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Sustainability indicators in high 
entropy alloy design: an economic, 
environmental, and societal 
database
Stéphane Gorsse   1 ✉, Théo Langlois2, An-Chou Yeh   3,4 & Matthew R. Barnett2

This work introduces a comprehensive dataset and framework for assessing the sustainability of high 
entropy alloys (HEAs) and other metallic alloys. The dataset includes nine crafted indicators—raw 
material price, supply risk, normalized vulnerability to supply restriction, embodied energy, water 
usage, rock-to-metal ratio, human health damage, human rights pressure, and labor rights pressure—
for 18 elements: Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Re, Ru, Si, Ta, Ti, V, W, and Zr. This methodology 
evaluates economic viability, environmental impact, and societal implications using alloy compositions 
as input. The Python package, AlloySustainability, streamlines indicator computation and enables users 
to benchmark alloys against a database encompassing 340 HEAs and over 240 conventional steels and 
Ni-based superalloys. By integrating these tools with principles of responsible and informed design, this 
work promotes transparency and fosters innovative alloy development. The dataset and tools, freely 
available on GitHub, empower the scientific community to advance sustainable practices in metallurgy.

Background & Summary
The development of alloys is increasingly shaped by societal needs and environmental regulations. For instance, 
the European Union’s Restriction of Hazardous Substances (RoHS) Directive, specifically Directive 2011/65/
EU (also known as RoHS 2) issued by the European Parliament and Council on June 8, 2011, which limits the 
use of certain hazardous substances in electrical and electronic equipment, catalyzed the shift from Tin-Lead 
to Lead-free solders in electronic products, establishing Sn-Ag-Cu (SAC) alloys as the new industry standard. 
Similarly, the EU’s REACH regulations, formally known as Regulation (EC) No. 1907/2006 of the European 
Parliament and of the Council of December 18, 2006, have imposed strict controls on the use of hexavalent chro-
mium. This has prompted the advancement and adoption of alternative surface treatments, such as zinc-nickel 
coatings and trivalent chromium anodizing processes. Concerns over nickel’s health impacts have led to the 
innovation of nickel-free stainless steels, utilizing manganese (Mn) or nitrogen (N) as substitutes. Additionally, 
recognizing the health risks posed by beryllium, the industry has seen a transition to beryllium-free copper 
alloys like Cu-Ni-Si. These shifts underline a critical insight: materials science is integral to an ecosystem where 
societal and environmental considerations are not merely constraints but catalysts for innovation. This continu-
ous evolution in materials is propelled by the proactive integration of these considerations, reflecting a commit-
ment to responsible development and the betterment of society.

With High Entropy Alloys (HEAs) at the forefront of research due to their unique properties and distinctive 
characteristics, it has become imperative to rigorously evaluate their societal impact since the concept was first 
proposed in 20041,2. Reflecting on this, Cann et al.3. highlighted that “Significant efforts are needed to select eco-
nomically and environmentally viable alloy combinations that meet today’s technical demands.” This statement 
encapsulates the essence of our research and the critical need for a balanced approach to alloy design.

Recent studies have begun to explore the broader implications of HEAs beyond their technical performance. 
Fu et al.4 have examined resource efficiency, considering factors such as price, availability, and recyclability, 
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while emphasizing the need to address economic and environmental aspects of HEA design early in the develop-
ment process to ensure their technological viability. Similarly, Wang et al.5 have analyzed availability, prices, and 
chemical hazards, focusing specifically on refractory element-based HEAs. While these studies provide valuable 
initial insights, they remain limited in scope, addressing only a subset of potential impacts and alloy composi-
tions. Our work seeks to expand these efforts by developing a comprehensive set of indicators that evaluate eco-
nomic, environmental, and societal impacts. By examining these factors, we aim to provide a robust framework 
for guiding alloy design towards more sustainable and responsible practices. Drawing inspiration from other 
professions where ethical considerations are deeply integrated—such as ESG principles in investment, bioethics 
in medicine, and ethical AI—we have crafted a similar approach for alloy design. This method underscores the 
importance of making informed, conscientious choices in elemental composition. The indicators selected for 
this work were meticulously chosen to align with the three pillars of sustainable development: economic viabil-
ity, environmental impact, and human well-being.

Our methodological approach to selecting these indicators has been informed by the field’s demand for 
transparent, ethical, and sustainable practices. Presented to the scientific community during the Thermec’2023 
conference in Vienna, our initial findings have garnered significant interest, reinforcing the importance of 
sharing our comprehensive database. The set of nine indicators we introduce aims to guide alloy designers 
towards compositions that are more economically viable, environmentally conscious, and socially respon-
sible. This initiative led to the creation of a database, presented in this article, consisting of nine indicators 
designed to efficiently evaluate the sustainability of alloy compositions containing any of the following ele-
ments: Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Re, Ru, Si, Ta, Ti, V, W, and Zr. This database, freely available 
at the open repository figshare6 and on GitHub (https://github.com/sgorsse/AlloySustainability), was used 
to assess the impacts of 340 newly proposed high entropy alloy compositions, as detailed in a recently pub-
lished study7. Furthermore, we have developed an installable Python package indexed in PyPI (https://pypi.
org/project/AlloySustainability/) that allows users to compute the nine indicators for alloys of their interest 
within the 18-compositional space defined above. Users can also compare the computed indicators of their 
alloys against the median values for FCC HEAs, BCC HEAs, steels, and Ni-based superalloys, providing a 
benchmark for understanding how their designs align with or differ from existing compositions. Additionally, 
we provide a single-use interactive web application, named the Alloy Societal Impact Calculator, hosted 
on the Model Warehouse of the AI Machine Learning Platform at the High Entropy Materials Center. This 
application is freely accessible with registration at: https://black-stone-0b1668410.3.azurestaticapps.net/#/
materials_informatics.

Methods
Our methodology evaluates the sustainability of alloy compositions using nine specific indicators, each pro-
viding insights into a distinct category. Higher indicator values correspond to greater negative implications. A 
comprehensive explanation of these indicators and their application can be found in ref. 7.

Economic viability.

•	 Raw Material Price (MP): Uses the price of pure alloying additions as a cost proxy.
•	 Supply Risk (SR): Based on Graedel et al.‘s aggregated supply risk indicator8, this metric evaluates the poten-

tial for supply disruptions from geopolitical and natural events.
•	 Normalized Vulnerability to Supply Restriction (NVSR): Adjusts the vulnerability to supply restric-

tion (VSR)8 by the logarithmic production volume of the element, considering both scarcity and the potential 
for recycling.

Environmental impact.

•	 Embodied Energy9 (EE): Reflects the total energy required for metal production, from extraction to trans-
portation, correlating with greenhouse gas emissions. By assessing the energy required, we aimed to provide 
an indirect yet robust evaluation of the environmental burdens, including carbon footprint, associated with 
alloying addition production.

•	 Water Usage9 (WU): Measures the total water consumption in alloying addition production.
•	 Rock to Metal Ratio10 (RMR): Indicates land use intensity in mining operations, with higher ratios pointing 

to greater environmental disturbances.

Human well-being.

•	 Human Health Damage (HHD): An aggregate indicator from Graedel et al.8 measuring metals’ direct impacts 
on human health.

•	 Human Rights Pressure (HRP): Defined as a measure of potential human rights concerns associated with 
the sourcing of elements. It is derived from the Human Rights Index11 (HRI), which is defined at the country 
level and reflects the extent of respect for human rights within each country (c). Since higher values of the 
Human Rights Index (HRI) indicate broader respect for human rights, we inverted the scale to reflect pres-
sure (higher values indicating greater concerns). The formula below ensures that HRP is normalized within 
the same range as HRI while maintaining interpretability, where higher HRP values correspond to greater 
human rights pressures.
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HRP HRI HRI HRImin( ) max( )c c c c= − + +

•	 Labor Rights Pressure (LRP): Assesses labor rights concerns in extraction countries (c), derived from the 
Labor Rights Index12 (LRI). Using the same approach as HRP, we invert the LRI scale to reflect pressure, 
where higher LRP values indicate greater concerns. The formula ensures normalization within the same range 
as LRI while maintaining interpretability.

LRP LRI LRI LRImin( ) max( )c c c c= − + +

Evaluation of element indicators.  Table 1 lists element indicators, their units, value ranges, source ref-
erences, and calculation formulas where applicable. It offers a concise overview of metrics assessing element 
impacts.

Elemental Human Rights Pressure (HRPi) and Labor Rights Pressure (LRPi) are determined by the countries 
of origin for each element. These indicators can be calculated as a matrix product expressed as follows:

HRP LRP

HRP LRP
g C

g g

g g

HRP LRP

HRP LRP

Al Al

Zr Zr k
i k k j

Al Afghanistan Al Zimbabwe

Zr Afghanistan Zr Zimbabwe

Afghanistan Afghanistan

Zimbabwe Zimbabwe

18 2
1

180

, ,
18 2

, ,

, ,
18 180 180 2

∑











= =











=
























×
= ×

× ×

GC� �

�

� � �
�

� �

here  is the global supply matrix which gives the percentage of the production of raw materials of countries in 
the world13, and  the country indicator matrix.

Strategy for imputing missing data.  When encountering missing data, such as in 28% of the coun-
tries for the Labor Rights Pressure, we addressed the issue by leveraging correlations for data imputation. We 
compiled a dataset of 180 countries with 26 governance, social development, and sustainable competitive-
ness features7, which aided in imputing missing values for country-dependent indicators. Using a K-Nearest 
Neighbours (KNN) technique14, adapted from Python’s Scikit-Learn library15, we imputed missing data by 
finding the mean or median of the ‘k’ closest neighbors in our feature space. We standardized our imputation 
process with default Scikit-Learn settings, including using five neighbors to balance underfitting and overfit-
ting risks. To normalize data and minimize outliers’ impact, we applied ‘RobustScaler’ and ‘MinMaxScaler’ 
from the Python framework, ensuring equal feature contribution to KNN distance calculations. This KNN 
methodology was similarly applied to missing element indicator values, supported by correlation analysis 
with additional elemental properties, ensuring a consistent and accurate treatment of missing data across 
the study.

Element indicator Unit or range Reference Formula

Economic viability

Raw Material Price, MPi USD/kg —

Supply Risk, SRi [0,1] 8 —

Normalized Vulnerability to Supply 
Restriction, NVSRi

[0,1] 8 VSR production/log( )i i

Environmental impact

Embodied Energy, EEi J/kg 9 —

Water Usage, WUi l/kg 9 —

Rock to Metal Ratio, RMRi kg/kg 10 —

Human well-being

Human Health Damage, HHDi [0,100] 8

Human Rights Pressure, HRPi [0,100] 11 g HRPc i c c,∑ .

Labor Rights Pressure, LRPi [0,100] 12 ∑ .g LRPc i c c,

Table 1.  Element Indicators. MPi, SRi, NVSRi, EEi, WUi, RMRi, HHDi, HRPi, and LRPi represent the nine impacts 
for element i. VSRi and productioni denote the vulnerabilities to supply restriction and the world production of 
element i, respectively. gi c, , HRPc and LRPc are the geographic distribution of element i extraction (production 
share of each county c), the human right pressure, and the labour rights pressure of the country c, respectively.
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Data Records
Our dataset of impacts, named ‘gen_18element_imputed_v202412’, is available in both CSV and JSON formats 
and has been deposited on GitHub and figshare6. In addition to the dataset, we have included detailed metadata 
in the machine-readable JSON format, and a README file providing documentation for the dataset and indica-
tors. The dataset includes values for nine crafted indicators for a palette of eighteen elements commonly used in 
HEAs: Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Re, Ru, Si, Ta, Ti, V, W, and Zr. Figure 1 illustrates these indicators 
for the full palette of elements.

Technical Validation
The data presented in this article were carefully collected, processed, and thoroughly verified for accuracy by a 
team of experienced materials scientists who deeply understand metallurgy, alloy design, high entropy alloys, 
and materials sustainability. The K-Nearest Neighbors14 (KNN) imputation method’s effectiveness was veri-
fied through self-validation. For this, part of our dataset was manipulated to create missing values, which were 
then estimated using KNN for country-dependent indicators. This approach suits the 180-country dataset well, 
ensuring accurate imputations. Countries naturally form clusters sharing similar characteristics (e.g., economic 
development, governance, or resource availability), which ensures that missing values are surrounded by rele-
vant and similar neighbors, thereby enhancing the reliability of KNN imputations. For element indicators, with 
a smaller element dataset, we used Leave-One-Out Cross-Validation (LOOCV), ideal for its size, by validating 
each data point against the rest. The accuracy of our imputation was measured by comparing imputed values to 
actual ones, using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) for quanti-
fication. This comparison, shown in Fig. 2, confirms the robustness of our KNN method for both datasets. For 
more detailed information, please refer to the following reference7.

Fig. 1  Tree plots - ‘footprints’ - across 9 indicators for our palette of 18 elements. Each indicator is represented 
by a block for 18 elements. The size and color of each sub-block represent the indicator value for each element. 
Darker red hues and larger block sizes denote higher impacts. MP-material price, SR-supply risk, NVSR-
normalized vulnerability to supply restriction, EE-embodied energy, WU-water usage, RMR-rock-to-metal 
ratio, HHD-human health damage, HRP-human rights pressure, LRP-labor rights pressure.

https://doi.org/10.1038/s41597-025-04568-x
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Usage Notes
Evaluation of alloy indicators.  This database, which evaluates the societal implications of HEAs and con-
ventional alloys, provides data to support more sustainable and responsible alloy design practices that benefit 
both industry and society.

The price (MP), normalized vulnerability to supply restriction (NVSR), embodied energy (EE), water usage 
(WU), rock-to-metal ratio (RMR), human health damage (HHD), human rights pressure (HRP) and labor rights 
pressure (LRP) associated to an alloy composition are calculated as the weighted arithmetic average of its elemen-
tal constituents expressed in mass fraction. It was implemented in a Python code as the following matrix product:

Fig. 2  KNN validation – plots of original against imputed values along with Mean Absolute Percentage Error 
(MAPE) values for each feature.

https://doi.org/10.1038/s41597-025-04568-x
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Ialloy is the vector of alloy indicators, W is the compositional vector storing the elemental compositions of 
alloys (in mass fraction), and  is the matrix of elemental constituents’ indicators (‘gen_18element_imputed_
v202412’ deposited on GitHub).

Supply Risk (SR) was computed uniquely, acknowledging that an alloy’s likelihood of supply disruption esca-
lates with the number of constituents. It’s defined as a disruption probability between 0 and 1, calculated by 
multiplying the probabilities of each constituent (k), as per the expression:

Fig. 3  Violin plots of indicators for HEAs and conventional alloys generated by the installable Python package 
AlloySustainability proposed in the present study, showcasing the distribution of sustainability metrics across 
material groups and highlighting the calculated impacts for a specified alloy composition. The plots are divided 
into four groups: Steels, Ni-based superalloys, FCC HEAs, and BCC HEAs (mainly refractory HEAs). Each 
violin represents the distribution of a specific indicator, with median values marked. The calculated impact 
values for a new alloy, based on its specified composition, are highlighted as a black dot, with each value 
prominently displayed in the title of the corresponding plot.

https://doi.org/10.1038/s41597-025-04568-x
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Installable Python package.  To facilitate the calculation of sustainability indicators for alloys, we provide 
an installable Python package, AlloySustainability. This tool allows users to compute sustainability metrics for 
their alloys by simply inputting the chemical composition in terms of mass fractions for 18 elements (Table 2). The 
package automates the retrieval and processing of reference data, offering both numerical results and comparative 
visualizations against established alloy classes (Fig. 3). AlloySustainability is freely available on PyPI (https://pypi.
org/project/AlloySustainability/) and can be installed using the command: pip install AlloySustainability.

Case study.  The dataset serves as a valuable tool for identifying promising compositional spaces while 
highlighting those with high societal impacts to avoid. In a recent study7, it was used to evaluate HEAs against 
high-temperature Ni-based superalloys and steels for their room-temperature strength-ductility trade-offs. 
Building on data from three prior studies16–18, we analyzed 340 HEA compositions and grouped them based 
on their potential applications. The first group consists of 225 grades for high-temperature applications. This 
includes BCC-type HEAs inspired by Refractory HEAs (RHEAs) introduced by Senkov and Miracle19 composed 

1. Installation

Step 1: Ensure Python 3.6+ is installed. For best compatibility, use Google Colab, which offers a preconfigured Python 
environment with most dependencies pre-installed and seamless cloud data integration.

Step 2: Install the package using pip: pip install AlloySustainability

If you are using JupyterLab, restart the kernel after installation to ensure the package is recognized.

2. Basic Usage

2.1 Importing Modules

To use the package, import the necessary functions:

from AlloySustainability.computations import (
  load_element_indicators,
  load_RTHEAs_vs_Fe_df,
  load_HTHEAs_vs_Ni_df,
  compute_impacts
)

from AlloySustainability.visualization import plot_alloy_comparison

import matplotlib.pyplot as plt

2.2 Loading Data

The package provides data for sustainability indicators and reference alloy classes.

Load sustainability indicators:

element_indicators = load_element_indicators()

Load reference alloy classes:

RTHEAs_Fe_df = load_RTHEAs_vs_Fe_df()

HTHEAs_Ni_df = load_HTHEAs_vs_Ni_df()

2.3 Defining the Alloy Composition

Define the alloy’s chemical composition as a list of mass fractions for 18 elements. The sum of the fractions should equal 1.0.

Example:

composition_mass = [0, 0.2, 0.2, 0, 0, 0, 0.2, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0.2]

2.4 Computing Sustainability Indicators

Pass the composition and the loaded indicators to compute_impacts:

new_alloy_impacts = compute_impacts(composition_mass, element_indicators)

This will return a DataFrame containing the computed indicators for your alloy.

2.5 Visualizing the Results

Generate violin plots to compare your alloy’s metrics with reference classes:

fig = plot_alloy_comparison(new_alloy_impacts, RTHEAs_Fe_df, HTHEAs_Ni_df)

plt.show()

3. Additional Notes

Ensure the mass fractions sum to 1.0.

The visualization function automatically retrieves comparison data from embedded CSV files.

4. Need Help?

For further assistance or to report issues, please visit the GitHub repository or the PyPI page: https://pypi.org/project/
AlloySustainability/

Table 2.  User tutorial for AlloySustainability: this tutorial provides step-by-step instructions for installing and 
using the AlloySustainability package to compute and visualize the sustainability impacts of alloys.

https://doi.org/10.1038/s41597-025-04568-x
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of refractory metals such as MoNbTaVW. It also encompasses BCC/B2 refractory superalloys (RSAs)20, and FCC/
L12 high entropy superalloys (HESAs)21,22. The second group includes 115 FCC-type HEAs with a Face-Centered 
Cubic structure, inspired by the Cantor alloy (CoCrFeMnNi). These alloys, known for their strength and ductility 
at room temperature, were compared to commonly used steels for load-bearing and damage-tolerant applica-
tions. Figure 4 visualizes a set of 3 indicators among the 9 provided for a subset of 225 high entropy alloy (HEA) 
compositions that have appeared in the literature and 29 leading commercial Ni-based superalloys used in turbine 
blades since 1946.

Code availability
Data processing, validation, and plotting were performed using Excel and Jupyter notebooks23 in a 
Python 3 environment using common scientific libraries. The Python package AlloySustainability, used 
for computing and visualizing alloy sustainability indicators, is openly available on PyPI at https://pypi.
org/project/AlloySustainability/. Furthermore, the Alloy Social Impact Calculator is located at the Model 
Warehouse of the AI Machine Learning Platform of the High Entropy Materials Center (https://black-stone-
0b1668410.3.azurestaticapps.net/#/materials_informatics); it can be accessed freely with registration.
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