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Abstract

In the context of neuroscience the elapsed-time model is an age-structured equa-
tion that describes the behavior of interconnected spiking neurons through the time
since the last discharge, with many interesting dynamics depending on the type of in-
teractions between neurons. We investigate the asymptotic behavior of this equation
in the case of both discrete and distributed delays that account for the time needed to
transmit a nerve impulse from one neuron to the rest of the ensemble. To prove the
convergence to the equilibrium, we follow an approach based on comparison prin-
ciples for Volterra equations involving the total activity, which provides a simpler
and more straightforward alternative technique than those in the existing literature
on the elapsed-time model.

2010 Mathematics Subject Classification. 35F15, 35F20, 92-10.
Keywords: Age-structured models, Delay equations, Comparison principles, Volterra
equations.

1 Introduction

Several mean-field models have been proposed to describe the electrical activity of a large
group of interconnected neurons. They usually take the form of a partial differential
equation with a time variable and additional variables, often called structure variables,
which describe one or more additional quantities of the system. For example, models
structured by the membrane potential of neurons such as the integrate-and-fire systems
are well-known with a vast literature [1, 2, 3, 4, 5, 6, 5, 7, 8].

This article is devoted to the study of an age-structured model for an interconnected en-
semble of neurons described by the elapsed time since last discharge at the membrane
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potential, which is known as the elapsed-time equation (ET). In this model neurons are
subjected to random discharges so that when they reach the firing potential, they stimu-
late other neurons to spike and depending on the type of interaction, different possible
behaviors of evolution of the brain activity are possible.

This equation was initially proposed in [9] and then subsequently developed by many au-
thors with different extensions by incorporating new elements such as the fragmentation
equation [10], spatial dependence with connectivity kernel in [11], a multiple-renewal
equation in [12] and a leaky memory variable in [13]. Moreover, like the case of mem-
brane potential models such as the Fokker-Planck equation, this model can be obtained
as a mean-field limit of a microscopic model and it establishes a bridge of the dynamics
of a single neuron with a population-based approach, whose aspects have been investig-
ated in [14, 15, 16, 17, 18, 19]. Readers seeking further information may consult [20] for a
comprehensive review of nonlinear partial differential equations in neuroscience.

We begin by introducing the model and summarizing its background, followed by a de-
scription of the results addressed in this article.

In all models in this paper, n = n(t, a) represents the density at time t ≥ 0 of neurons
which fired a ≥ 0 units of time ago. The time elapsed since the last spike is commonly
referred to as the neuron’s age. We always write the models in dimensionless form to sim-
plify the mathematical treatment, but units can be easily added by standard procedures.
In this work we focus on the elapsed-time model with distributed delay, which correspond to
the nonlinear system is given by

∂tn+ ∂an+ S(a,X(t))n = 0, t, a > 0, (1.1a)

n(t, a = 0) = r(t) :=

∫ ∞

0
S(a,X(t))n(t, a) da, t > 0, (1.1b)

X(t) =

∫ t

−∞
α(t− s)r(s) ds, t > 0. (1.1c)

The quantity r = r(t) represents the total number (or density) of neurons which fire at
time t, which means that the membrane potential reaches a threshold value and then re-
sets to a baseline value. This term r(t) determines the total activity of the neuron network,
represented by the quantity X = X(t) through a convolution with a certain nonnegat-
ive function α ∈ L1(R+) with

∫∞
0 α(s) ds = 1, which is know as the kernel of distributed

delay. This convolution takes into account the delay in transmission after a neuron spikes
and the value α(s) represents the influence in the total activity at time t of a neuron which
fired at time t− s. In this context, it is understood that the history of the rate r(t) for t < 0
is fixed as an initial condition (as we explain later in (1.1e))

The nonnegative function S(a,X) is called the hazard rate and it represents the suscept-
ibility of neurons to discharge. This function accounts for the effect that a total activity X

has on neurons of age a. As we see in the boundary condition (1.1b) of n at a = 0, when
a neuron discharges at time t its age is reset 0, so that the firing rate r(t) is determined
by integral involving the hazard rate S and the total activity X(t), which depends on the
previous states of the system for the firing rate and the delay kernel α.

A typical choice for the hazard rate is S(a,X) = ϕ(X)1a>σ , which represents a network of
neurons with an absolute refractory time σ ≥ 0 during which they cannot fire again after
a given discharge. Furthermore, the function S may be increasing or decreasing in X, to
allow for excitatory of inhibitory interactions respectively and it determines the type of
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regime of the system. In the case that S does not depend on X the model becomes linear,
and its study is considerably simpler. We notice that r(t) can be calculated by knowing
n(s, a) for times s < t, so equation (1.1c) is a type of delayed boundary condition.

The above equation should be complemented by a suitable initial condition,

n(t = 0, a) = n0(a), a > 0, (1.1d)

r(t) = r0(t), t < 0, (1.1e)

where n0 ∈ L1(R+) is a given nonnegative function, and r0 is defined on (−∞, 0). Since
(1.1) is a delay equation, it would be natural to specify n(t, a) for t ∈ (−∞, 0] as an initial
condition, but only the firing rate r(t) = n(t, 0) is actually used, so we emphasize that is is
enough to set r(t) for negative times t. Thus we allow for "infinite delay" in the equation.
The statement of the model in [9] is equivalent to assuming r(t) = 0 for all t < 0. If for a
certain d > 0 one assumes that α(t) = 0 for all t > d, then it is clearly enough to give r(t)
for t ∈ [−d, 0] as initial data (since the values of r(t) for t < −d do not play any role).

Moreover, we formally have the following mass-conservation property

∫ ∞

0
n(t, a) da =

∫ ∞

0
n0(a) da, ∀t ≥ 0, (1.2)

and without loss of generality, we will normalize it to 1 so that n(t, ·) can be interpreted
as the probability distribution at time t of the time since the last spike.

There are two important situations which are limiting cases of this one. First, if we take
the limit as α → δd (a Dirac delta function at t = d) for some d > 0 we formally obtain the
model with single discrete delay:

∂tn+ ∂an+ S(a, r(t− d))n = 0, t, a > 0, (1.3a)

n(t, a = 0) = r(t) :=

∫ ∞

0
S(a, r(t− d))n(t, a) da, t > 0. (1.3b)

This system is known as the case with discrete delay, where the total activity is just the
firing rate at time t− d. Now the natural initial condition involves setting

n(t = 0, a) = n0(a), a > 0, (1.3c)

r(t) = r0(t), − d ≤ t < 0, (1.3d)

In turn, if we consider the limit d = 0 then this system becomes

∂tn+ ∂an+ S(a, r(t))n = 0, t, a > 0, (1.4a)

n(t, a = 0) = r(t) =

∫ ∞

0
S(a, r(t))n(t, a) da. t > 0. (1.4b)

This system is known as the case with instantaneous transmission. Now the definition of
r(t) is an independent equation, which has to be solved together with the whole system
and the only initial condition to set is n(0, a) for a > 0. If n(t, a) is known for a certain
t, then finding an r(t) which satisfies r(t) =

∫∞
0 S(a, r(t))n(t, a) da may be an ill-posed

problem; see [9] or [21] for a simple example, and more recently [22] for an analysis of
the conditions which may stop this system from being well-posed.

Concerning the steady states, the equilibriums of (1.1) are given by the equation:
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∂an
∗ + S(a,X∗)n∗ = 0 a > 0,

r∗ := n∗(a = 0) =
∫∞
0 S(a,X∗)n∗(a) da,

X∗ = r∗
∫∞
0 α(s) ds.

(1.5)

Thanks to the normalization
∫∞
0 α(s) ds = 1 we have X∗ = r∗. From the first equation of

the system we get that n∗(a) := r∗e−
∫ a

0
s(a′,X∗) da′ and the following equation holds for r∗

r∗I(r∗) = 1, with : I(r) :=

∫ ∞

0
e−

∫ a

0
S(s,r)dsda, (1.6)

as a consequence of the mass-conservation property.

For simplicity we call the steady state as the pair (n∗, r∗), since X∗ = r∗. Moreover,
for the case of instantaneous transmission (1.4) and the case with discrete delay (1.1) the
definition of an equilibrium is analogous and in all cases we have the same steady states
for a given hazard rate S. We also remark that when the system is inhibitory it has a
unique steady state, while in the excitatory multiple steady states may arise [9].

Finally, if we fix X = r̄ ≥ 0 as parameter in the rate S we obtain the following linear
equation, which is fundamental to understand the non-linear problems (1.1) and (1.3).





∂tn+ ∂an+ S(a, r̄)n = 0 t, a > 0,

n(t, a = 0) = r(t) :=

∫ ∞

0
S(a, r̄)n(t, a) da t > 0,

n(t = 0, a) = n0(a) a > 0.

(1.7)

Observe that this linear equation does not have any explicit delay and in this case it can be
cast in the form of an abstract ODE in the space M(R+) of finite signed Borel measures,
given by

∂tn = Lr̄[n] := −∂an− S(a, r̄)n+ δ0

∫ ∞

0
S(a, r̄)n(a) da. (1.8)

For the sake of simplicity of the notation in the computations, we treat the elements
in M(R+) as if they were integrable functions with corresponding generalization. The
solution of this linear problem determines a positive and mass-preserving semigroup in
M(R+), which will be denoted as etLr̄ in the sequel. In other words, etLr̄ is a Markov
semigroup. The asymptotic behavior of etLr̄ is well-known, as we state in the following
result.

Proposition 1 (Linear spectral gap). Assume that S satisfies Hypothesis 1, and let r̄ ≥ 0

be given. Then the pair

(
n̄∗ := r̄∗e−

∫ a

0
S(s,r̄) ds, r̄∗ :=

(∫∞
0 e−

∫ a

0
S(s,r̄) ds da

)−1
)

is the unique

positive stationary solution to Equation (1.7) such that n∗ ∈ L1(0,∞) with
∫∞
0 n∗ da = 1. And

there exist constants C0, λ > 0 such that for all initial data n0 ∈ M(R+) it holds that, for all
t ≥ 0,

‖etLr̄n0 − 〈n0〉n̄∗‖TV ≤ C0e
−λt‖n0 − 〈n0〉n̄∗‖TV

|r(t)− 〈n0〉r̄∗| ≤ C0e
−λt‖n0 − 〈n0〉n̄∗‖TV

(1.9)

with 〈n0〉 :=
∫∞
0 n0 da.
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We remark that the constant λ gives the natural speed of convergence to equilibrium of
(1.7). This result can be proved through different techniques such as the entropy method
[23], Doeblin’s theory [21] and Kato’s inequality [24].

Concerning the nonlinear case, global well-posedness of weak solutions has been studied
in the case with instantaneous transmission and also distributed delay [9, 17, 24, 21] and
more recently in [22] with a numerical scheme inspired in fixed-point problems.

Regarding long-time behavior, global results are comparatively rare: no general results
on convergence to equilibrium are available, and no useful entropy or Lyapunov func-
tional is known for the nonlinear model. Some partial results in this direction include
[25], where the existence of periodic solutions with jump discontinuities was established
in the case of strong non-linearities.

However, a quite complete analysis can be carried out in perturbative situations, when
the system is close to a linear system. This corresponds for example ‖∂XS‖∞ is small (or
other analogous condition) and we say that the system is under the weak interconnection
regime. In this regard, the following properties are expected to hold:

1. There exists a unique probability equilibrium n∗, with its associated firing rate r∗.

2. All solutions with an initial probability distribution converge to this equilibrium as
t → +∞ at an exponential rate.

Results on these properties in the weakly interconnected case and also in certain strongly
connected regimes were first given in [9, 26, 10] by using variations of the generalized
relative entropy method [27, 23] in the case of instantaneous transmission (1.4), while a
semigroup approach based on Doeblin’s theory [28, 29] was given in [21], applicable to
both equation (1.4) and modified models with fatigue proposed in [10]. The same ideas
were also used to study a model structured by additional past discharge times in [12] and
with a memory term in [13].

Besides the case with instantaneous transmission, exponential convergence with distrib-
uted delay has been previously studied by Mischler et al. [30, 24] for weak and strong
interconnections under regularity assumption such as when the hazard rate S ∈ LipX L1

a.
This result was proved through an spectral analysis based on the analysis in [31] for the
growth-fragmentation equation.

The goal of our article is to fill some gaps on the convergence to the equilibrium for the
elapsed-time model for both distributed and discrete delays under the regime of weak
connectivity with an alternative method to the spectral analysis previously cited and un-
der simple assumptions for S. Our approach relies on a comparison principle for integral
equations involving the distance to equilibrium of the total activity |X(t)−X∗| in the case
of Equation (1.1) and |r(t)− r∗| in the case of Equation (1.3). The strategy consists in find-
ing a suitable upper solution of a Volterra-type equation that vanishes when t → ∞ and
that allows to bound the quantities |X(t) −X∗| and |r(t)− r∗|. Comparisons techniques
for other age-structured models has been recently studied in [32] with logistic growth
and spatial diffusion.

The advantage of this argument is that we obtain a simpler proof of convergence to equi-
librium, whose rate also depends explicitly on the bounds of the kernel α and the delay
d in their respective cases. Moreover, we also point out that suitable modifications of the
argument based on a perturbation of the linear case stated in Proposition 1 can also deal
with the delayed equations (1.1) and (1.3), and get the desired property 2 above.
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1.1 Main results of this article

We now present the results of this paper, highlighting the crucial role played by the size
λ of the spectral gap of the linear equation (1.7), with r̄ = r∗, given in Proposition 1. We
will always assume the following:

Hypothesis 1 (Conditions on S). We assume S : (0,+∞)× [0,+∞) → [0,+∞) is a bounded
measurable function, and Lipschitz with respect to its second variable with Lipschitz constant l:

|S(a, r)− S(a, r′)| ≤ ℓ|r − r′| for all a, r, r′ > 0.

We also assume that there exists constants s0, σ > 0 such that

S(a, r) ≥ s01{a>σ} for all a, r ≥ 0. (1.10)

Hypothesis 2 (Initial conditions). We assume that n0 is a nonnegative probability measure
on (0,+∞). For the distributed delay equation (1.1) we assume that r0 : (−∞, 0] → [0,+∞)
is a bounded function; for the single discrete delay equation (1.3) we assume that d > 0 and
r0 : [−d, 0] → [0,+∞) is a bounded function.

It is also known, in general, [9, 26, 21] that in either weak or strong connectivity regime
the nonlinear problems (1.1) and (1.3) have a unique probability equilibrium: there exists
ℓ∗ > 0 such that if S satisfies Hypothesis 1 with 0 ≤ ℓ ≤ ℓ∗ then equations (1.1) and (1.3)
have a unique equilibrium (n∗, r∗) such that n∗ is a probability measure. Since our results
below are stated for small ℓ one may always assume that ℓ ≤ ℓ∗, so the fact that there is
a unique equilibrium in that case is known. The results presented in this article are still
valid when S satisfies similar Lipschitz estimates involving the integral of respect to a,
as it was done for example in [30, 24]. Furthermore, see Remarks 2 and 4 for more details
on how to apply our main results in the context of weak and strong regimes.

The following are the main results of this article. Regarding the single discrete delay
model we have:

Theorem 1 (Single discrete delay). Assume Hypothesis 1, with ℓ small enough such that there
exists a unique steady state (n∗, r∗) of equation (1.3), and let λ > 0 be the spectral gap of the
linear equation (1.7), with r̄ = r∗. Then there exist ℓ0 > 0 (depending only on λ) such that for
all d > 0 there exist constants 0 < µ < λ (depending only on d and λ), C > 0 so that when
ℓ ≤ ℓ0 any initial condition (n0, r0) satisfying Hypothesis 2, the solution (n, r) of equation (1.3)
satisfies

‖n(t)− n∗‖TV ≤ CK0e
−µt,

|r(t)− r∗| ≤ CK0e
−µt

(1.11)

for all t > 0, where K0 measures the initial distance to equilibrium in the following sense:

K0 := ‖r0 − r∗‖∞ + ‖n0 − n∗‖TV .

We notice that in this case ‖r0 − r∗‖∞ denotes the L∞ norm in the interval [−d, 0].

The previous theorem informally states that in the weak-connectivity regime, the nonlin-
ear model (1.3) converges to equilibrium at essentially the same rate as the linear system.
We can also obtain similar results for the distributed delay model (1.1), with the import-
ant difference that solutions will now converge to equilibrium at (roughly) the slowest of
the following rates:

6



1. The rate e−λt of decay to equilibrium of the linear model.

2. The decay rate to 0 of the function α.

The following two results make this idea precise:

Theorem 2 (Exponentially distributed delay). Assume Hypothesis 1, with ℓ small enough
such that there exists a unique steady state (n∗, r∗) of equation (1.1), and let λ > 0 be the spectral
gap of the linear equation (1.7), with r̄ = r∗. Assume that there exist constants Cα, β > 0 such
that

α(t) ≤ Cαe
−βt for all t > 0.

Then, for any 0 < µ < min{λ, β} there exists ℓ0 > 0 depending only on ‖S‖∞ and µ such that
if ℓ ≤ ℓ0, there exists a constant C > 0 (depending only on S, Cα and β) such that for any initial
condition (n0, r0) satisfying Hypothesis 2 the solution (n, r) of equation (1.1) satisfies

‖n(t)− n∗‖TV ≤ CK0e
−µt, (1.12)

|r(t)− r∗| ≤ CK0e
−µt, (1.13)

|X(t) −X∗| ≤ CK0e
−µt (1.14)

for all t > 0, where K0 measures the initial distance to equilibrium in the following sense:

K0 := ‖r0 − r∗‖∞ + ‖n0 − n∗‖TV .

In this case ‖r0 − r∗‖∞ denotes the L∞ norm on (−∞, 0). We also point out that X∗ :=
r∗
∫∞
0 α(s) ds is the total activity at equilibrium.

Regarding algebraic tails we have a similar result, this time with an algebraic speed of
convergence:

Theorem 3 (Distributed delay, algebraic tail). Assume Hypothesis 1, with ℓ small enough
such that there exists a unique steady state (n∗, r∗) of equation (1.1), and let λ > 0 be the spectral
gap of the linear equation (1.7), with r̄ = r∗. Assume that there exist constants Cα > 0, β > 1
such that

α(t) ≤
Cα

1 + tβ
.

Then there exists ℓ0 > 0 depending only on S such that if ℓ ≤ ℓ0, there exists a constant C > 0
(depending only on S, Cα and β) such that for any initial condition (n0, r0) satisfying Hypothesis
2 the solution (n, r) of equation (1.1) satisfies

‖n(t)− n∗‖TV ≤
CK0

1 + tβ−1
, (1.15)

|r(t)− r∗| ≤
CK0

1 + tβ−1
, (1.16)

|X(t)−X∗| ≤
CK0

1 + tβ−1
(1.17)

for all t > 0, where K0 measures the initial distance to equilibrium in the following sense:

K0 := ‖r0 − r∗‖∞ + ‖n0 − n∗‖TV .
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This result allows to extend the convergence result in [30, 24] where the kernel α must
have a Laplace transform α̂(z) defined for ℜ(z) > −c for some c > 0, i.e. α decays
exponentially. Thus, even if α decays like a inverse of a polynomial, it is still possible to
have convergence to the equilibrium with explicit rates that depend on the bounds of α.

The proof of the above results is based on a perturbation argument, writing the nonlinear
equations as the linear one plus a perturbation term which can be shown to be small, and
then using Duhamel’s formula to compare with the solution of the linear equation. There
are two important ideas to consider in order to carry out this plan: first, it is natural to
consider the spectral gap in total variation norm, as the perturbation term is small in this
norm (but is not even finite in stronger norms such as Lp); this was used in [21] in order
to study the case without delay. Second, the inequalities obtained after using Duhamel’s
formula are modified versions of Volterra integral equations for which there is no general
theory readily available. We give comparison theorems for them, from which one can
then obtain the main results.

The rest of the paper is devoted to proving the convergence theorems and offering re-
marks and perspectives that emerge from them. It is organized as follows: Section 2
contains the proof of 1, while Section 3 contains the proofs of Theorems 2 and 3.

2 Model with a single discrete delay: Proof of Theorem 1

This section is devoted to the elapsed time equation with a single discrete delay given in
(1.3):

∂tn+ ∂an+ S(a, r(t− d))n = 0, t, a > 0, (2.1a)

n(t, a = 0) = r(t) :=

∫ ∞

0
S(a, r(t− d))n(t, a) da, t > 0. (2.1b)

We remind that the steady states (n∗, r∗) in this case are given by:

{
∂an

∗ + S(a, r∗)n∗ = 0 a > 0,

r∗ := n∗(a = 0) =
∫∞
0 S(a, r∗)n∗(a) da,

where n∗(a) = r∗e−
∫ a

0
s(a′,r∗) da′ and r∗ > 0 satisfies Equation (1.6).

The aim of this section is to prove Theorem 1. To achieve this, we make use of the follow-
ing comparison lemma.

Lemma 1 (Comparison lemma with discrete delay). Consider the constants d > 0, c1 ≥
0, c2 ≥ 0 and the functions f ∈ L∞(0,∞), u0 ∈ L∞(−d, 0). Let u ∈ L∞(−d,∞) such that

{
u(t) ≤ c1u(t− d) + c2

∫ t

0 e
−λ(t−s)u(s− d) ds+ f(t) ∀t > 0,

u(t) ≤ u0(t) ∀t ∈ (−d, 0),
(2.2)

and u ∈ L∞(−d,∞) such that
{
u(t) ≥ c1u(t− d) + c2

∫ t

0 e
−λ(t−s)ū(s− d) ds+ f(t) ∀t > 0,

u(t) ≥ u0(t) ∀t ∈ (−d, 0),
(2.3)

Then u(t) ≤ u(t) for all t > −d.
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In other words u and u are respectively lower and upper solutions of the delayed Volte-
rra-type equation given by

{
u(t) = c1u(t− d) + c2

∫ t

0 e
−λ(t−s)u(s− d) ds+ f(t) ∀t > 0,

u(t) = u0(t) ∀t ∈ (−d, 0),
(2.4)

and the comparison principle holds.

Proof. Observe that h(t) := u(t)− u(t) satisfies the following inequalities

{
h(t) ≥ c1h(t− d) + c2

∫ t

0 e
−λ(t−s)h(s− d)ds ∀t > 0,

h(t) ≥ 0 ∀t ∈ (−d, 0).

From the first inequality we conclude that h(t) ≥ 0 for all t ∈ (0, d) and by iterating over
the intervals (kd, (k + 1)d) with k ∈ N, we conclude that h(t) ≥ 0 for all t > −d.

Now we can proceed with the proof of Theorem 1.

Proof of Theorem 1. We write the solution of Equation (2.1) as

∂tn = Lr∗ [n] + h

where the linear operator Lr∗ was defined in (1.8), with r̄ = r∗, and h is given by

h(t, a) = (S(a, r∗)−S(a, r(t− d)))n(t, a)+ δ0(a)

∫ ∞

0
(S(a′, r(t− d))−S(a′, r∗))n(t, a′) da′,

and by applying Duhamel’s formula and Proposition 1, there exists C0, λ > 0 such that
the following inequality holds:

‖n(t)− n∗‖TV ≤ C0e
−λt‖n0 − n∗‖TV + C0

∫ t

0
e−λ(t−s)‖h(s)‖TV ds. (2.5)

For h we have the estimate

‖h(t, ·)‖TV ≤ 2ℓ|r(t− d)− r∗| ∀t > 0, (2.6)

where ℓ is the Lipschitz constant of S with respect to r (see Hypothesis 1). Also, from the
definition of r(t) (see (2.1b)) we obtain

|r(t)− r∗| =

∣∣∣∣
∫ ∞

0
S(a, r(t− d))n(t, a) da −

∫ ∞

0
S(a, r∗)n∗(a) da

∣∣∣∣

≤

∫ ∞

0
|S(a, r(t− d))− S(a, r∗)|n(t, a) da+

∫ ∞

0
S(a, r∗)|n(t, a) − n∗(a)|da

≤ ℓ|r(t− d)− r∗|+ ‖S‖∞‖n(t, a)− n∗(a)‖TV .

Now using (2.5) and (2.6) in the previous equation we get

|r(t)− r∗| ≤ ℓ|r(t− d)− r∗|+C0‖S‖∞‖n0 − n∗‖TV e
−λt

+ 2C0‖S‖∞ℓ

∫ t

0
e−λ(t−s)|r(s− d)− r∗|ds.

(2.7)
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We define the constants C1 := 2C0‖S‖∞ and C2 := C0‖S‖∞‖n0 − n∗‖TV so that for
u(t) := |r(t)− r∗| we get the inequality

u(t) ≤ ℓu(t− d) + C1ℓ

∫ t

0
e−λ(t−s)u(s− d) ds+ C2e

−λt ∀t ≥ 0.

The main idea is to apply now the comparison lemma. We look for a constants A,µ > 0
such that we get u(t) ≤ Ae−µt for all t > −d. This means that the function v(t) := Ae−µt

must satisfy the following inequalities
{
v(t) ≥ ℓv(t− d) +C1ℓ

∫ t

0 e
−λ(t−s)v(s− d) ds+ C2e

−λt ∀t > 0

v(t) ≥ |r0 − r∗| ∀t ∈ (−d, 0),

or equivalently in terms of A and µ

A

(
1− ℓeµd − C1ℓe

µd 1− e−(λ−µ)t

λ− µ

)
≥ C2e

−(λ−µ)t ∀t > 0

A ≥ eµt|r0(t)− r∗| ∀t ∈ (−d, 0).

(2.8)

Observe that (using e−(λ−µ)t ≥ 0 on the left and e−(λ−µ)t ≤ 1 on the right) a sufficient
condition to verify (2.8) is given by the inequalities

A

(
1− ℓ

(
eµd + C1e

µd 1

λ− µ

))
≥ C2

A ≥ sup
t∈[−d,0]

|r0(t)− r∗|.

Therefore, for ℓ > 0 satisfying

ℓ

(
eµd + C1e

µd 1

λ− µ

)
< 1, : or equivalently ℓ <

e−µd(λ− µ)

λ− µ+ C1
,

and A verifying

A > max

{
||r0 − r∗||∞,

C2(λ− µ)

λ− µ− ℓ0eµd(λ− µ+ C1)

}
with µ < λ, and ℓ ≤ ℓ0,

we get that (2.8) holds and hence v(t) satisfies the desired inequalities. By Lemma 1 we
conclude that

u(t) = |r(t)− r∗| ≤ Ae−µt. (2.9)

Without loss of generality we can assume ‖n0−n∗‖TV +‖r0−r∗‖∞ > 0, so we can choose

A of the form A = C̃(S, d, µ)
(
‖n0 − n∗‖TV + ‖r0 − r∗‖∞

)
(since C2 is the only constant

we defined which depends on the initial distance ‖n0 − n∗‖TV ).

We now assert that we can find a bound on ℓ, ℓ0, independent of d such that (2.9) holds

for some choice of µ > 0. Indeed, when d ≤ 1 we can choose µ = λ
2 and set ℓ0 := λe−λ

λ+2C1

such that for

ℓ ≤ ℓ0 <
λe−

λ
2

λ+ 2C1

the estimate (2.9) is verified. Similarly for d > 1, if we take µ = λ
d+1 such that for

ℓ ≤ ℓ0 <
dλe

− d
d+1

λ

dλ+ (d+ 1)C1
,

the same conclusion holds. Finally, from estimates (2.5) and (2.6) the exponential conver-
gence of ‖n(t)− n∗‖TV in (1.11) readily follows.
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In light of the proof, we draw attention to the following remarks.

Remark 1. We have proved the existence of a sufficiently small connectivity parameter ℓ0 such
that for any transmission delay d, we have exponential convergence of the system towards its
unique steady state. Nevertheless, the rate of convergence is influenced by d and, as expected, it
decreases as d increases.

An interesting extension would be to jointly study the dependence on the delay d and the spectral
gap given λ in Proposition 1. For a given delay d, one would expect that a larger value of λ
will allow a larger value of the Lipschitz constant ℓ0 where the exponential convergence holds.

The choice of ℓ0 = λe−λ

λ+2C1
obtained in the proof of the theorem is decreasing in terms of λ ≫ 1,

suggesting that this bound might be improved.

Remark 2 (Weak and strong connectivity). Our result can be applied to weak and strong
connectivity regimes, where a unique probability equilibrium exists, under the following relaxed
condition on S, instead of Hypothesis 1:

Hypothesis 3 (Conditions on S). We assume S : (0,+∞)× [0,+∞) → [0,+∞) is a bounded
measurable function, and let (n∗, r∗) be an equilibrium of the linear equation (1.7). We assume
that S is Lipschitz with respect to r with constant ℓ when |r − r∗| is small enough, that is: there
exists δ > 0 such that

|S(a, r)− S(a, r′)| ≤ ℓ|r − r′| for all a > 0 and all r, r′ ∈ [r∗ − δ, r∗ + δ].

With this condition, following the proof of Theorem 1, we obtain convergence to the equilibrium
in both regimes, provided the initial data is close to the equilibrium in terms of r.

To understand the meaning of weak and strong regimes, the hazard rate is usually written as
S(a, JX), where J ≥ 0 is the network connectivity parameter. We have avoided this notation
to simplify the presentation of the model, but as mentioned above, our proof covers both regimes
since in our case the connectivity parameter is inside X. We note that Hypothesis 3 is analogous
to the ones given in [24].

3 Model with distributed delay: Proof of Theorems 2 and 3

In this section we will consider the elapsed time model with distributed delay given in
(1.1)

∂tn+ ∂an+ S(a,X(t))n = 0, t, a > 0, (3.1a)

n(t, a = 0) = r(t) :=

∫ ∞

0
S(a,X(t))n(t, a) da, t > 0, (3.1b)

X(t) =

∫ t

−∞
α(t− s)r(s) ds. t > 0. (3.1c)

Remind that in this case the equilibrium distribution (n∗, r∗) solves the system




∂an
∗ + S(a,X∗)n∗ = 0 a > 0,

r∗ := n∗(a = 0) =
∫∞
0 S(a,X∗)n∗(a) da,

X∗ = r∗
∫∞
0 α(s) ds.

where n∗(a) = r∗e−
∫ a

0
s(a′,r∗) da′ and r∗ > 0 satisfies Equation (1.6).

For the proof of Theorems 2 and 3 we first need the following comparison lemma:
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Lemma 2. Consider the functions f, k ∈ L∞(0,∞) with k nonnegative. Let u ∈ L∞(0,∞)
such that

u(t) ≤ (k ∗ u)(t) + f(t) ∀t > 0. (3.2)

and u ∈ L∞(0,∞) such that

u(t) ≥ (k ∗ u)(t) + f(t) ∀t > 0. (3.3)

Then it holds that u(t) ≤ u(t) for all t ≥ 0.

In other words u and u are respectively lower and upper solutions of the Volterra equa-
tion given by

u(t) = (k ∗ u)(t) + f(t) ∀t > 0, (3.4)

and the comparison principle holds.

Proof. Observe that h(t) := u(t)− u(t) satisfies

h(t) ≥ (k ∗ h)(t).

For T > 0 we consider A1[T ] := inft∈[0,T ] h(t) and we have

(
1−

∫ T

0
k(s) ds

)
A1[T ] ≥ 0.

Therefore when we choose T such that

T‖k‖∞ < 1, (3.5)

we conclude that A1[T ] ≥ 0, which means that u(t) ≥ u(t) for all t ∈ [0, T ]. Similarly for
t ∈ [T, 2T ] we define A2[T ] := inft∈[T,2T ] and obtain

(
1−

∫ 2T

T

k(s) ds

)
A2[T ] ≥ 0.

Again, using the uniform bound for T in (3.5) we have that A2[T ] ≥ 0, which implies that
u(t) ≥ u(t) for all t ∈ [T, 2T ]. By iterating this argument, we deduce that u(t) ≥ u(t) for
all t ≥ 0.

Now we can prove Theorem 2.

Proof of Theorem 2. As in the proof of Theorem 1, by Duhamel’s formula and Proposition 1
there exist C0, λ > 0 such that the following inequality holds

‖n(t)− n∗‖TV ≤ C0e
−λt‖n0 − n∗‖TV + C0

∫ t

0
e−λ(t−s)‖h(s)‖TV ds, (3.6)

where h is given by

h(t, a) = (S(a,X∗)− S(a,X(t)))n(t, a) + δ0(a)

∫ ∞

0
(S(a,X(t)) − S(a′,X∗))n(t, a′) da′,

thus, using Hypothesis 1, we have the estimate

‖h(t, ·)‖TV ≤ 2ℓ|X(t) −X∗| for all t > 0. (3.7)
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Also, we can estimate |r(t)− r∗| as in the proof of Theorem 1:

|r(t)− r∗| =

∣∣∣∣
∫ ∞

0
S(a,X(t))n(t, a) da −

∫ ∞

0
S(a,X∗)n∗(a) da

∣∣∣∣

≤

∫ ∞

0
|S(a,X(t)) − S(a,X∗)|n(t, a) da+

∫ ∞

0
S(a,X∗)|n(t, a)− n∗(a)|da

≤ ℓ|X(t) −X∗|+ ‖S‖∞‖n(t, a) − n∗(a)‖TV . (3.8)

Using now (3.6) and (3.7) we obtain

|r(t)− r∗| ≤ ℓ|X(t)−X∗|+ C0‖S‖∞‖n0 − n∗‖TV e
−λt

+ 2C0‖S‖∞ℓ

∫ t

0
e−λ(t−s)|X(s)−X∗|ds. (3.9)

To simplify the notation define the constants C1 := 2C0‖S‖∞ and C2 := C0‖S‖∞‖n0 −
n∗‖TV .

We seek to estimate |X(t) −X∗|, so we define u(t) := |X(t) −X∗|, and we obtain

u(t) =

∣∣∣∣
∫ ∞

0
α(s)r(t− s) ds− r∗

∫ ∞

0
α(s) ds

∣∣∣∣ ≤
∫ ∞

0
α(s)|r(t− s)− r∗|ds

=

∫ t

0
α(t− s)|r(s)− r∗|ds+

∫ ∞

t

α(s)|r0(t− s)− r∗|ds

≤

∫ t

0
α(t− s)|r(s)− r∗|ds+ ‖r0 − r∗‖∞

∫ ∞

t

α(s) ds.

Using (3.9) in the previous expression,

u(t) ≤ ‖r0 − r∗‖∞

∫ ∞

t

α(s) ds

+

∫ t

0
α(t− s)

(
ℓu(s) + C2e

−λs + C1ℓ

∫ s

0
e−λ(s−s′)u(s′) ds′

)
ds.

We define

g(t) := ‖r0 − r∗‖∞

∫ ∞

t

α(s) ds+ C2

∫ t

0
α(t− s)e−λs ds,

so we write the inequality for u(t) as

u(t) ≤ g(t) + ℓ(α ∗ u) + C1ℓ(α ∗ e−λt ∗ u).

Like in the case of a single discrete delay, we aim to apply the comparison lemma. We
look for constants A,µ > 0 such that u(t) ≤ Ae−µt for all t ≥ 0. For this, we would like
the function v(t) := Ae−µt to satisfy

v(t) ≥ g(t) + ℓ(α ∗ v) + C1ℓ(α ∗ e−λt ∗ v) for all t ≥ 0,

or equivalently in terms of A and µ

A ≥ g(t)eµt + ℓA

∫ t

0
eµsα(s) ds+ ℓ

AC1

λ− µ

∫ t

0
eµsα(s)(1 − e−(λ−µ)(t−s)) ds for t ≥ 0.

(3.10)
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For µ < min{β, λ}, we estimate each term in the right-hand side. For the first one,

g(t)eµt ≤ C3
Cα

β
e−(β−µ)t +C2Cα

e−(β−µ)t − e−(λ−µ)t

λ− β
≤ Cα

(
C3

β
+

C2

|λ− β|

)
,

where we call C3 := ‖r0 − r∗‖∞. For the remaining two terms we have
∫ t

0
eµsα(s) ds ≤ Cα

1− e−(β−µ)t

β − µ
≤

Cα

β − µ
,

∫ t

0
eµsα(s)(1 − e−(λ−µ)(t−s)) ds ≤

∫ t

0
eµsα(s) ds ≤

Cα

β − µ
.

Hence in order to satisfy (3.10) it is enough to satisfy

A ≥ Cα

(
C3

β
+

C2

|λ− β|

)
+

ℓACα

β − µ

(
1 +

C1

λ− µ

)
,

that is,

A

(
1−

ℓCα

β − µ

(
1 +

C1

λ− µ

))
≥ Cα

(
C3

β
+

C2

|λ− β|

)
.

Therefore if the following inequalities hold

ℓ <
β − µ

Cα

λ− µ

λ− µ+ C1
,

A > Cα

(
C3

β
+

C2

|λ− β|

)(
(β − µ)(λ− µ)

(β − µ)(λ− µ)− ℓCα(λ− µ+ C1)

)

we get that A and µ satisfy (3.10) and thus, due to our comparison result in Lemma 2

|X(t)−X∗| ≤ Ae−µt for t ≥ 0.

Notice that the dependence on ‖r0 − r∗‖∞ and ‖n0 − n∗‖TV are included in C3 and C2,
respectively. The exponential decay of ‖n(t)− n∗‖TV readily follows from (3.6) and (3.7),
and then exponential decay of |r(t)− r∗| follows from (3.8).

To prove Theorem 3 regarding the case in which α decays algebraically we will need the
following lemma on decay of convolutions:

Lemma 3. Let f, g ∈ L∞(R+) and a > 0, b > 1 such that f = O(t−a) and g = O(t−b) when
t → ∞. Then for their convolution we have

h(t) :=

∫ t

0
f(t− s)g(s) ds = O(t−min{a,b−1}) as t → ∞.

Proof. Observe that g ∈ L1(R+) since b > 1. Thus there exists two constants C1, C2 > 0
such that for t large enough we have the following estimate

|h(t)| ≤

∫ t

0
|f(t− s)g(s)|ds,

≤

∫ t
2

0
|f(t− s)g(s)|ds+

∫ t

t
2

|f(t− s)g(s)|ds

≤ C1

∫ t
2

0
(t− s)−a|g(s)|ds + C2

∫ t

t
2

|f(t− s)|s−b ds

≤ 2at−aC1‖g‖1 + C2‖f‖∞
2b−1 − 1

b− 1
t−(b−1),

where the last inequality proves the desired result.

14



With this lemma we prove Theorem 3.

Proof of Theorem 3. We can carry out the same initial steps as in the exponential case. With
the same notation, the function u(t) = |X(t) −X∗| satisfies

u(t) ≤ g(t) + ℓ(α ∗ u) + C1ℓ(α ∗ e−λt ∗ u),

with g(t) = C3

∫∞
t

α(s) ds+C2

∫ t

0 α(t− s)e−λs ds. We recall that the constants C1, C2 and
C3 were defined by

C1 := 2C0‖S‖∞, C2 := C0‖S‖∞‖n0 − n∗‖TV , C3 := ‖r0 − r∗‖∞.

Like the previous result, we aim to apply the comparison lemma. We look for constants
A,µ > 0 such that the function v(t) := A

1+tµ
satisfies the inequality

v(t) ≥ g(t) + ℓ(α ∗ v) + C1ℓ(α ∗ e−λt ∗ v) for all t ≥ 0,

or equivalently in terms of A and µ,

A ≥ g(t)(1 + tµ) + ℓA

∫ t

0

1 + tµ

1 + (t− s)µ
α(s) ds

+ ℓAC1

∫ t

0

∫ s

0
α(t− s)e−λ(s−s′) 1 + tµ

1 + (s′)µ
ds′ ds (3.11)

for all t ≥ 0. We now estimate each term in the right-hand side. First observe that for the
first term of g(t) we have that

∫ ∞

t

α(s) ds ≤
Cα,β

1 + tβ−1

for some constant Cα,β > 0 depending on Cα and β. Thus, by choosing µ = β − 1 and
applying Lemma 3, there exists a constant C4 > 0 depending on Cα and β such that

g(t)(1 + tµ) ≤ C3C4
1 + tµ

1 + tβ−1
+ C2C4

1 + tµ

1 + tβ−1
≤ C4(C2 + C3)

and similarly (possibly taking a larger constant C4) we get

∫ t

0

1 + tµ

1 + (t− s)µ
α(s) ds ≤ C4,

∫ t

0

∫ s

0
α(t− s)e−λ(s−s′) 1 + tµ

1 + s′µ
ds′ ds ≤ C4.

Therefore in order to satisfy (3.10) it is enough to satisfy

A ≥ C4(C2 + C3) + ℓAC4(1 + C1),

or equivalently
A(1− ℓC4(1 + C1)) ≥ C4(C2 + C3).

Hence, if the following inequalities hold

ℓ <
1

C4(1 +C1)
, A >

C4(C2 + C3)

1− ℓC4(1 + C1)
.

15



we get that A and µ satisfy (3.11) and thus

|X(t)−X∗| ≤
A

1 + tβ−1
for all t ≥ 0.

Notice again that the dependence on the initial condition is implicit in C2 and C3. The
convergence of |r(t)−r∗| and ‖n(t)−n∗‖TV readily follows from estimates (3.6), (3.7) and
(3.8) as in the exponential case, by using Lemma 3 to estimate the integral in (3.6).

We end the paper with the following two remarks.

Remark 3. The convergence results of Theorems 2 and 3 with α bounded by an exponential
function or with algebraic tail, respectively, can be extended for a general α as long as we are able
to find a suitable upper solution, which might depend on several parameters and an optimization
may be performed.

Remark 4 (Weak and strong connectivity). Analogously to Remark 2, our results for the model
with distributed delay can be applied to weak and strong connectivity regimes, where a unique
probability equilibrium exists under the relaxed Hypothesis 3 on S, instead of Hypothesis 1. In
this case we obtain convergence to the equilibrium in both regimes, provided the initial data is
close to the equilibrium in terms of r.
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