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Abstract

Using molecular dynamic (MD) simulations, we study the thermomigration of small clusters
consisting of 2, 3 or 4 atoms on a crystalline surface. After evidencing the thermomigration by
analyzing the cluster trajectories, we generalize the thermodynamic integration method to com-
pute a thermodynamic potential driving the probability of presence of the clusters on a substrate
submitted to a thermal gradient. The study of this thermodynamic potential allows to disentan-
gle the thermomigration effective force from the stochastic diffusion. We show that the heat of
transport characterizing the effective force responsible for thermomigration is the sum of the free
energy of the cluster-substrate and cluster internal energies. Finally, an unidimensional kinetic
model for the thermomigration is proposed and its results compared to the MD trajectories.

1. Introduction

The motion of particles in a liquid or a gas can be induced by a thermal gradient. This phe-
nomenon, referred as thermodiffusion or thermophoresis has initially been evidenced in liquids
by Ludwig and Soret [1, 2], and later in gases by Tyndall and Strutt [3, 4]. By analogy with
electromigration, this process is also known as thermomigration in solids. [5].

Thermomigration is involved in many different applications, the most famous one being pre-
sumably the fabrication of pn junctions through the thermal gradient zone melting method in
the transistor industry: the doping of silicon by aluminum is achieved using a thermal gradi-
ent [6, 7, 8]. Consequently, due to its industrial significance, thermomigration has been exten-
sively studied in bulk materials [9, 10, 11, 12].

Besides, for a few decades, transporting matter in a control way at the nanoscale has been the
focus of many investigations, particularly for synthesizing nanoparticles or nanodevices. Surface
thermomigration is a significant mass transport mechanism that can be used for these applica-
tions. For example, Schoen et al. [13, 14], using molecular dynamics (MD) simulations predicted
the control migration of gold nanoparticles confined in carbon nanotubes toward colder regions
under a thermal gradient, a prediction later experimentally confirmed by transmission electron
microscopy [15, 16]. In crystal growth, surface thermomigration has recently been employed
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to control the growth of single-crystal aluminum nanowires [17], serving as a typical exam-
ple of nanodevice fabrication through thermomigration-based 3D printing. More recently, the
migration of vacancy islands on a Si(111) substrate has been observed by low energy electron
microscopy: the velocity of vacancy islands is found to be 0.21nm.s−1 in the presence of a tem-
perature gradient of 1.3 104K.m−1 [18, 19].

Though, the fundamental mechanisms driving surface thermomigration are not yet fully un-
derstood. The aim of this manuscript is precisely to address some of these mechanisms.

In conductors, the thermal heat flux is mainly related to the free electrons motion while
phonons play a minor role: hence, surface thermomigration in conductor is closely related
to electromigration. Conversely, in this manuscript we focus on semiconductors and insula-
tors where phonons are the primary heat carriers. In these materials, the surface thermomi-
gration involves the interaction between the atoms of the moving object with those of the sur-
face. The surface thermomigration in insulators has been numerically investigated studying nan-
otubes [20, 21, 22], fullerene or small particles inside nanotubes [23, 24, 25]. The migration
of nano-clusters on surfaces (noticeably graphene) has also been highlighted in various theo-
retical and numerical studies [26, 27, 28, 29, 30]. Beyond, exploiting surface thermomigration
between two heat bathes, several authors have imagined nanomachines devices and numerically
demonstrated their operations [31, 32, 33, 34].

Quantitatively, the theoretical framework for thermomigration was established by Onsager in
the early 1930s [35]. The flux density of particles in a thermal gradient reads

j⃗ = −
DcQ∗

kBT 2 ∇⃗T (1)

where Q∗ is the heat of transport, D the diffusion coefficient, c the particles concentration, and
kB the Boltzmann constant.

Within the scientific community, various mechanisms operating during surface thermomigra-
tion have been proposed to relate the heat of transport Q∗ to atomic physical properties. Hunting-
ton [5] identified several physical mechanisms potentially responsible for the thermomigration:
(i) an intrinsic effective driving force [36, 37] independent of the heat carriers, and (ii) a force
associated with the transfer of momentum from phonons. While recent studies have suggested
that phonon momentum transfer is responsible for the ballistic thermophoresis of clusters on
graphene [28], Huntington argued that the intrinsic driving force is dominant in common solids,
corresponding to a temperature effect independent of the phonons’ direction or nature. Based on
Huntington arguments, the coefficient Q∗ has been initially related to a migration energy i.e. the
activation energy of the diffusion [38, 39, 36, 40, 41, 37].

Recently, studying the surface thermomigration of adatom using MD simulations, we showed
that the heat of transport is related to the binding energy of the adatom with the substrate and not
to its migration energy [42, 43, 44].

In this paper, we extend our former study on surface thermomigration of adatom to the case
of small clusters. Unlike adatoms, clusters have not only a binding energy with the substrate
but also an internal energy. These two independent characteristic energies can be modulated by
a lattice mismatch between the cluster and the substrate. We show that for clusters the heat of
transport corresponds to the sum of the binding and internal energies.

After the description of the model in Sec. 2, we provide few useful characteristics of clusters
diffusion on a surface with a homogeneous temperature in Sec. 3. In Sec. 4.1, analyzing cluster
trajectories, we evidence the thermomigration and show that the cluster motion involves both
a thermal-gradient-induced drift and a Brownian diffusive motion. In Sec. 4.2, we develop a
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thermodynamic integration scheme to measure a thermodynamic potential controlling the proba-
bility of presence of the cluster. From this potential, we decorrelate the thermal-gradient-induced
response from the Brownian diffusion process. Especially, we show that the heat of transport Q∗

both depends on the binding energy of the cluster with the substrate and of its internal energy.
Finally, in Sec. 5, we propose a kinetic model of the cluster thermomigration and compare it to
trajectories derived from MD simulations.

2. System and Methods

In order to simulate the thermomigration of a cluster on a crystalline surface subjected to
a thermal gradient, we perform MD simulations: indeed, heat transport by phonons typically
involves timescales related to the Debye frequency, a timescale fully handled by MD simulations.
We use the LAMMPS simulations package [45].

2.1. Molecular Dynamics
Since we are concerned with the elementary mechanisms of the thermomigration indepen-

dently of the precise details of the atomic potential, we use a generic model. Interatomic inter-
actions are modeled using a Lennard-Jones [46] (LJ) potential which presents the advantage to
minimize the computational cost, while allowing to catch the physical mechanisms underlined
by thermomigration. The choice of a LJ potential is rather common in the literature to investi-
gate thermomigration [47, 27, 28, 42]. The interactomic potential involves three type of binding:
ϵsub−sub = 1.0, σsub−sub = 1.0 between substrate atoms (atomic mass msub = 1.0), ϵcl−cl = 5.0,
σcl−cl = 1.0 between cluster atoms (atomic mass mcl = 1.0), and ϵcl−sub = 0.82, σcl−sub = 1.0
between the cluster atoms and the substrate atoms. A 3.5 σsub−sub cut-off distance is applied.
Below all quantities will be given in LJ units [48]: distances, masses, energies, times, and tem-
peratures are expressed respectively in units of σsub−sub, msub, ϵsub−sub,

√
msubσsub−sub
ϵsub−sub

and ϵsub−sub
kB

.
Note that within this choice of units, the Boltzmann constant kB = 1.

Figure 1 reports a sketch of the simulation cell. The substrate is a cubic faced centered crystal.
Clusters diffuse on the (111) free surface of the substrate (the z-direction corresponds to the [111]
crystalline direction). Periodic boundary conditions are applied in the x and y directions, respec-
tively corresponding to the [11̄0] and [112̄] crystalline directions. The substrate sizes along the x,
y and z direction are respectively 112.30, 21.55, and 26.13. Within these choices, the simulation
box typically contains about 63800 atoms. Cell sizes choice results from a compromise between
an affordable computational time and a sufficiently large size to observe the cluster diffusion and
to avoid any spurious effects from the quantification of the phonon energies.

The choices of the interatomic potential parameters warrant the absence of dissociation of
the cluster, atom evaporation from the substrate and atomic exchange mechanisms during diffu-
sion on the simulation timescale. Especially, our choice of cluster-cluster interatomic energy is
artificially high: on one hand, this choice warrants that cluster atoms do not dissociate to release
adatoms on the simulation timescale, on the other hand this choice amplifies the potential elastic
energy store in the cluster when we will apply a lattice mismatch between the cluster and the
substrate. Therefore, the role of elasticity on the thermomigration will be easier to evidence.

2.2. Thermal gradient and temperature profile
In order to apply a thermal gradient, a hot and a cold regions in the substrate (Fig. 1), with

thickness 11.2 and spaced by a distance 44.9 are respectively thermostatted at Thot and Tcold
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Figure 1: Sketch of the simulation model used to investigate the thermomigration. Atoms in the hot(red) and cold(blue)
regions are coupled to Nosé-Hoover thermostats at temperatures Thot and Tcold .

using a Nosé-Hoover thermostat (NVT ensemble). The motion of all other atoms of the cell
(included the clusters ones) follows the standard Newton equations (microcanonical ensemble or
NVE). MD simulations are performed in order to reach a steady state characterized by linear op-
posite variations of the Nosé-Hoover Hamiltonians of the hot and cold regions. In the following,
Thot = 0.3 1 and Tcold varies from 0.05 to 0.15 to investigate various thermal gradient. These
parameter choices correspond to extremely high thermal gradients: for example, transposing the
LJ parameters to a real material such as copper [50] (for which ϵ = 0.4096 eV and σ = 0.2338
nm and m = 105.49 10−27 kg) results in a thermal gradient of about 113 K.nm−1 for the smallest
value of Tcold = 0.05.

Figure 2 shows the temperature profile along x in the substrate for various thermal gradients.
Temperatures profiles are measured from the average kinetic energy per atom < Ek > of 20 slabs
of thickness 3.4 evenly distributed between the hot and cold regions. Using the equi-partition
theorem, the temperature reads T = 2

3 < Ek >. Both the time average temperature < T > and its
standard deviation σT are measured and reported on Fig 2.

In Fig. 2, the temperature profiles between the hot and cold regions are linear in agreement
with the standard Fourier law for small thermal gradients. For high thermal gradients, weak
deviations from the linear behavior are observed that we attribute to a partial ballistic thermal
transport. Indeed, measuring the phonon mean free path in the substrate from the thermal con-
ductivity size dependence [51], we find that the phonon mean free path is 26.96, a value compa-
rable to the x-size of the simulation cell [44]. Thus, the thermal transport is partially ballistic in
agreement with the nonlinear temperature profile [52]. Though, the typical size of the clusters
whose thermomigration will be investigated below is about an order of magnitude smaller than
the phonon mean free path: the partial ballistic nature of the thermal transport along the substrate
is thus expected to have no effect on the thermomigration mechanism.

Furthermore, Fig. 2 shows some discontinuities of temperatures at the interfaces between the
NVE and thermostated (hot or cold) regions: we attribute these discontinuities to the existence
of interface resistances or Kapitza resistances [53, 54].

Due to the presence of these Kapitza resistances and to the non-linear temperature profile,
there is a slight difference between the temperature variation per unit length ∆ T

Lx
=

Thot−Tcold
Lx

and

1The fusion temperature of the substrate is T f ≈ 0.69 [49]
4



-30 -20 -10 0 10 20 30
x

0

0,1

0,2

0,3

0,4

<
T

>

<dT/dx>=0.0038

<dT/dx>=0.0033

<dT/dx>=0.0027

Figure 2: Temperature profiles (and standard deviations) in the substrate. The thermostated regions are indicated by the
hatched areas.

Table 1: Average thermal gradient ⟨ ∂T∂x ⟩ as a function of the heat baths temperatures Tcold and Thot .

Thot Tcold ⟨ ∂T
∂x ⟩

0.3 0.05 0.0038
0.3 0.1 0.0033
0.3 0.15 0.0027

the average thermal gradient ⟨ ∂ T
∂ x ⟩ =

1
Lx

∫ Lx

0
∂ T
∂ x dx extracted from the temperature profile. Thus,

below, the thermal gradient will be characterized by the average thermal gradient ⟨ ∂T
∂x ⟩ whose

values as a function of Tcold are listed in Table 1.

3. Characteristic of cluster diffusions

3.1. Cluster Sizes and conformations

We investigate the thermomigration of clusters consisting of N = 2, N = 3 and N = 4 atoms.
Figure 3(a) to (c) show snapshots of these clusters (orange atoms) containing respectively

N = 2, N = 3 and N = 4 atoms on the substrate (green atoms): these images evidence the
equilibrium conformation of the clusters on the surface. Additionally, we have attempted to
study clusters containing more atoms [44]. . However, the description of the kinetics of their
diffusion or thermomigration is made considerably more difficult by the fact that these later can
adopt different conformations on the substrate. For these reasons, we will dedicate the more
complex situations to a future publication and concentrate on the simplest cases involving cluster
with N = 2, N = 3, and N = 4 in this work.

Before investigating the thermomigration of these clusters, we characterize their diffusion on
a substrate at homogeneous temperature T .
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(b) (c)

(a)

Figure 3: Snapshots (top-view) of the clusters (in orange) with N = 2, N = 3 and N = 4 atoms on the substrate surface.

3.2. Cluster diffusion characteristics

Performing MD simulations on a substrate at uniform temperature T ∈ [0.1 − 0.3], we mea-
sure the mean square displacement (MSD) of the clusters MS D(τ) =

〈(⃗
r(t + τ) − r⃗(t)

)2
〉

with ⟨⟩
the time average and r⃗(t) the position of the cluster’s center of mass (COM). Plotting MS D(τ)
in a log-log plot, we have checked that the diffusion of the cluster is normal MS D(τ) ∝ τ which
allows us to evaluate a diffusion coefficient.

For each cluster size, the diffusion coefficient follows an Arrhenius law D(T ) = D0 e−
Ea

kB T .
A regression provides the diffusion activation energy Ea and the prefactors D0 that we report in
Table 2. For comparison, we also report in Table 2 those found for a diffusing adatom [42].

For N = 2 and N = 3, the cluster diffusion activation energy Ea is roughly the number of
atoms in the cluster times the diffusion activation energy of an adatom. Indeed, for N = 2 and
N = 3, all atoms are in contact with the substrate. Besides, for N = 4, the diffusion activation
energy Ea of a 4 atoms cluster is roughly three times the activation energy for diffusion of an
adatom: a 4 atoms cluster has a pyramid-like conformation with 3 atoms in direct contact with
the substrate (see Fig. 3(c)), in agreement with the measured activation energy Ea.

Table 2: Diffusion activation energy Ea, prefactors D0 and ratio Ea
Ea(N=1) of the activation energy by the adatom activation

energy as a function of clusters sizes.

N Ea Do Ea
Ea(N=1)

1 0.287 0.227 1
2 0.617 0.419 2.150
3 0.838 0.504 2.920
4 0.884 0.528 3.080

3.3. Lattice mismatch and cluster diffusion

In order to address the effect of the lattice mismatch on the cluster diffusion coefficient,
we perform MD simulations and analyze the cluster trajectories on a substrate at homogeneous
temperature T = 0.25 varying the parameter σcl−cl between σcl−cl ∈ [0.6, 1.12]. Computing the
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MSD, we deduce the cluster diffusion coefficient that we plot in Fig. 4(a) as a function of the
distance σcl−cl for different cluster sizes.
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Figure 4: (a) Diffusion coefficient as a function of the distance σcl−cl for different cluster sizes at T = 0.25. (b) Migration
energies E0K

mig at 0 K as a function of the distance σcl−cl for different cluster sizes.

In order to understand the origin of the variation of the diffusion coefficient, we have com-
puted the cluster migration energy E0K

mig shown in Fig. 4(b) as a function of the distance σcl−cl.
The migration energy E0K

mig is defined here as the amplitude of the energy EOK(x) as a function
of the x-position of the COM of the cluster. EOK(x) is obtained by minimizing the energy of the
system (cluster+substrate) constraining the x-position of the COM of the cluster 2. E0K

mig should
be equivalent to the diffusion activation energy Ea providing that only one diffusion mechanism
operates. For all investigated cluster sizes, the migration energies Fig. 4(b) present variations
opposite to those of the diffusion coefficient Fig. 4(a).

For N = 3 and N = 4 cluster sizes, the diffusion coefficients approximately evolve quadrat-
ically with the parameter σcl−cl. The diffusion coefficient is minimum for σcl−cl ≈ 0.9. The
migration energy presents an opposite variation with a maximum around σcl−cl ≈ 0.85. A mini-
mum of the diffusion coefficient as a function of the lattice mismatch has already been observed
in simulations of cluster diffusion [55, 56]: varying the cluster-substrate lattice mismatch in-
duces an elastic energy in the cluster and a variation of the binding energy of the cluster with the
substrate, two quantities to which the migration energy is related.

The behavior of N = 2 cluster size is singular compared to the N = 3 and N = 4 cases, the
diffusion coefficient increases up to a maximum for σcl−cl ≈ 0.8 and then decreases to reach a
minimum at σcl−clmin ≈ 1.1. This variation agrees with the ones of the migration energy. We
think that the presence of both a maximum and a minimum of the diffusion coefficient is related
to the existence of two diffusion mechanisms for 2 atoms clusters: the cluster can move through
translation or rotation. Both mechanisms yield the displacement of the cluster COM but their
activation energies differ by a factor of approximately 2.

2The y- and -z position of the cluster COM are not constrained.
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4. Thermomigration of cluster on a crystalline surfaces

4.1. Cluster Trajectories

For each cluster sizes, we examine 50 trajectories of diffusion on substrate submitted to dif-
ferent thermal gradients: the initial x-position of the cluster COM is at middle distance between
the hot and cold regions while its y-position is random. From these 50 trajectories, we compute
an average trajectory.
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Figure 5: (a) Average trajectories of clusters with N = 2, N = 3 and N = 4 atoms. ⟨ ∂T∂x ⟩ = 0.0038 and Tmean = 0.175
and σcl−cl = 1. (b) Average trajectories of clusters with N = 3 atoms for different mean temperatures Tmean =

Thot+Tcold
2

and different thermal gradients ⟨ ∂T∂x ⟩. σcl−cl = 1. (c) Average trajectories of a 3 atoms cluster as a function of the distance
σcl−cl. ⟨ ∂T∂x ⟩ = 0.0038 and Tmean = 0.175.
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4.1.1. Cluster size
Figure 5(a) shows the average trajectory for clusters of N = 2, N = 3 and N = 4 atoms.

The thermal gradient is set to ⟨ ∂T
∂x ⟩ = 0.0038 and the distance σcl−cl = 1. The average trajec-

tory is computed by averaging the x-position of the cluster COM at a given time t over all MD
trajectories with the same initial x-position.

Regardless of the number of atoms, the cluster COM moves towards the positive x, i.e. to-
wards the cold region. The thermal gradient induces an effective force on the clusters pushing
them towards the cold region. In addition, the cluster migration speed decreases with the cluster
size, which is in line with the diffusion coefficients’ dependence on cluster sizes (see section 3.2).
Finally, the trajectories of clusters display two main ingredients: a thermal gradient induced drift
and a random diffusion.

4.1.2. Thermal gradient and local temperature
To investigate the effects of the thermal gradient and of the local temperature, Fig. 5(b) shows

the average trajectories of a cluster N = 3 for varying hot Thot and cold Tcold temperatures
corresponding to different thermal gradient ⟨ ∂T

∂x ⟩ and different mean substrate temperature defined
as Tmean =

Thot+Tcold
2 .

We first compare the trajectories with a fixed mean substrate temperature Tmean = 0.175. For
thermal gradients ⟨ ∂T

∂x ⟩ = 0.0038 and ⟨ ∂T
∂x ⟩ = 0.0027, the trajectories have respectively a mean

velocity of v̄ = 4.55 10−4 and v̄ = 3.96 10−4. The mean speed of the cluster is defined here as the
average speed v̄ between t = 0 and t = 25 000. Hence, while the thermal gradient increases by a
factor 0.0038

0.0027 = 1.41, the mean speed increases by a factor 1.15, of the same order of magnitude
but slightly smaller. The discrepancy between these two values are presumably due to a lack of
statistics in order to evaluate the mean speed and more probably to the naive and rough analysis
done here (the average thermomigration speed depends on the thermal gradient and on the local
temperature Eq. (1)).

Comparing trajectories with a fixed thermal gradient ⟨ ∂T
∂x ⟩ = 0.0038 in Fig. 5(b), the mean

speed for a mean temperature Tmean = 0.175 is about 1.92 times higher than the one for an
average temperature Tmean = 0.150. This ratio of 1.92 is to be compared with the ratio of the
cluster diffusion coefficients at the temperatures Tmean = 0.150 and Tmean = 0.1750 computed
from data of Table 2: D(T=0.175)

D(T=0.150) ≈ 2.2 of the order of 1.92. Again, we think that the discrepancy
between these values is presumably due to a lack of statistics and to our naive and rough analysis.

4.1.3. Lattice mismatch
Figure 5(c) shows the average trajectory of the N = 3 cluster for different σcl−cl distances for

a thermal gradient ⟨ ∂T
∂x ⟩ = 0.0038 and a mean temperature Tmean = 0.175 .

The trajectories for σcl−cl = 0.89 and σcl−cl = 1 have the lowest mean speed while those for
σcl−cl = 0.72 and σcl−cl = 1.12 the highest. This result is consistent with the cluster diffusion
coefficient dependence on σcl−cl reported in Fig. 4(a).

We conclude that the thermomigration of cluster seems to agree with Eq. (1) but that the
trajectory analysis is necessarily limited by statistics.

4.2. Thermodynamic Integration

In order to overcome the trajectories examinations and to quantitatively disentangle the ther-
mal gradient induced drift and the random diffusion, we proposed in our previous work [42, 43]
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to generalize the thermodynamic integration (TI) algorithm to the case of system with an inho-
mogeneous temperature. Our method was designed to determine the thermodynamic potential
driving the diffusion of an adatom in the presence of a thermal gradient. In this section, we
propose to extend this algorithm to the case of clusters.

4.2.1. Local thermodynamic equilibrium
First, we have investigated the local thermodynamic equilibrium of the clusters in contact

with the substrate by measuring the velocity distribution of clusters atoms as a function of the
cluster position. The sizes of the clusters investigated here are very small compared to the typical
length of variation of the thermal gradient: indeed, for the highest investigated thermal gradient
⟨ ∂T
∂x ⟩ = 0.0038, the temperature varies of 0.004 over the typical sizes of clusters considered

here. Figure 6(a) shows the clusters velocity distributions G(vy) as a function of the y-velocity
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Figure 6: ⟨ ∂T∂x ⟩ = 0.0038 and Tmean = 0.175 (a) Velocity distributions of clusters with COM at position x0 = −8.81. (b)
Temperature profile of the substrate and clusters temperature evaluated from the velocity distribution along the x axis.

vy of clusters for a thermal gradient ⟨ ∂T
∂x ⟩ = 0.0038 and Tmean = 0.175. Velocity distributions

are calculated while constraining the x-position of the COM. This distribution fits well with a

Maxwell distribution G(vy) =
√

m
2πkBT e−

mvy2

2kBT and allows to deduce the cluster temperature.
Figure 6(b) compares the temperature profile of the substrate Fig. 2 (evaluated from the

equipartition theorem) and the cluster temperatures evaluated from the velocity distributions.
Both temperatures agree so that we can reasonably assume that the clusters are in a local ther-
modynamic equilibrium with the substrate.

4.2.2. Thermodynamic potential and thermodynamic integration
We define the probability p(x0) to find the cluster with its COM at coordinate x0 and the as-

sociated thermodynamic potential Φ(x0) :p(x0) ∝ exp(−Φ(x0)). Under the local thermodynamic
equilibrium assumption, in a system with an inhomogeneous temperature, the thermodynamic
potential Φ(x0) reads:
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Φ(x0) = − ln[Zr(x0)] (2)

Zr(x0) =
1

h3M+3N

∫
δ

(∑M xk

M
− x0

)
e
[
−

∫
H (⃗r)
T (⃗r) d3 r⃗

] M∏
k=1

d3r⃗kd3 p⃗k
3

N∏
i=1

d3r⃗id3 p⃗i (3)

Where positions r⃗k = (xk, yk, zk) and momentum p⃗k of cluster atoms are denoted with indices
k (or l) while substrate atoms coordinates are denoted with the index i (or j). M and N are
the numbers of atoms in the cluster and in the substrate. H (⃗r) is the microscopic many-body
Hamiltonian density of the system defined as [57, 58]:

H (⃗r) =

M∑
k

δ(r⃗k − r⃗)

 p2
k

2mk
+

1
2

N∑
i

ELJ(r⃗k, r⃗i) +
M∑

l,k

1
2

ELJ(r⃗k, r⃗l)


+

N∑
i

δ(r⃗i − r⃗)

 p2
i

2mi
+

1
2

M∑
k

ELJ(r⃗k, r⃗i) +
N∑
j,i

1
2

ELJ(r⃗i, r⃗ j)

 (4)

with mk and mi the masses of the cluster and substrate atoms.
The direct calculation of the thermodynamic potential Φ(x0) is out of our computational

capabilities because it would involve an integral over all microstates. However, it is possible to
calculate its derivative ∂Φ

∂x . Appendix A establishes the expression of ∂Φ
∂x :

∂Φ

∂x
(x0) = −

∂Zr
∂x0

Zr
(x0)

= −

〈 N∑
i

M∑
k

Fx(i→ k)
2

[
1

T (xk)
+

1
T (xi)

]〉
x0

+

〈 M∑
k

∂
(

1
T (xk)

)
∂x0

[
pk

2

2m
+

ELJ(k ↔ sub)
2

]〉
x0

+

〈 M∑
k

M∑
l,k

1
2

∂
(

1
T (xk) +

1
T (xl)

)
∂x0

ELJ(k ↔ l)
〉

x0

(5)

where ⟨.⟩x0 denotes an average over all microstates compatible with the x-position x0 of the
cluster COM. Fx(i → k), ELJ(k ↔ sub) and ELJ(k ↔ l) are respectively the x-component of the
force exerted by atom i on atom k, the interaction energy between the cluster and the substrate
and the internal energy of the cluster.

While the first right-hand term of Eq. (5) is standard in TI implementation (in homoge-
neous temperature systems), the second and third terms derived from the presence of the thermal
gradient. In order to compute the thermodynamic potential, we develop and implement a user-
command to the LAMMPS code that evaluates Eq. (5).

4.2.3. Thermodynamic potential
We perform MD simulations similar to a thermodynamic integration method: we constrain

the x-coordinate of the cluster COM to compute ∂Φ
∂x (x0) using Eq. (5) from which we deduce Φ

by numerical integration. Figure 7(a) shows the thermodynamic potential Φ(x0) as a function of
the position of the COM for a cluster N = 3 for three thermal gradients. The potential Φ(x0)
is the sum of a decreasing function referred as ϕTGIP and a periodic function ϕDi f f . We define
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Figure 7: Thermodynamic potential of the N = 3 cluster for several thermal gradients ⟨ ∂T∂x ⟩. (a) Thermodynamic potential
∂Φ
∂x (x) as a function of the position x of the cluster’s COM. The inset in Fig. 7(a) shows the successive positions (x,y) of
the center of mass of a diffusing cluster on the (111) surface. The distance ax between two stable sites on the surface in
the x direction is ax ≈ 0.56. (b) Thermodynamic potential Φ as a function of the inverse of temperature 1

T ) .

ϕTGIP as the curve passing through all minima of the thermodynamic potential. The potential
ϕTGIP characterizes the thermomigration : its derivative corresponds to an effective force driving
the cluster towards the cold region: the cluster’s probability of presence p(x0) increases with
decreasing temperature.

Using the temperature profile Fig. 2, the thermodynamic potential is plotted in Fig. 7(b) as
a function of the inverse of the temperature 1

T . Within this choice of coordinates, the potential
ϕTGIP coincides for all thermal gradients. In addition, the function ϕTGIP( 1

T ) is quasi-linear.
Conversely, the function ϕDi f f characterizes the diffusion of the cluster on the substrate: the

inset of Fig. 7(a) shows the trajectory of the cluster COM evidencing the crystallography of the
surface consistent with the period of the function ϕDi f f .

4.2.4. Interpretation of thermodynamic potential
To interpret the thermodynamic potential, we use the expression Eqs. (2) and (3). The mi-

croscopic many-body Hamiltonian density H (⃗r) involves three types of energies: the substrate-
substrateH sub − sub, the cluster-clusterHCl−Cl and the cluster-substrateHCl−sub energies. Among
them, the cluster-cluster and cluster-substrate energies involve the COM of the cluster while
Esub − sub weakly depends on x0 for x0 corresponding to metastable position of the cluster.
Thus, in order to interpret Eqs. (2) and (3), we note that under the condition

∑M xk
M − x0 = 0 and

x0 corresponding to metastable position of the cluster:∫
H (⃗r)
T (⃗r)

d3r⃗ ≈
ECl−Cl

T (x0)
+

ECl−sub

T (x0)
+

∫
Hsub−sub (⃗r)

T (⃗r)
d3r⃗ (6)

Where Ecl−sub and Ecl−cl are the cluster-substrate binding and cluster internal free energies. Com-
bining Eqs. (6) and (2), we conclude that the minima of thermodynamic potential should vary

12



following

Φ(x0)|min ≈ −
Ecl−sub + Ecl−cl

T (x0)
+ ... (7)

This relation agrees with results of Fig. 7(b) evidencing a linear relationship of the potential
ϕTGIP as a function of 1

T . Below, we will show this agreement is not only qualitative but also
quantitative.

The interpretation Eq. (7) is quite natural, since by considering an infinitely small thermal
gradient, one should recover the probability of cluster presence on a substrate at homogeneous

temperature T: P(x0) ∝ e−
A(x0
T (x0)Πsub−sub with A(x0) the cluster-substrate binding and cluster inter-

nal free energy of the cluster constrained at abscissa x0 and Πsub−sub a function mainly depending
on substrate-substrate interaction independent on x0.

4.3. Thermomigration characterization

5 5,5 6 6,5

1/T

-80

-60

-40
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Φ

N=2
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N=4

Figure 8: Thermodynamic potential for several clusters sizes as a function of inverse temperature 1
T . The potential is

measured for a substrate subjected to a thermal gradient ⟨ ∂T∂x ⟩ = 0.0038.

4.3.1. Thermal gradient induced drift
Figure 8 shows the thermodynamic potential as a function of inverse temperature for different

clusters sizes and for a thermal gradient ⟨ ∂T
∂x ⟩ = 0.0038. For all sizes, the potential ϕTGIP is quasi-

linear with a negative slope: the thermomigration effective force drives the cluster towards the
cold region independently on its size.

Identifying all minima of Φ(x0), we calculate ϕTGIP( 1
T ) and perform a linear regression using

the expression ΦTGIP( 1
T ) = −Q

T + Φ0. Q characterizes the thermomigration force that pushes
the clusters towards the cold region. Table 3 reports values of Q for each cluster sizes as well
as the cluster-substrate binding E0K

cl−sub and the internal E0K
cl−cl energies computed at 0 K and the

expected slope Q0K = E0K
cl−cl + E0K

cl−sub. The coefficient Q increases with cluster sizes. The
measured coefficient Q is in good agreement, about 10% smaller with its theoretical value Q0K

at 0K validating the analysis of Sect. 4.2.4.

13



4.3.2. Random diffusion
In order to address the diffusive effects, we calculate the diffusion potential ΦDi f f ( 1

T ) =
Φ( 1

T ) − ΦTGIP( 1
T ).

Figure 9(a) shows ΦDi f f as a function of 1
T . The function ΦDi f f ( 1

T ) is an oscillating function
whose amplitude ADi f f increases with decreasing temperature. Figure 9(b) shows the amplitude
ADi f f as a function of the inverse of the temperature. The amplitude ADi f f is related to the
barrier of the cluster diffusion : as one can expect from entropic effect, this barrier decreases as
the temperature increases. In order to address this temperature dependence, we perform a linear
regression following the relation ADi f f ( 1

T ) = Em
T − S with Em the diffusion migration energy and

S an entropy. Table 3 reports the values of Em and S for each cluster. One should expect that the
diffusion migration energy Em corresponds to the activation energy Ea found when studying the
cluster diffusion Table 2. For this reason, we have also reported in Table 3 the diffusion activation
energy Ea. Em and Ea differ but their ratio is about 0.8 except for the singular case N = 2. In the
N = 2 case, the TI algorithm by constraining the x-position of the COM favors the observation
of one of the diffusion mechanism, namely the one implying the rotation of the cluster with the
smallest activation energy. Conversely, during the N = 2 cluster diffusion, we observe both
rotation and translation of the cluster explaining the high diffusion activation energy.
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Figure 9: (a) ΦDi f f as a function of 1
T . ΦDi f f is calculated according to ΦDi f f ( 1

T ) = Φ( 1
T ) − ΦTGIP( 1

T ). (b) Amplitude
Adi f f of ΦDi f f as a function of the inverse of temperature and its linear regression following ADi f f ( 1

T ) = Em
T − S . The

thermal gradient is ⟨ ∂T∂x ⟩ = 0.0038.

4.3.3. Elastic effect
Figure 10(a) presents the thermodynamic potential for the N = 3 cluster as a function of the

inverse of the temperature with a thermal gradient ⟨ ∂T
∂x ⟩ = 0.0038 for different values of the σcl−cl

distance. The thermodynamic potential is again a linear function of 1
T . Following our previous

analysis, we extract from these curves the coefficient Q and the diffusion migration energy Em.
Figure 10(a) and 10(b) respectively show the coefficient Q and the diffusion migration energy
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Table 3: Slopes Q, diffusion activation energies Ea, diffusion migration energy Em and entropies S for the different
clusters. E0K

cl−cl and E0K
cl−sub are the cluster internal and cluster-substrate binding energies at 0 K. The theoretical slope

Q0K at 0K is calculated according to Q0K = E0K
cl−cl + E0K

cl−sub.

N Q Ea Em S E0K
cl−cl E0K

cl−sub Q0K

2 11.80 ± 0.05 0.617 0.134 0.327 4.99 8.40 13.39
3 24.61 ± 0.02 0.838 0.684 0.901 14.99 12.58 27.57
4 39.34 ± 0.05 0.884 0.715 1.070 29.99 13.13 43.12

Em for the cluster N = 3 as a function of the σcl−cl distance as well as their expected values Q0K

and E0K
mig at 0K.

Our simulations do not exhibit a clear dependence of the slope Q on the σcl−cl distance: we
observe that Q remains mainly independent on the σcl−cl distance. This result agrees with the
dependence of the theoretical value Q0K at 0K also reported Fig. 10(b): it only varies by 2.47%
in Fig. 10(b) on the investigated range of values of σcl−cl. Clearly our simulations are not able to
catch such a weak dependence.

Conversely, the diffusion migration energy Em Fig. 10(b) has a clear maximum aroundσcl−cl =

0.9 and fully correlates with the dependence of the theoretical value E0K
mig at 0K.

We conclude that the lattice mismatches have a weak influence on the thermomigration force,
but a significant effect on the diffusion kinetic.

4.3.4. Interacting energy ϵcl−cl
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Figure 10: (a) Slope Q and theoretical slope Q0K of ϕTGIP as a function of distance σcl−cl. (b) Diffusion migration energy
Em and migration energy E0K

mig at 0K as a function of distance σcl−cl. ⟨ ∂T∂x ⟩ = 0.0038

We finally investigate effects arising from variations of the interaction energy ϵcl−cl between
the atoms in the cluster. In this study, we deliberately limit the accessible range ϵcl−cl ∈ [4− 6] in
order to prevent cluster dissociation on the simulation timescale.

We compute the thermodynamic potential of the N = 3 cluster as a function of the inverse of
the temperature with the substrate simulated with a thermal gradient ⟨ ∂T

∂x ⟩ = 0.0038 for different
15



values of the ϵcl−cl energy. From the thermodynamic potential, we deduce the slope Q. Fig. 11
shows the coefficient Q as a function of the energy ϵcl−cl of the cluster N = 3. Q grows linearly
with the energy ϵcl−cl with a slope of 2.44 and an intercept of 12.29. For comparison, the theoret-
ical slope Q0K calculated at 0 K is also displayed in Fig. 11: an linear regression gives a slope of
2.99 and an intercept of 12.54.

Both intercepts of Q and Q0K are in excellent agreement and corresponds to the cluster-
substrate binding energy at 0K. The discrepancy between the slope of Q and Q0K as a function
of ϵcl−cl is of the order of 20% presumably due to entropic effects.

We conclude that the slope Q characterizing the thermomigration force that pushes the clus-
ters towards the cold region agrees well with our interpretation as the sum of the cluster-substrate
binding and cluster internal free energies.
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Figure 11: Slope Q and theoretical slope Q0K at 0K and their linear fits (solid lines) as a function of binding energy
ϵcl−cl.

5. Model for thermomigration

In order to relate the coefficient Q to the heat of transport involved in Eq. (1), we propose in
this section to extend the kinetic model developed in Roux et al. [42, 43] to the case of clusters.

5.1. Model

The thermodynamic potential presents multiple metastable states: the cluster diffuses from
one of these states to a neighbor one. We define Γ+ (Γ−) the probability per unit time that the
cluster initially in a metastable state moves in the direction of increasing(decreasing) x. The gen-
eralization of the transition state theory to system with an inhomogeneous temperature provides
Γ+ and Γ− [42]: {

Γ+ = ν+e−[ϕ(xm+
a
2 )−ϕ(xm)]

Γ− = ν−e−[ϕ(xm+
a
2 )−ϕ(xm+a)] (8)

With a the period of the thermodynamic potential and xm represents the abscissa of a metastable
site of the thermodynamic potential. We assume that the attempts frequencies are equals: ν+ =

16



ν− = ν0. Using results of Sect. 4.3, we get:
Φ(xm) = −

Q
T (xm) + Φ0

Φ(xm +
a
2 ) = −

Q
T (xm+

a
2 ) +

Em−S T (xm+
a
2 )

T (xm+
a
2 ) + Φ0

Φ(xm + a) = −
Q

T (xm+a) + Φ0

(9)

The average speed of the COM of the cluster thus writes:

⟨V⟩ = a
[
Γ+ − Γ−

]
=

D0

a
e

Q−Em
T (xm+ a

2 )

[
e−

Q
T (xm ) − e−

Q
T (xm+a)

]
(10)

Where we have used D0 = ν+a2eS .

5.2. Link with Eq. (1)

If the thermal gradient is sufficiently small i.e. Qa ∂
1
T
∂x ≪ 1, a Taylor expansion of Eq. (10) at

the first order in ∂
1
T
∂x yields:

⟨V⟩ = QD0e−
Em

T (xm) e
Q−Em

2
∂ 1

T
∂x
∂ 1

T

∂x
(11)

⟨V⟩ = −D0e−
Em

T (xm)
Q

T (xm)2 e−
Q−Em

2T (xm)2
∂T
∂x
∂T
∂x

(12)

Providing that Q−Em
2T (xm)2

∂T
∂x ≪ 1, Eq. 12 is consistent with Eq. (1) where Q identifies with the heat

of transport Q∗. Hence, the heat of transport Q∗ is related to the sum of the cluster-substrate
binding and cluster internal energies.

5.3. Comparison with molecular dynamic simulations
In order to compare the prediction of our model with the results of MD simulation, we com-

pute the average trajectory of the cluster by solving the following differential equation:

dx
dt
= α⟨V⟩ (13)

With α an adjustable parameter. We use the expression of the speed ⟨V⟩ given by Eq. (10):

indeed, we have checked that the hypothesis Qa ∂
1
T
∂x ≪ 1 yielding to Eq. (12) are not satisfied in

our case.
In addition, Eq. (10) involves a diffusion migration energy Em. As already mentioned, Em

should in principle identify with the diffusion activation energy Ea so that Eqs. (8) are compatible
with results of the diffusion of a cluster on homogeneous substrate and D(T ) = D0e

−Em
T . However,

Em and Ea differ slightly for N = 3 and N = 4 and significantly for N = 2. Hence, in order to
be as closed as possible from the diffusion of cluster, we used activation energies Ea in Eq. (10)
instead of values of Em deduced from the TI simulations: as already mentioned especially for the
N = 2 cluster, some of diffusion mechanisms are not observed during the TI simulations, while
they are during the free diffusion of the cluster on a substrate at homogeneous temperature.

Table 4 gathers the numeric values of the parameters that we use to solve Eq. (13). T (x) is
provided by a cubic regression of the temperature profile Fig. 2.
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Table 4: Numerical values used to solve Eq. 13
N a Q Ea S D0

2 0.56 11.80 0.617 0.327 0.419
3 0.56 24.61 0.838 0.901 0.504
4 0.56 39.34 0.884 1.070 0.528

Figures 12(a), 12(b) and 12(c) show the trajectories calculated from Eq. (10) and the av-
erage trajectories calculated from MD simulations for a thermal gradient ⟨ ∂T

∂x ⟩ = 0.0038. The
adjustable parameter α has been chosen so that both model and MD average trajectories agrees.
We respectively use α = 1

8 ,
1
8 and 1

20 for the cluster N = 2, 3 and 4.
Hence our model predicts the thermomigration of clusters with a speed about one order of

magnitude higher than what we observe in MD simulations. Though this result seems disap-
pointing, we emphasize that it constitutes to our knowledge the first study providing a model of
thermomigration of clusters with a direct quantitative comparison with MD simulations.

We have identified two possible ingredients of our model that could be improve and that
are presumably responsible of the discrepancies with MD simulations. The first concerns the de-
scription of the kinetic of the cluster diffusion: indeed, we measure several kinetic properties that
are inputs of our model and that significantly vary with the techniques used to determine them.
Unfortunately, the diffusion of the clusters involves several atomic mechanisms whose kinetic
characteristics are not easy to evaluate nor to identify. The second concerns the transition state
theory. One one hand, the standard transition state theory is known to underestimate reaction
rates since it neglects recrossing of reactive trajectories [59]: this underestimation is fully com-
patible with our finding of coefficients α < 1. On the other hand, the reliability of the extension
of the transition state theory to systems with inhomogeneous temperature Eq. (8) relies on a local
thermodynamic equilibrium assumption 3. This assumption is presumably true in the limit of an
infinitely small thermal gradient, but its applicability to the thermal gradients used here might
deserve a closer examination, which is clearly out of the scope of the present study.

6. Conclusion

In this manuscript, we have studied the thermomigration of clusters on crystalline surfaces.
After evidencing the thermomigration of clusters through the examination of their trajectories,
we have extended the thermodynamic integration method to measure the thermodynamic po-
tential of clusters on substrate submitted to a thermal gradient. The determination of the ther-
modynamic potential driving the motion of the clusters on the surface allows to decorrelate the
effective force induced by the thermal gradient from the diffusion. This analysis coupled to a
kinetic model for thermomigration have shown that the heat of transport Q∗ characterizing the
thermomigration corresponds well with the sum of the cluster-substrate binding and cluster in-
ternal energies. Hence, we find that Q∗ is always a positive quantity. In addition, we have shown
that elastic effects weakly affect the heat of transport Q∗, so that a change of sign of Q∗ does not
seem reachable by changing the lattice mismatch between clusters and substrate. This analysis
of elementary mechanisms of the thermomigration certainly deserves some extensions in order

3Especially, it assumes that the cluster is in equilibrium with the substrate along the transition.
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Figure 12: Trajectories calculated from the integration of Eq. 10 (solid green line) compared with the average MD
trajectory for a thermal gradient ⟨ ∂T∂x ⟩ = 0.0038. The red and blue hatched areas represent the hot and cold thermostated
regions respectively. (a) For N = 2. (b) For N = 3. (c) For N = 4
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to address cases where the transfer of momentum from phonons presumably plays a more im-
portant role in the thermomigration. Especially, analyzing the thermomigration of clusters on
graphene [28, 34], which is characterized by weak binding energies, may help to demonstrate
the role and to quantify this transfer of momentum from phonons.
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Appendix A. Thermodynamic integration for a cluster submitted to a thermal gradient

In this section, we develop the thermodynamic integration (TI) method for a cluster on a
substrate subjected to a thermal gradient.

Let’s M and N be the number of atoms in the cluster and in the substrate. Clusters and
substrate atoms indices will be respectively k or l ∈ {1, ..,M} and i or j ∈ {1, ..,N}. Clusters
(substrate) atom k(i) has a mass mk(mi).

∑M
k xk

M designs the x-component of the cluster COM.
Assuming local thermal equilibrium, the probability of presence of the cluster with its COM

abscissa x0 is defined as:

p(x0) =
Zr(x0)

Z
(A.1)

with Z the partition function of the system. Zr(x0) represents the reduced partition function of the
system (substrate+cluster), i.e. a partition function calculated on a set of microstates for which
the COM of the cluster has the abscissa x0.

The partition function and the reduced partition function write [57, 58] as:

Z =
1

h3M+3N

∫
e
[
−

∫
H (⃗r)
T (⃗r) d3 r⃗

] M∏
k=1

d3r⃗kd3 p⃗k

N∏
i=1

d3r⃗id3 p⃗i (A.2)

Zr(x0) =
1

h3M+3N

∫
δ

∑M
k xk

M
− x0

 e
[
−

∫
H (⃗r)
T (⃗r) d3 r⃗

] M∏
k=1

d3r⃗kd3 p⃗k
3

N∏
i=1

d3r⃗id3 p⃗i (A.3)

Where the microscopic many-body Hamiltonian densityH (⃗r) of the system is defined as [57,
58]:

H (⃗r) =

M∑
k

δ(r⃗k − r⃗)

 p2
k

2m
+

1
2

N∑
i

ELJ(r⃗k, r⃗i) +
M∑

l,k

1
2

ELJ(r⃗k, r⃗l)


+

N∑
i

δ(r⃗i − r⃗)

 p2
i

2mi
+

1
2

M∑
k

ELJ(r⃗k, r⃗i) +
N∑
j,i

1
2

ELJ(r⃗i, r⃗ j)

 (A.4)
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In our system, the temperature only depends on the x-position, so that we can write T (⃗r) =
T (x). From Eq. (A.4), we deduce:∫

H (⃗r)
T (⃗r)

d3r⃗ =
1
2

M∑
k,l

ELJ(r⃗k, r⃗l)
[

1
T (xk)

+
1

T (xl)

]

+

M∑
k

p2
k

2mkT (xk)
+

1
2

N∑
i

M∑
k

ELJ(r⃗k, r⃗i)
[

1
T (xk)

+
1

T (xi)

]

+

N∑
i

p2
i

2miT (xi)
+

1
2

∑
j,i

ELJ(r⃗i, r⃗ j)
[

1
T (xi)

+
1

T (x j)

]
(A.5)

The reduced partition function finally reads:

Zr(x0) =
1

h3M+3N

∫
δ(

∑M xk

M
− x0)

M∏
k=1

d3r⃗kd3 p⃗k
3

N∏
i=1

d3r⃗id3 p⃗i

e
−

[∑M
k

∑M
l,k

1
2 ELJ (r⃗k ,r⃗l)

[
1

T (xk )+
1

T (xl )

]]

e
−

[∑M
k

p2
k

2mT (xk )+
1
2
∑N

i
∑M

k

[
ELJ (r⃗k ,r⃗i)

[
1

T (xk )+
1

T (xi )

]]]

e
−

[∑N
i

pi
2

2miT (xi )+
∑N

i
∑N

j,i
1
2 ELJ (r⃗i,r⃗ j)

[
1

T (xi )+
1

T (x j )

]]
(A.6)

Calling r⃗m = (xm, ym, zm) =
∑M r⃗k

M the cluster COM, we introduce the reduced coordinates
r⃗′k = r⃗k − r⃗m:

Zr(x0) =
M3

h3M+3N

∫
δ(xm − x0)δ(

M∑
k

r⃗k
′ )d3r⃗m

M∏
k=1

d3r⃗′kd3 p⃗k

N∏
i=1

d3r⃗id3 p⃗i

e
−

[∑M
k

∑M
l,k

1
2 ELJ (r⃗k

′
+r⃗m,r⃗l

′
+r⃗m)

[
1

T (xk
′
+xm )
+ 1

T (xl
′
+xm )

]]

e
−

[∑M
k

pk
2

2mT (xk
′
+xm )
+ 1

2
∑N

i
∑M

k ELJ (r⃗k
′
+r⃗m,r⃗i)

[
1

T (xk
′
+xm)
+ 1

T (xi )

]]

e
−

[∑N
i

pi
2

2miT (xi )+
∑N

i
∑N

j,i
1
2 ELJ (r⃗i,r⃗ j)

[
1

T (xi )+
1

T (x j )

]]
(A.7)

Integrating over dxm, we get:

Zr(x0) =
M3

h3M+3N

∫
δ(

M∑
k

r⃗k
′ )e−κ(x0)dymdzm

M∏
k=1

d3r⃗′kd3 p⃗k

N∏
i=1

d3r⃗id3 p⃗i (A.8)

with

κ(x0) =

M∑
k

M∑
l,k

1
2

ELJ(r⃗k
′

+ r⃗0
m, r⃗l

′

+ r⃗0
m)

[
1

T (xk
′
+ x0)

+
1

T (xl
′
+ x0)

]
(A.9)

+

M∑
k

pk
2

2mT (xk
′
+ x0)

+
1
2

N∑
i

M∑
k

ELJ(r⃗k
′

+ r⃗0
m, r⃗i)

[
1

T (xk
′
+ x0)

+
1

T (xi)

]

+

N∑
i

pi
2

2miT (xi)
+

N∑
i

N∑
j,i

1
2

ELJ(r⃗i, r⃗ j)
[

1
T (xi)

+
1

T (x j)

]
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r⃗0
m = (x0, ym, zm) the position of the cluster’s COM.

Noticing that the terms ELJ(r⃗k
′

+ r⃗0
m, r⃗l

′

+ r⃗0
m) = ELJ(

∣∣∣r⃗k − r⃗l

∣∣∣) = ELJ(r⃗k, r⃗l) do not depend on
x0, From equations (A.8) and (A.9), we get:

−
∂Zr

∂x0
(x0) =

M3

h3M+3N

∫
δ(

M∑
k

r⃗k
′ )e−κ(x0)dymdzm

M∏
k=1

d3r⃗′kd3 p⃗k

N∏
i=1

d3r⃗id3 p⃗i
M∑
k

M∑
l,k

1
2

∂
(

1
T (x′k+x0)

+ 1
T (x′l +x0)

)
∂x0

ELJ(r⃗k, r⃗l)

+

M∑
k

pk
2

2mk

∂
(

1
T (x′k+x0)

)
∂x0

+
1
2

N∑
i

M∑
k

∂
(
ELJ(r⃗k

′

+ r⃗0
m, r⃗i)

)
∂x0

[
1

T (xk
′
+ x0)

+
1

T (xi)

]

+
1
2

N∑
i

M∑
k

∂
(

1
T (xk

′
+x0)

)
∂x0

ELJ(r⃗k
′

+ r⃗0
m, r⃗i)

 (A.10)

In the following we use the notations ELJ(k ↔ sub) =
∑N

i ELJ(r⃗k, r⃗i) the interaction of cluster
atom k with the substrate and Fx(i→ k) = − ∂

∂x0

(
ELJ(r⃗k, r⃗i)

)
the x-component of the force exerted

by the substrate atom i on the cluster atom k.
The derivative of the thermodynamic potential is hence:

∂Φ

∂x
(x0) = −

∂Zr
∂x0

Zr
(x0)

= −

〈 N∑
i

M∑
k

Fx(i→ k)
2

[
1

T (xk)
+

1
T (xi)

]〉
x0

+

〈 M∑
k

∂
(

1
T (xk)

)
∂x0

[
pk

2

2m
+

ELJ(k ↔ sub)
2

]〉
x0

+

〈 M∑
k

M∑
l,k

1
2

∂
(

1
T (xk) +

1
T (xl)

)
∂x0

ELJ(r⃗k, r⃗l)
〉

x0

(A.11)

where ⟨.⟩x0 denotes the average over all microstates compatible with the constrain x0 =
∑M

k xk

M .
Eq. (A.11) can be estimated from MD simulations and Φ(x0) deduces by numerical integration.
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sont portées à des temperatures différentes, Archives des Sciences Physiques et Naturelles de Geneve, 2 (1879) 48.
doi:10.1051/jphystap:018800090033101.

[3] J. Tyndall, On haze and dust, Nature 1 (1870) 339–342. doi:10.1038/001339a0.
[4] R. J. Strutt, Iv. on the dark plane which is formed over a heated wire in dusty air, Proceedings of the Royal Society

of London 34 (220-223) (1883) 414–418. doi:10.1098/rspl.1882.0059.
[5] H. Huntington, Driving forces for thermal mass transport, Journal of Physics and Chemistry of Solids 29 (9) (1968)

1641–1651. doi:https://doi.org/10.1016/0022-3697(68)90106-6.
[6] W. G. Pfann, Zone melting, Wiley series on the science and technology of materials, Wiley, 1958.
[7] E. Buchin, Y. Denisenko, Use of thermomigration in mems technology, in: K. A. Valiev, A. A. Orlikovsky (Eds.),

SPIE Proceedings, Vol. 6260, SPIE, 2006, pp. 62601L–62601L. doi:10.1117/12.683500.
[8] M. Eslamian, Z. Saghir, Thermodiffusion applications in mems, nems and solar cell fabrication by thermal metal

doping of semiconductors, Fluid Dynamics and Materials Processing 8 (2012) 353–380. doi:10.3970/fdmp.

2012.008.353.
[9] J. Janek, H. Timm, Thermal diffusion and Soret effect in (U,Me)O 2+δ: the heat of transport of oxygen, Journal of

Nuclear Materials 255 (2) (1998) 116–127. doi:10.1016/S0022-3115(98)00037-3.
[10] D. Peterson, Seon Jin Kim, Thermotransport of hydrogen in niobium and tantalum as a function of concentration,

Journal of the Less Common Metals 141 (2) (1988) 249–259. doi:10.1016/0022-5088(88)90411-0.
[11] M. Uz, O. Carlson, Thermotransport and diffusion of carbon in vanadium and vanadium-titanium alloys, Journal

of the Less Common Metals 116 (2) (1986) 317–332. doi:10.1016/0022-5088(86)90665-X.
[12] B. Ernst, G. Frohberg, K. Kraatz, H. Wever, Bulk electro- and thermotransport in al, in: Diffusion in Materials

DIMAT 1996, Vol. 143 of Defect and Diffusion Forum, Trans Tech Publications Ltd, 1997, pp. 1649–1654. doi:
10.4028/www.scientific.net/DDF.143-147.1649.

[13] P. A. E. Schoen, J. H. Walther, S. Arcidiacono, D. Poulikakos, P. Koumoutsakos, Nanoparticle traffic on helical
tracks: Thermophoretic mass transport through carbon nanotubes, Nano Letters 6 (9) (2006) 1910–1917. doi:

10.1021/nl060982r.
[14] P. A. E. Schoen, J. H. Walther, D. Poulikakos, P. Koumoutsakos, Phonon assisted thermophoretic motion of

gold nanoparticles inside carbon nanotubes, Applied Physics Letters 90 (25) (2007) 253116. doi:10.1063/

1.2748367.
[15] A. Barreiro, R. Rurali, E. R. Hernández, J. Moser, T. Pichler, L. Forró, A. Bachtold, Subnanometer motion of
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