
HAL Id: hal-04957256
https://hal.science/hal-04957256v1

Submitted on 19 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

DID U Misbehave? A New Dataset for In-Depth
Understanding of Inconspicuous Software

Antonin Verdier, Romain Laborde, Abir Laraba, Abdelmalek Benzekri

To cite this version:
Antonin Verdier, Romain Laborde, Abir Laraba, Abdelmalek Benzekri. DID U Misbehave? A New
Dataset for In-Depth Understanding of Inconspicuous Software. 2024 8th Cyber Security in Network-
ing Conference (CSNet), Dec 2024, Paris, France. pp.205-212, �10.1109/CSNet64211.2024.10851723�.
�hal-04957256�

https://hal.science/hal-04957256v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Did U misbehave? A new Dataset for In-depth
Understanding of Inconspicuous Software

Antonin Verdier, Romain Laborde, Abir Laraba, Abdelmalek Benzekri
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Abstract—Living-Off-The-Land attacks involve exploiting pre-
installed genuine and trusted software for malicious purposes.
The various methods available for detecting these attacks often
rely on an in-depth understanding of the software components
that attackers could abuse. This hypothesis is unrealistic today
given the number of software components installed on a system
and the number of options available for each software component.
We present in this article an open access dataset built from the
deep analysis performed by security experts of 912 options of 23
different Linux command-line software programs. The associated
section of manual documentation of these command options is
labelled as belonging to one of 12 possible behaviour classes
from our consolidated taxonomy. Our contributions represent
an important step toward understanding system-wide software
execution as combinations and chains of individual behaviours
regardless of the underlying software.

Index Terms—Living-off-the-land attacks, Dataset, Behaviour
analysis, Software documentation

I. INTRODUCTION

Living-Off-The-Land (LotL) attacks are a type of cyber threat
that has gained significant attention in recent years. These
attacks involve exploiting pre-installed genuine and trusted
software for malicious purposes, often without downloading
any specific malware . LotL attacks are particularly challenging
to detect due to their ability to use existing software compo-
nents, such as scripting languages installed by default on the
target system (e.g., PowerShell, bash) or bundled with user-
installed software (e.g., Adobe Photoshop CC is shipped with a
NodeJS executable). Since, there is a wide variety of software
components whose features can be abused by threat actors,
there is no commonly accepted definition of LotL attacks.
Hence, in this paper, we rely on the definition provided by
Liu et al. [1] which highlights the complexity of detecting this
type of attack:

A Living-off-the-Land(LotL) attack is a type of
attack in that attackers carry out malicious activities
leveraging pre-installed and post-installed binaries
within a system. The objects exploited in such attacks
encompass documents, scripts, and LoLBins.

Moreover, the ability of LotL attacks to hide in plain sight is
extremely desirable in the context of long-running cyberattack
campaigns, such as those ran by state-sponsored malicious
actors. A study conducted by Barr-Smith et al. [2] in 2021
demonstrated that Advanced Persistent Threats are more than
twice as likely to rely on LotL vectors than commodity malware
developers.

Let consider GNU tar which is a widely known tool
used for decades [3] to handle the creation, modification and
extraction of archive files using a variety of closely related
file formats.This apparently harmless command can be used
as an attack vector. Fig. 1 shows an example of how tar can
be used to download and execute a malicious script. The
various implementations have accumulated a large amount of
command-line options (the help documentation of GNU tar
v1.34 is 325 lines long) which require a deep understanding to
detect potential dangerous usage. Despite their potential impact
from a computer security standpoint, these options remain
largely unknown. This observation is not limited to the tar
command. Many ”basic” commands available on operating
systems by default share the same issue.

While various methods are available for detecting LotL
attacks, they often rely on an in-depth understanding of the soft-
ware components that attackers could abuse. This hypothesis
is unrealistic today given the number of software components
installed on a system and the number of options available for
each software component. Inspired by the way solutions such
as HOLMES [4] rely on behaviour analysis, we developed a
novel dataset comprised of technical software documentation.
Our goal is to create a comprehensive and representative
collection of command-line option documentation texts and
map these samples to high-level behaviours (e.g. file reading,
arbitrary network communications, etc.) in order to create a
knowledge base which could be drawn upon to understand the
intent and/or consequences of a given command line based
on the documentation of all involved software programs. We
present in this article an open access dataset built from the
deep analysis performed by security experts of 912 options
of 23 different Linux command-line software programs. The
associated section of manual documentation of these command
options is labelled as belonging to one of 12 behaviour classes.
This list of 12 behaviour classes is consolidated by the analysis
of the command line options. This high quality dataset can be
employed by machine learning techniques to categorise other
software components based on their documentation. Indeed,
we firmly believe that the observation and analysis of such
high-level behaviours and their interactions with each other
will yield very useful information to identify LotL attacks.
The produced high-level behaviours being not limited to LotL
attacks detection, our work can be reused by researchers who
aim at analysing software component behaviours for other
purpose.



Fig. 1. An example of malicious tar usage

Our contribution is twofold:
1) We propose a consolidated taxonomy of possible be-

haviours that can be associated with options and pro-
grams, designed for use beyond the context of defending
against LotL attacks.

2) We introduce a carefully crafted dataset that maps the
documentation manual of 912 options of 23 different
Linux commands to this taxonomy, representing a first
step towards understanding what behaviours can be
performed by common software components

The rest of this paper is organised as follows. In section 2, We
introduce a LotL attack example shown in Fig. 1 to highlight
some of the detection challenges we mentioned previously.
Section 3 discusses previous contributions on LotL attack
detection and explain why they do not effectively address the
problem at hand. In section 4, We present the dataset that we
have developed using various pieces of software documentation
as well as the challenges we encountered. In section 5, we
compare our dataset against other available datasets. Finally,
we conclude by summarising our findings and contributions
with some future research directions in section 6.

II. DETECTION CHALLENGES

In this section, we expose current challenges regarding the
detection LotL attacks by analysing an illustrative example.

A. Example analysis

Figure 1 illustrates an example of tar being used for
malicious purposes. The first command instructs tar to down-
load and extract an archive named backup.tar stored at
172.18.0.2 using SSH and the root account on the remote
host. This makes tar use /usr/bin/ssh (as determined by
--rsh-command) to access the remote rsh server in order
to retrieve a remote archive that will then get unarchived.
Essentially, this commands downloads arbitrary files with
arbitrary permissions, since tar archives store the original

files’ permissions and applies them to extracted file by default.
In our example, backup.tar contains two files : a malicious
script called forbidden (with execution permissions) and
another archive called tools.tar that is used as an ”excuse”
to run the second command.

Indeed, this next command extracts the contents of the
tools.tar archive, even though its contents do not matter,
it must just contain at least one archive record, a 512
bytes block of file data. The actual points of interest are
the --checkpoint and --checkpoint-action options.
The first specifies that a tar must perform some action
once the first archive record has been processed; by de-
fault, tar prints out a progress message. However, the
--checkpoint-action option allows us to choose another
consequence to the aforementioned trigger. In our case, this
option tells tar to execute a given program/script every time
the aforementioned amount of records have been processed.
Thus, while this command’s goal appears to be for extracting
an archive, its actual behaviour is to execute an arbitrary
program/script.

When we consider the combined behaviour of these two
consecutive commands, it becomes clear that the individual’s
intent was to exploit tar to download and execute a malicious
script. From a behavioural perspective, we can refine the
execution of these two commands as the following chain of
behaviours : i) network communications, ii) file writing, iii)
permission modification and finally iv) command execution.
This example illustrates how a generally trusted software
component’s features can be abused as part of a LotL attack.

B. Generalisation of the problem
Understanding the actual behaviour that is performed by a

given command brings us one step closer to being able to detect
such abuses of software features. This is even more important
because the individual steps of this attack example could have
been achieved using a variety of combinations of other software
programs, as shown in Table I. In the first example, the wget



command is used to download a remote file, chmod to enable
the execution of the retrieved file and finally simply executes it.
In the second example, curl downloads a remote file which
is redirected using a pipe to bash. This eliminates the need to
modify the script’s permissions. The third example illustrates
a similar course of action : scp downloads the remote script
and php executes it, as it does not check if the target script
is executable. However, this last point does not matter, as
scp behaves similarly to tar by applying the original file’s
permissions to the newly created files.

The quantity of software components that can be abused to
achieve similar goals alone significantly lessens the potential ef-
ficiency of ”signature” detection (e.g. using regular expressions)
as a way to detect LotL attacks, as the amount of possible
combinations of abusable software components is likely to
make the design of detection rules extremely time-consuming
in order to cover all possible exploitation ”paths”.

The expectable inefficiency of such detection rules is even
more apparent when we consider that some of the ”steps”
(and chaining thereof) are part of normal operation conditions:
using wget to download a file or python3 to execute a
script is nothing but the expected way of using these programs.
Moreover, even potentially suspicious command combinations
can be benign: feeding the output of a curl command into a
shell (e.g. bash, sh) is a more and more widespread way for
users to install new software components, used by software
projects such as oh-my-bash [5] or the Rust programming
language [6]. This overlap between benign and malicious
activities highlights the importance of considering the overall
context in which a given command is run. This confirms that
detecting LotL attacks by applying detection rules to individual
commands is not a viable option.

We believe that achieving this shift from command-level
scrutiny to a broader context requires abstracting away the
exact commands being run (i.e. program name, options and
arguments) and focusing on behaviour instead. This requires
establishing a base upon which we can rely to describe the
behaviour(s) that almost any given command can exhibit.
To that end, we chose to map every documented command-
line option to one or more behaviour class, which provides
a conceptually straightforward way to ”translate” a given
command into a set of behaviours, thus creating the abstraction
we were looking for.

III. RELATED WORK

A. Existing detection methods

Stamp [7] proposed a LotL detection method that involves
the creation of a classification model for each software program
that can be used in a LotL attack in order to detect malicious
commands using that specific program. To achieve this, Stamp
created a dataset containing samples from different sources
(including LOLBAS) and developed a new feature extraction
method to train classification models on labelled commands.
However, this approach requires training and maintaining a
classification model for each targeted program, which limits
generalisation to new programs or features that have not yet

undergone sufficient analysis. The fact that the attack example
we chose uses a program that is not covered by this contribution
illustrates this limitation. In addition, the unavailability of the
source code and the dataset makes the results non-reproducible.

Another notable contribution is presented by Ongun et al. [8],
where known LotL attack vectors constitute the basis of the
data used to detect LotL activity. Their proposition revolves
around an active-learning architecture, where a classifier model
is initially trained with a minimal dataset that grows over time.
As new unlabelled data is obtained and classified, the system
identifies and sends uncertain and anomalous samples to human
analysts for them to be properly studied and classified, thus
continuously improving the system’s detection capabilities. This
approach is supported by a novel command embedding method
named cmd2vec, which combines traditional word embedding
techniques with information about each token’s prevalence
in known malicious commands to obtain a feature vector
per command. While using active learning is an interesting
approach to address the scarcity of labelled malicious command
samples, this approach relies heavily on human intervention to
increase its accuracy. While these first approaches are already
yielding promising results, they remain highly dependent on
human analysts with detailed knowledge about specific LotL
attack vectors, as we can see by the small set of programs
which are handled by the aforementioned contributions. Boros
et al. [9] shift from the detection of the exploitation of specific
software programs to the analysis of higher-level indicators,
such as process relationships, system calls or, in the case of
this contribution, command semantics, where the goal is to
analyse individual commands in a manner similar to that of a
human analyst. To that end, they analyse each command line
string to test if they contain elements that could be indicative
of malicious behaviour (e.g. external IP addresses, URLs,
executable filenames or regular expressions). The presence and
absence of these elements is then used as an input for a Machine
Learning classifier which is similar to that of a binary-weighted
bag of words (BoW). Finally, this approach also combines
this classification method with a string similarity comparison
with well-known LotL attack commands using BLEU [10].
This is an interesting demonstration of combining multiple
analysis methods to reduce the amount of false negatives.
While the overall approach is interesting, previous research [11]
has shown that the loss of context introduced by the use
of BoW techniques usually results in lesser performances
compared to context-predicting semantic vectors techniques,
such as fastText [12] or word2vec [13]. Moreover, this approach
relies on a clear-enough presence of the aforementioned cues;
using programs such as dig with obfuscation techniques to
hide the presence of stolen data inside of its input is a clear
path to circumventing the protection abilities offered by this
contribution.

Filar et al. proposed ProblemChild [14], a LotL attack
detection method mostly centered on the execution context
of potentially suspicious processes and their relation to their
parent process. Feature vectors representing processes are
constructed based on various pieces of information such as the



Download wget curl scp root@172.18.0.2:malware.php
http://172.18.0.2/malware http://172.18.0.2/script.sh | malware.php

Set permissions chmod +x malware Not needed Not needed
Execute ./malware | bash php malware.php

TABLE I
DIFFERENT PROGRAMS, SAME BEHAVIOUR

executable associated with the parent process, privileges, user
mismatch between parent and child as well as more classical
information about the command line arguments in the form of
entropy measurements and TF-IDF [15] statistics. These feature
vectors are then used to determine weights that can be used to
create an execution graph, upon which community detection
[16] techniques are used to highlight suspicious communities.
The presence of rare parent-child process relationships among
these communities is then analysed to identify processes
that are likely part of an attack. However, this means that
ProblemChild’s detection abilities heavily depend on the
adequation of what the pre-trained model considers as normal
or rare compared to the deploying environment, as different
computer usages yield different parent-child statistics (e.g.
system administrator versus non-technical user). This questions
the genericity of their approach, as it essentially relies on the
inability of malicious actors to hide in plain sight. However,
APT groups are known to collect an extensive amount of
information on their targets, even more so in the case of
individuals targeted as part of an initial compromise.

With HOLMES [4], Milajerdi et al. targeted the analysis
of syscalls, thus focusing on observing how software is
actual behaving instead of working on samples obtained from
command line arguments. This approach makes HOLMES able
to detect LotL exploitation even in the case of unknown attack
vectors, which virtually removes the need for large datasets
like previously-mentioned contributions. HOLMES works by
mapping syscall executions observed on multiple computers to
potential TTPs (Tactics, Techniques and Procedures, as defined
by the MITRE ATT&CK® framework [17]), which in turn
can be associated with the different steps of the Advanced
Persistent Threat (APT) kill-chain [18]. While the high-level
view provided by thinking in terms of TTPs as part of the
APT kill-chain is based upon tried-and-true reasoning, the
fact that HOLMES employ a fixed TTP-to-severity mapping
may hinder its detection abilities. Indeed, HOLMES has to
be able to map every step of the APT kill-chain to recorded
events for an attack to be recognised, which itself depend on
its ability to link system calls to TTPs. If we consider the fact
that the system’s default DNS server has quite a high chance
of being considered as a trusted host, using the dig command
to obtain instructions through a TXT DNS record would not be
mapped to an Untrusted_Read operation that could have
been further mapped as a part of the Initial Compromise APT
kill-chain step.

All these contributions rely on a wide range of indicators and
data sources to detect malicious activity. As such, we believe
that high-level information about behaviour could constitute

another source of valuable information that could be employed
to detect the actions of threat actors, with knowledge bases
acting as a foundation for the obtention of such high-level
information about behaviour.

B. Existing knowledge bases

There currently exists two main community-backed efforts
to inventorise publicly-known LotL attack vectors (i.e. ways
of abusing broadly installed and/or known software programs):
GTFOBins [19] and LOLBAS [20]. The first one focuses on
UNIX or GNU/Linux softwares (from tar to Gimp), with 1̃2
different ”functions” (i.e. the action induced by the documented
feature abuse). The other one is centred around Windows
binaries, only targeting software signed by Microsoft, and
that presents ”unexpected” functionality (i.e. not the intended
use, but not strictly excluding documented features either).
LOLBAS presents a total of 1̃5 ”functions”, most of them
similar to that of GTFOBins. Indeed, both these knowledge
bases contain a few ”functions” that are specific to them, in
that they only pertain to the targeted operating system (e.g.
User Access Control bypass does not carry as much meaning
on a UNIX system as it would on a Windows system).

Moreover, the ”functions” describe actions / behaviours of
extremely dissimilar abstraction (e.g. GTFOBins’ Command
and Reverse Shell ”functions”) and are not always clearly
defined (e.g. LOLBAS’s Tamper ”function” engulfs any usage
of software that ”can be used to tamper with files, processes,
etc.”). While LOLBAS often provides detection rules (e.g.
Sigma rules, Yara rules, etc.) for the ”functions” it describes,
these two limitations unfortunately make them more fit as
Living-off-the-Land attack playbook than a proper basis for
defence against threat actors employing LotL attacks. Finally,
this general issue is exacerbated by the way these knowledge
bases are centred on specific commands (i.e. combinations of
command-line options) and their application in the context of
LotL attacks.

Improving on the foundation that these two knowledge
databases provide, our contribution features a set of clearly
defined behaviour classes of similar abstraction aimed at
understanding the general behaviour of a given command based
on its options and their associated behaviour(s).

IV. OUR DATASET

The behaviours behind program features can be inferred
using their documentation. This information can be used to
facilitate the identification of potential vectors for conducting
LotL attacks. Unfortunately, there is no existing labelled dataset
that precisely maps each parameters and options of commands



Class Amount

NEUTRAL 419
CMD EXEC 27
FILE READ 75
FILE WRITE 56

COPY 16
NET COMS 87
NET CFG 137
NET INFO 3
SYS INFO 13
FS INFO 56

FS OP 19
ARG FILE 3

TABLE II
CLASS DISTRIBUTION

to specific fine grained behaviour. Therefore, we created a
dataset called DID U misbehave where each sample associates a
command line argument/option (or program in certain cases) to
a label that describes the behaviour exhibited as a consequence
of using that feature. Building such a dataset required a deep
analysis of each sections of each programs by security experts.
Although the intention behind the creation of this dataset was
to ultimately aid the detection of software features that can be
used as Living-off-the-land attack vectors, we believe that it
can be useful in other research areas. The dataset is available
on GitHub1.

A. Description of the dataset

Our dataset contains a total of 912 samples coming from the
manual of 23 different Linux command-line software programs,
each labelled as belonging to one of 12 behaviour classes. Due
to multiple issues we encountered throughout the labelling
process, we also filtered out some samples that we believed
were problematic to our objective; we discuss this topic in the
next-subsection. This pruned version of the dataset contains
886 samples.

In order to properly label each sample, we assigned each
class a description of what they meant as well as designed
a set of rules to make labelling decisions as consistent as
possible. We derived our dataset’s classes from a high-level list
of potentially malicious behaviours, namely code execution,
data ”movement”, network communications and information
gathering. This approach allowed us to design a base array of
classes that encompasses most of the behaviours that command-
line software programs are capable of. Outside of that structure,
we define the NEUTRAL class, where the option does not
introduce any potentially malicious behaviour.

Regarding code execution, the CMD_EXEC class is used
when a program or an option leads to the execution of a user-
controlled binary executable or script. When an option that
leads to arbitrary data being used as an argument list and/or
passed to another program, the ARG_FILE class should be
used instead.

1https://github.com/lacaulac/DID-U-Misbehave

The movement of data in any given host can take multiple
forms. The first one is read operations, represented by the
FILE_READ class. When data is written to a file — including
when creating a symbolic link — or a file is deleted, the
responsible option is labelled as FILE_WRITE; with one
notable exception: writing to the standard output. This specific
case is best described by using the COPY class, as instances of
this behaviour can be symptoms of data being moved and/or
transformed (e.g. the general behaviour of the ‘base64‘ utility
fits that description).

We divided behaviours linked to network communications in
two classes. The NET_COMS class designates any option which
leads to arbitrary data being sent to a remote host (e.g. curl’s
--data argument). In contrast, NET_CFG is used to describe
any option that changes the network behaviour in a way that
can be observed by a remote host. This includes traditional
boolean-like configuration flags as well as configuration values
with pre-defined allowed values, as the combined use of such
fields could be used as a stealthy data ex-filtration channel.

We also defined classes for information gathering options
that lead to learning about a system’s network state and
configuration, which we label as NET_INFO. This class
encompasses options that reveal details such as the system’s
IP address, subnet mask, or DNS settings. Options that gather
information about the system itself, including user groups,
processor architecture, kernel version, and more, are classified
under SYS_INFO. In a similar manner, options responsible for
the obtainment of details about the file system, such as directory
structures or file permissions are labelled using the FS_INFO
class. These classes allow us to distinguish between different
types of information gathering behaviors in our dataset.

Finally, we labelled options that lead to the modification of
part of the file system as FS_OP, including access permission
modifications, file deletion, and the creation of named pipes
or sockets.

To properly label each sample in the dataset, we then applied
the following rules :

• A command-line program should only be labelled when
its very use corresponds to one of the above classes (e.g.
curl for NET_COMS, base64 for COPY, etc.).

• When a particular sample corresponds to more than one
class, we duplicate that sample so that it results in as
many records as there are classes we can assign to it
and assign those records with the aforementioned classes,
with the most significant behaviour assigned to the first
record in the labelled dataset. When the priority to apply
amongst the various classes was not clear, we chose to
prioritise classes that we felt were more important from a
security perspective (e.g. A NET_COMS behaviour would
be prioritised when compared to a NET_CFG behaviour).
Providing multiple labels allows more flexibility in the
way the dataset is used, as the least important classes could
be removed during the data preparation phase depending
on the data analysts objective.

• Arguments / options are labelled regardless of the way
the program they belong has been labelled (if it has).



To help visualise how the dataset is shaped by the labelling
process we described, we provide an excerpt of the dataset
in Table III (even though the program’s description is part of
the dataset, it is omitted here to limit repetition and improve
legibility). The program that is represented is sftp, a well-
known tool that allows data transfer over SSH. The sftp
program has been labelled with the NET_COMS class, as
such behaviour is intrinsic to its use. Indeed, it is capable of
performing file upload and download without being provided
with any documented option (i.e. just a user@hostname
argument is necessary). The other two dataset records are
proof that a program’s options do not necessarily produce
behaviour similar to that of their program (if it is associated
with any). Secondly, these two last records are a great example
of a single option being labelled multiple times : the behaviour
described in the documentation can lead to two distinct actions
depending on whether sftp is used to upload or download
data.

In the process of clearly defining these behaviour classes
and designing the rules that helped us label the dataset, we also
encountered a variety of issues that influenced our approach
that we describe in the next subsection.

B. Encountered problems

To the best of our knowledge, there are currently no publicly-
available datasets of command-line program documentation,
especially ones that would map these documentation excerpts
to relatively high-level behaviour. Therefore, we needed to
define a proper list of different behaviours and establish where
were the limits between behaviours that are semantically close
(e.g. network communications and network configuration). The
additional goal of having a dataset that isn’t centered around
computer security made that task quite harder. We also had to
consider how the datasets would be used and foresee problems
that could arise, such as in the case of multi-class classifiers
where class imbalance or classes with a very limited amount
of samples could have a significant impact on a classifier’s
learning and thus, performances.

These issues led us to iterate over the labelling methodology
around a half-dozen times, which was quite time-consuming but
allowed us to observe the limitations of our previous labelling
strategy when trying to label ambiguous samples and see how
different taxonomies impacted our native classifier models’
abilities. The following list is a summary of the challenges we
encountered while working on the dataset:

• The sample collection step that was required to constitute
the unlabelled dataset proved to be more difficult that we
had anticipated. Indeed, to the best of our knowledge,
there are no existing tools designed to automatically
extract parts of Linux-style documentation manual, which
led us to either manually copy and paste every sample
from the documentation or create regular expressions that
would accomplish this task. However, we quickly observed
that each software program had its own way of writing
Linux manual documentation; while we expected a certain

amount of inconsistencies amongst different software pro-
grams (e.g. --arg value versus --arg=<value> or
--list versus -list), the sheer amount of variations in
writing styles amongst all the documentation manuals we
collected data from made the writing of a one-size-fits-all
regular expression virtually impossible.

• The labelling of certain samples requires a very thorough
understanding — and sometimes, testing — of each
program’s behaviour and features as well as the protocols
and formats that surround that specific piece of software.
There are multiple cases where labelling a sample took
us hours because of the time it took us to obtain an
understanding we considered good enough to assign a label
to that sample. Moreover, we had to take the decision of
excluding certain samples at least once during the creation
of the dataset, as we came to the conclusion that we did
not clearly know or understand the implications of using
those arguments / options.

• When multiple labels should be attached to a given sample,
we duplicate the sample and assign each label to each
duplicated symbol, using priority rules to determine in
which order these samples are inserted into the labelled
dataset (e.g. a sample of an argument that is responsible
for reading from files and writing to files would result
into two entries in the labelled dataset, the first with a
FILE_READ label and the second with a FILE_WRITE
label).

• In the case of some command line arguments, their
documentation heavily references other arguments (e.g.
curl’s --proxy-crlfile <file> : ”Same as –crlfile
but used in HTTPS proxy context.” [21]). As the usage
of techniques similar to Retrieval-Augmented Genera-
tion [22] was not studied for this contribution, we decided
to filter out these samples from the final dataset, since
their inclusion would not make much sense considering
the scope in which we foresee this dataset to be used (i.e.
no documentation enrichment).

• A few arguments that take an input are not documented
as doing so (e.g. curl’s -Q, --quote-name argu-
ment [21]), but we don’t believe ingesting this data is a
problem for classification tasks.

• Samples for which the documentation is really vague or
imprecise about the obtained behaviour were also filtered
out. A notable exemple of this is openssl’s s_server
-alpn val [23] configuration option which is supposed
to define a list of options for the ALPN extension for TLS
per the manual, but also triggers the display of information
provided by the TLS client.

• We have observed that some software programs contain
options that are tasked with obtaining information that is
used to defined further behaviour. These are particularly
hard to label, as they may load arguments for children
processes or configuration information that changes the
way these processes act without giving away too much
detail about them in the command line string proper; we
could qualify such behaviour of being akin to multiple



Command Name Option Name Option Description Class

sftp sftp sftp is an interactive file transfer program, similar to ftp(1), [...] sftp connects NET_COMS
and logs into the specified host, then enters an interactive command mode.

sftp -p Preserves modification times, access times, and modes from the original files transferred. FS_INFO
sftp -p Preserves modification times, access times, and modes from the original files transferred. FS_OP

TABLE III
EXCERPT OF THE DATASET : SFTP AND SOME OF ITS OPTIONS

behaviours (e.g. command execution, file read) but the
taxonomy we chose is not able to capture these particular
arguments as well as we would like, which led us to filter
most of them out. We only made an exception for explicit
configuration files, even though this led to the creation of
a poorly-populated class.

While we believe that the pruned version of the dataset is
currently the most suitable one for Natural Language Processing
purposes, we also make the non-filtered version available and
encourage external contributions.

V. DISCUSSION

To better understand how our taxonomy is able to provide
useful insights on a program’s behaviour, we first tried to
establish an approximate mapping between the ”functions”
chosen by LOLBAS, GTFOBins and our proposed behaviour
taxonomy; as shown in Table IV. As certain ”functions” do not
fully correspond to others, they have been marked as ”loosely
mapped”. The differences that can be observed between the
two pre-existing knowledge bases highlights how hard it is to
create a well-defined list of distinct behaviours.

Moreover and as highlighted in section III-B, there is a
substantial amount of ”functions” that do not clearly correspond
to any of our taxonomy’s behaviours and/or any other ”function”
from another knowledge base since they either correspond to
a much higher level of abstraction or are specific to one or
more operating systems. Table V lists these ”functions” and
maps them to other existing ”functions” whenever possible.

Some of these ”functions” are good illustrations of how our
approach for describing and analysing software behaviour does
not exclude higher-level behaviour, even though our taxonomy
does not explicitly include them. For example, we discussed
in Section II that performing a download operation can also
be framed as network communications and file writing being
performed in a closely related manner. Furthermore, we strongly
believe that the ability to identify higher-level behaviours – such
as download actions – using lower-level knowledge about the
options of available software is essential to expand the available
range of detection methods.

Overall, the significant amount of details about all the
individual behaviours that can be combined together when
running a command provides a significant degree of flexibility
in the way malicious behaviour could be defined and identified

1Loose mapping
2Can be described by a combination/succession of our taxonomy’s be-

haviours

Ours LOLBAS GTFOBins

Copy
COPY Encode

Decode

FILE WRITE Alternate Data Stream1 File Write
FILE READ Dump1 File Read

Credentials1

NET INFO
SYS INFO Reconnaissance
FS INFO

Execute Shell
CMD EXEC AWL Bypass1 Command

Library Load

TABLE IV
LOW-LEVEL BEHAVIOUR / ”FUNCTIONS” MAPPING ACCROSS OUR

PROPOSED TAXONOMY, LOLBAS AND GTFOBINS

LOLBAS GTFOBins
Compile

Tamper

Conceal

Compile

Capabilities
UAC Bypass SUDO

SUID

Upload2 File Upload2

Download2 File Download2

Reverse Shell2

Bind Shell2

TABLE V
HIGH LEVEL ”FUNCTIONS” OF LOLBAS AND GTFOBINS

in the context of Living-off-the-Land attacks, thus addressing
the shortcomings of existing knowledge bases. As such, the DID
U Misbehave dataset and its associated taxonomy are a strong
foundation for behaviour-based identification of potentially
malicious activity.

VI. CONCLUSION & FUTURE WORK

We presented DID U Misbehave, a dataset that maps
command-line software options to one or more clearly defined
behaviours described in an associated consolidated taxonomy.
We justified the need to explore how software programs
interact from the perspective of option-level behaviour, with the
aforementioned contributions representing a first step toward



using such an understanding to detect the actions of malicious
actors.

Although the taxonomy we defined is of great help when it
comes to expanding the dataset (i.e. extracting documentation
from software manuals and --help menus, then labelling
every sample), this task remains time-consuming nonetheless.
Considering that our dataset is made of text strings and class
labels — two data types that can very much be translated into
feature vectors —, employing machine learning approaches
decidedly appears to be a worthy endeavour, as it could greatly
enhance the speed at which new samples can be labelled and
thus added to the dataset.

Our next step is to understand and clearly define how our
taxonomy’s behaviours — and the combinations thereof — can
be associated with high-level behaviours (e.g. FILE_READ
being used as an input to a NET_COMS behaviour can represent
an upload operation) that can be more easily associated with
malicious behaviour.

We strongly believe that achieving these two research goals
will allow us to use our proposed dataset and taxonomy to
analyse system-wide software execution in terms of high-level
behaviours that can be linked with one another to identify
malicious behaviour patterns, thus allowing us to detect Living-
off-the-Land attacks regardless of the underlying software
programs abused by threat actors.
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