
φ1, φK

〉
.

Thus, Corollary A.5 is the equivalent of [34, Lemma A.1] in the infinite-dimensional case.
Moreover, the sequences defined in Corollary A.5 and [34, Lemma A.1] are the same.

A.3 Gagliardo–Nirenberg interpolation inequalities
We recall the Gagliardo–Nirenberg interpolation inequalities proved in [33, 42].

Proposition A.7. Let p, q, r, s ∈ [1,+∞], 0 ≤ j < l ∈ N and α ∈ (0, 1) be such that

j

l
≤ α and

1

p
= j +

(
1

r
− l

)
α+

1− α

q
.

There exists C > 0 such that, for every t > 0 and φ ∈ C∞([0, t],R),∥∥Djφ
∥∥
Lp ≤ C

∥∥Dlφ
∥∥α
Lr ∥φ∥

1−α
Lq + Ct

1
p−j− 1

s ∥φ∥Ls .
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