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Abstract—Early detection of breast cancer is key to patient’s survival.
Recent works showed that the distribution of local Hölder exponents
in a mammogram can quantify breast tissue disruption, and hence
assess breast cancer risk. This work proposes a systematic study of
the detectability of disrupted tissues embedded inside either fatty or
dense tissues leveraging simulated piecewise homogeneous fractal textures
modeling the breast tissues. A novel filtered fractional Brownian field
model for stationary isotropic fractal textures is proposed, based on a
genuinely designed isotropic filtering. Intensive simulations on synthetic
textures generated either from the previously introduced fractional
Gaussian field or from the novel filtered fractional Brownian field
show that a state-of-the-art local Hölder exponent-based segmentation
algorithm is capable of detecting large patches of disrupted tissues in
fatty environments, but that segmentation accuracy drops down for small
patches, while for dense environments performance are good and decrease
slowly with the patch size.

Index Terms—Breast cancer, Fractal textures, Brownian fields, Texture
segmentation, Detectability, Multiscale analysis, Variational estimator.

I. INTRODUCTION

Context. Breast cancer is the most represented cancer among women
worldwide. According to the Canadian1 and American2 Cancer So-
cieties up to one woman over eight will be diagnosed with a breast
cancer during her lifetime, and one over thirty-four will die from
it. Furthermore, autopsy surveys found a large number of occult
cancerous breast tumors [1], [2] which remained undetected. Yet,
early and efficient detection is critical to the patient’s survival [3].
Hence, massive research efforts have been made to enable breast
cancer detection at early stages [4]. The main diagnostic tool consists
in X-ray examination, though the resulting mammography turns out
to be rather difficult to interpret precisely for radiologists as normal
tissues might have very different appearance across the breast [5].
Related works. Fractal tools have been applied to analyze a large
variety of medical images and proved efficient in many diverse tasks,
from characterization of osteoporosis in X-ray images of bones [6]–
[9], to morphological evaluation of white matter in magnetic res-
onance images of the brain [10]. To name but a few, the fractal
dimension of the rough surface associated to a gray-scale image has
been successfully used for segmentation of ultrasound images [11]
and for characterizing the breast density [12] and turned out capable
to contribute to breast cancer risk assessment [12]. Detection of
potentially cancerous lesions in the breast has been addressed in
several ways: for example based on the power-law exponent of
Fourier spectrum [13]. Using an a contrario framework designed for
the detection of spots in textures backgrounds, the ability to identify
lesions in mammograms has been quantified systematically [14].
Recently, local measures of the self-similarity index in mammograms,
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through their so-called local Hölder exponent, have been leveraged
to yield very accurate cancer detection [15] and cancer risk assess-
ment [4], [16]. Beyond medical imaging, it is worth noting that
detectability has also been quantified in a multifractal framework [17]
in which homogeneous textures are characterized by a distribution of
spatially varying Hölder regularity instead of by a fixed value.
Goals, contributions and outline. Following the numerous works
modeling breast tissues as fractal textures [4], [5], [12], [16], the
present work aims at quantifying the detectability of patches of
disrupted tissues, modeled by fractal textures of Hölder exponent
Hp = 0.5 [4], [16], immersed either in fatty or dense microenvi-
ronments, modeled as fractal textures of respective Hölder exponents
Hb = 0.3 or Hb = 0.65 [4], [5], [16]. In particular, the influence
of the both the relative and absolute patch size on segmentation
accuracy is investigated. To that aim a synthetic framework designed
to mimic closely real mammograms is leveraged to provide quan-
titative detection performance. Two models of self-similar textures
characterized by an homogeneous local Hölder exponent are recalled
in Section II and a novel model based on a recently developed
undecimated isotropic filtering is proposed, enabling an even better
match with real textures and thus contributing to breast tissue
modeling. Section III recalls the principles of multiscale analysis for
local Hölder exponent estimation and sketches the automated data-
driven Threshold-ROF variational estimator of the local regularity
used to perform texture segmentation. Section IV introduces a novel
framework for detectability assessment and presents intensive Monte
Carlo numerical experiments characterizing the detectability of a
patch of disrupted tissue embedded in fatty or dense tissues.

II. PIECEWISE HOMOGENEOUS FRACTAL TEXTURES

Modeling and simulation of fractal textures has triggered intense
research efforts from both the stochastic geometry and computer
vision communities [18]–[20] and beyond [21]. From a mathematical
perspective, a gray-scale image can be modeled by a real-valued field
F : R2 → R. Textured images are well-described by random fields. In
particular, natural images, e.g., biomedical images [4], [5], [22], are
appropriately modeled by self-similar Gaussian fields [20] satisfying

∀c > 0, {F(cx);x ∈ R2} (law)
= cH{F(x);x ∈ R2} (1)

for some self-similarity index H ∈ (0, 1).
Isotropic self-similar fields. The fractional Brownian field of param-
eter H ∈ (0, 1), denoted by BH , is a very standard model of self-
similar Gaussian field [23]. It has the harmonizable representation:

BH(x) =

∫
R2

e−ix·ω − 1

∥ω∥H+1
dG̃(ω) (2)

where x ·ω = x1ω1+x2ω2 denotes the Euclidean product in R2 and
∥ω∥ =

√
ω2
1 + ω2

2 the associated norm and G̃ referred to the Fourier
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(a) fBf [20], see (2) (b) fGf [24], see (4) (c) Filtered fBf (5)

Fig. 1: Piecewise homogeneous fractal textures. Three models of
self-similar textures characterized by their Hurst exponent are com-
pared. Each image is composed, on the left half, of an homogeneous
textures with Hurst exponent H = 0.3, on the right half, of an an
homogeneous texture of Hurst exponent H = 0.65.

transform of a two-dimensional Wiener process. From Equation (2),
it can be shown that BH satisfies the self-similarity condition (1) and
that its covariance function writes for any x, y ∈ R2:

E
[
BH(x)BH(y)

]
=

1

2

(
∥x∥2H + ∥y∥2H − ∥x− y∥2H

)
(3)

where ∥x∥2 = x21 + x22 denotes the squared Euclidean norm. As
can be seen on the covariance function (3), fractional Brownian
fields, although isotropic, are not stationary: the variance of the
field BH at point x depends on the distance to the origin ∥x∥.
Figure 1a shows the juxtaposition of two fractional Brownian fields
of respective parameters H = 0.3 (left) and H = 0.65 (right);
the nonstationarity makes the frontier between the two textures
discontinuous, which is not appropriate for modeling neighboring
breast tissues. Instead, to account for the visual continuity required
when it comes to mimic real-world images, stationary texture models
have been considered [24]. For a self-similarity index H ∈ (0, 1),
the fractional Gaussian field GH introduced in [24] is defined as the
sum of horizontal vertical increments of the fractional Brownian field

GH(x) =
1

2
(BH(x+ e1) + BH(x+ e2)− 2BH(x)) (4)

where e1 = (1, 0) and e2 = (0, 1). As shown in [24, Proposition
4], GH is an isotropic, stationary and asymptotically self-similar
Gaussian field, which translates in Figure 1b into a far more realistic
frontier between the two different textures. Though, the choice of
horizontal and vertical directions might appear arbitrary, motivating
the construction of a generalization of the fractional Gaussian field (4)
including all directions. The novel isotropic stationary fractal texture
model consists in a isotropic filtering of the fractional Brownian
field (2) inspired by the monogenic wavelet transform introduced
in [25]. The filtered fractional Brownian field is defined as

CH(x) = ⟨BH , ux⟩, (5)

with a smooth radial function u satisfying
∫
R2 u(x)dx = 0 given by

the high-pass filter proposed in [25, Section 4.2] at scale 23, which
balances self-similarity preservation and visual aspect. As observed
in Figure 1c, the border between the two textures is almost invisible.
Synthesis of piecewise homogeneous textures. To quantify the
detectability of patches of disrupted tissues, corresponding to fractal
fields of self-similiarity index Hp = 0.5, immersed in fatty tissues,
corresponding to a background texture characterized by Hb = 0.3,
or in dense tissues, corresponding to Hb = 0.65, synthetic piecewise
homogeneous fractal textures are required. To that aim, an image is
considered as the restriction of a field to a square domain Ω and, as
illustrated in the fist column of Figure 2, a partition Ω = Ωp ∪ Ωb,
Ωp∩Ωb = ∅ is built where Ωp consists in a central disk modeling the

(a) Fatty background (b) fGf [24], see (4) (c) Filtered fBf (5)

(d) Dense background (e) fGf [24], see (4) (f) Filtered fBf (5)

Fig. 2: Piecewise homogeneous fractional Gaussian vs. filtered
fractional Brownian fields. The central patch to be detected covers
30% of the total image which is of resolution 512 × 512 pixels.
First row: detection of disrupted tissues in a fatty background.
Second row: detection of disrupted tissues in a dense background;

patch to be detected and Ωb corresponds to the background. On each
domain, independent homogeneous textures of corresponding self-
similarity index are generated, leading to a piecewise homogeneous
one, examples of which are provided in the second and third columns
of Figure 2 using respectively the fractional Gaussian field (4) and the
filtered fractional Brownian field (5) models. The first row of Figure 2
models a patch of disrupted tissue in a fatty environment, while the
second row mimics disrupted tissues in a dense environment.

III. HÖLDER EXPONENT-BASED TEXTURE SEGMENTATION

The local self-similarity index in mammograms is measured
through their local Hölder exponent [4], [15], [16] as the two
notions coincide for numerous fractal texture models, notably for the
fractional Brownian field (2), the fractional Gaussian field (4) and
the novel filtered fractional Brownian field (5).
Self-similarity and local Hölder exponent. At a point x0 ∈ Ω,
the local Hölder exponent of a field F : R2 → R, denoted h(x0), is
defined as the largest exponent α > 0 such that there exist a constant
χ and a polynomial Px0 of degree lower than α such that for x in
a neighborhood of x0: |F(x) − Px0(x)| ≤ χ∥x − x0∥

α. The local
Hölder exponent of the fields BH , G and CH defined in Equations (2),
(4) and (5) is constant equal to H , i.e., ∀x ∈ R2, h(x) = H .
Multiscale analysis and wavelet leaders. As the local Hölder
exponent is deeply linked to self-similarity, a natural estimation
framework is multiscale analysis. Let ϕ and ψ referring respectively
to the scaling function and to the mother wavelet, characterized
by its number of vanishing moment Nψ ,defining a one-dimensional
multiscale analysis provided that Nψ ≥ 1 [26]. Then, the two-
dimensional wavelets, depending on x = (x1, x2) ∈ R2, are defined
from ϕ and ψ as{

ψ(0)(x) = ϕ(x1)ϕ(x2), ψ(1)(x) = ψ(x1)ϕ(x2)

ψ(2)(x) = ϕ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2).
(6)

The two-dimensional wavelet coefficients of a (random) field F : Ω ⊆
R2 → R are then defined as Y (m)

F (j, k) = 2−j⟨F, ψ(m)
j,k ⟩ where j is

the octave, linked to the scale a = 2j , k = 2−jx is the location on the
dyadic lattice, m ∈ {0, 1, 2, 3} is the direction and ψ(m)

j,k correspond
to the m wavelet ψ(m) dilated to scale a = 2j and translated to



(a) True h (b) Piecewise texture (c) Lin. reg. ĥ
LR

(d) ROF ĥ
ROF

(e) T-ROF T ĥ
ROF

Fig. 3: Automated data-driven local Hölder exponent-based texture segmentation. Segmentation of a central patch covering 20% of an
N ×N pixels image consisting in a filtered fractional Brownian field of self-similarity index Hp = 0.5 plunged into a fractional Gaussian
field of self-similarity index Hd = 0.65 with N = 512. (a) Ground truth local Hölder exponent map h. (b) Piecewise homogeneous fractal
texture x. (c) Linear regression estimate of the local Hölder exponent ĥ

LR
. (d) Regularized estimate ĥ

ROF
obtained from (9) with automated

selection of the regularization parameter through minimization of (10). (e) Segmentation after iterative thresholding achieving F1 = 0.94.

location x = 2jk. The factor 2−j enforces the L1 normalization of
the wavelet transform. If furthermore, the wavelet ψ has compact
support, then the wavelet leader coefficients Lj,k, at scale 2j and
location x = 2jk, are defined as the local supremum of modulus of
wavelet coefficients in a small neighborhood across all finer scales
j′ ≤ j [27]–[29]

Lj,k = sup
λj′,k′ ⊂ 3λj,k
m ∈ {1, 2, 3}

|2jd(m)

j′,k′ |, (7)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃

p∈{−1,0,1}2
λj,k+p [27]–[29].

As demonstrated in [27], [30], under mild regularity conditions on F

Lj,k ≃ η(x)2jh(x) as 2j → 0, (8)

at x = 2jk and where η(x) > 0 does not depend on j. Hence, the
local Hölder exponent at location x can be obtained by performing
a linear regression of log2 Lj,k across small scales while keeping
k = 2−jx from octave jmin = 1 to jmax = 3, which is a compromise
between accuracy of the estimate and locality required when perform-
ing a segmentation. Figure 3c shows the pixelwise linear regression
estimate of the local Hölder exponent of the piecewise homogeneous
texture of Figure 3b. It appears far too noisy to perform an accurate
segmentation, hence requiring a posteriori regularization.
Threshold-ROF estimator. For a textured image composed of
M = N × N pixels, let hLR ∈ RM denote the pixelwise linear
regression estimates of its local Hölder exponent stored in a vector
form. The regularized ROF estimate of the local Hölder exponent,
originally proposed in [31] and then reframed using the wavelet leader
formalism in [24], [32], is built as the minimizer of an objective
function composed of a data-fidelity term and a Total Variation
penalization, which favors piecewise constancy and hence accurate
segmentation. It writes

ĥ
ROF

= argmin
h∈RM

∥h− ĥ
LR
∥22 + λ∥Dh∥2,1 (9)

where ∥·∥2 denotes the Euclidean norm in RM , D : RM → R2×M

is the two-dimensional discrete gradient operator and ∥·∥2,1 in the
mixed 2, 1-norm in R2×M . The objective function minimized in (9) is
strongly-convex, due to the square ℓ2, norm but nonsmooth, because
of the mixed ℓ2,1-norm involved in the isotropic Total Variation
penalization. Hence, minimizing (9) requires to resort to proximal
algorithms. In this work, an accelerated Chambolle-Pock primal-dual
scheme [33] particularized to fractal texture segmentation in [34,
Algorithm 1] yields a fast scheme to compute ĥ

ROF
which scales

up to large size images with N ≳ 1024. As illustrated in Figure 3d

the resulting estimate of local Hölder exponent resembles far more
the ground truth of Figure 3a. Furthermore, applying the short
iterative thresholding post-processing proposed in [35] leads to the
segmentation denoted T ĥ

ROF
shown in Figure 3e which is very

satisfactory given the difficulty of the task.
Stein-based automated parameter tuning. In Equation (9), the
regularization parameter λ plays a paramount role in achieving ac-
curate segmentation. In the present work, this hyperparameter is thus
fine-tuned using the flexible automated and data-driven procedure
proposed in [34], [36], which consists in the minimization of a
genuinely designed Generalized Stein Unbiased Risk Estimate

GSURE(λ) =
∥∥∥ĥROF

− ĥ
LR
∥∥∥2

+ 2Tr (SJ)− Tr(S) (10)

where S ∈ RM×M is the covariance matrix of the additive Gaussian
noise corrupting the linear regression estimate and J ∈ RM×M

is the Jacobian matrix of ĥ
ROF

with respect to ĥ
LR

. As ĥ
LR

presents significant spatial correlations arising from self-similarity
and from the multiscale framework used for estimation, S is non-
trivial. Though, assuming that the correlation length is bounded by
the largest scale 2jmax considered, S can be estimated in a data-
driven manner with good accuracy, following [34], [36]. Finally, the
minimization of (10) is performed efficiently leveraging Broyden-
Fletcher-Goldfarb-Shanno algorithm [36, Algorithm 3].

IV. DETECTABILITY ASSESSMENT

Intensive Monte Carlo numerical experiments are conducted to
assess the ability of the automated data-driven texture segmentation
method described in Section III to correctly detect a patch of
an homogeneous fractal texture characterized by a local Hölder
exponent Hp = 0.5, mimicking disrupted tissues, immersed in an
homogeneous texture background, characterized either by Hb = 0.3
to model fatty tissues or Hb = 0.65 associated to dense tissues [5].
The ultimate goal is to provide numerical evidence of the gap in
difficulty of Hölder exponent-based breast cancer risk assessment
between predominantly fatty and predominantly dense breasts and
to quantify the potential detection bias induced by a difference in
surrounding tissue density.
Experimental setup. Following the analyses performed in [4], [5],
in which the authors discriminate mammographic tissues based on
the local Hurst exponent, two configurations are considered:

• fatty background: detection of a patch of disrupted tissues, Hp =
0.5, immersed in fatty tissues, Hb = 0.3;

• dense background: detection of a patch of disrupted tissues,
Hp = 0.5, immersed in dense tissues, Hb = 0.65.

As an illustration, one example of each configuration is provided
in Figure 2, with in the first column the ground truth piecewise



(a) N = 256 (b) N = 512 (c) N = 1024 (d) All resolutions

Fig. 4: F-score for the detection of a central patch with H = 0.5 in fatty vs. dense textured background as a function of the relative
(a-c) or absolute (d) size of the patch. Performance averaged over R = 10 realizations with associated 95% Gaussian confidence intervals.

constant local Hölder exponent maps, in the second column the
piecewise homogeneous fractional Gaussian field, obtained from
Equation (4), and in the third column, piecewise homogeneous filtered
fractional Brownian field, resulting from Equation (5). For each of
these two configurations, eight relative sizes of the circular patch of
disrupted tissue to be detected are considered, covering respectively
{2%, 5%, 10%, 15%, 20%, 30%, 40%, 50%} of the whole textured
image composed of M pixels. Three image resolutions are considered
N ∈ {256, 512, 1024} in order to explore both the influence of
the relative and absolute sizes of the central patch to be detected.
Finally, for each configuration, each relative size and each absolute
size, R = 10 realizations of the fractional Gaussian field and
filter fractional Brownian field textures are generated and reported
performance are averaged over these R realizations and accompanied
by 95% Gaussian confidence regions.
Performance evaluation. To quantity the accuracy of the segmen-
tation of the central patch, modeling disrupted tissues, inside the
textured background, modeling fatty or dense tissues, the so-called
F-score is well adapted. Indeed, it accounts both for the two possible
sources of error: first, pixels originally belonging to the healthy,
fatty or dense, background and second, erroneously classified as
disrupted, error of type I, and for pixels originally belonging to
the patch and erroneously classified as background, error of type
II. During segmentation, each pixel is classified either as belonging
to the background texture, i.e., consisting in healthy tissues, or to the
central patch texture, i.e., exhibiting some disrupted structure. Let
first define the precision and recall associated to such a segmentation:

• precision: proportion of pixels segmented as belonging to the
central patch which indeed originally belong to it;

• recall: proportion of pixels originally belonging to the central
patch which have been correctly segmented.

Then, the F-score, belonging to [0, 1], is defined as F−1
1 =

precision−1 + recall−1. The larger the F-score, the better the seg-
mentation in terms of both errors of types I and II.
Detection performance for different relative sizes of the patch.
Figure 4 displays the F-score measuring the quality of the two-
class segmentation T ĥ

ROF
obtained from the minimization of (9).

As expected, one can observe that the accuracy of the segmentation,
quantified by the F-score, decreases as the relative size of the patch
of disrupted tissue decreases. Further, one can observe that the F-
score decreases faster with the relative patch size in the case of fatty
background, represented in the top row plots of Figure 4 than is
the case of dense background, in bottom plots. For large patches,
detection is easier in fatty than in dense backgrounds, which is in
line with radiologists claim that it is more difficult to detected (pre-

)cancerous lesions in dense breasts than in fatty breasts [37], [38].
Though, as the patch size decreases, it rapidly becomes very difficult
to detect disrupted tissues in fatty backgrounds, which contrasts
with the case of dense backgrounds in which the F-score remains
larger than 0.5 even for small patches. This observation interestingly
complements current knowledge and motivates further analysis of the
impact of the lesions size on detectability.
Detectability depending on the absolute size of the patch. Figure 4d
displays the detection performance, quantified through the F-score,
as a function of the absolute size of the central patch, counted
as the total number of pixels falling into the central disk. Bottom
plot of Figure 4d confirms that the detection performance in dense
backgrounds steadily decrease with the absolute patch size, though
disrupted tissue patch segmentation can be achieved reasonably well,
with F-scores always greater than 0.5, even for very small patches. On
the contrary, in the case of fatty backgrounds, the F-score is an erratic
function of the absolute size as displayed in top plot of Figure 4d.
While overall decreasing with the absolute patch size, performance
shows significant drops, which could be caused by dramatic finite-
size effects, demonstrating a dramatic lack of robustness.
Comparison of texture models. Finally, it is worth remarking that
all these conclusions apply both to the synthetic textures generated
using the fractional Gaussian field model proposed in [24, Section 4]
and the novel filtered fractional Brownian field constructed in Equa-
tion (5). Yet, in contrast with visual inspection of Figure 1, the filtered
fractional Brownian fields seem slightly easier to segment than the
fractional Gaussian fields, which shows their complementarity.

V. CONCLUSION

Systematic numerical experiments on synthetic isotropic textures
showed that detectability of disrupted tissues depends both on the
quantity of tissues and on their environment in a nontrivial way,
providing complementary insights on the role of breast density in
cancer risk assessment. Few works have exhibited some cases in
which mammograms present anisotropy properties, see e.g., [39],
but the subject remains vastly unexplored. A natural and promising
extension of the present work is thus to investigate detectability of
disrupted tissues in anistropic textures. The overarching goal of this
line of research is to provide some confidence level on the accuracy
of local Hölder exponent-based risk cancer assessment methodology
developed in [4], [16]. To that aim, publicly available mammographic
datasets will be then processed with fractal analysis tool, including
Digital Database for Screening Mammography3 and VinDr-Mammo4.

3https://www.cancerimagingarchive.net/collection/cbis-ddsm/
4https://www.physionet.org/content/vindr-mammo/1.0.0/
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https://www.physionet.org/content/vindr-mammo/1.0.0/
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[19] H. Biermé, F. Richard, M. Rachidi, and C.-L. Benhamou, “Anisotropic
texture modeling and applications to medical image analysis,” in Proc.
ESAIM, vol. 26. EDP Sciences, 2009, pp. 100–122.

[20] S. Cohen and J. Istas, Fractional fields and applications. Springer,
2013.

[21] R. M. Pereira, C. Garban, and L. Chevillard, “A dissipative random
velocity field for fully developed fluid turbulence,” J. Fluid Mech., vol.
794, pp. 369–408, 2016.

[22] A. Napolitano, S. Ungania, and V. Cannata, “Fractal dimension estima-
tion methods for biomedical images,” MATLAB—A fundamental tool for
scientific computing and engineering applications, vol. 3, pp. 161–178,
2012.

[23] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions,
fractional noises and applications,” SIAM review, vol. 10, no. 4, pp.
422–437, 1968.

[24] B. Pascal, N. Pustelnik, and P. Abry, “Strongly Convex Optimization
for Joint Fractal Feature Estimation and Texture Segmentation,” Appl.
Comput. Harmon. Anal., vol. 54, pp. 303–322, 2021. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02346159/document

[25] H. Biermé, P. Carré, C. Lacaux, and C. Launay, “Gaussian Random
fields and monogenic images,” Preprint, 2024. [Online]. Available:
https://hal.science/hal-04659825v1/document

[26] S. Mallat, A wavelet tour of signal processing. San Diego, USA:
Academic Press, 1997.

[27] S. Jaffard, “Wavelet techniques in multifractal analysis,” Fractal Geome-
try and Applications: A Jubilee of Benoı̂t Mandelbrot, M. Lapidus and M.
van Frankenhuijsen Eds., Proceedings of Symposia in Pure Mathematics,
vol. 72, no. 2, pp. 91–152, 2004.

[28] R. Leonarduzzi, H. Wendt, P. Abry, S. Jaffard, C. Melot, S. G.
Roux, and M. E. Torres, “p-exponent and p-leaders, Part II:
Multifractal Analysis. Relations to Detrended Fluctuation Analysis.”
Physica A, vol. 448, pp. 319–339, 2016. [Online]. Available:
http://arxiv.org/pdf/1507.06641v2.pdf

[29] H. Wendt, S. G. Roux, P. Abry, and S. Jaffard, “Wavelet leaders and
bootstrap for multifractal analysis of images,” Signal Process., vol. 89,
no. 6, pp. 1100–1114, 2009.

[30] S. Jaffard, B. Lashermes, and P. Abry, “Wavelet Leaders in Multifractal
Analysis,” in Wavelet Analysis and Applications. Springer, 2007, pp.
201–246.

[31] J. D. B. Nelson, C. Nafornita, and A. Isar, “Semi-local scaling exponent
estimation with box-penalty constraints and total-variation regulariza-
tion,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3167–3181, 2016.

[32] B. Pascal, N. Pustelnik, P. Abry, and J.-C. Pesquet, “Block-coordinate
proximal algorithms for scale-free texture segmentation,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. Calgary, Alberta,
Canada: IEEE, Apr. 15-20 2018, pp. 1253–1257. [Online]. Available:
https://hal.inria.fr/hal-01736991/document

[33] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imaging Vis.,
vol. 40, no. 1, pp. 120–145, 2011.

[34] B. Pascal, N. Pustelnik, P. Abry, G. J.-C., and V. Vidal, “Parameter-
free and fast nonlinear piecewise filtering: application to experimental
physics,” Ann. Telecommun., vol. 75, no. 11, pp. 655–671, 2020.

[35] X. Cai and G. Steidl, “Multiclass segmentation by iterated ROF thresh-
olding,” in International Workshop on Energy Minimization Methods in
Computer Vision and Pattern Recognition. Springer, 2013, pp. 237–250.

[36] B. Pascal, S. Vaiter, N. Pustelnik, and P. Abry, “Automated data-driven
selection of the hyperparameters for Total-Variation based texture
segmentation,” J. Math. Imaging Vis., pp. 1–30, 2021. [Online].
Available: https://hal.archives-ouvertes.fr/hal-03044181/document

[37] J. J. Heine and P. Malhotra, “Mammographic tissue, breast cancer risk,
serial image analysis, and digital mammography: Part 1. Tissue and
related risk factors,” Academic radiology, vol. 9, no. 3, pp. 298–316,
2002.

[38] A. L. Brown, C. Vijapura, M. Patel, A. De La Cruz, and R. Wahab,
“Breast cancer in dense breasts: detection challenges and supplemental
screening opportunities,” RadioGraphics, vol. 43, no. 10, p. e230024,
2023.

[39] F. Richard and H. Bierme, “Statistical tests of anisotropy for fractional
Brownian textures. Application to full-field digital mammography,” J.
Math. Imaging Vis., vol. 36, pp. 227–240, 2010.

https://hal.archives-ouvertes.fr/hal-02346159/document
https://hal.science/hal-04659825v1/document
http://arxiv.org/pdf/1507.06641v2.pdf
https://hal.inria.fr/hal-01736991/document
https://hal.archives-ouvertes.fr/hal-03044181/document

