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SPECTRAL SEQUENCES VIA LINEAR PRESHEAVES

MURIEL LIVERNET AND SARAH WHITEHOUSE

Abstract. We study homotopy theory of the category of spectral sequences
with respect to the class of weak equivalences given by maps which are quasi-
isomorphisms on a fixed page. We introduce the category of extended spectral
sequences and show that this is bicomplete by analysis of a certain linear presheaf
category modelled on discs. We endow the category of extended spectral sequences
with various model category structures, restricting to give the almost Brown cat-
egory structures on spectral sequences of our earlier work. One of these has the
property that spectral sequences is a homotopically full subcategory. By results
of Meier, this exhibits the category of spectral sequences as a fibrant object in
the Barwick-Kan model structure on relative categories, that is, it gives a model
for an infinity category of spectral sequences. We also use the presheaf approach
to define two décalage functors on spectral sequences, left and right adjoint to a
shift functor, thereby clarifying prior use of the term décalage in connection with
spectral sequences.
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1. Introduction

We study the category SpSe of spectral sequences and its homotopy theory. Since
SpSe is neither complete nor cocomplete, it does not admit model category structures.
In [19, Theorem 5.3.1], we established a weaker homotopical framework, that of an
almost Brown category, and exhibited such a structure, SpSer, on SpSe for each
r ≥ 0. The class of weak equivalences is given by maps of spectral sequences which
are quasi-isomorphisms on page r. Here, we situate SpSe as a subcategory of the
category ESpSe of extended spectral sequences and exhibit various model category
structures on this category. This setting provides a new perspective on the category
of spectral sequences and its homotopy theory and we deduce consequences for the
infinity category of spectral sequences.

To this end, we introduce and study a category of linear presheaves closely related
to the category of spectral sequences SpSe. This is the category LWB of linear wit-
ness books, a linear presheaf category built from suitable disc objects. Intermediate
between these two categories is the category of extended spectral sequences ESpSe.
In an extended spectral sequence, we require a specified morphism from each page to
the homology of the previous one, but we drop the requirement, crucial to spectral
sequences, that this should be an isomorphism.

The first parts of the paper are categorical. They are largely motivated by the
wish to view SpSe as a subcategory of a convenient bicomplete category. This is
the role played by the category of extended spectral sequences ESpSe. There is a
choice involved here, as we weaken the requirement in spectral sequences that a page
is isomorphic to the homology of the previous one. Here we simply require a map,
but not that it be an isomorphism. We have chosen that the maps go from a page
to the homology of the previous one. In some sense, this choice effectively gives
preference to colimits over limits. It fits well with the notion of witness cycles and
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boundaries appearing in our previous work [7]. Another motivation for our choice is
that it is likely to be better behaved in terms of monoidal structure. Although we
do not pursue that direction here, we note that Brotherston has shown that, on the
category of filtered complexes, model structures which are closely related to spectral
sequences are monoidal [5].

It turns out that ESpSe is bicomplete; see Theorem 5.3.2. Colimits are calculated
pagewise, but to understand limits is less straightforward. Here the linear presheaf
category of linear witness books plays a vital role, together with a pair of adjoint
functors (Q,N ). The terminology of linear witness books is chosen because the ob-
jects of this category can be viewed as having pages like those of a spectral sequence,
with witness maps from a page to the previous one, as well as degeneracy maps in
the other direction. This means objects have extra data, compared with spectral
sequences, witnessing how elements end up on the r-page.

We establish an adjunction Q ⊣ N of functors between LWB and ESpSe and use its
properties to identify subcategories (LWB)e and (LWB)s of LWB equivalent to ESpSe

and SpSe respectively. As (LWB)e is a full reflective subcategory of LWB it has all
(small) limits and colimits and thus so does ESpSe.

This setting offers insight into décalage for spectral sequences. We study trunca-
tion functors on the underlying category D on which we take our linear presheaves.
The embedding of a suitably truncated version of D into D has both a left and a right
adjoint. This triple of adjoint functors gives rise to a chain of five adjoint functors
on LWB. Of these, we will see that the leftmost three are internal to (LWB)e and so
there is a corresponding triple of adjoints on ESpSe. These also restrict to SpSe. In
particular we obtain a shift functor on ESpSe or SpSe with both a left adjoint LDec
and a right adjoint Dec, two versions of décalage; see Theorem 6.3.3. The terminol-
ogy is explained by noting that these functors are suitably compatible with Deligne’s
functors Dec∗ and Dec for filtered complexes [10]. Décalage has been studied for
more general filtered objects; see, for example, [14], where the key idea is attributed
to Antieau. Although décalage in this sense is always closely connected to the study
of spectral sequences, we are not aware of other work defining décalage functors di-
rectly on the category of spectral sequences, as we do here. Nonetheless, reference
is quite often made to décalage of a spectral sequence and there are important in-
stances of this relationship. For example, Rognes notes in [26] that it is common to
call the Whitehead tower spectral sequence the décalage of the Atiyah–Hirzebruch
spectral sequence; Levine establishes such a relationship between the Adams-Novikov
spectral sequence and Voevodsky’s slice tower spectral sequence [18] and Burklund-
Hahn-Senger do so for the C2-effective slice spectral sequence and the MUR-based
Adams–Novikov spectral sequence [6].

Later parts of the paper are homotopical, extending the study of the homotopy
theory of spectral sequences initiated in [19]. For each r ≥ 0, we study spectral
sequences with r-quasi-isomorphisms as a relative category, denoted (SpSe, Er). Hav-
ing situated spectral sequences inside the bicomplete category of extended spectral
sequences ESpSe, we now establish model category structures there, restricting to
the relevant structure on spectral sequences.
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For each r ≥ 0, we show the existence of a model category structure on ESpSe,
restricting to recover the corresponding underlying almost Brown category structure
on SpSe. Indeed there are two flavours of such model structures; in both the fibrations
are those maps f that are surjective on pages 0 to r. Theorem 7.2.1 gives a structure
ESpSer where the weak equivalences are those maps such that the component on
the r-page is a quasi-isomorphism. In Theorem 7.3.6, we obtain ESpSe′r, where the
weak equivalences are those maps such that the component on the r-page is a quasi-
isomorphism and the components on all higher pages are isomorphisms. As relative
categories, both ESpSer and ESpSe′r restrict to (SpSe, Er).

The methods of proof use the category LWB. For the first family of structures,
we obtain a cofibrantly generated model category structure on LWB by transfer of
a projective-type model structure on the category of r-bigraded complexes and then
modify this in order to produce a version LWBr which is closely related to the relevant
structure on SpSe. This model structure is then transferred to produce ESpSer. The
second family of model structures is established by directly checking the axioms,
making use of the existence of the first family.

These model structures have the following relationships to each other. We show
in Corollary 7.2.4 that the model categories ESpSer for different r are all Quillen
equivalent via shift and décalage functors and indeed, these are all Quillen equiv-
alent to a projective-type model category structure on the category of 0-bigraded
complexes. Similarly, the model categories ESpSe′r for different r are all Quillen
equivalent, see Proposition 7.4.1. Proposition 7.4.3 shows that the identity functor
ESpSe′r → ESpSer is a right Bousfield localization which is not a Quillen equivalence.
Thus we provide a right delocalization of (a model category Quillen equivalent to)
the projective model structure on 0-bigraded complexes, a bigraded version of chain
complexes.

The model category ESpSe′0 has the important feature that SpSe0 is a homotopi-
cally full subcategory, in the sense that any object weakly equivalent to a spectral
sequence is itself a spectral sequence. In [3] Barwick and Kan provide a model cat-
egory structure on the category of relative categories, Quillen equivalent to Rezk’s
complete Segal space model structure on simplicial spaces [24], thus establishing
another model for a homotopy theory of homotopy theories. Results of Meier [20,
Theorem 4.13] allow us to conclude, in Theorem 8.1.3, that (SpSe, E0) is a fibrant
relative category in this model. Our result can therefore be viewed as establishing
an infinity-category of spectral sequences. And, via the shift-décalage adjunction,
for each r the relative category (SpSe, Er) has (SpSe, E0) as a fibrant replacement.

We note that there is some other recent work on spectral sequences, close in
spirit to some of the ideas in this paper. In particular, in [4] the homotopy spectral
sequence of a (co)simplicial object in an infinity-category is studied and successive
terms are analysed using two types of localization. And [1] studies model structures
on the infinity-category of filtered objects in a suitable stable infinity-category, noting
that these may be viewed as a categorification of the model structures for filtered
complexes of [7].

The paper is organized as follows. Section 2 contains background material on
presheaves, model categories and bigraded complexes. In Section 3, we introduce
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the category of extended spectral sequences. The category D of disc objects is pre-
sented in Section 4, together with the presheaf category of linear witness books.
Section 5 covers the main adjunction relating linear witness books and extended
spectral sequences. In Section 6 we study shift and décalage functors. The homo-
topical parts of the paper are in Section 7, on model category structures, and in
Section 8, on an infinity-categorical interpretation. The paper concludes with an
appendix of additional material which is helpful in providing a complete story of our
presheaf approach, but not essential for the main text. Appendix A contains details
of important representable linear witness books. Appendix B provides descriptions
of certain adjoint functors on linear witness books. And finally, Appendix C explains
some non-existence results for certain model category structures having spectral se-
quences as fibrant objects.

Acknowledgements. The authors would like to thank the Isaac Newton Insti-
tute for Mathematical Sciences, Cambridge, for support and hospitality during the
programme Topology, representation theory and higher structures, at Gaelic College,
Sabhal Mòr Ostaig, Isle of Skye, where the final stage of the work on this paper was
undertaken. This work was supported by EPSRC grant EP/R014604/1.

2. Preliminaries

Throughout this paper, we let R denote a commutative ring with unit. The cate-
gory of R-modules is denoted ModR; it is a closed symmetric monoidal category.

2.1. Linear presheaves. We work with linear categories, that is, categories en-
riched in ModR, and we refer to [17] for our conventions. Given a small linear category

B we denote by B̂ the category of linear functors from Bop to ModR. Such a category
is called a category of linear presheaves. It is a linear category with linear natural

transformations as morphisms. The Yoneda embedding YB : B → B̂ which associates
to b the functor HomB(−, b) is thus an enriched functor. We will denote the Yoneda
functor YB simply by Y when the category B is clear from the context. We gather
here the results in Section 4.1 of [17] that we will use in the paper.

Proposition 2.1.1. Let B be a small linear category and let F : B → C be an enriched
functor.

(1) If C is a cocomplete linear category which is tensored over ModR, then the

left Kan extension of F along the Yoneda functor LanYF : B̂ → C exists and

admits the following description as a coend. For b′ ∈ B̂,

(LanYF )(b
′) =

∫ b∈B

Hom
B̂
(Y(b), b′)⊗ F (b).

It is left adjoint to the functor C → B̂ which associates to c the functor
HomC(F (−), c).

(2) If C is a complete linear category which is cotensored over ModR, then the

right Kan extension of F along the Yoneda functor RanYF : B̂ → C exists
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and admits the following description as an end. For b′ ∈ B̂,

(RanYF )(b
′) =

∫

b∈B
Hom

(
Hom

B̂
(b′,Y(b)), F (b)

)
.

It is right adjoint to the functor C → B̂ which associates to c the functor
HomC(F (−), c). �

The first adjunction corresponds to the usual adjunction between the nerve and
the realisation functor.

Given a linear functor B → C, applying the above to the composite with the

Yoneda functor YC : C → Ĉ yields the following.

Proposition 2.1.2. A linear functor G : B → C gives rise to a linear functor

G∗ : B̂ → Ĉ where G∗(b) = b ◦ G. This has a left adjoint G! and a right adjoint
G∗. �

2.2. Model category structures. We assume the reader is familiar with the lan-
guage of model category structures and we will use standard model category theoretic
terminology and notation as can be found in [16]. We will use standard recognition
results for cofibrantly generated model categories (cf. [15, Theorem 11.3.1] or [16,
Theorem 2.1.19]).

We also use standard machinery for right transfer of model category structures,
as summarised in [2, Section 4.4.1]. In particular, if we have an adjunction

C
L //

C′

R

⊥oo ,

with C a model category, then we have a model category structure on C′, in which
a map is a fibration or weak equivalence precisely if its image under R is such in C,
under either of the following conditions.

• C is cofibrantly generated, R preserves filtered colimits, and maps in C′ with
the left lifting property with respect to fibrations (that is, anodyne maps)
are weak equivalences. See [22, Proposition 3.1].

• C is cofibrantly generated, R also has a right adjoint R′ and (RL,RR′) is a
Quillen adjunction. See [11, Theorem 2.3].

We make use of criteria for a Quillen adjunction to be a Quillen equivalence. In
particular, if in a Quillen adjunction the right adjoint creates weak equivalences then
the adjunction is a Quillen equivalence precisely if for all cofibrant objects the unit
is a weak equivalence. See [21, Proposition 2.3].

We also use right Bousfield localization of a model category structure and the
corresponding notion of right delocalization [9].

2.3. Bigraded complexes. In this section we let r ≥ 0 be an integer.

Definition 2.3.1. A bigraded R-module A is a collection of R-modules A = {Ap,n}
with p, n ∈ Z.

Definition 2.3.2. An r-bigraded complex is a bigraded R-module A = {Ap,n} to-
gether with maps of R-modules dr : A

p,n → Ap−r,n+1−r, called differentials, such that
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d2r = 0. A morphism of r-bigraded complexes is a map of bigraded modules commut-
ing with the differentials. We denote by r-C the category of r-bigraded complexes.

Remark 2.3.3. The grading convention here is chosen to be compatible with our
previous work [7, 19]. It will mean that the differential on the r-page of a spectral
sequence has bidegree (−r, 1−r). It is straightforward to translate our results to the
standard setting of a homological spectral sequence where the corresponding bidegree
is (−r, r − 1) or that of a cohomological spectral sequence where it is (r, 1 − r).

Notation 2.3.4. We denote by Br(A) the image of dr, that is the bigraded R-module
of r-boundaries of A, and by Zr(A) the kernel of dr, that is, the bigraded R-module
of r-cycles of A. We write H(A) for the homology Zr(A)/Br(A).

We note that r-C can be viewed as a category of linear presheaves as follows.

Definition 2.3.5. For r ≥ 0, we let 〈δr〉 be the following linear category. The
objects are (p, n) for p, n ∈ Z. The R-module of morphisms Hom〈δr〉((p, n), (q,m))

is either 0 or free of rank 1 spanned by δp,nr : (p − r, n − r + 1) → (p, n) or by the
identity. Hence, composition of two non-identity morphisms is 0.

There is an isomorphism of categories

(1) 〈̂δr〉 ∼= r-C.

On objects this is given by the assignment that sends A in 〈̂δr〉 to the r-bigraded
complex with Ap,n = A(p, n) and with dr : A

p,n → Ap−r,n+1−r given by A(δp,nr ).

Notation 2.3.6. We write R
p,n for the bigraded module consisting of a free module

of rank 1 in bidegree (p, n) and otherwise 0.

Remark 2.3.7. Note that the Yoneda functor Y : 〈δr〉 → 〈̂δr〉 sends (p, n) to the
r-bigraded complex having only two non-zero components, each free of rank 1, at
bigrading (p, n) and (p − r, n + 1 − r) with dr : R → R the identity map. We have
R
p−r,n−r+1 = coker(δr : Y(p− 2r, n+2− 2r) → Y(p− r, n+1− r)) and since δ2r = 0

we have an induced map δp,nr : Rp−r,n+1−r → Y(p, n).

The homology of an r-bigraded complex is a bigraded R-module and the category of
r-bigraded complexes has a natural class of quasi-isomorphisms, namely morphisms
inducing isomorphisms on homology.

Similarly to the treatment of unbounded chain complexes by Hovey in [16, Sec-
tion 2.3], the r-bigraded complex Y(p, q) corresponds to the disc object D∗(R), the
r-bigraded complex R

p,n to the sphere object S∗(R), and the map δr : Rp−r,n+1−r →
Y(p, n) to the injection S∗−1(R) → D∗(R). The proposition below provides a model
category structure corresponding to the projective model category structure on the
category of unbounded chain complexes adapted to the category of r-bigraded com-
plexes.

Proposition 2.3.8. The category r-C of r-bigraded complexes has a cofibrantly gen-
erated model category structure where

• fibrations are bidegreewise surjections,
• weak equivalences are quasi-isomorphisms.
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The set of generating acyclic cofibrations is the set I = {0 → Y(p, n)}p,n∈Z and the
set of generating cofibrations is the set J = {δp,nr : Rp−r,n−r+1 → Y(p, n)}p,n∈Z. �

We will identify 〈̂δr〉 with r-C via the isomorphism (1) and view it as a model cat-
egory with the above structure, which we refer to as the projective model structure.

We end this section with the r-cone construction that will be useful in the sequel.

Definition 2.3.9. Let A be an r-bigraded complex. The r-cone of A is the r-
bigraded complex (Coner(A), dr) given by

Coner(A)
p,n = Ap,n ⊕Ap+r,n+r−1 with dr(a, b) = (0, a).

It is naturally endowed with a projection πr : Coner(A) → A defined as πr(a, b) =
a+ dAr (b).

Note that the assignment A 7→ Coner(A) is functorial, and that this functor is the
composite of the forgetful functor from r-C to bgMod

R
followed by its left adjoint.

Note also that it is isomorphic to the usual cone construction of the identity map in
chain complexes. In particular, for every A, Coner(A) is acyclic.

We end this subsection by noting that we can compare the categories of r-bigraded
complexes for varying r by using a translation functor.

Definition 2.3.10. For each r ≥ 0, the translation functor T : r-C → (r + 1)-C is
given by (T A)p,n = An,2n−p, with differential that of A, and (T f)p,n = fn,2n−p.

Note that translation commutes with cone constructions and homology.

Proposition 2.3.11. For each r ≥ 0, the categories of r-bigraded complexes and
(r + 1)-bigraded complexes are isomorphic via the translation functor, T : r-C →
(r + 1)-C. This induces a Quillen equivalence between the projective model category
structures on r-C and (r + 1)-C. �

3. The category of extended spectral sequences

In [19] we studied the category of spectral sequences SpSe, and provided some
examples showing that it is neither complete nor cocomplete. In this section we
embed the category SpSe in the category of extended spectral sequences. We show
here that this category is cocomplete and we will see later that it is also complete;
see Proposition 5.3.1.

3.1. Spectral sequences and extended spectral sequences.

Definition 3.1.1. An extended spectral sequence (X,ϕ) is a family of r-bigraded
complexes (Xr, dr), for r ≥ 0, together with a family of morphisms of bigraded
R-modules ϕr+1 : Xr+1 → H(Xr) for r ≥ 0, called characteristic maps.

A morphism of extended spectral sequences is a family of morphisms fr : Xr → Yr
of r-bigraded complexes, for r ≥ 0, which is compatible with characteristic maps.

We denote by ESpSe the category of extended spectral sequences.
A spectral sequence is an extended spectral sequence such that the characteristic

maps are all isomorphisms. We denote by SpSe the category of spectral sequences,
that is, the full subcategory of ESpSe whose objects are spectral sequences.
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We note that the categories SpSe and ESpSe implicitly involve the forgetful func-
tors from r-bigraded complexes to bigraded R-modules, since the characteristic maps
are morphisms of bigraded R-modules.

Proposition 3.1.2. The category ESpSe of extended spectral sequences is a linear
category with (small) colimits, computed pagewise. It is tensored over ModR.

Proof. That the category is linear is immediate. It is straightforward to see that it
is tensored over ModR, noting that, for an R-module M and an extended spectral
sequence Y , the characteristic maps of M ⊗ Y are given by the composites

M ⊗ Yi+1

1M⊗ϕY
i+1

−−−−−−→M ⊗H(Yi)
µ
−→ H(M ⊗ Yi),

where µ(m⊗ [x]) = [m⊗ x].
Let X : I → ESpSe be a functor with I a (small) category. For each m ≥ 0 denote

by

ϕ(i)m+1 : X(i)m+1 → H(X(i)m)

the characteristic maps, and by Ym = colimi∈IX(i)m the colimit of the diagram
Xm : I → m-CR induced by the projection of ESpSe to m-CR. The canonical maps
ρ(i)m : X(i)m → Ym induce maps of bigraded R-modules

H(ρ(i)m) ◦ ϕ(i)m+1 : X(i)m+1 → H(Ym).

Since the forgetful functor from (m+1)-bigraded complexes to bigraded R-modules
preserves colimits, there is a (unique) characteristic map Ym+1 → H(Ym). Thus the
pagewise colimit Y is an object of ESpSe, with compatible maps X(i) → Y . For the
universal property, if Y ′ is another such with canonical maps ρ′(i)m : X(i)m → Y ′

m,
there is a unique map of m-bigraded complexes αm : Ym → Y ′

m for all m, such that
αmρ(i)m = ρ′(i)m. And these satisfy compatibility with the characteristic maps by
using the universal property of (the underlying bigraded module of) the pagewise
colimit. �

Remark 3.1.3. Note that ESpSe is not cotensored over ModR. This is one conse-
quence of the choice of direction of the characteristic maps.

3.2. Discs in extended spectral sequences. We adapt the notation of Section
5.5 in [19] to the case of extended spectral sequences.

Definition 3.2.1. Let p, n ∈ Z. For all r ≥ 0, let Dr(p, n) be the spectral sequence
defined as follows.





Dr(p, n)i = R
p,n ⊕ R

p−r,n+1−r, di = 0 for 0 ≤ i < r,

Dr(p, n)r = R
p,n 1

−→ R
p−r,n+1−r

Dr(p, n)i = 0 for i > r.

We denote by ep,nr,i a generator of Dr(p, n)
p,n
i and by fp−r,n+1−r

r,i a generator of

Dr(p, n)
p−r,n+1−r
i , for 0 ≤ i ≤ r. The characteristic map

ϕi : Dr(p, n)i → H(Dr(p, n)i−1)
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is given by

ϕi(e
p,n
r,i ) = [ep,nr,i−1],

ϕi(f
p−r,n+1−r
r,i ) = [fp−r,n+1−r

r,i−1 ].

for 0 ≤ i ≤ r and ϕi = 0 for i > r.

Definition 3.2.2. Let (X,ϕ) be an extended spectral sequence.

(1) A sequence of elements (xp,n0 , . . . , xp,nm+1) with xp,ni ∈ Xp,n
i is said to be com-

patible if for every 0 ≤ i ≤ m, dix
p,n
i = 0 and ϕ(xp,ni+1) = [xp,ni ] where [xp,ni ] is

the class of xp,ni in H(Xi).

(2) Denote by N (X)p,nr the R-submodule of X⊕(2r+2) consisting of pairs

(xp,n0 , . . . , xp,nr ); (yp−r,n+1−r
0 , . . . , yp−r,n+1−r

r )

of compatible sequences satisfying drx
p,n
r = yp−r,n+1−r

r . This yields a functor,
denoted by N p,n

r : ESpSe → ModR.

Notation 3.2.3. We denote by R(p, n) the spectral sequence which at each page has
a free module of rank 1 concentrated in bidegree (p, n) and all differentials zero.

The following proposition is a direct consequence of the definitions.

Proposition 3.2.4. Let (X,ϕ) be an extended spectral sequence.

(1) There is a one-to-one correspondence between infinite compatible sequences
(xp,n0 , . . . , xp,nm , . . .) and morphisms of extended spectral sequences R(p, n) →
X.

(2) We have N p,n
r = HomESpSe(Dr(p, n),−), that is, N p,n

r is represented by
Dr(p, n). �

Remark 3.2.5. Later we will see that the functors N p,n
r assemble to a nerve functor

from extended spectral sequences to a presheaf category; see Proposition 5.1.1.

4. The presheaf category of linear witness books

In this section we introduce and study a linear presheaf category closely related
to spectral sequences.

4.1. The category D. We define the underlying category on which we will consider
presheaves. We show in Proposition 4.1.7 that it can be understood as the full linear
subcategory of SpSe generated by the disc objects Dr(p, n).

Definition 4.1.1. Let D be the small linear category defined as follows. Objects
of D are triples (r, p, n) with r ≥ 0 and p, n ∈ Z. Morphisms in the category are
generated by the following morphisms for all r ≥ 0 and p, n ∈ Z.

co-witness ωp,n
r+1 : (r, p, n) → (r + 1, p, n),

co-differential δp,nr : (r, p − r, n − r + 1) → (r, p, n),

co-degeneracy σp,nr : (r + 1, p + 1, n + 1) → (r, p, n),

subject to the following relations for all r ≥ 0 and p, n ∈ Z.

σp−1,n−1
r ωp,n

r+1 = 0, ωp,n
r+1σ

p,n
r = 0, σp+r,n+r−1

r δp+r+1,n+r
r+1 ωp,n

r+1 = δp+r,n+r−1
r .
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Remark 4.1.2. The relations

δp+r,n+r−1
r δp,nr = δp+r,n+r−1

r σp,nr = ωp,n
r+1δ

p,n
r = 0 for all r ≥ 0, p, n ∈ Z

also hold in D as an immediate consequence.

The following lemma is a direct consequence of the definition and gives all the
non-zero R-modules of morphisms in D.

Lemma 4.1.3. For every p, n ∈ Z, r ≥ 0,

HomD((r − i, p, n), (r, p, n)) = R(ωr)
i for r ≥ i ≥ 0,

HomD((r + j, p + j, n+ j), (r, p, n)) = R(σr)
j for j > 0,

HomD((r, p − r, n− r + 1), (r, p, n)) = Rδr,

HomD((r − i, p, n), (r, p + r, n + r − 1)) = Rδr(ωr)
i for r ≥ i > 0,

HomD((r + j, p, n), (r, p + r, n + r − 1)) = R(σr)
jδr+j for j > 0.

Here we have omitted the upper indices on the morphisms; they can be determined
by the hom modules in which the morphisms live. We denote by (ωr)

i the composite
ωrωr−1 . . . ωr−i+1 and the same notation is used for the iterated composite of the σs.
For i = 0, it denotes the identity map. �

Remark 4.1.4. The category D is self-dual. Indeed, for a morphism α : C → C ′

in a category C we write α for the corresponding morphism C ′ → C in Cop. Then
an isomorphism D → Dop is given on objects by (r, p, n) 7→ (r, r − p, r − n) and on

generating morphisms by δp,nr 7→ δ2r−p,2r−n−1
r , σp,nr 7→ ωr−p,r−n

r+1 , ωp,n
r+1 7→ σr−p,r−n

r .

We define some maps of spectral sequences between the disc objects Dr(p, n) of
Definition 3.2.1.

Definition 4.1.5. Recall that we denote by ep,nr,i a generator of Dr(p, n)
p,n
i and by

fp−r,n+1−r
r,i a generator of Dr(p, n)

p−r,n+1−r
i , for 0 ≤ i ≤ r. We define maps of

spectral sequences

ω : Dr(p, n) → Dr+1(p, n)

δ : Dr(p, n) → Dr(p + r, n+ r − 1)

σ : Dr(p, n) → Dr−1(p− 1, n − 1)

determined by, for 0 ≤ i ≤ r,

ω(ep,nr,i ) = ep,nr+1,i,

ω(fp−r,n+1−r
r,i ) = 0,

δ(ep,nr,i ) = fp,nr,i ,

δ(fp−r,n+1−r
r,i ) = 0,

σ(ep+1,n+1
r,i ) = 0,
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and

σ(fp−r,n+1−r
r,i ) = fp−r,n+1−r

r−1,i for 0 ≤ i < r,

σ(fp−r,n+1−r
r,r ) = 0.

Remark 4.1.6. If we think of the generators e and f as the source and target
respectively, ω maps source to source, δ maps source to target and σ maps target to
target.

In the following diagrams both • and ∗ represent R, a free module of rank 1, the
vertex marked ∗ being in bidegree (p, n). The solid arrows are identity maps within
disc objects and the dashed arrows are identity maps between source or target of the
disc objects as indicated.

The morphism ω : Dr(p, n) → Dr+1(p, n) can be depicted as follows.

∗ ∗

•

•

ω

The corresponding picture for δ : Dr(p, n) → Dr(p+ r, n + r − 1) is:

•

∗ ∗

•

δ

and for σ : Dr(p, n) → Dr−1(p − 1, n− 1):

∗

•

• •

σ

Proposition 4.1.7. The category D is isomorphic to the full subcategory of SpSe gen-
erated by the objects Dr(p, n) for r ≥ 0 and p, n ∈ Z, via the assignment (r, p, n) 7→
Dr(p, n).

Proof. We send the generating morphisms of D to the correspondingly named mor-
phisms of spectral sequences given in Definition 4.1.5. It is straightforward to check
that the relations of Definition 4.1.1 are satisfied by these morphisms. Thus we have
a well-defined functor from D to SpSe.

We claim that non-trivial morphisms of spectral sequences Dr(p, n) → Dr′(p
′, n′)

correspond exactly to the non-trivial morphisms in D, as specified in Lemma 4.1.3.
This is checked by direct inspection of morphisms of spectral sequences Dr(p, n) →

Dr′(p
′, n′). Briefly, we can have such a morphism of type “source to source” only for

r < r′ and these are generated by composites of ωs. There is a morphism of type
“target to target” only for r > r′ and these are generated by composites of σs. And
morphisms of type “source to target” are generated by δ if r = r′, by composites
of the form δωi if r < r′ and by composites of the form σjδ if r > r′. There is no
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non-trivial map of spectral sequences of type “target to source” and, together with
identity maps, this accounts for all the morphisms. �

4.2. Linear witness books.

Definition 4.2.1. We write LWB for the linear presheaf category D̂. A linear witness

book is an object of D̂ and a morphism of linear witness books is a morphism in D̂.

The following proposition is a direct consequence of the definitions.

Proposition 4.2.2. A linear witness book L is a collection of r-bigraded complexes
(Lr, dr) for r ≥ 0, endowed with R-linear witness maps wr+1 : Lr+1 → Lr of bidegree
(0, 0) and R-linear degeneracy maps sr : Lr → Lr+1 of bidegree (1, 1) satisfying the
relations

wr+1sr = 0, srwr+1 = 0 and dr = wr+1dr+1sr, for all r ≥ 0.

A morphism of linear witness books f : K → L is a collection of morphisms of r-
bigraded complexes fr : Kr → Lr for r ≥ 0, compatible with the witness and degener-
acy maps. �

Definition 4.2.3. The r-page of a linear witness book L ∈ LWB is the r-bigraded
complex (Lr, dr).

We write (L, di, wi, si) for an object of LWB.

Remark 4.2.4. For (L, di, wi, si) ∈ LWB, we also have the relations srdr = drwr+1 =
0. The relation d2r = 0 is redundant, but the connection to spectral sequences is
clearer if we explicitly view the r-page as an r-bigraded complex.

It follows directly from the description above that for any linear witness book
(L, di, wi, si) we have, for all i ≥ 0,

(2) Im di ⊆ Imwi+1 ⊆ Ker si ⊆ Ker di and Im si ⊆ Kerwi+1.

The combinatorics of the representable object Y(r, p, n) are treated in Exam-
ple A.1.1.

Proposition 4.2.5. The embedding D →֒ ESpSe which associates to (r, p, n) the
spectral sequence Dr(p, n) induces an adjunction

LWB
Q

//
ESpSe

N

⊥oo

with the right adjoint defined as N (X)(r, p, n) = HomESpSe(Dr(p, n),X).

Proof. Apply Proposition 2.1.1, noting that ESpSe is a cocomplete linear category
tensored over ModR by Proposition 3.1.2. �

By Proposition 3.2.4, the functor N is explicitly described in Definition 3.2.2.
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5. Relating linear witness books and extended spectral sequences

In this section we explore how the categories of linear witness books and extended
spectral sequences are related. We begin by supplying more details of the (Q,N )
adjunction and explaining its properties. This will allow us to identify a full subcate-
gory of LWB that is equivalent to ESpSe. Importantly, this is a reflective subcategory,
allowing us to conclude in Theorem 5.3.2 that ESpSe is bicomplete. We also provide
characterizations of (extended) spectral sequences inside LWB.

5.1. Description and properties of the main adjunction. Though the (Q,N )
adjunction comes from standard category theory, it is important to describe the
functors. The functor N , similar to a nerve functor, is easily defined. The functor
Q, obtained via a coend formula, has a nice description as a quotient by degeneracies.

Proposition 5.1.1. For the functor N : ESpSe → LWB, the module N (X)p,nr is
as described explicitly in part (2) of Definition 3.2.2. In addition, for any pair of
compatible sequences (x;x′) = ((x0, . . . , xr); (x

′
0, . . . , x

′
r)) in N (X)r with dXr xr = x′r

we have

dr(x;x
′) = (x′; 0), wr(x;x

′) = ((x0, . . . , xr−1); 0), sr(x;x
′) = (0; (x′0, . . . , x

′
r, 0)).

Proof. We have to show that the maps dr, wr, sr have the correct expression, which is
a matter of directly interpreting the expression N (X)p,nr = HomESpSe(Dr(p, n),X).

�

Notation 5.1.2. For a linear witness book L and r > 0, we write Sr = Sr(L) for
the sub r-bigraded complex sr−1Lr−1 + drsr−1Lr−1 of Lr.

Theorem 5.1.3. The functor Q : LWB → ESpSe assigns to L ∈ LWB the extended
spectral sequence Q(L), where Q(L)0 = L0 and for r > 0,

Q(L)r = Lr/Sr,

with differential induced by that of Lr and with characteristic map ϕr : Q(L)r →
H(Q(L)r−1) defined by

ϕr(a) =
[
wr(a)

]
.

Here bars denote classes in the quotient by Sr and square brackets denote homology
classes.
For X an extended spectral sequence, the counit of the (Q,N ) adjunction

ǫX : QN (X) → X

is induced by the projection N (X)r → Xr which associates xr to (x;x′).
The counit is a componentwise isomorphism. In particular, N is fully faithful and
Q is essentially surjective.
For L a linear witness book, the unit of the (Q,N ) adjunction

ηL : L→ NQ(L),

is given, for a ∈ Lr, by

(ηL)r(a) =
(
wr(a), . . . , w(a), a;wr(dra), . . . , w(dra), dra

)
.

The unit is componentwise surjective.
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Proof. Though the description of Q has been obtained by the coend formula of
Proposition 2.1.1, we prove that (Q,N ) is an adjunction by checking the triangle
identities relating the unit and the counit. That ǫ and η are well defined natural
transformations is an easy check. We fix X an extended spectral sequence and L a
linear witness book. Proposition 5.1.1 implies that

Sr(N (X)) = {(x;x′) ∈ Nr(X) |xr = 0}.

In particular, in QN (X)r, one has (x;x′) = (y; y′) if and only if xr = yr. We claim
that this implies the following.

a) (QηL) ◦ ǫQL = 1QNQL.
b) The counit ǫX is componentwise injective.
c) (ηNX) ◦ N ǫX = 1NQNX .

For a) and b) this is a direct check. Let us prove c). Let (x; y) ∈ (NQNX)r with
x = (x̄0, . . . , x̄r) and y = (ȳ0, . . . , ȳr) where xi and yi are in (NX)i. Denote by xii
and yii their projections onto Xi, so that a := N ǫX(x; y) = (x00, . . . , x

r
r; y

0
0 , . . . , y

r
r) ∈

(NX)r. We have, for i ≥ 1, wi(a) = (x00, . . . , x
r−i
r−i; 0) and widra = (y00 , . . . , y

r−i
r−i, 0) ∈

(NX)r−i. As a consequence wia = x̄r−i and widra = ȳr−i in (QNX)r−i. This shows
that ηNX(a) = (x; y).
Claims a) and c) imply that the left adjoint of N is the described functor Q.
The counit is componentwise surjective because the projection N (X)r → Xr is. Let
us prove that the unit is componentwise surjective.
Let α = (a0, . . . , ar; b0, . . . , br) ∈ NQ(L)r. We claim that for j = 0, . . . , r there is an

element cr−j ∈ Lr such that wicr−j = ar−i and widrcr−j = br−i for 0 ≤ i ≤ j. Then
(ηL)r(c0) = α and (ηL)r is surjective.

We prove the claim by induction on j. For j = 0, we can take cr = ar. Now

assume we have cr−j as above. We have
[
wj+1cr−j

]
= [ar−j−1] in H((QL)r−j−1).

So there is some c′ ∈ Lr−j−1 such that

wj+1cr−j = ar−j−1 + dr−j−1c′ = ar−j−1 + wr−jdr−jsr−j−1c′

and so
wr−j(wjcr−j − dr−jsr−j−1c′) = ar−j−1.

Similarly, since [wj+1drcr−j ] = [br−j−1] in H((QL)r−j−1), there is some c′′ ∈ Xr−j−1

such that
wr−j(wjdrcr−j − dr−jsr−j−1c′′) = br−j−1.

Then it is straightforward to check that cr−j−1 = cr−j − drs
j+1c′ − sj+1c′′ has the

required properties. �

Proposition 5.1.4. There is a forgetful functor U : LWB → ESpSe and the quotient
maps Lr → Q(L)r give rise to a natural transformation of functors from U to Q.

Proof. Let L be a linear witness book. Since dr−1wr = 0, the collection (Lr, dr) of r-
bigraded complexes may be endowed with the characteristic maps ϕr : Lr → H(Lr−1)
given by ϕr(a) = [wr(a)]. This gives the extended spectral sequence U(L). It is clear
that a morphism of linear witness books f : L → K gives a morphism of extended
spectral sequences U(L) → U(K).
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By Theorem 5.1.3 Q(L)r is isomorphic to the quotient Lr/Sr. The description of
the characteristic maps of Q(L) in Theorem 5.1.3 shows that this gives a morphism
U(L) → Q(L) in ESpSe. �

The following result will be important for understanding model category structures
later.

Proposition 5.1.5. Let f : X → Y be a morphism in ESpSe. Then fi is surjective
for 0 ≤ i ≤ r if and only if N (f)i is surjective for 0 ≤ i ≤ r.

Proof. It is clear that if N (f)r is surjective then fr is surjective. Let us prove that
if fi is surjective for 0 ≤ i ≤ r, then so is N (f)i for 0 ≤ i ≤ r, by induction on
r. This is true for r = 0. Let X be an extended spectral sequence. We have seen
in the proof of Theorem 5.1.3 that Proposition 5.1.1 implies that Sr(NX) is the
kernel of the projection (NX)r → Xr. In addition, Sr(NX) = sr−1(N (X)r−1) ⊕
drsr−1(N (X)r−1). Hence, for r ≥ 1 and p, n ∈ Z, there is a natural short exact
sequence of R-modules

sr−1(N (X)p−1,n−1
r−1 )⊕ drsr−1(N (X)p+r−1,n+r−2

r−1 ) �
�

// N (X)p,nr
// // Xp,n

r

This implies that if N (f)r−1 is surjective, then fr is surjective if and only if N (f)r
is surjective. �

5.2. Characterizing extended spectral sequences as presheaves. We charac-
terize the essential image of the functor N , thus giving a subcategory of the category
of linear witness books LWB which is equivalent to the category of extended spectral
sequences ESpSe.

Proposition 5.2.1. An object (L, di, wi, si) of LWB is in the essential image of N
if and only if Ker di = Ker si for all i ≥ 0.

Proof. If L is isomorphic to NX, the description of the maps w, s, d given in Propo-
sition 5.1.1 proves that Ker di = Ker si for all i ≥ 0.

We have that L is in the essential image of N if and only if (ηL)j is injective for
all j, since it is surjective by Theorem 5.1.3.
Let us assume that Ker di = Ker si for all i ≥ 0. We prove by induction on r
that Ker(ηL)r = 0. Firstly note that Ker(ηL)0 = 0 for all L since (N (QL))0 is
isomorphic to L0. Hence the result is valid for r = 0. Let r ≥ 0 and assume the
statement holds for every k ≤ r. Let a ∈ Lr+1 be such that (ηL)r+1(a) = 0. Thus
(ηL)r(wr+1a) = 0 and (ηL)r(wr+1dr+1a) = 0, and so wr+1a = 0 and wr+1dr+1a = 0
since (ηL)r is injective. By assumption, the image of a in (QL)r+1 is zero, thus there
exist α, β such that a = srα+ dr+1srβ. Applying wr+1 we get 0 = wr+1a = drβ. So
β ∈ Ker dr ⊆ Ker sr and hence srβ = 0. Applying wr+1dr+1 we get 0 = wr+1dr+1a =
drα, hence α ∈ Ker dr ⊆ Ker sr and so srα = 0. In conclusion a = 0. �

Definition 5.2.2. We denote by (LWB)e the full subcategory of LWB on objects
satisfying Ker di = Ker si for all i ≥ 0.

Theorem 5.2.3. The fixed point equivalence associated to the adjunction (Q,N )
gives an equivalence of categories (LWB)e ∼ ESpSe.
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Proof. It follows from Theorem 5.1.3 and Proposition 5.2.1 that the adjoint functors
Q and N restrict to give an equivalence:

(LWB)e
Q

//
ESpSe

N

∼oo . �

We now note some properties of the category (LWB)e. In Proposition A.2.3, we
explain how to characterize (LWB)e via a right lifting property. And in Remark A.2.4,
we note that it can be viewed as a certain subcategory of local objects.

Proposition 5.2.4. (1) For L in (LWB)e, the r-bigraded complex Sr(L) is the
direct sum sr−1Lr−1 ⊕ drsr−1Lr−1 and Sr(L) is acyclic for all r.

(2) For L in (LWB)e, the quotient map Lr → Q(L)r is a quasi-isomorphism for
all r.

(3) For X an extended spectral sequence, the projection ρr : (NX)r → Xr is a
quasi-isomorphism for all r.

(4) For X an extended spectral sequence satisfying di = 0 for 0 ≤ i ≤ r − 1 and
ϕi = 1 for 1 ≤ i ≤ r, the projection ρr : (NX)r → Xr is an isomorphism.

Proof. Let a ∈ L with sr−1a = drsr−1b. Then applying wr we get dr−1b = 0 hence
sr−1b = 0 and so sr−1a = 0 too. So we see that Sr(L) is a direct sum. So it is the
cone in r-bigraded complexes of the identity map of sr−1Lr−1 and so acyclic. Since
the kernel of the quotient map Lr → Q(L)r is Sr(L), we deduce that the quotient
map is a quasi-isomorphism for all r. The projection NX → X is the composition of
the quotient map NX → QNX followed by the counit ǫX of the adjunction (Q,N ),
which is an isomorphism. Since NX ∈ (LWB)e, the third statement follows. The
final statement can be seen directly from the description of (NX)r. �

5.3. Limits and colimits in extended spectral sequences.

Proposition 5.3.1. The category (LWB)e is a full reflective subcategory of LWB. It
has all small limits and colimits, with limits computed pagewise and colimits via the
reflector NQ.

Proof. By Theorem 5.1.3, the counit of the adjunction (Q,N ) is a natural isomor-
phism. It follows that the essential image of the right adjoint functor N is a full
reflective subcategory of LWB, with reflector NQ left adjoint to the inclusion. Propo-
sition 5.2.1 identifies the essential image of N as (LWB)e.

Note that LWB is bicomplete with small limits and colimits, calculated componen-
twise. It follows that the inclusion creates limits and the full subcategory also has
all colimits, obtained by applying the reflector to colimits in LWB [25, Proposition
4.5.15]. �

Theorem 5.3.2. The category ESpSe has all small limits and colimits, with colimits
computed pagewise.

Proof. The existence of small limits and colimits follows from the equivalence of
categories of Theorem 5.2.3. In Proposition 3.1.2, we saw that colimits are page-
wise. If G : I → ESpSe is a functor from a small category I, then limiG(i) =
Q(limiN (G(i))). �
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As we noted earlier, the category ESpSe is not cotensored over ModR. So, although
it is complete, one should not expect N to have a right adjoint. Indeed, N does not
preserve all colimits, but we do have the following result which will be useful for
transfer of model structures later.

Proposition 5.3.3. The functor N : ESpSe → LWB preserves filtered colimits.

Proof. We recall that colimits are computed pagewise in ESpSe and in LWB. Suppose
that i : C → C′ is the inclusion of a full subcategory, that colimJ(i ◦X) exists in C′

and is (isomorphic to) an object of C. Then colimJX exists and is given by the same
object. Applying this to the inclusion of the essential image of N into LWB, we
therefore need to show that for filtered colimits in (LWB)e the pagewise colimit lies
in (LWB)e.

Let L : J → (LWB)e be a diagram in (LWB)e with J a filtered category. The
pagewise colimit is

C := colimJL(j) = (⊕j∈JL(j))/ ∼

where a ∼ a′ for a ∈ L(j), a′ ∈ L(j′) if there exist f : j → k, f ′ : j′ → k such
that L(f)(a) = L(f ′)(a′). Let [a] = [(aj)j ] ∈ C, where finitely many aj are non-
zero, say for j ∈ J ′, a finite subset of J . Suppose di[a] = 0 for some i ≥ 0. Now
since J is filtered there exists k ∈ J and fj : j → k in J for all j ∈ J ′. Let
b = Σj∈J ′L(fj)(aj) ∈ L(k). Then a = Σj∈J ′aj ∼ b. Now 0 = di[a] = di[b] = [dib]. So
dib ∼ 0 and there exists f : k → k′ ∈ J such that diL(f)(b) = L(f)(dib) = 0. Thus
L(f)(b) ∈ Ker di = Ker si in L(k′). And since a ∼ b ∼ L(f)(b), we see that si[a] = 0.
Thus C satisfies Ker di = Ker si for all i ≥ 0 and so C lies in (LWB)e. �

5.4. Characterizing spectral sequences as presheaves.

Definition 5.4.1. We denote by (LWB)s the subcategory of LWB given by the es-
sential image under N of the category of spectral sequences SpSe.

By restricting our adjunction we obtain an equivalence of categories (LWB)s ∼
SpSe. Equivalently, (LWB)s is the full subcategory on those L in (LWB)e such that
QL is a spectral sequence.

The following diagram gives an overview of the relationships between these cate-
gories.

LWB ESpSe

(LWB)e

(LWB)s SpSe

Q

N
⊥

∼

∼

Proposition 5.4.2. Let (L, di, wi, si) be an object of (LWB)e and let i ≥ 0.

(1) The characteristic map ϕi+1 of QL is surjective if and only if in L we have
Imwi+1 = Ker di = Ker si.
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(2) The characteristic map ϕi+1 of QL is injective if and only if in L we have
Kerwi+1 = Im si.

Thus an object (L, di, wi, si) of LWB lies in (LWB)s if and only if Imwi+1 = Ker di =
Ker si and Kerwi+1 = Im si for all i ≥ 0.

Proof. We may consider L as L = NX with X an extended spectral sequence. In
particular QL is isomorphic to X by Theorem 5.1.3. We recall that Imwi+1 ⊆ Ker si
and Im si ⊆ Kerwi+1. Let (x; y) in (NX)i. We have

• (x; y) ∈ Imwi+1 if and only if y = 0 (and thus dixi = 0) and there exists
xi+1 ∈ Xi+1 such that ϕi+1(xi+1) = [xi].

• (x; y) ∈ Ker si if and only if y = 0 (and thus dixi = 0).

In consequence the characteristic map ϕi+1 of QL is surjective if and only if in L we
have Imwi+1 = Ker si = Ker di.

Let (x; y) in (NX)i+1. We have

• (x; y) ∈ Im si if and only if x = 0 (and thus xi+1 = 0).
• (x; y) ∈ Kerwi+1 if and only if (x0, . . . , xi) = (0, . . . , 0).

In consequence Kerwi+1 = Im si if and only if, for all xi+1 ∈ Xi+1, ϕi+1(xi+1) =
0 ⇒ xi+1 = 0. So the characteristic map ϕi+1 of QL is injective if and only if in L
we have Kerwi+1 = Im si.

The final statement follows since L ∈ (LWB)s if and only if the characteristic map
ϕi+1 of QL is an isomorphism for all i ≥ 0. �

In Proposition A.2.5, we explain how to characterize (LWB)s via a right lifting
property.

6. Truncation, shift and décalage

In this section we introduce various truncated versions of the categories D, LWB

and ESpSe and set up functors and adjunctions relating these. Indeed all of these
categories contain nested copies of themselves giving rise to these adjunctions.

In the first part we consider truncated versions of D, where we take objects (i, p, n)
with r ≤ i ≤ t. We study the embedding of this truncated version into D, and the
associated triple of adjoint functors at the level of linear witness books. The special
case r = t will be used for transfer of model category structures in Section 7.1.

In the second part we consider the case t = ∞. In this case, the embedding into
D has both a left and a right adjoint. This triple of adjoint functors gives rise to a
sequence of five adjoint functors on LWB. Of these, we will see that to the leftmost
three there is a corresponding triple of adjoints on ESpSe and on SpSe. When r = 1
we use the term décalage for the functor on ESpSe or SpSe corresponding to the
embedding and denote it by Dec. Its left adjoint is called the shift functor and
the left adjoint of the shift is a variant of décalage, which we denote LDec. We
explain our use of the term décalage by noting compatability with Deligne’s notions
for filtered complexes. The presheaf approach gives important insight in determining
the correct form of the décalage functor for (extended) spectral sequences.

This section is quite technical, involving many adjoint functors. These arise for-
mally as left or right Kan extensions as in Proposition 2.1.2. In several cases we
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give explicit descriptions of these functors on objects, omitting the corresponding
descriptions for morphisms and omitting proofs which are routine. We provide full
details in the most delicate case of Proposition 6.3.6.

6.1. Truncation. We begin by considering truncated versions of the category D

and the corresponding truncations of the category of linear witness books LWB,
where we have only pages r to t, for some 0 ≤ r ≤ t ≤ ∞. Truncation of D may
be thought of as analogous to truncation of the simplex category, giving rise to
(co)skeleta functors on simplicial sets.

Notation 6.1.1. For 0 ≤ r ≤ t ≤ ∞, we denote by tr[r,t]D the full subcategory of
D generated by the objects (i, p, n) for r ≤ i ≤ t. We write tr≥r D for tr[r,∞]D and
tr≤r D for tr[0,r]D when convenient. Note that tr[r,r]D = 〈δr〉.

We use the corresponding notation for LWB. Indeed the category tr[r,t] LWB has
for objects families of i-bigraded complexes (Li, di) with r ≤ i ≤ t together with
linear maps wi+1 : Li+1 → Li of bidegree (0, 0) and si : Li → Li+1 of bidegree (1, 1)
for r ≤ i < t subject to the same relations as those for linear witness books. Note

that we have tr[r,r] LWB = 〈̂δr〉.
We denote by ι[r,t] : tr[r,t]D → D the embedding.

The functor ι[r,t] induces adjunctions on the associated linear presheaf categories;
see Proposition 2.1.2.

Definition 6.1.2. We define

U[r,t] = ι∗[r,t], F[r,t] = (ι[r,t])! and R[r,t] = (ι[r,t])∗.

So we have the adjunctions:

tr[r,t] LWB LWB

F[r,t]

⊥

R[r,t]

⊥

U[r,t]

We note that U[r,t] : LWB → tr[r,t] LWB is the forgetful functor. The following
proposition describes the left adjoint functor F[r,t] explicitly. For the interested
reader, the description of the right adjoint R[r,t] is given in Proposition B.1.1. The
latter functor does not behave as nicely as the former functor with respect to (LWB)e

and (LWB)s. We omit proofs since the arguments are routine.

Proposition 6.1.3. Let (L, di, wi, si) be an object of tr[r,t] LWB. We have

F[r,t](L)
p,n
i =





Lp,n
r for 0 ≤ i < r,

Lp,n
i for r ≤ i ≤ t,

Conei(Lt/Bt(Lt))
p+t−i,n+t−i for i > t,
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with the maps dFi , w
F
i , s

F
i defined as

dFi = 0 wF
i+1 = 1 sFi = 0 for 0 ≤ i < r,

dFi = di wF
i+1 = wi+1 sFi = si for r ≤ i < t,

dFt = dt wF
t+1 =

(
0 dt

)
sFt =

(
1
0

)
for i = t,

dFi =

(
0 0
1 0

)
wF
i+1 =

(
0 0
0 1

)
sFi =

(
1 0
0 0

)
for i > t.

The unit of the adjunction (F[r,t],U[r,t]) is the identity. The counit of the adjunction
F[r,t]U[r,t](L) → L takes the following form.

• For 0 ≤ i < r it corresponds to wr−i : Lr → Li.
• It is the identity at page i for r ≤ i ≤ t.
• For i > t it is the composite of the projection onto the first component
Conei(Lt/Bt(Lt)) → Lt/Bt(Lt) followed by si−t : Lt/Bt(Lt) → Li. �

The translation functor of Definition 2.3.10 interacts nicely with the truncations
of the category LWB.

Proposition 6.1.4. The translation functor applied to each page of a (truncated)
linear witness book induces isomorphisms of categories

T : tr[r,s] LWB → tr[r+1,s+1] LWB, T : LWB → tr≥1 LWB

and thus an isomorphism of categories

T r : LWB → tr≥r LWB. �

6.2. Special case of truncation. Now we consider some extra properties that are
satisfied by truncation ι[r,t] : tr[r,t]D → D in the case t = ∞. Recall that we write ι≥r

for the embedding in this case. This embedding functor ι≥r : tr≥r D → D has both
a left and a right adjoint, so that tr≥r D is a reflective and coreflective subcategory
of D. We therefore obtain via Proposition 2.1.2 a chain of five adjoint functors at
the level of the presheaf category LWB and its truncations. Most of our focus will
be on the leftmost three of these five functors, since these are the ones that give rise
to interesting functors on (extended) spectral sequences.

Proposition 6.2.1. The embedding ι≥r : tr≥r D → D admits a left and a right
adjoint, denoted respectively W≥r and S≥r from D to tr≥r D. The left adjoint W≥r

is given on objects by

W≥r(i, p, n) = (r, p, n) if i < r,

W≥r(i, p, n) = (i, p, n) if i ≥ r,

and on generating morphisms by, for i < r,

W≥r(ω
p,n
i+1) = 1, W≥r(δ

p,n
i ) = 0, W≥r(σ

p,n
i ) = 0,

with W≥r acting as the identity on all other generating morphisms.
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The right adjoint S≥r is given on objects by

S≥r(i, p, n) = (r, p + r − i, n + r − i) if i < r,

S≥r(i, p, n) = (i, p, n) if i ≥ r,

and on generating morphisms by, for i < r,

S≥r(ω
p,n
i+1) = 0, S≥r(δ

p,n
i ) = 0, S≥r(σ

p,n
i ) = 1,

with S≥r acting as the identity on all other generating morphisms.
We have W≥rι≥r = S≥rι≥r = Idtr≥r D.

The counit of the adjunction (W≥r, ι≥r) is the identity. The unit of the adjunction
ηW(i,p,n) : (i, p, n) → W≥r(i, p, n) has the following form.

ηW(i,p,n) = ωr−i : (i, p, n) → (r, p, n) if i < r,

ηW(i,p,n) = 1 if i ≥ r.

The unit of the adjunction (ι≥r,S≥r) is the identity. The counit of the adjunction
ǫS(i,p,n) : S≥r(i, p, n) → (i, p, n) has the following form.

ǫS(i,p,n) = σr−i : (r, p + r − i, n + r − i) → (i, p, n) if i < r,

ǫS(i,p,n) = 1 if i ≥ r.

Proof. That the functors are well defined is immediate. To prove that W≥r is left
adjoint to ι≥r, we only need to show that W≥r(η

W
(i,p,n)) and ηW

ι≥r(i,p,n)
are the identity

maps, which is the case. To prove that S≥r is right adjoint to ι≥r, we only need to
show that S≥r(ǫ

S
(i,p,n)) and ǫS

ι≥r(i,p,n)
are the identity maps, which is the case. �

Thus we have a chain of five adjoint functors on (truncated) linear witness books

(W≥r)! ⊣ W∗
≥r ⊣ ι∗≥r ⊣ S∗

≥r ⊣ (S≥r)∗

= = =

F≥r U≥r R≥r

The explicit description of the functor (W≥r)! is given in Proposition B.1.3.

6.3. Shift and décalage for (extended) spectral sequences. Next we consider
how these adjoint functors behave with respect to the subcategory (LWB)e and its
truncations. We show that the leftmost three of the five adjoints restrict to this set-
ting and thus give rise, via the (Q,N ) adjunction, to corresponding adjoint functors
on ESpSe. We will show that they also restrict to SpSe.

The translation functor T r : ESpSe → tr≥r ESpSe is an isomorphism of categories.
One can then define a pair of adjoint functors (Q≥r,N≥r) between the categories
tr≥r LWB and tr≥r ESpSe, transferring the adjunction (Q,N ) along the isomorphism
T r. In particular, the essential image of N≥r can be described as in Proposition 5.2.1;
we denote this by tr≥r (LWB)e. This category has for objects the truncated linear
witness books satisfying Ker si = Ker di, for all i ≥ r.

Proposition 6.3.1. The functors U≥r and F≥r restrict to the categories (LWB)e and
tr≥r (LWB)e and to the categories (LWB)s and tr≥r (LWB)s.
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Proof. The functor U≥r : LWB → tr≥r LWB is the forgetful functor, hence it sends
(LWB)e to tr≥r (LWB)e and (LWB)s to tr≥r (LWB)s. Let L be a truncated linear
witness book. For 0 ≤ i < r we have, in F≥rL, Ker di = Ker si = Imwi+1 = Lr and
Im si = Kerwi+1 = 0. For i ≥ r we have, in F≥rL, all the structural morphisms
coincide with those in L. In conclusion, if L ∈ tr≥r (LWB)e or in tr≥r (LWB)s then
F≥rL is in (LWB)e or in (LWB)s, by Propositions 5.2.1 and 5.4.2. �

The corresponding statement for the functor (W≥r)! can be found in Proposi-
tion B.1.4

Next we introduce notation for the triple of adjoint functors we are interested in on
ESpSe. These correspond to the functors (W≥r)!,F≥r and U≥r, transferred via the
(Q,N ) adjunction and composed with suitable translations in order to give functors
ESpSe → ESpSe.

Notation 6.3.2. We introduce the following functors ESpSe → ESpSe:

LDec = T −1 ◦ Q≥1 ◦ (W≥1)! ◦ N ,

Shift = Q ◦ F≥1 ◦ N≥1 ◦ T ,

Dec = T −1 ◦ Q≥1 ◦ U≥1 ◦ N .

We denote by tr≥r ESpSe the category whose objects are collections of i-bigraded
complexes (Xi, di) for i ≥ r endowed with characteristic maps ϕi+1 : Xi+1 → H(Xi)
for i ≥ r. And tr≥r SpSe denotes the corresponding truncation of SpSe.

Theorem 6.3.3. On the category ESpSe we have adjunctions

LDec ⊣ Shift ⊣ Dec .

Proof. We give the details for the Shift ⊣ Dec adjunction. Using that the unit of
the adjunction L → N≥1Q≥1(L) is an isomorphism for L ∈ tr≥1 (LWB)e, that U≥1

sends (LWB)e to tr≥1 (LWB)e and that N≥1 is fully faithful, we obtain the following
sequence of bijections:

HomESpSe(Shift(X), Y ) ∼= HomLWB(F≥1N≥1T (X),N (Y ))

∼= Homtr≥1 LWB(N≥1T (X),U≥1N (Y ))

∼= Homtr≥1 LWB(N≥1T (X),N≥1Q≥1U≥1N (Y ))

∼= Homtr≥1 ESpSe(T (X),Q≥1U≥1N (Y ))

∼= Homtr≥1 ESpSe(T (X),T Dec(Y ))

∼= HomESpSe(X,Dec(Y ))

The same arguments prove the other adjunction, using that F≥1 sends tr≥1 (LWB)e

to (LWB)e. �

We write F r for the r-fold iterated composite F ◦F ◦F · · · ◦F of a functor F . The
following proposition gives explicit descriptions of the iterated composites Shiftr and
Decr.
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Proposition 6.3.4. For X a truncated extended spectral sequence in tr≥r ESpSe, we
have

(Shiftr T −rX)i =

{
(Xr, 0) for 0 ≤ i < r,

(Xi, di) for r ≤ i.

The characteristic maps ϕi are the identity morphism for 1 ≤ i ≤ r and coincide
with ϕX

i for r + 1 ≤ i. If X is in SpSe so is Shiftr(X).
For X an extended spectral sequence in ESpSe, we have in tr≥r ESpSe

(T r DecrX)i =

{
(NX)r for i = r,

(Xi, di) for r < i.

The characteristic maps ϕi coincide with ϕX
i for r+ 1 < i and ϕr+1 is the following

composite

Xr+1 H(Xr) H((NX)r).
ϕX
r+1 H(ρr)−1

If X is in SpSe then so is Decr(X).
The unit of the adjunction (Shiftr,Decr) is an isomorphism.

Proof. Obtaining the descriptions of the functors is straightforward. The statements
about restriction to SpSe follow from the descriptions of the characteristic maps.
That the unit η is an isomorphism follows from part (4) of Proposition 5.2.4, with
(ηX)0 = (ρr)

−1 and (ηX)i = 1 for i > 0. �

In order to describe LDecr explicitly, we introduce some notation.

Notation 6.3.5. LetX be in ESpSe. Denote by qr : (NX)p+r,n+r−1
r → Coner(X0)

p,n

the map defined by

qr(x0, . . . , xr; y0, . . . , yr) = (−y0, x0).

For an r-bigraded complex A we denote by ΣA the r-bigraded complex defined as
(ΣA)p,n = (ΣA)p+r,n+r−1 with differential dΣA = −dA. The map qr induces a short
exact sequence in r-C

0 → Σ(NX)r/Ker qr → Coner(X0) → Coner(X0)/ Im qr → 0

which yields a long exact sequence in homology and thus an isomorphism

∂r : H(Coner(X0)/ Im qr) → H((NX)r/Ker qr).

Proposition 6.3.6. For X in ESpSe, we have in tr≥r ESpSe

(T r LDecrX)i =

{
Coner(X0)/ Im qr for i = r,

(Xi, di) for r < i.

The characteristic maps ϕi coincide with ϕX
i for r+ 1 < i and ϕr+1 is the following

composite

Xr+1 H(Xr) H((NX)r) H((NX)r/Ker qr) H(Coner(X0)/ Im qr),
ϕX
r+1 H(ρr)−1 ∂−1

r

where the unlabelled arrow is induced by the projection.
If X is in SpSe then so is LDecr(X).
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The counit of the adjunction (LDecr,Shiftr) is an isomorphism.

Proof. We prove that the functor LD : ESpSe → tr≥r ESpSe defined by the fomulas
of the statement is left adjoint to the functor Shiftr T −r. For the proof, we denote
by Hom,Hom[r,t] and Hom≥r the R-modules of morphisms in ESpSe and in the cor-
responding truncated categories. Any X ∈ ESpSe can be viewed as an object in
tr[r,t] ESpSe by forgetting some pages. By abuse of notation, we also denote it by X.

For X ′, Y ∈ tr≥r ESpSe, we have

Hom≥r(X
′, Y ) ∼= Hom≥r+1(X

′, Y ) ×
Hom(r+1)-C(X′,Y )

Hom[r,r+1](X
′, Y )

and similarly, for X,Y ′ ∈ ESpSe, we have

Hom(X,Y ′) ∼= Hom≥r+1(X,Y
′) ×

Hom(r+1)-C(X,Y ′)

Hom[0,r+1](X,Y
′).

For X ∈ ESpSe and Y ∈ tr≥r ESpSe, we have

Hom≥r+1(LD(X), Y ) = Hom≥r+1(X,Y ) = Hom≥r+1(X,Shift
r T −rY )

and

Hom(r+1)-C(LD(X), Y ) = Hom(r+1)-C(X,Y ) = Hom(r+1)-C(X,Shift
r T −rY ).

In conclusion, proving that

Hom≥r(LD(X), Y ) ∼= Hom(X,Shiftr T −rY )

is equivalent to proving that

Hom[r,r+1](LD(X), Y ) ∼= Hom[0,r+1](X,Shift
r T −rY ).

From now on we set X ′ = LD(X) and Y ′ = Shiftr T −rY .
The following diagrams are pullback diagrams.

Hom[r,r+1](X
′, Y ) //

��

Homr-C(X
′
r, Yr)

H(−)◦ϕX′

r+1��
Hom(r+1)-C(X

′
r+1, Yr+1)

(ϕY
r+1)∗

// HombgMod
R
(X ′

r+1,H(Yr))

Hom[0,r+1](X,Y
′) //

��

Hom[0,r](X,Y
′)

H(−)◦ϕX
r+1

��
Hom(r+1)-C(Xr+1, Y

′
r+1)

(ϕY ′

r+1)∗

// HombgMod
R
(Xr+1,H(Y ′

r ))

The bottom horizontal maps in the two diagrams coincide. It remains to show
that Homr-C(X

′
r, Yr)

∼= Hom[0,r](X,Y
′) and that the two right vertical maps coincide

up to this isomorphism. Since X ′
r = Coker qr, we have

Homr-C(X
′
r, Yr)

∼= Ker (q∗r : Homr-C(Cr(X0), Yr) → Homr-C(ΣN (X)r, Yr)) .

The above isomorphism tells us that giving a morphism of r-bigraded complexes
α : X ′

r → Yr amounts to giving a morphism of bigraded modules α0 : X0 → Yr
satisfying for every (x0, . . . , xr; y0, . . . , yr) ∈ (NX)r, α0(y0) = dYr α0(x0). Let α0 ∈
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Homr-C(X
′
r, Yr) and 0 ≤ i ≤ r.

We claim that for xi ∈ Xi and a compatible sequence (x0, . . . , xi) (see Definition
3.2.2), the element α0(x0) does not depend on the choice of the compatible sequence.
We also claim that if i < r and xi = dix

′
i for some x′i ∈ Xi, then α0(x0) = 0. Both

claims are proved by induction on i. Note that (0, . . . , 0; d0x
′
0, . . . , 0) ∈ (NX)r im-

plies α0(d0x
′
0) = 0 so that the case i = 0 is proved. Assume we have proved the

claims for 0 ≤ k < i. Let (x0, . . . , xi−1, xi) and (x′0, . . . , x
′
i−1, xi) be two compat-

ible sequences, so that there exists ui−1 such that x′i−1 − xi−1 = di−1ui−1. Then
(x′0 − x0, . . . , x

′
i−1 − xi−1) is a compatible sequence starting at di−1ui−1 and thus

α0(x
′
0 − x0) = 0. If i < r, a compatible sequence (y0, . . . , yi−1, dixi) yields an el-

ement of the form (0, . . . , 0; y0, . . . , yi−1, dixi, 0, . . . , 0) ∈ (NX)r so that α0(y0) =
drα0(0) = 0.
In conclusion, to any α : X ′

r → Yr is associated a collection of well defined morphisms
α̂i : Xi → Yr for 0 ≤ i ≤ r defined by α̂i(xi) = α0(x0) with (x0, . . . , xi) a compat-
ible sequence. The two claims ensure that α̂ ∈ Hom[0,r](X,Y

′). This construction
provides us with a map

Homr-C(X
′
r, Yr) → Hom[0,r](X,Y

′)

which is clearly a bijection.
The right vertical map of the first pullback diagram sends α : X ′

r → Yr to the map
X ′

r+1 = Xr+1 → H(Yr) which assigns to xr+1 ∈ Xr+1 the class of α0(x0) where
(x0, . . . , xr+1) is a compatible sequence. Indeed, we have defined the characteristic
map X ′

r+1 → H(Xr) as the composite

Xr+1 H(Xr) H((NX)r) H(Coner(X0)/ Im qr)

xr+1 ϕX
r+1xr+1 [(x0, . . . , xr; 0, . . . , 0)] [(x0, 0)].

ϕX
r+1 H(ρr)−1

The right vertical map of the second diagram sends α̂ ∈ Hom[0,r](X,Y
′) to the

map which assigns to x ∈ Xr+1 the element [α̂r(xr)] with xr a representative of
ϕX
r+1(xr+1). By definition of α̂, we have α̂r(xr) = α0(x0). Hence the adjunction is

proved.
Now we show that if X is a spectral sequence then LDecr(X) is a spectral sequence.
Note that if X is a spectral sequence then Ker qr = 0. An element of Ker qr is of
the form u = (0, x1, . . . , xr; 0, y1, . . . , yr) ∈ N (X)r, so that ϕ1(x1) = [0] and x1 = 0
since ϕ1 is an isomorphism. Inductively we obtain that u = 0. It follows that the
characteristic map ϕr+1 : Xr+1 → H(Coner(X0)/ Im qr) is an isomorphism. The
other characteristic maps are isomorphisms since they coincide with those of X.
Finally, let Y ∈ tr≥r ESpSe and set Y ′ = Shiftr T −rY . The map Yr → (NY ′)r
which assigns to yr the element (yr, . . . , yr; dryr, . . . , dryr) is an isomorphism, so
qr : (NY ′)r → Coner(Y

′
0) is isomorphic to the map Yr → Coner(Yr) which sends yr

to (−dryr, yr). This proves that Coner(Yr)/ Im qr is isomorphic to Yr. In particular
the counit of the adjunction T r◦LDecr ◦Shiftr ◦T −r → Idtr≥r ESpSe is an isomorphism
at the r-page. It is clear that it is an isomorphism at pages i > r. �
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Theorem 6.3.7. On the category ESpSe, and on the category SpSe, we have adjunc-
tions

LDecr ⊣ Shiftr ⊣ Decr,

with isomorphisms:

LDecr ∼= T −r ◦ Q≥r ◦ (W≥r)! ◦ N ,

Shiftr ∼= Q ◦ F≥r ◦ N≥r ◦ T
r,

Decr ∼= T −r ◦ Q≥r ◦ U≥r ◦ N .

The unit of the adjunction (Shiftr,Decr) is an isomorphism and the counit of the
adjunction (LDecr,Shiftr) is an isomorphism.

Proof. The first part is immediate from Theorem 6.3.3, together with the fact that
the functors restrict to SpSe. The expression for Shiftr as a composite is easy to check
directly with the explicit description of Proposition 6.3.4. Then the composite ex-
pressions for LDecr and Decr give respectively left and right adjoints to Shiftr by the
same argument as in the proof of Theorem 6.3.3, thus establishing the other isomor-
phisms. The statements about the unit and counit were proved in Proposition 6.3.4
and Proposition 6.3.6 respectively. �

6.4. Combatibility with shift and décalage for filtered complexes. In this
section we look at compatibility of the functors LDec, Shift and Dec with the functors
Dec∗, S and Dec on the category of filtered complexes FCR. These were introduced
by Deligne in [10, Section 1.3]; a useful exposition of their properties is given in [8,
Section 2.3]. We write E for the functor associating a spectral sequence to a filtered
complex and we will use the notation of [7, Section 2] for constructions related to
the spectral sequence of a filtered complex.

Proposition 6.4.1. We have a commutative diagram

FCR

E //

S

��

SpSe

Shift
��

FCR
E

// SpSe

Proof. This is a matter of direct calculation with the definitions. Let C be a filtered
complex. For i ≥ 1, we have E(SC)i = T (E(C)i−1) and for i = 0 we obtain
E(SC)0 = T (E(C)0) with zero differential. �

Proposition 6.4.2. Let C be a filtered complex. There is a natural isomorphism of
spectral sequences E(Dec(C)) → Dec(E(C)).

Proof. Firstly consider the functor T −1 ◦ tr≥1 : SpSe → SpSe which just shifts down
the pages, differing from Dec only by information related to the 0-page. From [10,
Proposition 1.3.4], we have a canonical morphism of spectral sequences

u : E(Dec(C)) → T −1 ◦ tr≥1(E(C))



28 MURIEL LIVERNET AND SARAH WHITEHOUSE

which is a surjection on the 0-page and an isomorphism from the 1-page onwards. In
fact u0 : E(Dec(C))0 → T −1 ◦ tr≥1(E(C))0 factors via Dec(E(C))0 and we use this
to produce the required isomorphism. Recall that

E(Dec(C))p,p+n
0 = T −1(Zp,p+n

1 (C)/Zp−1,p+n−1
1 (C))

with notation as in [7, Section 2]. Define

ũ0 : E(Dec(C))0 → Dec(E(C))0 = T −1(NE(C))1

by [x] 7→ ([x]0, [x]1; [dx]0, [dx]1). Direct checks show that ũ0 is a well-defined isomor-
phism of 0-bigraded complexes. Furthermore u0 = ρ1ũ0 and we have the following
commutative diagram.

T −1H(E(C)1) T −1E(C)2

T −1H(N (E(C))1)

H(E(Dec(C))0) E(Dec(C))1

T −1ϕ
E(C)
2

T −1(H(ρ1)−1ϕ
E(C)
2 )

T −1H(ρ1)

H(ũ0)

u1

ϕ
Dec(C)
1

Thus ũ = (ũ0, u1, u2, . . . ) : E(Dec(C)) → Dec(E(C)) is an isomorphism of spectral
sequences. �

Proposition 6.4.3. Let C be a filtered complex. There is a natural isomorphism of
spectral sequences E(Dec∗(C)) → LDec(E(C)).

Proof. From [10, 1.3.5], we have a canonical morphism of spectral sequences

v : T −1 ◦ tr≥1(E(C)) → E(Dec∗(C))

which is an injection on the 0-page and an isomorphism from the 1-page onwards.
In fact v0 : T

−1 ◦ tr≥1(E(C))0 → E(Dec∗(C))0 factors via LDec(E(C))0 and we
use this to produce the required isomorphism. Recall that

E(Dec∗(C))p,p+n
0 = T −1(Bp,p+n

1 (C)/Bp−1,p+n−1
1 (C))

with notation as in [7, Section 2]. It is routine to check that there is a well-defined
map

ṽ0 : LDec(E(C))0 = T −1(Cone1(E(C)0)/ Im q1) → E(Dec∗(C))0

given by
(a, b) 7→ [a+ db].

Furthermore, v0 is the composite of the map sending a to (a, 0) and ṽ0. It is straight-
forward to check that ṽ = (ṽ0, v1, v2, . . . ) : E(Dec∗(C)) → LDec(E(C)) is an isomor-
phism of spectral sequences. �

This compatibility with décalage for filtered complexes clarifies the relation of our
construction to other uses of the term décalage in connection with spectral sequences,
such as in [6, 18]. Sometimes the term décalage of a spectral sequence is used to
refer to décalage of some underlying filtered object. Other times it refers to the
corresponding process of turning the page of the spectral sequence, up to reindexing,
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generally only specifying the resulting spectral sequence from the 1-page onwards.
Here we have provided the two versions of décalage as functors on the category of
spectral sequences, including the (not completely obvious) descriptions of the 0-page
of each.

7. Model category structures on extended spectral sequences

In this section we establish two different families of model category structures on
ESpSe. In the first part, we work with model category structures on LWB. The main
result here is Theorem 7.1.5, establishing such a structure LWBr for each r ≥ 0. Then
we move to extended spectral sequences and we first use right transfer from the model
category structure LWBr, resulting in the model structure ESpSer of Theorem 7.2.1,
which we show is Quillen equivalent to the projective model structure on 0-bigraded
complexes. Then in Theorem 7.3.6 we give a different model category structure on
ESpSe, denoted ESpSe′r, where weak equivalences E ′

r ⊂ Er are those maps that are
quasi-isomorphisms at page r and isomorphisms at pages i > r. The advantage of
this class of morphisms is that it more accurately reflects the weak equivalences in
spectral sequences. Also we have a hierarchy of weak equivalences: E ′

r ⊂ E ′
r+1 for all

r.

7.1. Model category structures from transfer on linear witness books.
For each r ≥ 0, we present a model category structure on the category LWB of lin-
ear witness books, closely related to the projective model structure on r-bigraded
complexes, utilising a criterion for right transfer due to Drummond-Cole and Hack-
ney [11]. Such a model structure can be directly obtained by a right transfer and
then we explain how to modify the transferred structure to give the model structure
of Theorem 7.1.5.

We consider the special case r = t of the adjunctions of Section 6.1 for linear
witness books and abbreviate to F[r], U[r] the functors F[r,r], U[r,r]. Recalling that

tr[r,r] LWB = 〈̂δr〉, we focus on the adjunction:

〈̂δr〉 LWB

F[r]

⊥
U[r]

The following is immediate from the description of F[r], see Proposition 6.1.3.

Proposition 7.1.1. Let C be an r-bigraded complex. The homology of the linear
witness book F[r](C) is given by

H((F[r](C))m) =





C if 0 ≤ m ≤ r − 1,

H(C) if m = r,

0 if m > r.
�

Proposition 7.1.2. Let C be an r-bigraded complex. The linear witness book F[r](C)
is an object of (LWB)e if and only if H(C) = 0 if and only if it is an object of (LWB)s.
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Proof. Note that for every i 6= r we have Ker si = Ker di. For i = r, we have Ker sr =
BrC and Ker dr = ZrC. Hence the first equivalence follows from Proposition 5.2.1.
In addition, we have Imwi+1 = Ker si for all i and Im si = Kerwi+1 for all i 6=
r. We have (sr(C))pq = (C/BrC)p−1,q−1 and (Kerwr+1)

pq = (C/BrC)p−1,q−1 ⊕
(ZrC/BrC)p+r,q+r−1. Thus the second equivalence follows from Proposition 5.4.2.

�

We write Z(r, p, n) ∈ LWB for the object representing Ker dr; see A.2.1 for more
details. Since δ2r = 0 we have a natural map δr : Z(r, p, n) → Y(r, p+r, n+1−r). Note
that because F[r] preserves colimits, we have Z(r, p, n) = F[r](R

p,n). In particular
Proposition 7.1.2 shows that Z(r, p, n) does not lie in (LWB)e; see also Lemma A.2.2.

Notation 7.1.3. We introduce notation for various sets of morphisms of LWB.

Ir : = {δr : Z(r, p, n) → Y(r, p + r, n+ 1− r)}p,n∈Z ,

Jr : = {0 −→ Y(r, p, n)}p,n∈Z ,

I≤r : = Ir ∪ ∪r−1
i=0Ji,

J≤r : = ∪r
i=0Ji.

Recall the model structure on r-bigraded complexes of Proposition 2.3.8, with
generating sets I, J and note that we have F[r](I) = Ir and F[r](J) = Jr.

Definition 7.1.4. Let K,L ∈ LWB. A morphism f : K → L is an r-fibration if fi
is bidegreewise surjective for 0 ≤ i ≤ r. It is an r-weak equivalence if H(fr) is an
isomorphism. We denote by Fibr the class of r-fibrations and by Er that of r-weak
equivalences.

Theorem 7.1.5. There is a cofibrantly generated model structure with generating
sets I≤r, J≤r on LWB, denoted LWBr. This has fibrations Fibr and weak equivalences
Er.

Proof. We first show that there is a model category structure cofibrantly generated
by the sets Ir and Jr. For this, note that the functor U[r] admits a left adjoint F[r] and
a right adjoint R[r] (described in Proposition B.1.1). Moreover U[r]F[r] and U[r]R[r]

are both the identity functor and hence form a Quillen adjunction. By [11, Theorem
2.3], there is a cofibrantly generated model structure, where the generating classes of
cofibrations and acyclic cofibrations are Ir = F[r](I) and Jr = F[r](J) respectively.
In this model structure, the class of weak equivalences is Er and the class of fibrations
consists of those maps f : K → L such that fr is surjective.

Now we modify this model structure. We claim that I≤r and J≤r are the generat-
ing cofibrations and generating acyclic cofibrations respectively of a model category
structure as in the statement. We follow the treatment in [16]. A morphism has the
right lifting property with respect to J≤r if and only if fi is surjective for 0 ≤ i ≤ r.
It is clear that Er satisfies the two-out-of-three property and is closed under retracts.
The smallness conditions are satisfied. We have I≤r-inj = Er ∩ J≤r-inj just as in the
proof of [7, Theorem 3.16]. It remains to prove that the class of maps having the
left lifting property with respect to r-fibrations is in Er. The technique we use here
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is that of [13]. Let f : L →M be such a map. Consider the diagram

L

(
1

0

)

//

f

��

L⊕M ′

(f,p)
��

M
= // M

where M ′ = ⊕r
i=0F[i]Conei U[i]M (see Definition 2.3.9 for the cone) and p = p0 +

. . .+ pr with

pi : F[i]Conei U[i]M → F[i]U[i]M →M

induced by the projection πi in i-C followed by the counit of the adjunction (F[i],U[i]).
From Proposition 7.1.1 and the fact that in r-bigraded complexes the r-cone is acyclic
we have

H((F[i] Conei U[i]M)m) =

{
Conei(Mi) if 0 ≤ m ≤ i− 1,

0 otherwise.

In particular the r-bigraded complex M ′
r is acyclic.

From the descriptions of the functor F[i] and the counit of the adjunction in
Proposition 6.1.3 we have that (F[i]U[i]M)i →Mi is the identity. Hence the i-page of
pi is the projection from the i-cone of U[i]M to U[i]M . It is bidegreewise surjective.
It follows that p0 + · · · + pr is an r-fibration. Thus (f, p) is an r-fibration and a lift
exists in the diagram, say (g, h) : M → L ⊕M ′. Considering the homology on the
r-page in the diagram we see that H(fr) is an isomorphism with inverse H(gr). �

Theorem 7.1.6. The following adjunction is a Quillen equivalence.

〈̂δr〉
F[r]

//
LWBr

U[r]

⊥oo

In addition, the adjunction F≥1 ◦ T ⊣ T −1 ◦ U≥1 gives a Quillen equivalence between
LWBr and LWBr+1 for all r ≥ 0.

Proof. It is clear that U[r] preserves fibrations and acyclic fibrations, so it is a Quillen
adjunction and we have seen in Proposition 6.1.3 that the unit of the adjunction is
the identity. Furthermore the right adjoint U[r] creates weak equivalences, so this is
a Quillen equivalence.

For F≥1 ◦ T ⊣ T −1 ◦ U≥1, we have that T −1 ◦ U≥1 : LWBr+1 → LWBr preserves
fibrations and weak equivalences. The unit is a natural isomorphism and the counit
of the adjunction ǫ : F≥1 ◦ U≥1 → IdLWB, given by ǫL = (wL

1 , 1, 1, . . . ), is in Ei for all
i ≥ 1. �

So all the model structures on LWB in this section are Quillen equivalent to the
projective model structure on 0-bigraded complexes.
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7.2. Model category structures from transfer on extended spectral se-
quences. We will use right transfer to obtain a model category structure on ESpSe,
denoted ESpSer, from the model category LWBr described in Theorem 7.1.5.

Theorem 7.2.1. There is a cofibrantly generated model category structure on ESpSe

denoted ESpSer with fibrations Fibr, the class of maps f : X → Y such that fi is
bidegreewise surjective for 0 ≤ i ≤ r, and weak equivalences Er, the class of maps
f : X → Y such that fr is a quasi-isomorphism. This model category structure is
Quillen equivalent to LWBr.

Proof. We use right transfer of the cofibrantly generated model category structure
LWBr by the adjunction

LWB
Q

//
ESpSe

N

⊥oo

The transferred weak equivalences are maps f : X → Y such that N(f) ∈ Er, which
is equivalent to f ∈ Er by Proposition 5.2.4. The fibrations are those maps f : X →
Y ∈ ESpSe such that N (f)i is surjective for 0 ≤ i ≤ r, or equivalently fi is surjective
for 0 ≤ i ≤ r by Proposition 5.1.5. By Proposition 5.3.3, N preserves filtered
colimits. It then remains to show that any map f : X → Y having the left lifting
property with respect to maps in Fibr is in Er. Consider the following diagram in
ESpSe

X

(
1

0

)

//

f

��

X ⊕ Y ′

(f,p)
��

Y
= // Y

where Y ′ is the following extended spectral sequence:

Y ′
m =





Ym if m < r,

Coner(Yr) if m = r,

0 if m > r,

with ϕY ′

r = ϕY
r ◦ πr where πr : Coner(Yr) → Yr is the projection of Definition 2.3.9,

and where p is the identity on pages i < r, it is πr on page r and then it is zero. So
(f, p) ∈ Fibr and a lift exists in the diagram, proving that H(fr) is an isomorphism.
Note that, because Y ′

m = 0 for m > r, the existence of the lift also implies that fm is
an isomorphism for m > r. In conclusion, we have a sequence of Quillen adjunctions

〈̂δr〉
F[r]

//
LWBr

U[r]

⊥oo

Q
//
ESpSer

N

⊥oo

where the left adjunction is a Quillen equivalence. By the two-out-of-three property,
proving that the right adjunction is a Quillen equivalence is equivalent to proving
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that the adjunction (Kr,Nr) with Kr = Q ◦ F[r] and Nr = U[r] ◦ N

〈̂δr〉
Kr //

ESpSer
Nr

⊥oo

is a Quillen equivalence. Explicitly, for every r-bigraded complex C, we have Kr(C)i =
C if 0 ≤ i ≤ r and 0 if i > r. The differential on each page is 0 except at page r
where it coincides with that of C. The characteristic maps are either 1C or 0. By
the definition of weak equivalences in ESpSer we have that the composite Nr cre-
ates weak equivalences. Hence it is enough to prove that the unit of the adjunction
C → Nr(KrC) is a quasi-isomorphism. Indeed it is an isomorphism. �

Remark 7.2.2. The proof of the above theorem shows that any map f having the
left lifting property with respect to r-fibrations, in addition to satisfying that fr is a
quasi-isomorphism, also satisfies that fi is an isomorphism for i > r.

Corollary 7.2.3. If L is a cofibrant linear witness book in LWBr, then the projection
Lr → Q(L)r = Lr/Sr(L) is a quasi-isomorphism.

Proof. Since the adjunction (Q,N ) is a Quillen equivalence, for every cofibrant linear
witness book L in LWBr and for any (fibrant) extended spectral sequence X if α :
Q(L) → X is a weak equivalence in ESpSer, then N (α) ◦ ηL is a weak equivalence in
LWBr. Since every object X is fibrant in ESpSer, one can pick α to be the identity
of Q(L). Thus ηL is a weak equivalence. The projection Lr → Q(L)r = Lr/Sr(L)
is the r-page of the composite of ηL with the projection NQL → Q(L) which is a
quasi-isomorphism by Proposition 5.2.4, thus a quasi-isomorphism. �

The next corollary is a résumé of the model category structures we have encoun-
tered so far and the Quillen equivalences between them.

Corollary 7.2.4. In the diagram of model categories below, every adjunction is a
Quillen equivalence.

ESpSe0 ESpSer ESpSer+1

LWB0 LWBr LWBr+1

0-C r-C (r + 1)-C

Shiftr

N

LDecr

⊥

Decr
⊥

Shift

N

LDec
⊥

Dec

⊥

NQ

(F≥1◦T )r

U[0]

Q

(T −1◦U≥1)
r

⊥

F≥1◦T

U[r]

Q

T −1◦U≥1

⊥

U[r+1]

⊣ ⊣ ⊣

F[0]

T r

F[r]

T

(T )−r T −1

F[r+1]⊣ ⊣ ⊣

∼ ∼
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Proof. The model structures and equivalences of the bottom horizontal line are by
Proposition 2.3.11. The model structures of the middle horizontal line are by The-
orem 7.1.5. The Quillen equivalences on the middle horizontal line, as well as the
lower vertical Quillen equivalences are by Theorem 7.1.6. The model structures of
the top line and the upper vertical Quillen equivalences are by Theorem 7.2.1.

We check that the equivalences on the top horizontal line are Quillen equivalences.
For r ≥ 1, it is clear that Dec(Er+1) = Er. This also holds for r = 0, using that
H(ρ1) : H((NX)1) → H(X1) is an isomorphism, by Proposition 5.2.4. If f is an
(r + 1)-fibration, Dec(f) is an r-fibration using Proposition 5.1.5. And the unit
of the adjunction ηX : X → Dec ◦ Shift(X) is in Ei for all i ≥ 0, since it is an
isomorphism. So the adjunction (Shift,Dec) is a Quillen equivalence.

We now show that (LDec,Shift) is a Quillen equivalence. We have adjunctions

ESpSer ESpSer+1 ESpSer
Shift

Dec

LDec
⊥

Shift
⊥

where the left adjunction is a Quillen equivalence. The right adjunction is a Quillen
adjunction since Shift preserves fibrations and weak equivalences. Since we have
Dec ◦Shift ∼= 1 and LDec ◦Shift ∼= 1, the composite adjunction is an adjoint equiva-
lence and thus a Quillen equivalence. So the right adjunction is a Quillen equivalence
by the two-out-of-three property. �

7.3. Main model category structure on extended spectral sequences. In
this section, for each r ≥ 0, we prove the existence of a different model structure
on extended spectral sequences, with a stronger notion of weak equivalence, but
such that restriction gives the same weak equivalences on spectral sequences. This
structure has the important feature that, in the case r = 0, spectral sequences sit
inside extended spectral sequences as a homotopically full subcategory. We will
explain and exploit this property in Section 8. The class of fibrations, Fibr, is
unchanged and so the previous model structure ESpSer is a localization of the one
established here.

Definition 7.3.1. We denote by E ′
r the class of maps f : X → Y of extended spectral

sequences satisfying fr is a quasi-isomorphism and fs is an isomorphism for s > r.
Let Cof ′r be the class of morphisms having the left lifting property with respect to
maps in E ′

r ∩ Fibr.

Remark 7.2.2 shows that any map having the left lifting property with respect
to Fibr is in E ′

r. We will show directly that there is a model category with these
new equivalences. The proof uses the existence of the model structures ESpSer of
Theorem 7.2.1.

We write Iso≤r for the class of morphisms f in ESpSe such that fi is an isomor-
phism for 0 ≤ i ≤ r.

Proposition 7.3.2. Morphisms in Iso≤r have the left lifting property with respect
to those in E ′

r and vice versa.
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Proof. If u ∈ Iso≤r and p ∈ E ′
r, there is a lift h : Z → Y in the diagram

X
α //

u
��

Y

p

��
Z

β
// W

given by

hs =

{
αsu

−1
s 0 ≤ s ≤ r,

p−1
s βs s ≥ r + 1,

which is compatible with characteristic maps using that H(pr) is an isomorphism.
If u ∈ E ′

r and p ∈ Iso≤r, there is a lift h′ : Z → Y given by

hs =

{
p−1
s βs 0 ≤ s ≤ r,

αsu
−1
s s ≥ r + 1,

which is compatible with characteristic maps using thatH(ur) is an isomorphism. �

Note that the lifts are functorial.

Proposition 7.3.3. Let f ∈ Cofr and let g = uf where u ∈ Iso≤r. Then g ∈ Cof ′r.

Proof. Consider the left hand diagram with p ∈ Fibr ∩ E ′
r :

X
α //

g

��

Y

p

��
Z

β
// W

X
α //

f
��

Y

p

��
Z ′

u
//

h̃

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥
Z

β
//

h

>>⑥⑥⑥⑥⑥⑥⑥⑥
W

The factorization of g as g = uf gives the outer diagram on the right. Since f ∈ Cofr
and p ∈ Fibr ∩ E ′

r ⊂ Fibr ∩ Er, we have a lift h̃ : Z ′ → Y and then, since u ∈ Iso≤r,
we have a lift h : Z → Y by Proposition 7.3.2. �

Proposition 7.3.4. In ESpSe any map f : X → Y with f ∈ Er has a functorial
factorization f = f̃u where u ∈ Iso≤r and f̃ ∈ E ′

r. If f ∈ Fibr, so is f̃ .

Proof. Define Y ′ in ESpSe by

Y ′
m =

{
Xm for m ≤ r,

Ym for m ≥ r + 1,

with characteristic maps

ϕY ′

m =





ϕX
m for m ≤ r,

(Hfr)
−1ϕY

r+1 for m = r + 1,

ϕY
m for m ≥ r + 2.

Then u : X → Y ′ and f̃ : Y ′ → Y given by

um =

{
1 for m ≤ r,

fm for m ≥ r + 1,
f̃m =

{
fm for m ≤ r,

1 for m ≥ r + 1,
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are compatible with characteristic maps and it is clear that u ∈ Iso≤r and f̃ ∈ E ′
r

Since f̃m = fm for 0 ≤ m ≤ r, it is clear that if f ∈ Fibr, so is f̃ . �

Proposition 7.3.5. Any map f : X → Z in ESpSe has a functorial factorization
f = pi where i ∈ Cof ′r and p ∈ Fibr ∩ E ′

r.

Proof. Use the model structure ESpSer to factorize f as f = gι where ι : X → Y
is in Cofr and g : Y → Z is in Fibr ∩ Er. Now factorize g as g = g̃u by Proposi-
tion 7.3.4, where u ∈ Iso≤r and g̃ ∈ Fibr ∩ E ′

r. Then f = g̃(uι) and uι ∈ Cof ′r by
Proposition 7.3.3. �

Theorem 7.3.6. There is a model structure on ESpSe denoted ESpSe′r with fibrations
Fibr, the class of maps f : X → Y such that fi is bidegreewise surjective for 0 ≤
i ≤ r, and weak equivalences E ′

r, the class of maps f : X → Y such that fr is a
quasi-isomorphism and fi is an isomorphism for i > r.

Proof. We give a direct proof, checking the axioms as given in [2, Definition 2.1.3].
Firstly it is clear that the weak equivalences, fibrations and cofibrations are closed
under composition. Axiom (MC1) is the existence of all small limits and colimits,
which holds by Theorem 5.3.2. (MC2) is the two-out-of-three property for weak
equivalences, which is clear.

Axiom (MC3) is that each of the three classes is closed under retracts. This is
clear for fibrations and weak equivalences and it holds for cofibrations as they are
defined by the left lifting property.

We consider axiom (MC5) next. This comprises the two factorization properties:
for f : X → Y in ESpSe, we need to be able to factorize (1) f = pi where i ∈ Cof ′r
and p ∈ E ′

r ∩ Fibr and (2) f = p′i′ where i′ ∈ E ′
r ∩ Cof ′r and p′ ∈ Fibr.

The first factorization property holds by Proposition 7.3.5. Since Cofr ⊆ Cof ′r,
it follows from Remark 7.2.2 that we have Er ∩ Cofr ⊆ E ′

r ∩ Cof ′r. So the second
factorization property holds because it holds in the model structure ESpSer.

Finally, axiom (MC4) comprises the two lifting properties: given a diagram in
ESpSe

X
f

//

i
��

Y

p

��
Z

g
// W

there must be a lift (1) when i ∈ Cof ′r and p ∈ E ′
r ∩ Fibr and (2) when i ∈ E ′

r ∩ Cof ′r
and p ∈ Fibr. We have defined Cof ′r precisely so that (1) holds. Lifting property
(2) holds by a standard retract argument: factorize i in ESpSer as i = ρι where
ι ∈ Er ∩ Cofr and ρ ∈ Fibr. Then ι ∈ E ′

r by Remark 7.2.2, so ρ ∈ E ′
r by the two-

out-of-three property. Thus i left lifts against ρ and so i is a retract of ι. Hence
i ∈ Er ∩ Cofr and i left lifts against p. �

7.4. Comparison of model structures.

Proposition 7.4.1. The adjunction Shift ⊣ Dec gives a Quillen equivalence between
ESpSe′r and ESpSe′r+1 for all r ≥ 0. And the adjunction LDec ⊣ Shift gives a Quillen
equivalence between ESpSe′r+1 and ESpSe′r for all r ≥ 0.
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Proof. The proof is essentially the same as that of Corollary 7.2.4, noting for the
first statement that Dec(E ′

r+1) = E ′
r for all r ≥ 0 and that the unit of the adjunction

ηX : X → Dec ◦ Shift(X) is in E ′
i for all i ≥ 0, since it is an isomorphism. For

the second statement, the adjunction is a Quillen adjunction since Shift preserves
fibrations and weak equivalences. And the same two-out-of-three argument as for
Corollary 7.2.4 concludes the proof. �

Remark 7.4.2. Note that LDec(E ′
r+1) ⊂ E ′

r for r ≥ 1. For r = 0 this is not true in
general. Indeed, let f : X → Y be in E ′

1 and consider, using Notation 6.3.5,

LDec(f)0 : T
−1 Cone1(X0)/ Im qX1 → T −1 Cone1(Y0)/ Im qY1 .

We see that LDec(f)0 is a quasi-isomorphism if and only if the induced map Ker qX1 →
Ker qY1 is a quasi-isomorphism. We know this is true for X and Y cofibrant in ESpSe′1,
because LDec is a left Quillen functor. It is also true if X and Y are spectral se-
quences because then Ker qX1 = Ker qY1 = 0.

The following result explains the relationship between the new model structures
and those obtained in the previous section.

Proposition 7.4.3. The identity functor ESpSe′r → ESpSer is a right Bousfield
localization which is not a Quillen equivalence.

Proof. The first part is immediate since we have established the two model category
structures on ESpSe with the same fibrations and E ′

r ⊂ Er.
Let X be a cofibrant object of ESpSer and Y any object in ESpSe. If this were a

Quillen equivalence, we would have that f : X → Y is in Er if and only if f : X → Y
is in E ′

r. Since 0 is cofibrant this implies that any extended spectral sequence X such
that H(Xr) = 0 satisfies Xi = 0 for all i > r which is certainly not true. �

So all our model structures are Quillen equivalent to one of either ESpSe0 or
ESpSe′0. Since ESpSe0 is Quillen equivalent to the projective model structure on
0-bigraded complexes, Proposition 7.4.3 can be phrased as saying that ESpSe′0 is a
right delocalization of (a model category Quillen equivalent to) the projective model
structure on 0-bigraded complexes.

7.5. Cofibrations in ESpSe′0. In this section we characterize the cofibrations of
the model category ESpSe′0.

Lemma 7.5.1. Let f : X → Z be a map in ESpSe. Any commutative diagram as on
the left

(∗)

X0
α //

f0
��

Y

p

��
Z0

β
// W

X
α //

f

��

Y

p
��

Z
β

// W

in 〈̂δ0〉 is obtained as the 0-page of a commutative diagram in ESpSe as on the right.
Furthermore, if p is a surjective quasi-isomorphism, then p ∈ Fib0 ∩ E0.
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Proof. A diagram with the required properties is obtained by setting

Y m =

{
Y for m = 0,

Xm for m ≥ 1,
ϕY
m =

{
(Hα)ϕX

1 for m = 1,

ϕX
m for m ≥ 2,

Wm =

{
W for m = 0,

Zm for m ≥ 1,
ϕW
m =

{
(Hβ)ϕZ

1 for m = 1,

ϕZ
m for m ≥ 2,

αm =

{
α for m = 0,

1 for m ≥ 1,
βm =

{
β for m = 0,

1 for m ≥ 1,
pm =

{
p for m = 0,

fm for m ≥ 1.

It is routine to check that α, β, p are maps of extended spectral sequences. It is
clear that the diagram commutes and that taking the 0-page recovers the original
diagram. The final statement is immediate since p0 = p. �

Proposition 7.5.2. The cofibrations Cof ′0 in ESpSe′0 are those f : X → Y such that
f0 is a cofibration of 0-bigraded complexes in the model category structure on 0-bC
given in Proposition 2.3.8. That is, f ∈ Cof ′0 if and only if f0 has the left lifting
property with respect to surjective quasi-isomorphisms of 0-bigraded complexes.

Proof. Suppose that f is such that f0 has the left lifting property with respect to
surjective quasi-isomorphisms of 0-bigraded complexes. Consider the diagram in
ESpSe

X
α //

f
��

Z

p

��
Y

β
// W

where p ∈ Fib0 ∩ E ′
0. There is a lift h0 : Y0 → Z0 on the 0-page by assumption and

then

hs =

{
h0 s = 0,

p−1
s βs s ≥ 1,

gives a lift, using that H(p0) is an isomorphism for compatibility with characteristic
maps.

Conversely, let f ∈ Cof ′0 and let p be a surjective quasi-isomorphism of 0-bigraded
complexes. We need to show there is a lift in the diagram appearing on the left of
(∗) in the statement of Lemma 7.5.1 when p is a surjective quasi-isomorphism. By
the lemma we have the diagram on the right of (∗) and p ∈ Fib0 ∩ E0.

Now apply Lemma 7.3.4 to factorize p as p = p̃u where u : Z → Z is in Iso≤0 and
p̃ : Z →W is in Fib0 ∩ E ′

0. Since f ∈ Cof ′0 there is a lift h : Y → Z

X
α //

f

��

Z
u // Z

p̃
��

Y
β

//

h

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
W

and then u−1
0 h0 provides the required lift. �
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8. Infinity-categorical interpretation

In this section we will interpret our results in the context of relative categories in
the setting of Barwick-Kan [3], as well as explaining the relationship to our previous
work [19].

In [19, Theorem 5.3.1] we established the existence of structures on the category
of spectral sequences SpSe closely related to the model category structures on ESpSe

presented here. The relevant structure has a class of fibrations and a class of weak
equivalences and is called an almost Brown category with functorial factorization.
Given r ≥ 0, there is such a structure, denoted SpSer, with fibrations the class Fibr
of morphisms of spectral sequences f such that fi is surjective for 0 ≤ i ≤ r and
weak equivalences f such that H(fr) is an isomorphism.

Definition 8.1.1. A relative category is a pair (C,W) where C is a category and
W is a subcategory containing all the objects of C; the maps in W are called weak
equivalences. We write RelCat for the category of relative categories endowed with
the model category structure of Barwick-Kan [3].

We study the relative category (ESpSe, E ′
r) and its restriction (SpSe, Er).

We have seen that for f : X → Y a morphism in ESpSe we have f ∈ E ′
r+1 if and

only if Dec f ∈ E ′
r. And it is easy to see that f ∈ E ′

r if and only if Shift f ∈ E ′
r+1.

We will use ideas and results of Pascaleff [23] and the main theorem of Meier [20].

Definition 8.1.2. [23, Definition 2.1] A Dwyer-Kan adjunction between relative
categories is an adjunction (L,R) : (C1,W1) → (C2,W2) such that L and R preserve
the class of weak equivalences and such that the unit of the adjunction lies in W1

and the counit of the adjunction in W2.

As noted by Pascaleff, a result of Bousfield-Kan [12, Corollary 3.6] shows that
if two relative categories are related by a Dwyer-Kan adjunction, then they are
Barwick-Kan equivalent in RelCat.

Consider the following commutative diagram of relative categories.

(ESpSe, E ′
0) (ESpSe, E ′

r) (ESpSe, E ′
r+1)

(SpSe, E0) (SpSe, Er) (SpSe, Er+1).

Shiftr

Decr

Shift

Dec
⊥ ⊥

Shiftr

LDecr

⊥

Decr
⊥

Shift

LDec
⊥

Dec

⊥

Theorem 8.1.3. The adjunctions in the diagram above are Dwyer-Kan adjunctions.
In particular the rows are Barwick-Kan equivalences in RelCat. In addition the
relative categories (SpSe, E0) and (ESpSe, E ′

r) for r ≥ 0 are fibrant relative categories
in the Barwick-Kan model structure on RelCat.

Proof. We consider the (Shift,Dec) adjunction. The unit is an isomorphism. The
counit ǫ : Shift ◦Dec → IdESpSe is the identity at page i ≥ 2 and a quasi-isomorphism
at page 1, using Proposition 5.2.4. Hence the counit lives in E ′

r for every r ≥ 1. The
category ESpSe′r is a model category and so (ESpSe, E ′

r) is fibrant by [20, Theorem
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4.13]. Furthermore if f : X → Y is in E ′
0 where one of X or Y is a spectral sequence,

then so is the other. Hence (SpSe0, E0) is a relative category which is homotopically
full in (ESpSe, E ′

0), in the sense of Meier and so it is fibrant by [20, Theorem 4.13].
Now we consider the (LDec,Shift) adjunction on SpSe. We have seen that Shift

preserves weak equivalences and by Remark 7.4.2, LDec: (SpSe, Er+1) → (SpSe, Er)
preserves weak equivalences for all r. The counit of the adjunction is an isomorphism.
The unit of the adjunction is the identity at pages i ≥ 2 and, by the same reasoning
as in Remark 7.4.2, it is a quasi-isomorphism at page 1 on SpSe (but not in general
on ESpSe). �

Corollary 8.1.4. For each r ≥ 1, the relative category (SpSe, Er) has (SpSe, E0) as
a fibrant replacement in the Barwick-Kan model structure on RelCat, via the functor
Decr, or the functor LDecr. �
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Appendix A. Representable linear witness books

A.1. Description of the representable linear witness book Y(r, p, n).

Example A.1.1. We treat the combinatorics of the representable object Y(r, p, n)
of LWB. This is the free linear witness book generated by an element αp,n

r , corre-
sponding to the identity map in HomD((r, p, n), (r, p, n)).

We describe it in terms of Proposition 4.2.2. For each i, the i-bigraded complex
(Y(r, p, n))i has two bigraded components free of rank one, and the other components
are 0. More precisely we have

Y(r, p, n)i = R (wr)
r−idrα

p,n
r ⊕ R (wr)

r−iαp,n
r for 0 ≤ i < r,

Y(r, p, n)r = R drα
p,n
r ⊕ R αp,n

r ,

Y(r, p, n)r+k = R dr+k(sr)
kαp,n

r ⊕ R (sr)
kαp,n

r for k ≥ 0.

And the actions of d, s, w are clearly identified knowing the relations of Proposition
4.2.2 (compare also with Lemma 4.1.3). Here we denote by (wr)

j the composite
wr−j+1 . . . wr+1wr and the same notation is used for the iterated composite of the
ss.

In addition, any ψ : (r, p, n) → (r′, p′, n′) induces a morphism of linear witness
books Y(r, p, n) → Y(r′, p′, n′) sending the identity morphism to the morphism ψ in
Y(r′, p′, n′). More concretely we have

Y(r, p, n)
δr // Y(r, p + r, n+ r − 1) Y(r, p, n)

ω // Y(r + 1, p, n)

ϕαp,n
r

✤ // ϕdrα
p+r,n+r−1
r ϕαp,n

r
✤ // ϕwr+1α

p,n
r+1

Y(r, p, n)
σ // Y(r − 1, p − 1, n − 1)

ϕαp,n
r

✤ // ϕsr−1α
p−1,n−1
r−1 .

Of course, HomLWB(Y(r, p, n), A) ∼= A(r, p, n).

A.2. Characterizations of (LWB)e and (LWB)s via lifting properties.

Notation A.2.1. Let Z(r, p, n) (resp. S(r, p, n)) ∈ LWB be the representative of
Ker dr (resp. Ker sr). These objects are defined as the following cokernels.

Z(r, p, n) = coker(δr : Y(r, p − r, n+ 1− r) → Y(r, p, n)),

S(r, p, n) = coker(σr : Y(r + 1, p + 1, n + 1) → Y(r, p, n)).

Since any linear witness book satisfies Ker sr ⊆ Ker dr, there is a (surjective)
morphism τr : Z(r, p, n) → S(r, p, n). Let M τ denote the set of morphisms of LWB

given by

M τ : = {τr : Z(r, p, n) → S(r, p, n)}r≥0, p,n∈Z .

We denote by R≤r(p, n) the extended spectral sequence having R concentrated in
bidegree (p, n) at pages i such that 0 ≤ i ≤ r and 0 elsewhere, with characteristic
maps being the identity or zero.
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Lemma A.2.2. The linear witness book S(r, p, n) lies in (LWB)e, but the linear
witness book Z(r, p, n) does not. We have the following isomorphisms in (LWB)e:

S(r, p, n) ∼= NQS(r, p, n) = NQZ(r, p, n) ∼= N (R≤r(p, n)).

Proof. We first compute S(r, p, n) and Z(r, p, n) in LWB, thanks to Example A.1.1.
On the one hand we see that at page i ≤ r, S(r, p, n)i = Z(r, p, n)i = Rwr−iαp,n

r , with
di = 0, wi is the identity and si = 0, for i < r. At page i > r we have S(r, p, n)i = 0.
This implies Ker di = Ker si in S(r, p, n)i, for all i ≥ 0, so that S(r, p, n) ∈ (LWB)e.
At page i > r we have Z(r, p, n)i = Rdis

i−rαp,n
r ⊕Rsi−rαp,n

r . In particular Ker sr = 0
while Ker dr = Rαp,n

r . In addition we have QS(r, p, n) = QZ(r, p, n) = R≤r(p, n). �

The following characterization of (LWB)e via right lifting properties is an imme-
diate consequence of the descriptions.

Proposition A.2.3. (1) A map f : K → L has the right lifting property with
respect to all morphisms in M τ if and only if whenever a ∈ Ker dr and
f(a) ∈ Ker sr then a ∈ Ker sr.

(2) A linear witness book L is in (LWB)e if and only if L→ 0 has the right lifting
property with respect to morphisms in M τ . �

Remark A.2.4. Equivalently, we can characterize (LWB)e as the subcategory of
M τ -local objects in LWB, in the ordinary categorical sense, see for example [25,
p143]. That is, an M τ -local object L is one such that for all morphisms τr : Z → S

in M τ , the induced map LWB(S, L) → LWB(Z, L) is a bijection. Surjectivity is by
Proposition A.2.3 and injectivity holds because of surjectivity of the maps τr in M τ .

The characterization of objects of (LWB)s in Proposition 5.4.2 can also be described
by means of right lifting properties. Namely, for r ≥ 1, let

W(r, p, n) = Coker(ωr : Y(r − 1, p, n) → Y(r, p, n)),

representing Kerwr. Note that W(r, p, n) is in (LWB)e and that the extended spectral
sequence QW(r, p, n) takes the following form:

QW(r, p, n)i =





Rwr−idrα
p,n
r if 0 ≤ i < r,

Rdrα
p,n
r ⊕ Rαp,n

r if i = r,

0 if i > r.

The relations ωr+1σr = 0 and σrωr+1 = 0 imply that there are well defined sets
of morphisms of LWB:

Mσ,ω : = {σr : W(r + 1, p + 1, n + 1) → Y(r, p, n)}r≥0, p,n∈Z ,

Mω,σ : = {ωr+1 : S(r, p, n) → Y(r + 1, p, n)}r≥0, p,n∈Z .

The following proposition is a reformulation of Proposition 5.4.2.

Proposition A.2.5. Let L be an object of (LWB)e.

(1) The characteristic maps ϕi of QL are surjective for all i if and only if L→ 0
has the right lifting property with respect to Mω,σ.

(2) The characteristic maps ϕi of QL are injective for all i if and only if L→ 0
has the right lifting property with respect to Mσ,ω. �
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We collect information about key objects in LWB in the following table.

Table 1. Key objects in LWB

object represents homology
Y(r, p, n) element R

p,n ⊕ R
p−r,n+1−r on pages 0 ≤ i < r

0 on pages i ≥ r
Z(r, p, n) Ker dr R

p,n on pages 0 ≤ i ≤ r
0 on pages i > r

S(r, p, n) Ker sr R
p,n on pages 0 ≤ i ≤ r

0 on pages i > r
W(r, p, n) Kerωr R

p−r,n+1−r on pages 0 ≤ i < r
0 on pages i ≥ r

Appendix B. Further adjoint functors on LWB

In this section we give the descriptions of the right adjoint functor R[r,t] to the
forgetful functor U[r,t] : LWB → tr[r,t] LWB and of the functor (W≥r)! left adjoint to
the functor F≥r : LWB≥r → LWB. These descriptions have been obtained by applying
the (co)end formulas of Proposition 2.1.1.

Proposition B.1.1. Let (L, di, wi, si) be an object of tr[r,t] LWB. We have

R[r,t](L)
p,n
i =





Lp+r−i,n+r−i
r for 0 ≤ i < r,

Lp,n
i for r ≤ i ≤ t,

Conei(Zt(Lt))
p−i,n−i+1 for i > t,

with the maps dRi , w
R
i , s

R
i defined as

dRi = 0 wR
i+1 = 0 sRi = 1 for 0 ≤ i < r,

dRi = di wR
i+1 = wi+1 sRi = si for r ≤ i < t,

dRt = dLt wR
t+1 =

(
0 1

)
sRt =

(
dt
0

)
for i = t,

dRi =

(
0 0
1 0

)
wR
i+1 =

(
0 0
0 1

)
sRi =

(
1 0
0 0

)
for i > t.

The counit of the adjunction (U[r,t],R[r,t]) is the identity. The unit of the adjunc-
tion L → R[r,t]U[r,t]L takes the following form.

• For 0 ≤ i < r it corresponds to sr−i : Lp,n
i → Lp+r−i,n+r−i

r .
• It is the identity at the i-page, for r ≤ i ≤ t.
• For i > t the unit corresponds to the map(

0
wi−t

)
: Lp,n

i → Zt(Lt)
p−i,n+1−i ⊕ Zt(Lt)

p,n. �

Remark B.1.2. If r > 0 then R≥r does not restrict to a functor from tr≥r (LWB)e

to (LWB)e, since Ker di 6= Ker si for i < r.
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Proposition B.1.3. The left adjoint functor (W≥r)! : LWB → tr≥r LWB to the
functor F≥r has the following form. For (L, di, wi, si) a linear witness book, and for
i ≥ r,

(W≥r)!(L)
p,n
i = (Lp+r−i,n+r−i

0 ⊕ Lp+r;n+r−1
0 ⊕ Lp,n

i )/ ∼

where ∼ is the equivalence relation generated by, for all x ∈ Lr,

(0, 0, si−rx) ∼ (wrx, 0, 0),

(0, 0, dis
i−rx) ∼ (0, wrx, 0).

The structure maps d!i, s
!
i, w

!
i+1 are defined for i ≥ r by

d!i =



0 0 0
1 0 0
0 0 di


 , w!

i+1 =



0 0 0
0 1 0
0 0 wi+1


 , s!i =



1 0 0
0 0 0
0 0 si


 .

The counit of the adjunction is an isomorphism at each page i ≥ r and the unit of
the adjunction ηL : L→ F≥r(W≥r)!L has the following description.

• For x ∈ Li and 0 ≤ i < r

ηL(x) = (wix, 0, 0) ∈ (W≥r)!(L)r.

• For x ∈ Li and i ≥ r

ηL(x) = (0, 0, x) ∈ (W≥r)!(L)i.

Using the characterization of (LWB)e in Proposition 5.2.1 and that of (LWB)s in
Proposition 5.4.2 it is immediate to prove the next statement.

Proposition B.1.4. The functor (W≥r)! restricts to a functor (LWB)e → tr≥r (LWB)e

and to a functor (LWB)s → tr≥r (LWB)s. �

Appendix C. Non-existence of certain model categories

In this section, we prove that there is no model category structure on either LWB

or on (LWB)e such that (LWB)s is the subcategory of fibrant objects, where the class
of weak equivalences between fibrant objects is the class Er (or equivalently E ′

r).
We characterize morphisms p : L → M in LWB with L,M in (LWB)s, such that

Ker p lives in (LWB)s. Recall that Ker p is computed in LWB, hence pagewise. Since
limits in (LWB)e are computed pagewise, we have Ker p ∈ (LWB)e. We use the
characterization to exhibit a counterexample to stability of fibrations under pullback
along any map.

Lemma C.1.1. Let p : L → M be a morphism in LWB with L = (Li, d
L
i , s

L
i , w

L
i )

and M = (Mi, d
M
i , s

M
i , w

M
i ) in (LWB)s. Then Ker p lies in (LWB)s if and only if for

all i ≥ 0 the following conditions hold

(Ci
σ) ∀ a ∈ Li, sMi pa = 0 =⇒ ∃ a′ ∈ Li, pa

′ = pa and sLi a
′ = 0,

(Ci+1
ω ) ∀ a ∈ Li+1, wM

i+1pa = 0 =⇒ ∃ a′ ∈ Li+1, pa
′ = pa and wL

i+1a
′ = 0.

Proof. We use the characterization from Proposition 5.4.2 for a linear witness book
K ∈ (LWB)e to be in (LWB)s, that is: for all i, KerwK

i+1 = Im sKi (which will
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correspond to the condition Ci
σ) and Ker sKi = ImwK

i+1 (which will correspond to

condition Ci+1
ω ).

We let K = Ker p, and wK = wL, sK = sL.
Assume we have KerwK

i+1 = Im sKi . In particular, for every u ∈ Li+1, such that

pu = 0 and wL
i+1u = 0, there exists v ∈ Li such that pv = 0 and sLi v = u. Let a ∈ Li

with sMi pa = psLi a = 0, and set u = sLi a. We have pu = 0 and wL
i+1u = 0, hence

there exists v ∈ Li such that pv = 0 and sLi v = u. Let a′ = a − v. Then pa′ = pa
and sLi a

′ = sLi a− sLi v = u− u = 0. Hence condition Ci
σ holds.

Conversely assume Ci
σ holds. Let u ∈ Li+1, such that pu = 0 and wL

i+1u = 0.

Since L ∈ (LWB)s, there exists v ∈ Li such that sLi v = u. In particular sMi pv = 0.
Hence there exists v′ ∈ Li with pv′ = pv and sLi v

′ = 0. In particular si(v − v′) = u
and p(v − v′) = 0.

The proof that condition Ci+1
ω is equivalent to Ker sKi = ImwK

i+1 proceeds in
exactly the same way, exchanging the roles of s and w. �

Proposition C.1.2. There is no model category structure on LWB or on (LWB)e

such that the category of fibrant objects is the category (LWB)s with weak equivalences
Er.

Proof. The proof is by contradiction. If such a model category structure exists with
fibrant objects (LWB)s, then any map f : L→M in LWB between two objects L,M ∈
(LWB)s factors as f = pi with i : L → K an acyclic cofibration and p : K → M a
fibration. Since M is fibrant and p is a fibration, K is fibrant. Since fibrations are
stable under pullbacks, p should satisfy conditions Ck

σ and Ck
ω for every k.

We provide the following counterexample. Let f = N (π) where π : Dr(0, 0) →
R(0, 0) is the projection in SpSe. Recall that NDr(0, 0) = Y(r, 0, 0) with generator

in Y(r, 0, 0)0,0r denoted α0,0
r . We have for all k, (NR(0, 0))k = R

0,0 with generator de-

noted β0,0k . We have s
NR(0,0)
k = 0. For every 0 ≤ k ≤ r, we have πk is surjective, hence

fk is surjective by Proposition 5.1.5, and fr(α
0,0
r ) = β0,0r . Finally H(Y(r, 0, 0)r) = 0.

Let us write f = pi, with i : Y(r, 0, 0) → K ∈ Er, so that H(Kr) = 0. Since fr is

surjective, pr : Kr → R
0,0 is surjective and there exists z ∈ Kr such that prz = β0,0r .

In particular srprz = 0. By condition Cr
σ, there exists z′ ∈ Kr such that prz

′ = β0,0r

and sKr z
′ = 0. But Ker sKr = Ker dKr = Im dKr because K ∈ (LWB)s ⊂ (LWB)e and

H(Kr) = 0. Let y ∈ Kr be such that dKr y = z′. We have prz
′ = β0,0r = drpry, a

contradiction.
Note that this proof by contradiction also works for (LWB)e. �

Corollary C.1.3. There is no model category structure on ESpSe such that the
category of fibrant objects is the category SpSe with weak equivalences Er.

Proof. This follows from the equivalences of categories with weak equivalences be-
tween (SpSe, Er) and ((LWB)s, Er) and between (ESpSe, Er) and ((LWB)e, Er). �
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