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Detecting the topological winding of superconducting nodes via Local Density of
States

Lena Engström,1, ∗ Pascal Simon,1 and Andrej Mesaros1

1Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France

Many systems are topologically trivial in the bulk, but still have non-trivial wavefunctions locally
in the Brillouin zone. For example, in a small-gap Dirac material the Berry curvature is strongly
peaked, but cancels over the full Brillouin zone, while in semimetals and in nodal superconductors
there may be a lower-dimensional winding topology associated to the nodes. Experimentally, it is dif-
ficult to directly observe such topology. We consider general bulk Hamiltonians with nodes and chiral
symmetry, extending to them the method developed in Dutreix et al. [Nature, 574(7777):219–222
(2019)], which in particular detected the winding around Dirac cones in graphene using charge mod-
ulations around an impurity. We apply our method to nodal superconductors in 2d, in presence of a
(non)magnetic impurity, measured by standard or spin-polarized STM tip. We derive general condi-
tions on the impurity scattering and on the STM tip, expressed in terms of their preference among
the two chiralities, for when the measurement near the impurity captures the winding difference
between any chosen pair of (Bogoliubon) Dirac cones. We emphasize the robustness of observing
vortices in momentum space, in contrast to dislocations in real space, in STM data. Testing the
conditions on the topological nodal superconductor proposed for monolayer NbSe2 under an in-plane
magnetic field, we find that spin-polarized STM on a magnetic impurity can detect the winding of
each of the 12 nodes. We conclude that a judicious choice of impurity can be a powerful tool to
determine topological quantities in 2d superconducting systems as well as any nodal chiral system.

I. INTRODUCTION

Even after a century of research of quantum physics,
we are still learning how its fundamental property of
linearity allows non-trivial information to be stored in
the phase of the complex wavefunction. Seminal papers
showed that the phase is indirectly observable in interfer-
ence phenomena, frequently using topological defects[1,
2]. In recent decades, symmetry protected topological
states in insulators demonstrated that the ground state
wavefunction’s phase can have topological invariants on
a compact parameter space, such as momentum or flux,
observable in quantized transport measurements[3, 4].
Similarly, gapless electronic states have been systemat-
ically classified[5–10] using gap-closing points as topo-
logical defects characterized by lower dimensional topo-
logical invariants, consistent with early observations[11].
In particular, topological nodal superconductors[12–17]
have been predicted in 2d systems, with lower dimen-
sional topological invariants being given by the winding
numbers of the nodal points[18]. Incidentally, detecting
the winding of a node would be a crucial step towards
understanding the superconducting state that arose from
combining the metal bandstructure with the pairing func-
tion. Hence, in gapless systems where quantized trans-
port and the bulk-edge correspondence are experimen-
tally elusive, an old challenge resurfaces: how to use in-
terference phenomena to reveal the wavefunction’s phase
and its topology, with a special interest to probe nodal
superconductors.

When impurities are introduced in 2d systems, the
quasiparticles will scatter of the impurities and form

∗ lena.engstrom@universite-paris-saclay.fr

quasiparticle interference (QPI) patterns in the local
(charge or spin) density of states (charge- or spin-LDOS),
which are the well-known Friedel oscillations in case of
charge density in metals[19–21]. The QPI, observed di-
rectly in Scanning Tunneling Spectroscopy (STS) mea-
surements, has proven to be a powerful tool to probe
the electronic structure. In 2019, Dutreix et al.[22] ex-
perimentally proved that in graphene, where the wave-
function phase has different winding numbers W±K at
the two Dirac cones at momenta ±K, the QPI at scat-
tering wavevectors connecting the two cones are Friedel
oscillations that themselves have a phase vortex with
winding ∆W = W+K −W−K , i.e., the real-space charge-
LDOS oscillations have a dislocation with Burgers vector
of length |∆W/2π|. Similarly, the winding of Friedel os-
cillations has been predicted in graphene systems[23–25]
as well as for spinors[26], and has been observed for non-
trivial magnetic textures[27, 28]. The power of impurity-
induced QPI to reveal the topology of semimetals has
therefore been established, but has not yet been applied
in the same manner to superconductors.

In superconductors, the situation is more complicated
since the relevant topology is that of the Bogoliubon
wavefunctions, which contain the original electron band
wavefunctions as well as the pairing function which has
its own complex phase. So far, the impurity-induced QPI
has been used to access features of the pairing function
symmetry in superconductors, including nodal ones[29–
36]. Nevertheless, it is quite challenging in practice to
extract from STS data the phase (sign) of the pairing
function along the Fermi surface of the underlying metal,
and requires assumptions about the metal bandstructure.

In this paper we want to focus instead directly on
the nodes of a 2d superconductor, and extract from the
charge/spin-LDOS at scattering wavevector ∆Kij con-
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necting nodes i and j the difference ∆Wij of Bogoli-
ubon wavefunction phase windings. Then all the wind-
ings follow since their total in the Brillouin zone must
vanish, and altogether they straightforwardly determine
the lower dimensional topological invariants in the Bril-
louin zone. First, we show that this program is theoreti-
cally possible for some type of impurity (with both poten-
tial and magnetic scattering) and some type of STM tip
(standard or spin-polarized), even with anisotropic nodal
Dirac cones. By assuming that the bulk system has chiral
symmetry that can protect the node winding numbers,
we derive general conditions on the physical impurity and
STM tip to observe the windings in LDOS. These condi-
tions essentially involve the preference between positive
and negative chirality states by the impurity and tip. In
the particular case of the proposed nodal Ising supercon-
ductivity in monolayer NbSe2 under an in-plane field[37–
40], we demonstrate that a magnetic impurity and spin-
polarized STM are necessary, although it is not crucial
to resolve the shortest ∆Kij and hence the STM fields-
of-view can be reasonably sized. We discuss in detail the
practicality of extracting the nodal windings from STM
data, emphasizing that vortices in momentum space are
more robust than dislocations in real space. Our main
results concern the case of nodal superconductors, but
can be used for any chiral system with linearly dispers-
ing nodes.

This article is organized as follows: In Section II
we derive a general expression for the impurity-induced
charge/spin-LDOS in terms of scattering between two
Dirac cones in the chiral basis. In Section III we find
the conditions for the nodal winding to appear as vor-
tices in the phase of LDOS oscillations, from which we
can directly predict if there exists a physical impurity
and/or a STM tip that can break the chiral symmetry
and make the difference of cone windings observable. We
derive these conditions for two general anisotropic Dirac
cones. In section IV we consider an example system, the
nodal topological superconductor predicted in monolayer
NbSe2 under an in-plane magnetic field. We show that
as a proof-of-concept we can find a choice of combination
of magnetic impurity and magnetic STM tip for which
the winding difference can be observed in the LDOS.

II. IMPURITY-INDUCED LDOS IN PRESENCE
OF CHIRALITY

A. Bulk propagator with chirality and windings

Consider a 2d system with a node, i.e., a point where
two bands touch in the Brillouin zone. The nodal wind-
ing number, i.e., the winding number on a 1d momen-
tum path around the node, is a lower dimensional Z in-
variant that will be protected by chiral symmetry, al-
though it may be protected by other specific symme-
tries too. We hence focus on any system, semimetal
or nodal superconductor, with chiral symmetry Γ that

anticommutes with the bulk single-particle Hamiltonian
H(k) (Bogoliubov-de Gennes in case of superconduc-
tors), {Γ, H(k)} = 0, where k is the 2d momentum in the
first Brillouin zone. Assuming an even number of bands
labeled by α = 1 . . . 2N , and bands which are gapped at
any momentum k away from the nodes, there are chiral
pairs of eigenstates with opposite energy:

H(k)|k, α⟩ = Eα(k)|k, α⟩, (1)

H(k)Γ|k, α⟩ = −Eα(k)Γ|k, α⟩. (2)

For a chiral Hamiltonian there are two orthogonal N -
dimensional subspaces of states with opposite chirality,
namely,

Γ|An(k)⟩ = +|An(k)⟩ (3)

Γ|Bn(k)⟩ = −|Bn(k)⟩, (4)

with n = 1 . . . N . We obtain the |An(k)⟩ as the non-zero

vectors in the set of projected vectors |k,α⟩+Γ|k,α⟩
2 , and

the |Bn(k)⟩ from |k,α⟩−Γ|k,α⟩
2 . In many systems including

graphene, the chirality comes from having two sublattices
labeled A and B, but we don’t assume that here, our
chirality could have any physical origin.

In the chiral basis {|A1(k)⟩ . . . |AN (k)⟩,
|B1(k)⟩ . . . |BN (k)⟩} the Hamiltonian is off-diagonal:

H(k) =

(
0 Q(k)

Q†(k) 0

)
, (5)

while the Q(k) can be made diagonal for non-degenerate
bands:

Q(k) =


E1(k)e

iθ1(k) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 EN (k)eiθN (k)

 , (6)

showing explicitly how the Q(k) matrix contains the
band energies, and all the winding topology encoded in
the phases θn(k). More precisely, the winding along some
path C around a nodal point in the BZ is given by the
phase winding of the eigenvalues ξn(k) = En(k)e

iθn(k),
as

W =

N∑
n=1

Wn, Wn =
1

2πi

∮
C
dk · ∇kθn(k). (7)

In the following, we will use a chiral basis such that
{|An⟩} diagonalizes the Q-matrix. This entails impor-
tant technical points, namely the uniqueness of Q and
orthogonality of the basis, all of which we discuss in Ap-
pendix C 1. Using the chiral basis the bare Green’s func-
tion therefore has the simplified form in which the phases
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appear explicitly:

G(0)(k, ω) =
∑
Eα<0

[ |k, α⟩⟨k, α|
ω − Eα(k)

+
Γ|k, α⟩⟨k, α|Γ†

ω + Eα(k)

]
=

=

N∑
n=1

[ ω

ω2 − E2
n

(|An⟩⟨An|+ |Bn⟩⟨Bn|)+

+
En

ω2 − E2
n

(
eiθn |An⟩⟨Bn|+ e−iθn |Bn⟩⟨An|

) ]
, (8)

where in the last equality we dropped the k dependence
of An, Bn, En, and θn for brevity.

B. Linearization of dispersion around a node

The next step in simplification of the bulk Green’s
function in Eq. (8) is to expand the band dispersion
around each node. We assume that for any chosen nodal
point, say at wavevector Ki, only one band (n = 1) has
a linear dispersion, while all other bands n ̸= 1 are sepa-
rated by a sufficiently large gap in the considered range of
small momenta q, i.e., En ̸=1,i(Ki + q) ≥ ∆En ≫ vKi

· q.
Hence as we discuss a single node in this subsection, all
quantities En, An, Bn, θn will be assumed to have the
fixed label n = 1. Firstly, the linearized band energy
becomes:

E1,i(Ki + q) = vKi · q = vKi(θq)q (9)

=
√
(v⊥,Ki

q⊥)2 + (v∥,Ki
q∥)2,

where for this node at Ki we defined the velocity in the
directions parallel and perpendicular to the normal state
Fermi surface as v⊥,Ki

q⊥,Ki
= v⊥,Ki

q cos(wKi
θq + ϕi)

and v∥,Ki
q∥,Ki

= v∥,Ki
q sin(wKi

θq + ϕi). The constant
phase ϕi determines the orientation of the Fermi surface
in regards to the axes of the Brillouin zone and wKi

is an
integer, while q, θq are the polar coordinates of the small
vector q.
A potentially important factor for the scattering be-

tween nodes, to be discussed in the next subsection, is the
anisotropy of the energy cone. In a superconductor the
node is expected to be highly anisotropic, v⊥,Ki > v∥,Ki

,
due to the differing energy scales of bandwidth and su-
perconducting pairing. The effect of anisotropy on our
calculations is considered further in Appendix A. We find
that our conclusions about LDOS, derived later, remain
valid if we simply ignore the angular dependence of the
Fermi velocity, i.e., if in Eq. (9) we drop the dependence
on the angle θq:

vKi
(θq) =

√
v2⊥,Ki

cos2(ϕi,w(θq)) + v2∥,Ki
sin2(ϕi,w(θq))

(10)

≈
√
v2⊥,Ki

+ v2∥,Ki
≡ vKi .

where for brevity we introduced ϕi,w(θq) ≡ wKi
θq + ϕi,

and the effective isotropic velocity vKi
.

If the eigenvalue of the Q-matrix that describes the
cone (n = 1) for momenta k = Ki + q is labeled as
ξKi

(q), its complex phase θKi
(q) is now

eiθKi
(q) =

ξKi
(q)

EKi(q)
≈ v⊥,Ki

q⊥,Ki
+ iv∥,Ki

q∥,Ki

vKiq
⇒

θKi
(q) = arctan

(
v∥,Ki

v⊥,Ki

tan(wKi
θq + ϕi)

)
. (11)

Hence, according to Eq. (7), for the cone the chiral wind-
ing equals the introduced integer,

WKi
≡ Wn=1 = wKi

. (12)

We finally arrive at the real-space Green’s function,
which is the inverse Fourier transform of the Green’s
function in Eq. (8) evaluated for a cone at the node Ki.
Anticipating the presence of point impurity, we use polar
coordinates in real space r, with polar angle θr. To pro-
ceed analytically in the study of low-energy properties
we now project the Green’s function into the low-energy
cone subspace (n = 1), and discuss the validity of that
projection in Appendix C 1. Hence we consider only the
four matrix elements in the basis A ≡ An=1, B ≡ Bn=1:

gAA(Ki, r, ω) =

∫
d2q

(2π)2
ei(Ki+q)·r ω

ω2 − (vKi
q)2

(13)

≈ −ωeiKi·r

(2vKi
)2
iH0

(
ωr

vKi

)
≡ g0(Ki, r, ω),

gAB(Ki, r, ω) =

∫
d2q

(2π)2
ei(Ki+q)·r vKi

qeiθKi
(q)

ω2 − (vKiq)
2

(14)

≈ −ωeiKi·r

(2vKi
)2
H1

(
ωr

vKi

)
eiθKi

(r)

≡ g1(Ki, r, ω)e
iθKi

(r),

θKi(r) ≡ arctan

(
v∥,Ki

v⊥,Ki

tan(WKiθr + ϕi)

)
, (15)

where we find that the possible winding of the complex
phase θKi

(q) with node angle θq (Eq. (11)) translates into
the winding of phase θKi

(r) of the off-diagonal propaga-
tor with real-space polar angle θr. In the integration we
once again used the approximation of an isotropic dis-
persion of the node En=1(q) = En=1(q). Using the full
anisotropy of cone only gives us small corrections, see
Appendix A 1.
The real-space Green’s function as operator in the

single-particle Hilbert space becomes

G
(0)
Ki

(r, ω) = (16)

= g0(Ki, r, ω) (|AKi
⟩⟨AKi

|+ |BKi
⟩⟨BKi

|)
+ g1(Ki, r, ω)

(
eiθKi

(r)|AKi
⟩⟨BKi

|

+e−iθKi
(r)|BKi

⟩⟨AKi
|
)
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where the states |AKi
⟩, |BKi

⟩ are the ones with n = 1 and
evaluated at Ki. The phase θKi

(r) now depends directly
on the real-space polar angle θr around the origin of r as
given by Eq. (15), with WKi

the chiral winding number
of the cone.

C. Scattering between two nodes

Now we will use the above expression Eq. (16) for the
linearized bulk Green’s function to calculate within the
T -matrix approach the modulations in the LDOS con-
tributed by scattering between two specific nodes i, j that
are separated by ∆Kij = Ki −Kj :

δρ(∆Kij , r, ω) ≈ (17)

− Im
[
Tr
[
M̂Ĝ(0)(Ki, r, ω)T̂ (ω)Ĝ

(0)(Kj ,−r, ω)
]]

,

where M̂ is a constant matrix representing the effect of
the STM tip. We consider non-superconducting tips,
hence M̂ projects onto the electron component of the
Bogoliubov-de Gennes Hilbert space; further, if the tip
is magnetized along the α = x, y, z direction, the M̂
projects onto the the α-spin direction, making the δρ
a spin-α-LDOS instead of a charge-LDOS. To first or-
der in impurity strength, we can approximate the T -
matrix as the bare impurity potential matrix T̂ (ω) = V̂ ,

although our method and conclusions about vortices in
LDOS could easily be extended to all orders in V̂ .

III. CONDITIONS FOR OBSERVING IN
REAL-SPACE LDOS THE NODE WINDING

A. Choice of impurities and tips

In this paper we restrict to STM tips M̂ and impurity
potentials V̂ that preserve the chiral symmetry which we
assumed for the bulk system. Focusing on two particular
nodes, we seek conditions under which the difference of
their phase windings would be observable in charge/spin-
LDOS δρ of Eq. (17). It turns out that such an analysis is
significantly simplified by utilizing the following restric-
tions on the tip and impurity, which we do in the rest
of the paper: ⟨AKi |V̂ |BKj ⟩ = 0, and ⟨AKi |M̂ |BKj ⟩ = 0.
These restrictions are automatically satisfied for an im-
purity and tip that preserve the chiral symmetry (see
Appendix B for details), but we note that they may be
satisfied in some more general cases too.

B. Dislocations in real-space LDOS

The charge/spin-LDOS contribution from scattering
between nodes i and j, Eq. (17) now takes two useful
simplified forms:

δρ(∆Kij , r, ω) = −Im
[
g0(Ki, r, ω)g0(Kj ,−r, ω) (MAVA +MBVB)+ (18)

+ g1(Ki, r, ω)g1(Kj ,−r, ω)
(
MAVBe

i∆θij(θr) +MBVAe
−i∆θij(θr)

) ]
=

= I0(r, ω) cos(∆Kij · r)+ (19)

+ I∆(r, ω) cos(∆Kij · r +∆θij(θr)) + I−∆(r, ω) cos (∆Kij · r −∆θij(θr)) ,

where the non-zero scattering amplitudes are labeled by

MA ≡ ⟨AKi |M̂ |AKj ⟩ · |⟨AKj |AKi⟩|2, (20)

MB ≡ ⟨BKi |M̂ |BKj ⟩ · |⟨BKj |BKi⟩|2, (21)

VA ≡ ⟨AKi
|V̂ |AKj

⟩, (22)

VB ≡ ⟨BKi
|V̂ |BKj

⟩, (23)

while the phase difference ∆θij(θr) ≡ θKi
(θr) − θKj

(θr)
encodes the difference of windings in the two nodes (see
Eq. (15)). The first form of the LDOS, Eq. (18), empha-
sizes that the winding difference appears due to scatter-
ing between A and B states (note, the function g1 ∼ gAB ,
see Eq. (14)).

The key observable effects are emphasized in the sec-
ond form of LDOS, Eq. (19). It separates out the terms
anisotropic in real space, i.e., θr-dependent terms, which

also carry the dependence on winding difference ∆θij(θr)
and are weighted by some isotropic functions I0, I∆, I−∆,
whose explicit form will be given later. The impor-
tant point is that a non-trivial difference of winding in
the cones WKi

̸= WKj
will force the phase function

∆θij(θr) to wind ∆W ≡ WKi
− WKj

times around the
origin, according to Eq. (15). Then an isolated term
cos(∆Kij · r ±∆θij(θr)), such as the ones appearing in
the LDOS in the second line of Eq. (19), will represent
a dislocation of strength ±∆W in the oscillations from
scattering wavevector ∆Kij , i.e., it will have a Burgers

vector bij = ∆W
∆Kij

|∆Kij |
2π

|∆Kij | while oscillating with pe-

riod 2π
|∆Kij | along

∆Kij

|∆Kij | .

Whether the dislocations will be observable in the
LDOS δρ(∆Kij , r, ω) of Eq. (19) depends on whether
the ideal oscillations in the first line mask the dislocated
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oscillations in the second line in their coherent superpo- sition. To resolve this question, we express the LDOS
using a complex field[41] as

δρ(∆Kij , r, ω) = Re
[
ϱ(r)eiφr

]
, (24)

φr ≡ ∆Kij · r +Arg
[
I0(r, ω) + I∆(r, ω)e

i∆θij(θr) + I−∆(r, ω)e
−i∆θij(θr)

]
. (25)

It is obvious that at fixed r, ω the LDOS will exhibit
an enclosed dislocation charge whose strength equals the
number of times that the function Arg[. . .] in Eq. (25)
winds around the origin. Formally, given a circle Cr
around the impurity which is located at r = 0, the topo-
logical strength of the enclosed dislocations in the LDOS
is given by the winding of φr:

Wδρ,∆Kij
(r) =

1

2π

∮
Cr

dr′ · ∇r′φr′ . (26)

As all Ii(r, ω), i ∈ {0,∆,−∆} are real-valued we
can write down the conditions for having a non-zero
Wδρ,∆Kij

(r) as

||I∆(r, ω)|+ |I−∆(r, ω)|| > |I0(r, ω)|, (27)

|I∆(r, ω)| ≠ |I−∆(r, ω)|. (28)

For a scattering for which these conditions are met and
|I∆(r, ω)| ≷ |I−∆(r, ω)|, the

Wδρ,∆Kij
(r) = ±∆W, (29)

with ∆W ≡ WKi −WKj .
The conditions for observing a dislocation in the

LDOS, Eq. (27), are effectively conditions on the impu-
rity and tip, which we spell out in the next subsection,
finding that the main requirement is to have chirality-
selective scattering.

C. Conditions on the impurity and tip for
dislocations in LDOS

Our goal is to make the conditions in Eq. (27) explicit
in terms of the impurity and tip, for which we first show
the forms of the functions Ii first defined in Eq. (24):

I0(r, ω) = h0(r, ω) (χMχV + 1) (30)

I∆(r, ω) = h1(r, ω)χM

I−∆(r, ω) = h1(r, ω)χV ,

where we introduced the real-space functions encoding
the bulk propagation:

h0(r, ω) = −MBVB
ω2

(2vF )4
Im

[
H2

0

(
ωr

vF

)]
(31)

h1(r, ω) = MBVB
ω2

(2vF )4
Im

[
H2

1

(
ωr

vF

)]
,

and we defined two key quantities characterizing the tip
and the impurity, respectively:

χ
(i,j)
M ≡ MA

MB
=

⟨AKi |M̂ |AKj ⟩|⟨AKj |AKi⟩|2
⟨BKi

|M̂ |BKj
⟩|⟨BKj

|BKi
⟩|2

, (32)

χ
(i,j)
V ≡ VA

VB
=

⟨AKi
|V̂ |AKj

⟩
⟨BKi |V̂ |BKj ⟩

. (33)

The χ
(i,j)
M (χ

(i,j)
V ), labeled by the ordered pair (i, j) of

nodes, is a complex number independent of position
and energy, and it characterizes, within the approxima-
tion of isotropic conical dispersions around nodes i, j,
the amount by which the tip(impurity) preferentially se-

lects(scatters) A over B states. We may call χ
(i,j)
M/V the

”chirality preference” of eigenstates with chiral eigen-
value +1 over ones with −1.
The two conditions for observing a dislocation in the

LDOS, Eq. (27), are fully expressed in terms of the func-
tions h0/1 and the chirality preferences χM/V (we drop
the index (i, j) for brevity), as they become:

|h1(r, ω)(χM + χV )| > |h0(r, ω) (χMχV + 1) | (34a)

|h1(r, ω)(χM − χV )| > 0. (34b)

Rewriting again the LDOS from Eq. (19) using the
newly introduced quantities,

δρ(∆Kij , r, ω) = h0(r, ω)Re
[
(χMχV + 1) ei∆Kij ·r

]
+

(35)

+h1(r, ω)Re
[(

χMei∆θij(r) + χV e
−i∆θij(r)

)
ei∆Kij ·r

]
,

it becomes clear why the second condition for observing
the dislocation, Eq. (34b) is simply

χ
(i,j)
M ̸= ±χ

(i,j)
V . (36)

We can also see that if the total dislocation charge con-
tained in a circle of radius r is non-zero, then it is

Wδρ,∆Kij (r) = ±∆W for |χ(i,j)
M | ≷ |χ(i,j)

V |. (37)

In the next subsection we illustrate the above main
conclusions on three specific models.
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FIG. 1. Example system for two isotropic Dirac cones and a combination of impurity and STM tip which has χM = 0, χV = 1.
a) Dispersion with two nodes of opposite winding. The two nodes need not to be located on the same FS or at any particular
point in the BZ. b) LDOS calculated for ∆K12 =

√
2πŷ and the winding given in (a), θKj = −θKi = θr, at ω/v = 0.1

√
2.

Dislocations in the wavefronts are marked by an ”x”. The winding conditions, Eq. (27), are satisfied in blue annuli around
the impurity site r = 0. In these annuli a dislocation charge Wδρ,∆Kij (r) = −Wδρ = −2 is enclosed. The total dislocation
charge is dissociated into two −1 dislocations near the impurity, and other dislocations appear, discussed in Section III E. c)
The phase of Fourier transform of the LDOS in (b). Around the points ±∆K12 the phase has a winding ∓2π∆W = ∓4π, see
Section III E.

D. The main conclusions illustrated on three
example systems

We pick three example which illustrate, respectively, a
generic situation, a known system where ∆W is detected
by LDOS dislocations, and a superconducting system in
which realistic impurities cannot provide chiral-selective
scattering which would make ∆W observable in LDOS
dislocations.

1. A toy model of two cones

In Fig. 1a we sketch a generic model dispersion with
only two nodes (i = 1, 2) with equal linear dispersions,
having windings W1/2 = ±1, and located at a distance
∆K12 in momentum space. We then assume an impu-

rity with χ
(1,2)
V = 1 (scatters the AK1

state to AK2
with

equal probability as it does BK1
to BK2

), and a tip with

χ
(1,2)
M = 0 (scatters the AK1 state only to BK2). The

resulting annuli for which the conditions Eq. (34) are
satisfied are shaded blue in Fig. 1b. We see that the dif-
ference of windings in the cones, ∆W = +2, is visible
as the dislocation charge Wδρ,∆K12

(r) = −2 in LDOS in
the smallest annulus R1 < r < R2, and in further annuli,
but not in the disk centered on the impurity at r = 0.
Effectively, the total charge −2 dislocation is dissociated
into two +1 ones positioned at ±R1x̂ away from the im-
purity. Further two +1 dislocations appear at ±R2ŷ and
ensure a vanishing total dislocation charge for circles in
the annulus R2 < r < R3, and so on.

In Fig. 1c the winding difference ∆W between the two
Dirac cones appears as a vortex of strength −2 in the
phase of the Fourier transform of the LDOS, located at

the scattering vector ∆K12, as expected from the phase
winding of the Green’s function in Eq. (14). Note, by
reality of δρ, the phase of Fourier transform is inversion-
symmetric around the origin of momentum space, so an
anti-vortex appears at ∆K12).
In Section III E we discuss in detail the robustness and

topology of both the dislocations in real space and the
vortices in Fourier space.

2. Adatom on graphene

The two Dirac cones in graphene have a chiral basis
corresponding to the two sublattices A/B in the unit cell.
An ideal impurity such as adatom that scatters only in
B (meaning that VA = 0), and with a tip that couples
equally to A and B states, gives us χM = 1 and χV = 0.
Hence this system is a realization of our previous toy
model, with the difference that the values of χM = 0 and
χV = 1 are exchanged. According to the LDOS form in
Eq. (35), this amounts to changing the sign of the phase
∆θij(r), i.e., to a change of sign of the non-zero disloca-
tion charge, Wδρ,∆Kij (r) = +∆W = +2, equivalent to
a mirroring of the x-axis. This is in accord with the re-
sults of Ref. 22, where conditions equivalent to Eq. (27)
(without explicit use of chiral symmetry) for an adatom
in graphene showed a dissociated dislocation of charge +2
near the impurity, at least when the LDOS is integrated
in a range of energies ω.

3. Nodal one-band d-wave superconductor

One example of a system where we cannot find a
chirality-selective scattering that can make the ∆W ap-
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parent in a dislocation in LDOS, is the case of nodes of
a one-band d-wave superconductor[42, 43]. Around each
node there is a winding number given by the winding
of the eigenvalues of the Q-matrix: ξk,± = ϵk ± i∆k ≈
vF q⊥ ± iv∆q∥. As is typical for superconducting nodes,
the chiral basis is a mix between particle and hole degrees
of freedom. For this model the chiral states are |A+⟩ =
1√
2
(−ick,↑−c†−k,↓)|0⟩, |B+⟩ = 1√

2
(−ick,↑+c†−k,↓)|0⟩. The

only type of impurity scattering that can favor one of
these states over the other needs to scatter particles into
holes. For all physical impurities considered (see sec-
tion IV), it is only possible to get χM = ±1 and χV = ±1,
and hence there is no dislocation charge in LDOS at any
r. Thus, for a simple d-wave superconductor model there
is no chirality-selective impurity scattering which would
allow us to observe the node windings through the LDOS.

E. Robust experimental observable: dislocation vs.
vortex

The question arises if a dislocation charge Wδρ,∆Kij (r)
that depends on the radius r of the enclosed disk (due
to other dislocations appearing at certain distances from
the impurity, see Fig. 1b), has true topological meaning
and experimental robustness.

We start by noting that the outlined behavior is
generic, as all the functions Ii(r, ω) (or equivalently the
hi(r, ω), see Eq. (25) or Eq. (35)) are themselves oscilla-
tory, hence the conditions Eq. (27) (or Eq. (34)) are satis-
fied a priori only in some segments of the r-axis. Hence,
only paths contained in some annuli centered on the im-
purity enclose a non-trivial total dislocation charge, be-
cause further dislocations are located at the boundaries
between the annuli.[44]

Non-essential corrections to the generic behavior come
from at least two sources. First, in Appendix A 2 we go
into further details about how the annuli are deformed
due to an anisotropy of cones. Second, from the form in
Eq. (35) we can understand that a dislocation would take
an idealized shape in real space, i.e., the phase function
φr would simply be proportional to the polar angle θr,

when χ
(i,j)
V = 0 or χ

(i,j)
M = ∞ (for a dislocation with

charge +∆W ) or when χ
(i,j)
V = ∞ or χ

(i,j)
M = 0 (for a

dislocation with charge −∆W ). These limits correspond
to the tip or the impurity entirely preferring states of one
given chirality (Appendix B). In Appendix A2 we also
go into further details about how the complex phase of
quantities χM/V affects the distribution of annuli regions.

An essential theoretical question is whether the total
dislocation charge Wδρ,∆Kij

(r), measured infinitely far
away (by a circle with radius r → ∞), is well-defined,
and if it is, what is its value. In the generic example
illustrated by Fig. 1, the Wδρ,∆Kij

(r) keeps oscillating
between −2 and 0 with increasing r. A recent work[45]
studied the LDOS around a vacancy in graphene, noting
that a dislocation in LDOS is also found on this type of

defect, but the dislocation chargeWδρ,∆Kij
(r) = const as

this impurity is never compensated by other dislocations
at larger r. This special effect is allowed due to the fact
that the vacancy has no associated energy scale, and it
has a deeper topological nature than the system with
adatom.[46]
The essential experimental questions are tied to reso-

lution and noise. Noise and the presence of other nearby
imperfections always limits the range r < rcut of usable
LDOS signal. That could make the earlier theoretical
question about r → ∞ moot. The question becomes
rather what the real-space resolution is within the finite
window set by rcut. If the total dislocation charge for all
r < rcut is constant, that should lead to a robust experi-
mental observation of the dislocations in LDOS. If on the
other hand there are oscillations in Wδρ,∆Kij

(r ≤ rcut),
the multiple dislocations might not be distinguished, and
their charges might be partially added, if the resolution
is too low compared to the width of the annuli. The in-
terpretation of the real-space LDOS might hence become
difficult, but it could be helped by tuning the measure-
ment voltage V of STM, or even integrating in a range of
V , since oscillations in hi(r, ω ≡ eV ) are on the length-
scale of order ℏvF /(eV ).
A complementary key question is the robustness of ob-

servation of ∆W using momentum space, and we find
that it can unfold quite distinctly from observation in real
space. In the simple case of Fig. 1 we already see that a
complicated pattern of dislocations in real space (panel
(a)) produces one simple vortex at ∆K12 in momentum
space. We find that a vortex in momentum space is a
more robust observation than dislocations in real space
in various simple tight-binding models on finite system
sizes. A simple argument to explain this behavior fol-
lows: first, as already clear from Eq. (14), a single dis-
location of charge b in real space LDOS, e.g., a phase
φ(r) = bθr in Eq. (24), corresponds to a simple vortex in
the Fourier transform F (k) centered at ∆Kij , namely,
F (∆Kij + q) ≈ exp(ibθq). Now, if there are multiple
dislocations with charges bα at real-space positions Rα

within a field of view (FOV) set by the size rFOV ≤ rcut,
we should observe:

F (∆Kij+q) ≈
∑
α

fα exp(i∆Kij ·Rα) exp(ibαθq), (38)

where we used functions fα to absorb effects of differ-
ent amplitude variations, core shapes, and local phases,
of each dislocation. Hence in momentum space we still
have a single vortex at ∆Kij , whose vorticity is the total
dislocation charge within rFOV , namely vtot(∆Kij) =∑

α bα = btot(∆Kij , rFOV ) = Wδρ,∆Kij
(rFOV ), at least

for a generic set of fα. Yet, a vorticity of a single vortex
(in momentum space) is typically a much easier measure-
ment than the total dislocation charge (in real-space) in
a large disk of size rFOV .
A key practical question is therefore the resolution in

momentum space. Namely, inherent in the definition
of Wδρ,∆Kij

(r) is a filtering of momenta near ∆Kij ,
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or alternatively, one needs a measurement of vorticity
vtot(∆Kij) surrounding ∆Kij . If two different ∆Kij

are at distance of order 1/a (e.g., if they are near the
BZ edges), then there will be of order rFOV /a pixels
separating them, where a is the lattice parameter. This
suggests that even though the resonant wavefunctions de-
cay slowly as power-law (see e.g. Eq. (31)), it suffices to
observe only of order 10 unit-cells to detect a non-zero
vorticity vtot(∆Kij). This result is in accord with pre-
vious work, and with our tight-binding modeling.

IV. APPLICATION: NODAL
SUPERCONDUCTOR IN NBSE2

As an application of our general theory we have cal-
culated the LDOS for the nodal phase predicted to arise
in the monolayer Ising superconductor NbSe2 under an
in-plane magnetic field[37–40]. As shown in Fig. 2a,
this superconducting state has a 6-fold symmetry and
12 nodes[47], each with a winding W = ±1. For this sys-
tem, it is possible to select a preference for the chirality
by choosing a magnetic impurity oriented along the field
and a magnetic STM tip oriented in-plane, with compo-
nents both parallel and perpendicular to the field.

Using the same model as in Ref. [39], the BdG Hamil-

tonian defined in the basis {ck,↑, ck,↓, c†−k,↑, c
†
−k,↓} is:

Hk = ϵkσ0 ⊗ τz + λkσz ⊗ τ0 + hσx ⊗ τz +∆σy ⊗ τy
(39)

where σi and τi, i = 0, x, y, z, are Pauli matrices in the
spin and particle-hole space, respectively. ∆ is a real
constant representing s-wave singlet pairing. We only
consider the Γ-pocket of NbSe2, and hence value of ∆ is
the effective pairing on that pocket. Note that for other
pairing symmetries the nodal winding would disappear in
the model. We also take ϵk = (k2x + k2y)/2m− µ, and an

Ising spin-orbit coupling with 3-fold rotational symmetry
λk = λ(k3x − 3kxk

2
y). In the following calculations we

have chosen µ = 0.25 after fixing the energy scale by
setting m = 1, and fixing the length scale by introducing
a lattice regularization with lattice parameter a = 1 and
a hopping energy t set by the low energy limit to be
ta2 = m−1.

In the normal state the Γ-pocket is formed by two
Fermi surfaces, an inner and outer one, while in the su-
perconducting state with ∆

h < 1 each Fermi surface is
reduced to 6 nodal points laying on the symmetry lines
along which λk = 0 (see Fig. 2a). As shown in Fig. 3a, the
4 superconductor Bogoliubov bands (including the neg-
ative particle-hole transformed ones) are ±Eα = ±|ξα|,
where

ξα,k =
ϵkh√

h2 −∆2
+ α

√
h2 − (∆− iλk)

2
+

ϵ2k∆
2

h2 −∆2

(40)
are the eigenvalues of the 2×2 Q-matrix, while the index
α = ±1. The choice of basis for the Q-matrix of Eq. (6)
was made here, using the chirality operator which in our
basis equals Γ = σx ⊗ τy. If we label by β = +1(−1) a
particular node Ki that is on the outer(inner) Fermi sur-
face, then the linearized dispersion expanded around that
node, ϵk ≈ −β

√
h2 −∆2+vF,Ki

q⊥ and λk ≈ vλ,Ki
q∥, re-

sults in

ξα,β,Ki
(q) ≈ βh− αh+

h2 − βα∆2

h
√
h2 −∆2

vF,Ki
q⊥ (41)

−αi
∆

h
vλ,Ki

q∥

Out of the 4 bands at a given node labeled by β, the two
that form the cone, i.e., the two bands that we labeled
in previous sections as ±En=1, are the two which have
α = β (see Fig. 3a).
More precisely, around a nodal point the linearized dis-

persion is

|En=1(Ki + q)| ≈

√√√√(1− (∆

h

)2
)
(vF,Kiq⊥,Ki)

2 +

(
∆

h

)2

(vλ,Kiq∥,Ki
)2 = vKi,θqq (42)

where vF,Ki
= ∂ϵk

∂k⊥

∣∣∣
k=Ki

and vλ,Ki
= ∂λk

∂k∥

∣∣∣
k=Ki

. The

other two bands ±En=2 are separated by a gap 2h. A
large field therefore strengthens the isolated-cone approx-
imation (i.e, neglecting n = 2) close to a nodal point.
However, the concurrent lowering of the ratio ∆

h leads
to a larger anisotropy of the nodes. For example, for
the node at (kx, ky) = (0, k0y,−) on the inner FS, the
parameters as chosen in Fig. 2 give a cone anisotropy
|v∥|/|v⊥| ≈ 0.3.

We now consider the winding around the nodes. We
find that as long as the condition |v⊥,Ki | q < 2h is sat-
isfied, the gapped band (n = 2, coming from α ̸= β in
Eq. 41) does not contribute to the winding, Wn=2 = 0.
Note that above we already restricted q to the same order
so as to energetically separate the nodal band from the
gapped band. The ξα,β,Ki

(q) actually gives Wn=2 = 0
and Wn=1 = ±1. The total winding around a node Ki

on the outer/inner Fermi surface (β = ±1) is thus Wβ =∑
n=1,2 Wn,β =

∑
α Wα,β = Wn=1 = Wβ,β ∈ {+1,−1}.
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FIG. 2. Nodal windings in the example of superconductor NbSe2 under an in-plane field. All panels use the values λ = 0.15,
h = 0.06, ∆ = 0.02, ω = 0.01. a) Superconducting nodes labeled by their winding W = ±1 (white/black dots) are shown on
top of the two normal-state Γ-pockets (inner, dashed line; outer, full line). Up to 3-fold rotation symmetry, the different types
of scattering vectors, and the associated nodal winding differences, are: intra-inner, intra-outer, inter-∆W = −2, 0,+2. b) All
possible non-zero scattering vectors ∆Kij , for the choice of impurity Vx and STM tip Mx = 0.1My as in section IVA. Color
coding corresponds to the different types of scatterings giving different winding differences ∆Wij , as in panel (a). c) Complex
phase of the Fourier transform of the LDOS. The inset shows that two adjacent scattering vectors have the same phase winding
(vorticity). The information of topological winding difference between superconducting nodes can thus be extracted directly
from the LDOS data.

In Fig. 3b a parameterized plot is shown for the complex
eigenvalues ξα,β,k, clearly showing that at two adjacent
nodes, one on the inner and one on the outer pocket, the
winding is opposite.

A. Choice of impurity and STM tip

The winding conditions (e.g., Eq. (34)) are defined for
one specific pair of nodes (i, j) and their resulting scat-
tering vector ∆Kij . In most nodal superconductors, at
least due to lattice symmetries, there will be more than
two nodes, and multiple scattering vectors. One may
focus on a single particular scattering vector ∆K, e.g.,
the longest one which produces most wavefronts in real
space, yet even then multiple different pairs of nodes
(ia, ja) can have this same resulting scattering vector,
∆Kia,ja = ∆K. One hence needs to be mindful not to
choose an impurity which leads to a canceling of these
contributions for a given ∆K.
In our particular model of nodal NbSe2, the chiral basis

|AKi,β⟩, |BKi,β⟩ turns out to be exactly the same for
all Ki with the same β (see Appendix C 1). We thus
only need to find one combination of impurity and tip
that fulfills the winding conditions, and a given scattering
vector will get all its contributions from different node
pairs simply added up.

The possible impurities, non-magnetic and magnetic,
are V̂0 = σ0 ⊗ τz, V̂x = σx ⊗ τ0, V̂y = σy ⊗ τz, and

V̂z = σz ⊗ τ0, while all tips, normal and spin-polarized,
are given by M̂i = σi⊗ τ0+τz

2 , i = 0, x, y, z. For two points
on that same inner (β = −1) or outer (β = +1) Fermi
surface, we have contributions from only these non-zero

overlaps (see Appendix C 2):

⟨Aβ |V̂x|Aβ⟩ = ⟨Bβ |V̂x|Bβ⟩ = ±
√

1− ∆2

h2
(43)

⟨Aβ |V̂y|Aβ⟩ = −⟨Bβ |V̂y|Bβ⟩ = −∆

h
, (44)

where also for the tip we get MA/B = VA/B/2.
We find that a non-trivial signal of winding in the

LDOS is possible when choosing a magnetic impurity and
a spin-polarized tip. We focus on the choice of both be-
ing magnetized in the plane as the magnetic field, and
hence orthogonal to the spin-orbit vector. Then with-
out further loss of generality we may take V̂ = V V̂x and
M̂ = MxM̂x+MyM̂y, finding that the impurity does not
have a chirality preference, but the tip does,

χββ
V = 1, χββ

M =
βMx

√
1− ∆2

h2 −My
∆
h

βMx

√
1− ∆2

h2 +My
∆
h

. (45)

As long as Mx ̸= 0 and My ̸= 0, the scattering within
the inner pocket favors B-state scattering while the outer
pocket favors A-state scattering. For two nodes on dif-
ferent pockets, there is no scattering, within the energy
range considered, for this choice of impurity.

B. Vortices in analytical prediction and in
simulation of experimental data

We use the analytical expression for the LDOS
Eq. (35), with the chirality ratios given in Eq. (45) to
calculate the spin-LDOS as defined by the choice of tip.
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FIG. 3. Two adjacent nodes and their non-trivial wind-
ing. The left panel shows a cut through momentum space
on which the four bands produce two adjacent linearized
nodes Kβ=±1 located on, respectively, the outer and inner
normal-state Γ-pocket. The vertical dashed line separates
the momentum space into the low-energy domains of the two
nodes. The windings are found by knowing that the cone
±En=1 = ±|ξα,β | is obtained for the node β by setting α = β.
The right panel shows the path of the complex eigenvalue ξβ,β
of the Q-matrix, and the resulting winding Wβ , as θq winds
once around a node. For the presented node pair the veloci-
ties vF,Ki are positive while vλ,Ki are negative, but if either
changes sign so does the winding of both nodes.

As our nodes are anisotropic the full expressions used
are given by Eq. (A6) in Appendix A2, which take the
anisotropy into account. To stay in the low energy limit,
we require ω < h, and given our dimensionless units in
which H ≈ 10T corresponds to h ≈ 0.6meV, we thus
have ω ≤ 1meV.

The resulting pattern of scattering vectors ∆Kij , and
the vortices they introduce in momentum space are
shown in Fig. 2b,c. In particular, for each FS there are
3 fundamental scattering vectors, connecting nodes with
∆W = −2, 0,+2, and these vectors generate all by ro-
tation symmetry. By considering paths encircling each
scattering vector in Fig. 2c, we can see that the phase
winding (vorticity) indeed corresponds to the winding
difference of cones, presented in Fig. 2b. Dislocations
are also present in the real-space LDOS.

We now consider if experiments could extract the nodal
windings in this system. As discussed at the end of
Sec. III E, to quantitatively extract these vorticities by fil-
tering the Fourier transform around each scattering vec-
tor of the experimental spin-LDOS data, we would need
certain resolution. By simulating different scenarios for
the experimental data, we conclude that a field-of-view
exceeding 30x30nm could suffice (see Appendix C 3). We
recall here that the scattering depends on the ratio ∆/h
while the absolute values of h and ∆ only affect the sep-

aration of the nodes. The field and pairing used in the
calculation are exaggerated to clearly separate the nodes.
For a realistic λ = 50meV, the chosen values reach up to
H > 300T and ∆ ≈ 6.7meV. If we instead set a value
closer to the material one, i.e., ∆(T = 0) ≈ 0.45meV,
then a field of H = 22.5T provides the same ratio ∆/h
as in the calculations, while ω ≈ 0.2meV.
An important point in this particular system is the

distribution of vorticities in Fourier space. Namely, let’s
consider two long but nearby scattering vectors, one con-
necting nodes on the inner (β = −1) and the other on
the outer pocket (β = +1), for example, the two green
vectors in Fig. 2a. Then the cone winding difference has
opposite values ∆Wβ=+1 = −∆Wβ=−1 = 2. However,
the outer Fermi surface has |χM | > |χV |, in Eq. (45),
so it favors the vorticity +∆Wβ=−1. For the inner sur-
face |χM | < |χV |, and the favored vorticity is instead
−∆Wβ=+1. As a result, the two nearby scattering vec-
tors carry the same vorticity (see Fig. 2b). Consequently,
even if the experimental field-of-view and noise lead to a
coarse-graining of the data in Fourier space, the non-zero
vortices are likely to be detected (see Appendix C 3).

V. DISCUSSION AND CONCLUSIONS

We have shown that via a direct mapping of topolog-
ical winding numbers, the difference in nodal winding
between any two Dirac cones in momentum space can
appear in some projection of the density modulations,
both as real-space dislocation charges, and as vortices in
momentum space. To observe any topological charge in
the local density of states, one needs an impurity and tip
with enough chirality preferential scattering, such that
two conditions are satisfied: Friedel oscillations with pos-
itive and negative winding are of different magnitudes,
while those with trivial winding remain sufficiently small.

Our interest is in particular in systems where the Dirac
cones in question are nodes in a superconductor. We have
found that in the example of NbSe2 under in-plane field
we can predict a combination of a magnetic impurity and
a magnetic STM tip that is able to fulfill the defined con-
ditions. However, whether or not the topology of a nodal
superconductor is accessible via impurity scattering is
system-dependent. From our general winding conditions
one can predict the ideal impurity and STM tip for a
given system. This ideal impurity scattering may not be
accessible with physical impurities, see section III, but it
is a good starting point to consider other impurities. All
that is required to predict if a system is a viable option
for study is the eigenstates around the nodes.

In our example of monolayer NbSe2 under an in-plane
magnetic field along the x-direction, we predict that
it suffices to have a magnetic impurity polarized along
the x-direction combined with a magnetic STM tip with
both x- and y-components of the polarization. In Fig. 2
the LDOS results are plotted for a tip magnetization
∼ 6◦ from the y-axis. The approximations considered



11

in this method require that LDOS measurement are car-
ried out in the energy range where only the Dirac cones
are present in the band structure. For a superconductor
this requires very small energies ω < |∆| ∼ meV.
The clear strength of the proposed method in this work

is that the detection of non-trivial topology comes down
to the existence or non-existence of an integer winding
number in the Fourier transform of STM measurements.
We encounter no problem such as, for example, the ambi-
guity in whether a zero mode is truly a Majorana mode
or not. The potential of directly detecting local topo-
logical quantities of a nodal superconductor is great for
the determination of the pairing symmetry. As in our
example system, while many pairing functions can result
in superconducting nodes located along the same sym-
metry lines, only the s-wave pairing function results in

the non-trivial windings. For applications of our general
method, it is worth reiterating that it is not restricted to
superconducting systems. The general derivation holds
for any two anisotropic Dirac cones, meaning that it has
the potential to be applied to other systems with point
topological charges.

ACKNOWLEDGMENTS

This work was supported by the French Agence Na-
tionale de la Recherche (ANR), under grant number
ANR-22-CE30-0037. The authors thank Dganit Meidan
for useful discussions.

Appendix A: Anisotropy effects

1. Anisotropy in the bulk propagator

Realistically there is some effect from the anisotropy in the Hankel functions as there is an angular dependence of
E(q, θq) which appears in

gAA(Ki, r, ω) =

∫
d2q

(2π)2
ei(K+q)·r ω

ω2 − (vKi,θqq)
2

(A1)

gAB(Ki, r, ω) =

∫
d2q

(2π)2
ei(K+q)·r qeiθq

ω2 − (vKi,θqq)
2

(A2)

In polar coordinates the Fourier transform is

eiq·r =

∞∑
n=−∞

inJn(qr)e
inθqe−inθr , e−iq·r =

∞∑
n=−∞

i−nJn(qr)e
−inθqeinθr (A3)

Using the linenarized dispersion in Eq. (9) allows us to write the integrals in Fourier components as

gAA(Ki, r, ω) = (A4)

=

∞∑
n=−∞

inωeiK·r−inθr

∫
d2q

(2π)2
Jn(qr)e

inθq

ω2 −
(
v2⊥,Ki

cos2(NKiθq + ϕKi) + v2∥,Ki
sin2(NKiθq + ϕKi)

)
q2

=

∞∑
n=−∞

inωeiK·r−inθr

∫
d2q

(2π)2
Jn(qr)e

inθq

∞∑
m=−∞

fKi,m(q)e−imθq

=

∞∑
n=−∞

inωeiK·r−inθr

∫
dq

(2π)2
Jn(qr)fKi,n(q)

gAB(Ki, r, ω) = (A5)

=

∞∑
n=−∞

ineiK·r−inθr

∫
d2q

(2π)2
Jn(qr)e

inθqeiθqq

ω2 −
(
v2⊥,Ki

cos2(NKi
θq + ϕKi

) + v2∥,Ki
sin2(NKi

θq + ϕKi
)
)
q2

=

∞∑
n=−∞

ineiK·r−inθr

∫
dq

(2π)2
qJn(qr)fKi,n+1(q)
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In the isotropic case we have only one Fourier component as fKi,m̸=0(q) = 0. For an anisotropic case only the even
Fourier components have a significant value which decrease exponentially in size with increasing m. The rate will
depend not only on the anisotropy but also the ratio ω/q. If we want to consider any correction it would be from the
fKi,±2(q)-terms. However, the size of these terms are still an order of magnitude smaller than fKi,0(q).

2. Anisotropy in the conditions for dislocations, and complexity of chiral ratios

We introduce an anisotropy factor for each node αv,Ki
= v∥,Ki

/v⊥,Ki
, so that vKi

/v⊥,Ki
=
√
1 + α2

v,Ki
.

The anisotropy enters into the previous winding conditions from the topological winding θKi
(r) = θKi

(θr) =
arctan (αv,Ki

tan (wKi
θr + ϕi)). If the anisotropy is the same for two nodes, αv,Ki

= αv, the scattering term be-
comes:

δρAB(∆K, r, ω) = h1(r, ω)Re

[(
(χM + χV )

1− α2
v

1 + α2
v

cos((wKi
+ wKj

)θr + ϕKi
+ ϕKj

) (A6)

+ei(wKi
−wKj

)θr+i∆ϕij

(
χM + χV

2
+

αv

1 + α2
v

(χM − χV )

)
+ e−i(wKi

−wKj
)θr−i∆ϕij

(
χM + χV

2
− αv

1 + α2
v

(χM − χV )

))
ei∆K·r

]
If the chirality ratios can take complex values χV = |χV |eiϕV and χM = |χM |eiϕM the full winding conditions, for
two nodes with wKj

= −wKi
, are

|h0(r, ω)

h1(r, ω)
(|χM ||χV |+ 1) cos

ϕM + ϕV

2
+

1− α2
v

1 + α2
v

(|χV |+ |χM |) cos(ϕKi
+ ϕKj

) cos
ϕM − ϕV

2
| (A7a)

< | [|χV |+ |χM |] 1
2

[
(1 + αv)

2

1 + α2
v

+
(1− αv)

2

1 + α2
v

cos(ϕM − ϕV )

]
|

|h0(r, ω)

h1(r, ω)
(|χM ||χV | − 1) sin

ϕM + ϕV

2
+

1− α2
v

1 + α2
v

(|χM | − |χV |) sin(ϕKi
+ ϕKj

) sin
ϕM − ϕV

2
| (A7b)

< | (|χM | − |χV |)
1

2

[
(1 + αv)

2

1 + α2
v

− (1− αv)
2

1 + α2
v

cos(ϕM − ϕV )

]
|

For the isotropic case this gives us the winding conditions

|h0(r, ω) (|χM ||χV |+ 1) cos
ϕM + ϕV

2
| < |h1(r, ω)(|χV |+ |χM |)| (A8a)

|h0(r, ω) (|χM ||χV | − 1) sin
ϕM + ϕV

2
| < |h1(r, ω)(|χM | − |χV |)|, (A8b)

which generalize the ones from main text to the case of complex chiral ratios. Note that for complex χi the projected
LDOS modulations in Eq. (24) have additional sinus terms. In Figs. 4 & 5 regions with winding have been found for
anisotropic nodes with real-valued χi:

|h0(r, ω)

h1(r, ω)
(χMχV + 1) +

1− α2
v

1 + α2
v

(χV + χM ) cos(ϕKi
+ ϕKj

)| < |χV + χM | (A9a)

0 < |h1(r, ω) (χM − χV )
2αv

1 + α2
v

| (A9b)

The ideal case of χi = 0, χj → ∞ always fulfills the winding conditions. However, anisotropy shifts the regions which
fulfill the conditions as the sign of each χi has a greater effect on Eq. (A9). In Fig. 5 the effect of the anisotropy can
clearly be seen for annuli around the impurity site. The location of an annulus depends on the values of the Hankel
functions in hi(r, ω), and the anisotropy shifts the width of the region.

Appendix B: Anticommutation of impurity and tip with the chirality operator

The main ingredient required to observe a winding difference between two Dirac cones, as in section III, is an
impurity and/or STM tip which favors one chirality over the other. We can consider the definition of the chiral basis
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(a)

(b)

(c)

FIG. 4. General winding conditions for Eq. (A9) with real-valued χi. The anisotropy factor α is set to be equal for both Dirac
cones. a) For an isotropic system. The dependence of the Hankel function terms is minimized by considering the terms to be
equal in size. b) The values of Hankel function terms chosen such that it is less likely to fulfill the winding conditions. The
relative sign of the chirality ratios χi matters. c) Winding conditions when an anisotropy is included, for which the sign of
each χi matters.

to write the expectation values, in Eq. (32), in terms of the eigenstates of the Hamiltonian, Eq. (1), as:

⟨AKi
|M̂ |AKj

⟩ = ⟨nKi |M̂ |nKj ⟩
2

+
⟨nKi |Γ−1M̂Γ|nKj ⟩

2
+

⟨nKi |(Γ−1M̂ + M̂Γ)|nKj
⟩

2
(B1)

⟨BKi |M̂ |BKj ⟩ =
⟨nKi

|M̂ |nKj
⟩

2
+

⟨nKi
|Γ−1M̂Γ|nKj

⟩
2

− ⟨nKi
|(Γ−1M̂ + M̂Γ)|nKj

⟩
2

(B2)

where it is clear that if ⟨nKi |(Γ−1M̂ + M̂Γ)|nKj ⟩ = 0 the two terms are equal. By considering the commutation of

the impurity and tip with the chirality operator Γ it is clear that if {Γ, M̂} = 0, then Γ−1M̂Γ = −M̂ and:

⟨AKi |M̂ |AKj
⟩ = ⟨BKi

|M̂ |BKj
⟩ = 0 (B3)

However, if Γ−1M̂Γ = M̂

⟨AKi
|M̂ |AKj

⟩ = ⟨nKi
|M̂ |nKj

⟩+ ⟨nKi
|M̂Γ|nKj

⟩ (B4)

⟨BKi
|M̂ |BKj

⟩ = ⟨nKi
|M̂ |nKj

⟩ − ⟨nKi
|M̂Γ|nKj

⟩ (B5)

To have chirality-selective terms we thus require that the operator M̂ or V̂ conserve the chiral symmetry as well as
that the eigenstates at the nodes yield a non-zero expectation value for both operators M̂ and M̂Γ.

Appendix C: Details for NbSe2

1. Chiral basis and projection procedure, illustrated on the example of NbSe2

We observe that the off-diagonal form of a chiral Hamiltonian in Eq. 5 does not fix the Q-matrix uniquely. Consid-
ering a generic choice for Q, there are two key issues: (1) Q is non-Hermitian, so there is no guarantee of an orthogonal
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(a) (b)

FIG. 5. Regions where the winding conditions, Eq. (A9), are met appear as annuli around the impurity site. The radial
dependence arises from the Hankel functions, which scale the scattering terms that carry the winding difference or not. The
regions are shown for different anisotropy factors α, with a) positive and b) negative real-valued χi.

set of right eigenvectors {|An⟩} of Q, and an orthogonal set of right eigenvectors {|Bn⟩} of Q† such that an eigenstate
of the Hamiltonian |α⟩ is a simple combination of |Aα⟩ and |Bα⟩; (2) The amplitudes |ξn| of the eigenvalues of Q
may differ by a constant prefactor from the energies En. We note that the second point is usually circumvented in
discussion of topology by flattening the Hamiltonian so that En = ±1.
Let us illustrate these issues in the case of the model of NbSe2 used in Section IV. The Hamiltonian is written in

an off-diagonal form

H =

(
0 Qt

Q†
t 0

)
(C1)

with the particular matrix

Qt =

(
ϵk h+ iλk −∆

h− iλk +∆ ϵk

)
(C2)

by using the unitary transformation U = e−iπ
4 τye−iπ

4 σxτz given in Ref. [39]. The Qt matrix is obviously non-Hermitian,
its right eigenvectors are not orthogonal, and its eigenvalues do not give the correct bands. We hence consider an
additional unitary transformation by which the Q-matrix is rescaled:

H =

(
0 Q
Q† 0

)
=

(
0 SQt

Q†
tS

† 0

)
(C3)

with

S =

 √h+∆
h−∆ 0

0
√

h−∆
h+∆

 , (C4)

so that the amplitudes of eigenvalues |ξk| equal the bands |E(k)|. Although the Q-matrix is still non-Hermitian,
its right eigenbasis is orthogonal. The reason is that the diagonalized Q-matrix now indeed looks like Eq. 6 (the
|ξk| = |E(k)|), and its individual eigenvectors {|An⟩}must directly give the individual eigenvectors of the Hamiltonian.
We are therefore equipped with a good choice of Q-matrix (and hence Q†) that produces the ξk and {|An⟩, |Bn⟩}
useful for calculating the LDOS in a chiral system.

The next important technical issue is that we wish to project the Green’s function into the band that forms the
cone (n = 1), neglecting the gapped high-energy bands (n > 1). The problem arises since the above basis {|An⟩, |Bn⟩}
is still not unique, we can change the phases of vectors. In particular, since the node winding number only fixes
the total sum of windings of the phases

∑
n θn(k), we may reshuffle the non-trivial winding between the different

bands n. The projection to n = 1 may therefore remove some winding contributions from the Green’s function. A
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similar problem has been identified and studied in depth in recent years in systems where projecting to low-energy
tight-binding bands non-trivially affects the gauge invariance of the model of matter coupled to light, e.g., in cavity
systems. The considerations of different schemes inspire us to choose a procedure where we redefine the basis so that
all the θn>1(k) are trivial, hence shifting all the winding into the cone band n = 1. (Physically, it is an intuitively
appealing situation that a gapped band in vicinity of a node does not contain any singularities of θ(k).) Hence in
this work the final form of the basis is fixed by this requirement, and in particular in Section IV the winding of the
gapped band W2 = 0. We finally note that a full (numerical) calculation of the Green’s function including the gapped
bands, without projection, may be used to confirm the validity of the projection procedure.

Explicitly, for the model introduced in Section IV, nodes for the inner Ki,β=−1 and outer Ki,β=+1 pockets at the
FS occur at λk = 0, so that the chiral basis in this case is the same for all nodal points on the same pocket:

|AKi,β
⟩ = 1

23/2

(
−i

√
1− ∆

h

(
cy,k + c†y,−k

)
− β

√
1 +

∆

h

(
c−y,k − c†−y,−k

))
(C5)

|BKi,β
⟩ = 1

23/2

(
β

√
1− ∆

h

(
c−y,k + c†−y,−k

)
− i

√
1 +

∆

h

(
cy,k − c†y,−k

))
(C6)

where c±y,k = c↑,k±ic↓,k. In general, the chiral basis will be different for each point Ki. In this system however we can
set |AKi,β

⟩ = |Aβ⟩, |BKi,β
⟩ = |Bβ⟩. To gain an understanding of how an impurity scatters between states in the chiral

basis we consider the form that a non-magnetic impurity takes in the basis: V̂0 = σ0⊗τz =

√
1−

(
∆
h

)2
σ̃0⊗τ̃x−∆

h σ̃y⊗τ̃y.

Here σ̃i, τ̃i are Pauli matrices forβ labels within a A- or B-state and for the A,B-labels respectively. The non-magnetic
impurity thus scatters equally within both A,B-states, as well as between them.

2. Cancellation of scattering term

For the choice of impurity and STM tip in section IVA there is an additional non-zero matrix element between A
and B states,

⟨Aβ |V̂x|Bβ⟩ = 0, ⟨Aβ |M̂x|Bβ⟩ =
1

2
, ⟨Aβ |M̂y|Bβ⟩ = 0, (C7)

for nodes on the same Fermi surface. There is thus an additional type of scattering term that must be considered:

δρ01 = Re

[
e∆K·rMBTB

(
Im
[
iH0

(ωr
v

)
H1

(ωr
v

)] [MAB

MB

(
eiθKi − e−iθKjχV

)
− MBA

MB

(
eiθKj − e−iθKiχV

)])]
(C8)

For this example system all χi are real, with χV = 1, so assuming the same anisotropy of both nodes:

δρ01 = Re

[
e∆K·rh01(r)MBTBχAB,M

√
2

1 + α2
2
(
cos(wKi

θk + ϕKi
)− cos(wKj

θk + ϕKj
)
)]

, (C9)

where χAB,M = MAB

MB
= MBA

MB
. As δρ01,∆K = −δρ01,−∆K for any pair of nodes, these terms cancel in the full scattering

expression.

3. Size of sample and resolution

The number of wavefronts that are observed in an experiment will depend on the wavelength of the Friedel oscilla-
tions λ∆K = 2π/|∆K|. The more wavefronts observed the better the resolution of the Fourier transform is. The most
promising points to study are therefore those separated by a large ∆K. This wavelength is not affected by which
energy ω an experiment is carried out at. However, there is an energy dependence of the Hankel functions in hi(r, ω).
Thus, the regions in which the conditions are met shifts to a greater r as the energy ω is lowered.

In Fig. 6 the calculation for NbSe2, shown in Fig. 2, for a 100 × 100 window. As the unit cell has a = 4.3Å this
corresponds to a 43x43nm window. For this size the resolution is not enough to determine the winding around each
point for two adjacent scattering vectors. However, since adjacent vectors carry the same vorticity, a non-trivial
winding can be observed even in a small system.
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FIG. 6. For NbSe2 under an in-plane field at ω = 0.01 and an impurity Mx = 0.1My. a) LDOS b) phase information of FFT
when in a 100× 100 window. c) The wavefronts are shown for 2 adjacent points, from the calculation in a), one in black and
another in red. If the wavelengths are much larger than the difference between them, the calculation cannot clearly distinguish
between the 2 overlapping discontinuities.

In contrast, let us consider the observation in real space. A path encompassing two scattering vectors, each with a
winding ∆W = 2, has a combined ∆W+ +∆W− = 4. In real space, Fig. 6c shows that for two scattering vectors of
similar size ∆K− ≈ ∆K+ the system size might not be sufficient to distinguish between the two wavefronts, and the
data cannot clearly distinguish between the two overlapping discontinuities. Consequently, even though a non-trivial
vortex around both vectors ∆K−,∆K+ can be observed in momentum space of a smaller system, clearly observing
∆W+ +∆W− in real space requires a better resolution.
This reinforces our discussion of momentum space vortices being more robust observables than real-space disloca-

tions.
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