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Dynamic 4D PET Reconstruction Using the Spectral Model
and Adaptive Residual Modelling

Zacharias Chalampalakis, Simon Stute, Marina Filipović, Florent Sureau, Solène Marie, Michel Bottlaender,
Nicolas Tournier, and Claude Comtat

Abstract—Application of 4D reconstruction algorithms to dy-
namic data, especially in whole-body dynamic imaging, can result
in spatial propagation of errors over the field of view originating
from regions with poor model fits. An adaptive modelling strategy
has been previously proposed for this problem to improve the
model fit over the field of view, using residual adaptive modelling
in the reconstruction process. We used this strategy within a
4D reconstruction algorithm that makes use of the spectral
analysis model as a primary model and a PCA based adaptive
residual model as a secondary model. The developed algorithm
maintains genericity and does not impose strong assumptions
about the underlying kinetics. The objective of this work is to
evaluate the algorithm on a whole-body dynamic dataset of a
healthy volunteer imaged with 11C-Glyburide, a newly developed
tracer used in the study of distribution and function of OATP
transporters. Results showed improved estimates over the pelvic
area where the bladder filling process was poorly fitted by the
spectral model alone. The adaptive 4D algorithm has successfully
identified and selectively corrected for the filling process, when
compared against 3D independent frame reconstructions, while
preserving the fit of well-modelled regions. Optimal results were
obtained when spatial and temporal filtering of residual data
was applied prior to PCA analysis, in which case the adaptive
algorithm selectively corrected poorly modelled physiological pro-
cesses, averted from modelling respiratory motion induced errors
and resulted in reduced induction of noise in the reconstruction
process.

I. INTRODUCTION

DYNAMIC PET has been traditionally utilised in single
organ studies, but recently there has been increased

interest in whole body dynamic imaging, for research and
for potential future clinical applications[1], [2], [3], [4]. Syn-
chronous dynamic PET of the whole body requires scanner
geometries that can encompass the entire length of the human
body. Although systems capable of whole body axial coverage
have been recently developed [5], their availability is not
yet widespread. Current clinical scanners achieve whole body
coverage using multiple axial bed positions or acquisition
protocols with continuous axial bed motion. Based on these
acquisition modes whole body dynamic protocols have been
developed that make use of repeated whole body passes [6].
Conventional analysis of dynamic data is performed with
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independent 3D reconstructions of frame data, followed by
kinetic model fitting. Whole-body dynamic protocols make
the task of reconstruction and subsequent kinetic modelling
more challenging due to the introduction of large temporal
gaps in the data which can lead to biased estimates and
increased noise, especially for parametric maps. To improve
image quality and account for the noise in the raw data, 4D re-
construction algorithms can be used to directly incorporate the
dynamic model of interest in the reconstruction [7]. Depending
on the choice of the dynamic model, these reconstructions
can directly provide the parameters of interest or temporal
regularisation on the reconstruction process of frame data. The
spectral analysis model, inspired by the homonym method [8],
fits on any underlying kinetic behaviour that can be described
by compartmental modelling. When used in 4D reconstruction
it provides temporal regularisation as well as direct estimation
of some kinetic parameters. Use of this model has shown to
reduce noise and bias of kinetic parameter estimates when
applied on data from whole body dynamic protocols [9].

When considering the effective field of view of whole body
dynamic studies, certain regions might not fulfil the generic
assumptions of the spectral analysis model. For example
processes such as delay of tracer delivery and non-arterial
tracer delivery (ex. bladder filling). In 4D reconstruction,
the tomographic update process is entangled with the dy-
namic model and errors from the temporal model fit have
the potential to spatially propagate to other regions. Due to
the fact that raw data from multi-bed whole body dynamic
studies are acquired and reconstructed as separate beds, the
potential for errors propagation is limited in the bed position
where they originate from. It has also been shown that use
of time of flight (TOF) information in the reconstruction aids
in reducing spatial propagation of errors [10]. Nevertheless,
model fit errors have the potential to propagate and when
possible should be corrected or accounted for. For this reason,
when 4D reconstruction is used and especially when applied
on whole body datasets extra consideration has to be given on
improving the model fit for all regions.

The application of an adaptive residual model as a second
dynamic model has been previously suggested for reducing
model fit errors [11]. Its application in 4D reconstruction has
been shown to reduce bias at the cost of increased noise
for direct estimation of kinetic micro-parameters [12]. The
objective of this work was to implement and evaluate adaptive
residual modelling in 4D reconstruction, using real whole body
dynamic PET data, with no prior knowledge of the underlying
kinetics and the distribution of residuals. For this purpose, the
spectral analysis model was used in conjunction with a residual
model in 4D reconstruction to maintain genericity in the
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reconstruction with minimum assumptions on the underlying
kinetics. The end objective was to assess if adaptive residual
modelling can be permanently applied in 4D reconstruction,
with no prior knowledge of kinetics and model fit errors, by
relying on the selectivity of the algorithm for correction of
underlying model fit errors, when and where those arise.

II. METHODS

A. Data acquisition
Dynamic whole body data using a novel Glyburide (11C-

GLB) tracer were acquired from healthy volunteers on a GE
Signa PET-MR, using a dedicated dynamic protocol of 5 bed
positions to provide sufficient coverage of the body. Glyburide
is a substrate of hepatic and extrahepatic Organic Anion
Transporting Polypeptides (OATP) which can be isotopically
radiolabelled with carbon-11 for PET imaging. The data were
acquired as part of the exploratory pharmacokinetic study
IsotoPK which is conducted in our centre for studying the
distribution of OATP transporters in the body and their role
in the delivery of drugs to tissues [13]. Data from a single
volunteer study were used in this work. In detail the dynamic
acquisition consisted of a single bed acquisition centred over
the liver, imaged for 3 minutes from tracer injection, followed
by 14 whole body passes of 9x20s and 5x30s frames for each
bed position. Arterial blood samples were collected manually
during the whole study, to measure the input function.

B. Reconstruction
The spectral analysis model was used in all 4D recon-

structions, using 4 spectral functions with decay rates ranging
from 3 min−1 to 0.001 min−1. A constant and a delta
function were also included to model tracer trapping and
blood fraction. The 4D reconstruction algorithm with adaptive
residual modelling was developed using the spectral model as
primary model and an adaptive secondary model, similar to
the proposed method by Matthews et al. [11].

The steps of the adaptive residual modelling 4D reconstruc-
tion algorithm are:

1) Start with image estimate λ(k)jf , for voxel j and frame f
at iteration k.

2) Perform tomographic update using MLEM to get the
EM update image λ(EM)

jf .
3) Perform primary model fit using the NNLS algorithm

on λ(EM)
jf and estimate model parameters θ

(k+1)
j .

4) Calculate residuals as rjf = λ
(EM)
jf − fspectral(θ(k+1)

j ).
5) Perform PCA analysis on residuals to estimate a set of

residual basis functions (RBF) which form the secondary
(adaptive) model.

6) Estimate modelled residuals gjf from the LS fit of the
secondary model on the rjf data.

7) Estimate optimal fraction Kj for residuals re-
introduction, using generalised cross validation.

8) Add fraction of modelled residuals in image estimate
λ
(k+1)
jf = fspectral(θ

(k+1)
j ) + Kjgjf and repeat from

step 2.
where NNLS stands for Non-Negative Least Squares and

fspectral is the spectral model which provides activity distri-
bution maps for all frames, given model parameters θj .

In step (5) of our adaptive modelling implementation, the
residual data were spatially smoothed with an isotropic Gaus-
sian kernel of 32mm FWHM, to enhance the PCA analysis
results. Smoothing of the residuals was not however applied
in the fitting process of the secondary model in step (6).
A fixed number of the most significant PCA components
was used as basis functions of the adaptive residual model.
The components were updated on each iteration of the 4D
algorithm.

For the estimation of the optimal fraction Kj , the following
equation from Matthews et al. [11] was used, which is derived
from generalised cross-validation,

Kj =
1− rdf

rRSS

1− rdf
, (1)

where rdf = ns

nf−np
, with np and ns being the number of

parameters of the primary and secondary model respectively,
and rRSS being the fraction of modelled to measured residuals
sum of squares.

The dynamic data from each bed of the study were recon-
structed as individual frames using 3D MLEM (150it), using
4D reconstruction (300it) and with the developed adaptive
algorithm 4D-ResidMod (300it). The adaptive reconstruction
algorithm was evaluated using the 2 and 3 most significant
PCA components as RBFs, referred to as 4D-ResidMod-2RBF
and 4D-ResidMod-3RBF respectively. We also implemented a
version of the adaptive algorithm with the addition of temporal
Gaussian smoothing of 62s FWHM applied on the residual
data used for PCA analysis in step (5) of the algorithm,
referred as reconstruction 4D-ResidMod-3RBF-Tempfilt.

All reconstructions were performed with the open source
reconstruction platform CASToR [14], using PSF modelling
and TOF information. Correction for motion has not been
included in the reconstructions. PCA analysis was performed
using the Eigen library [15].

III. RESULTS

As seen in Fig. 1 (top row) by the difference in activity
estimates from 3D and 4D reconstruction in a late frame,
the 4D algorithm with the spectral model alone resulted in
lower activity estimates over the bladder region and higher
activity estimates in some large blood vessels at the shoulders
and pelvic regions. No noticeable differences were seen in
other areas, apart from random variations in activity due to
differences in noise levels of the compared reconstructions. As
expected, the filling process of the bladder seen in the bladder
time activity curve from 3D reconstruction in Fig. 2 (bottom
row) cannot be modelled by the spectral model because the
filling process is not directly relatable to arterial tracer delivery
at the local (voxel) level. Differences in some large blood
vessels could potentially be attributed to delay of the input
function, which is not accounted for in the spectral model
where a single input function is assumed to apply for all
regions.

Reconstruction of the data with adaptive residual modelling
resulted in improved estimation of the bladder filling process,
for both options of residual modelling using 2 and 3 residual
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basis, as it can be seen in the difference images of Fig. 1
(middle row) and the bladder TAC in Fig. 2. No improvements
were seen for the differences at the blood vessels of the
shoulders and pelvic regions.

At the liver, where most of the tracer uptake is concentrated,
4D and 3D reconstruction TACs show a subtle mismatch
between 1100 and 1500 seconds (Fig. 2, top row). Analysis on
the liver dome VOI (Fig. 3, top row) clearly shows this differ-
ence, which originates from underlying respiratory motion that
has been captured in the PET dynamic data. 4D reconstruction
alone was unable to model these fluctuations, as expected, but
the adaptive algorithm using 3 residual basis has achieved to
model for this behaviour as seen in Fig. 3. Since physiological
kinetic processes, whether sufficiently modelled or not, are
not expected to result in sudden changes of activity between
adjacent frames, we implemented a version of the algorithm
with temporal smoothing prior to PCA analysis to prevent from
modelling changes due to fast processes such as respiratory
motion. On this case this algorithm (4D-ResidMod-3RBF-
Tempfilt) has managed to maintain the selective adaptive
modelling behaviour over the bladder while avoiding fitting
the motion related effects over the liver dome as seen in Fig. 3.

In all regions of the effective FOV the addition of adap-
tive modelling has resulted in the increase of image noise,
compared to 4D reconstruction, with the higher number of
residual basis resulting in higher noise. The introduction of
temporal filtering in the adaptive model estimation process
has aided in reducing the induction of noise for the majority
of the evaluated regions in our study. A comparison of the
effect on image noise across regions within this whole body
study can be made by the VOIs standard deviation shown
in Fig. 5 for all evaluated algorithms. An example map of
the fraction Kj and the modelled residuals gjf is given in
Fig. 4. These maps demonstrate the desired selectivity of the
algorithm, concentrated over the bladder in this case, but also
the spill of noise from the residual space in these maps which
is subsequently added in the reconstruction process.

IV. DISCUSSION AND CONCLUSION

General dynamic models such as the spectral analysis
model can be useful in 4D reconstruction of whole body
dynamic data using new tracers, as they do not impose
strong assumptions about the underlying kinetics. But over
the effective field of view of whole body dynamic studies
certain regions and their physiological processes might not
fulfil the general assumptions of the model. In these cases, the
adaptive residual modelling strategy can be utilised to improve
parameter estimates for these regions and help in minimising
the risk of spatial propagation of errors to other well modelled
regions.

In this work, 4D reconstruction with the spectral analysis
model and adaptive residual modelling was applied on real
whole body dynamic data from a first in man study of a
new tracer. The algorithm identified and selectively corrected
the image activity estimates over the poorly modelled bladder
region, by modelling the residuals of that region. This resulted
in a 4D reconstruction that did not suffer from the model fit
errors over the bladder and potential errors propagated to other

Fig. 1. Coronal view of activity distribution from the evaluated reconstructions
(frames of 41.2 to 44.1 minutes post injection). Difference images are also
shown for selected cases against the 3D reconstruction.

regions originating from the bladder region. The use of the
adaptive model as a secondary model increased the complexity
of the modelling in the reconstruction process and resulted in
an increase of image noise, with higher number of residual
basis functions resulting in higher image noise as expected and
inline with previous observations in a simulation study [12]. In
our work we saw that noise from the residual space propagates
in the modelled residuals and the optimum fraction values of
the secondary model, seen in Fig. 4, and is subsequently re-
introduced in the reconstruction process.

Motion will unavoidably always be present in the raw data
of dynamic studies and when it is not accounted for in the 4D
reconstruction process will give rise to model fit errors. In our
evaluation we saw that the adaptive algorithm attempted to
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Fig. 2. Average and standard deviation time curves of the liver and bladder
VOIs, for the comparison of 3D to 4D reconstruction results as well as 4D
reconstruction with residual modeling using different number of residual basis
functions.

Fig. 3. Average and standard deviation time curves of the dome of the liver
the whole liver and bladder VOIs, for the comparison of 4D reconstruction
with residual modeling with and without temporal filtering of residuals.

model residuals caused by respiratory motion, when the level
of complexity of the secondary model permitted that, even
though this was not its original intended use. As any tracer’s
kinetic processes are expected to be slower than variations due
to respiratory motion, pre-treatment of residuals with temporal
filtering in the residual model estimation step aided in averting
the adaptive model from fitting these motion induced differ-
ences while maintaining its capability of modelling kinetic
processes. In addition, temporal filtering also aided in reducing
the increase in noise from the use of the secondary model.

In this work we conclude that the use of the secondary
adaptive model based on PCA analysis can be a practical
solution to spectral analysis model fit errors, when added to

Fig. 4. Fraction map of Kj and modelled residuals gjf of the residual model
4D-ResidMod-3RBF-Tempfilt at iteration 75.

Fig. 5. Standard deviation of VOIs for regions in the whole-body, for all
evaluated reconstructions.

the generic 4D reconstruction algorithm used with whole body
dynamic data from new tracers. The combination of spatial
and temporal filtering in the treatment of residual data prior
to PCA analysis provided the optimal results in our tests, in
terms of algorithm selectivity and levels of added noise.
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