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Robust sequential phase estimation using
Multi-temporal SAR image series

Dana EL HAJJAR, Student member IEEE, Guillaume GINOLHAC Senior member IEEE, Yajing YAN, Member
IEEE and Mohammed Nabil EL KORSO

Abstract—Multi-Temporal Interferometric Synthetic Aperture
Radar (MT-InSAR) exploits Synthetic Aperture Radar images
time series (SAR-TS) for surface deformation monitoring via
phase difference (with respect to a reference image) estimation.
Most of the actual state-of-the-art MT-InSAR rely on tem-
poral covariance matrix of the SAR-TS, assuming Gaussian
distribution. However, these approaches become computationally
expensive when the time series lengthens and new images are
added to the data vector. This paper proposes a novel approach
to sequentially integrate each newly acquired image using Phase
Linking (PL) and Maximum Likelihood Estimation (MLE). The
methodology divides the data into blocks, using previous images
and estimations as a prior to sequentially estimate the phase of
the new image. Actually, this framework allows to consider non
Gaussian distributions, such as a mixture of scaled Gaussian
distribution, which is particularly important to consider when
dealing with urban areas.

Index Terms—Multi-Temporal Interferometric Synthetic Aper-
ture Radar, Maximum Likelihood Estimation, covariance matrix
estimation, mixture of Scaled Gaussian distribution

I. INTRODUCTION

Interferometric Synthetic Aperture Radar (InSAR) analysis,
a pivotal technique in Synthetic Aperture Radar (SAR)

imagery, is widely employed for various applications such
as monitoring volcanoes and earthquakes, assisting in con-
struction and urban planning, investigating the effects of
climate changes, among others. This technique operates by
transmitting radar waves from the satellite to the ground and
capturing the backreflected echoes. Ground movements with
high accuracy can be detected by comparing phases of SAR
images acquired at two different dates (2-pass InSAR). How-
ever, this technique shows limitations when image acquisitions
become distant, which results in coherence loss, thus informa-
tion loss. Multi-Temporal Interferometric Synthetic Aperture
Radar (MT-InSAR) approaches offer enhanced performances
compared to the 2-pass approach. One of the most widely
used approaches in MT-InSAR is Phase Linking (PL), which
exploits the full covariance matrix of Synthetic Aperture Radar
images time series (SAR-TS) and their statistical properties.
The first objective of PL approaches consists of estimating
the phase differences relative to a reference image from the
SAR-TS, with improved accuracy and respecting the temporal
phase closure. For this, early PL approaches require prior
knowledge on coherence matrix and take the modulus of
the Sample Covariance Matrix (SCM) as a plug-in for the
coherence matrix [1]. This approach is equivalent to taking
the Maximum Likelihood Estimation (MLE) of the covariance

“This work is funded by the ANR REPED-SARIX project (ANR-21-CE23-
0012-01) of the French national Agency of research.” The source code is avail-
able on GitHub at the following address: https://github.com/DanaElhajjar/S-
SG-MLE-PL

matrix without considering its structure (see equation (2))
which makes it a suboptimal estimator due to the use of
the modulus operator which is non-holomorphic. To correct
this issue, a true MLE framework has been proposed in [2],
where the coherence and the phases are estimated by a 1-
step approach. The proposed solution involves using itera-
tive algorithms such as Block Coordinate Descent (BCD)
including a Majorization-Minimization (MM). An extension
to non Gaussian data has been proposed [3], which shows
their interest in urban areas where the Gaussian assumption
is often no longer valid [4]. However, this algorithm remains
computationally intensive, particularly due to use of iterative
procedures and complex mathematical operations on matrices
that grow in size over time. Additionally, it is unable to
efficiently handle the integration of new images and requires a
complete re-estimation of all phases of the time series as well
as the covariance matrix, which in this case corresponds to
the Tyler estimator, which itself is computationally expensive
to calculate. This becomes a real issue especially with the
vast amount of available SAR images thanks to ongoing SAR
missions.
Recently, online signal processing algorithms have seen a
great attraction and interest due to their ability to process
data continuously in real time, unlike batch algorithms that
require additional time to gather sufficient samples [5–8].
This real-time ability eliminates the need for complex and
resource-intensive operations, making online approaches a
more efficient and cost-effective solution.
To the best of our knowledge, sequential processing of SAR-
TS has not been extensively explored. One straightforward
approach is to consider phase differences only between the
new image and several previous images with close acquisition
dates, like the Small BAseline Subset (SBAS) method [9]
which pairs SAR images with small temporal baselines.
However, this approach can introduce phase bias due to
the presence of short-lived fading signals [10]. One notable
sequential approach was proposed in [11], where the idea is to
divide the SAR-TS into mini-stacks and apply the classic PL
to each mini-stack. The mini-stacks are then compressed into
a single virtual image through Principal Component Analysis
(PCA). Each mini-stack is treated relative to its first image, a
global PL is performed to link all the mini-stacks through the
compressed version of each mini-stack. This approach use PL
within a Gaussian framework and necessites the determination
of an appropriate period for sufficient SAR image acquisition.
In this paper, we propose a sequential approach based on [3],
which leverages the benefits of the MLE over classic PL while
maintaining a lower computational cost. It generalizes the
approach proposed in [12], namely Sequential Phase Linking
based on Maximum Likelihood Estimation for a Gaussian

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2025.3537334

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Centrale Supelec. Downloaded on February 17,2025 at 13:34:31 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/DanaElhajjar/S-SG-MLE-PL
https://github.com/DanaElhajjar/S-SG-MLE-PL


IEEE SIGNAL PROCESSING LETTERS 2

model (S-G-MLE-PL), to a Non-Gaussian model.
In this paper, we present a robust sequential approach. Specif-
ically, the previous images along with their corresponding
estimated parameters are used as prior information, allowing
us to leverage the conditional distribution of the new image
relative to the previous ones. Our approach resembles those
used in handling missing data, where prior information plays
a crucial role [13, 14]. Closed-form solutions for each pa-
rameter are derived and computed using a BCD algorithm.
Our approach demonstrates similar performance to traditional
offline methods in both simulations and real data studies, while
also significantly reducing computational costs.
In the continuation of the paper, the exponent T (resp. ∗) de-
notes the transposed operator (resp. the conjugated operator),
while the symbol ◦ characterizes the element-wise (Hadamard)
multiplication, and the exponent H corresponds to the trans-
posed and complex conjugated operator (Hermitian). Matrices
are written in bold uppercase, vectors in bold lowercase, and
scalars in lowercase.

II. SAR IMAGE TIME SERIES MODEL

For a given stack of l = p + 1 SAR images, we consider
a local homogeneous spatial neighborhood of size n denoted
{x̃i}ni=1 where x̃i ∈ Cl for all i ∈ [[1, n]], i.e.,

x̃i = [xi
1, . . . , x

i
p︸ ︷︷ ︸

xi

, xi
l]
T ∈ Cl, (1)

xi ∈ Cp indicates the multivariate pixel of the previous images
(Fig. 1). A common assumption consists in considering
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Fig. 1: The representation of SAR data incorporates both previous
and recently acquired images. The local neighborhood of size n is
denoted by gray pixels (sliding window).

that {x̃i}ni=1 is a set of vectors independent and identically
distributed (i.i.d) following a zero mean Complex Circular
Gaussian (CCG) distribution [15], i.e., x̃ ∼ CN (0, Σ̃). Most
of PL algorithms in the literature are based on this assumption
[2, 16–18], however [3, 4] showed that this assumption does
not always hold true and addressed Scaled Gaussian model.
For this scenario, the data follows a Gaussian distribution

conditionally to a deterministic unknown scale τi [19, 20], i.e,
x̃i ∼ CN (0, τiΣ̃). The real core of the covariance matrix is
denoted by Ψ̃, and w̃θ represents the vector of the exponential
of the complex phases (w̃θ = [ejθ0 , . . . , ejθl ]). Based on
standard physical parameters in InSAR, the covariance matrix
respects the given structure [1]

Σ̃ = Ψ̃ ◦ w̃θw̃
H
θ . (2)

According to (2) and given the representation of the data in
(1), the covariance matrix can be equivalently represented as

Σ̃ =

(
Σ w∗

θl
diag(wθ)γ

T

γdiag(wθ)
Hwθl γl

)
, (3)

where Σ corresponds to the previously estimated covariance
matrix between the previous SAR images, γ denotes the
coherence vector between the newly acquired data and the pre-
vious ones, γl symbolizes the variance of the newly acquired
data, and wθl is the exponential of the phase of the latest date
and wθ corresponds to the vector of the exponential of the
complex phases differences of the past.

III. OFFLINE APPROACHES

PL approach consists in estimating the SAR wrapped
phases while exploiting the covariance matrix of the SAR
image time series, making it an inferential statistical proce-
dure. Starting from l SAR images, PL algorithms aim to es-
timate l−1 phases differences from all possible combinations
( l(l−1)

2 ), which is equivalent to combining all interferometric
phases into a single reference. This algorithm underwent
updates and enhancements over the years [1, 3, 17, 18, 21, 22].
A recent review of PL algorithms was proposed in [23, 24].
The classic PL [1] algorithms start by calculating the SCM,
S̃ = 1

n

∑n
i=1 x̃

ix̃iH , and then considering Ψ̃ = |S̃| as a plug-
in of the coherence matrix in order to solve the following
problem

minimize
w̃θ

L(Ψ̃ ◦ w̃θw̃
H
θ )

subject to w̃θ ∈ Tl, w̃θ1 = 1
(4)

where L corresponds to the negative log-likelihood function
of the data following the zero mean CCG distribution.
Tl =

{
w̃θ ∈ Cl| |[w̃θ]i| = 1,∀i ∈ [1, l]

}
is the l-torus of phase

only complex vectors. The classic PL relies on the coherence
matrix plug-in which can biases the results especially in case
of low coherence regions, heterogeneous samples or small
sample size. To address these issues, [2, 3, 18] proposed to
use the MLE of the coherence matrix along with the phases
which allows solving the following problem by the BCD [25].
The latter reads as

minimize
Ψ̃,w̃θ

L(Ψ̃ ◦ w̃θw̃
H
θ )

subject to Ψ̃ ∈ Rl×l, w̃θ ∈ Tl, w̃θ1 = 1
(5)

The coherence matrix Ψ̃ can be given in a closed-form, and w̃θ

can be found through a MM algorithm [26, 27]. This algorithm
exhibits favorable convergence properties [28], which can be
attributed to the same arguments as in [29, 30], given its
constraint within the compact set Tl. This approach can be
extended to a mixture of Scaled Gaussian models [19] where
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x̃i ∼ CN (0, τiΣ̃). This offline algorithm will be denoted in
the following MLE-PL [3].

IV. PROPOSED SEQUENTIAL APPROACH
In our approach, namely S-MLE-PL hereafter, the coher-

ence parameters, γl and γ, are estimated simultaneously with
the phase of the new image wθl and the deterministic scale τi,
as

min
γ,γl,wθl

,{τi}n
i=1

L({x̃i}ni=1;γ, γl, wθl , {τi}ni=1)

subject to γ ∈ Rp, γl ∈ R, |wθl | = 1, θ1 = 0
(6)

The objective function of the aforementioned problem is the
negative log-likelihood for the entire data set. Given the
covariance matrix structure in (3) and assuming that x̃i ∼
CN (0, τiΣ̃), the negative log-likelihood derived from these
assumptions for the entire data set, can be expressed as

L({x̃i}ni=1;γ, γl, wθl , {τi}ni=1) = −
n∑

i=1

L(x̃i;γ, γl, wθl , τi)

= −
n∑

i=1

[
L(xi

l|xi;γ, γl, wθl , τi) + L(xi; τi)

]
(7)

In the above equation, the transition from the distribution over
the entire dataset to the conditional distribution is achieved
through [31], where xi

l|xi ∼ CN (µi
x, σ

2
x) in which

• µi
x = wθlγdiag(ŵθ)

HΣ̂−1xi

• σ2
x = τi(γl − γdiag(ŵθ)

HΣ̂−1diag(ŵθ)γ
T )

where ŵθ and Σ̂ were previously estimated using the offline
MLE-PL method [3] based on previous images {xi}ni=1.By
denoting k = γdiag(ŵθ)

HΣ̂−1diag(ŵθ)γ
T , v = γl − k,

Li = xiHΣ̂−1diag(ŵθ), yi = xi
l − wθlγL

iH

L({x̃i}ni=1;γ, γl,wθl , {τi}ni=1) =

n∑
i=1

[
l log(τi) + log (v)

+
yi∗yi

τiv
+

1

τi
xiHΣ̂−1xi

]
(8)

The problem (6) can be solved using a BCD algorithm
[25]. It updates iteratively each parameter by solving the
corresponding sub-problem while holding the other parameters
fixed (cf. Algorithm 1). The convergence of the BCD algorithm
is guaranteed in this case since each sub-problem is convex
[25, 28].

Algorithm 1 BCD algorithm

input : Samples {x̃i}ni=1, Σ̂, diag(ŵθ)
initialization :{τi}ni=1 = 1, wθl = 1, γ and γl using the
Toeplitz matrix structure
repeat

Bloc 1 : Update of {τi}ni=1 with (10)
Bloc 2 : Update of γ with (12)
Bloc 3 : Update of γl with (14)
Bloc 4 : Update of wθl with (16)

until convergence
output: γ, γl and wθl

In the following, we present the results of the updates. The
detailed calculation procedures throughout the article are pro-
vided in the supplementary materials.

Bloc 1 : Update {τi}ni=1

By fixing γ, γl and wθl , the problem of updating {τi}ni=1 can
be formulated as follows

min
{τi}n

i=1

n∑
i=1

[
l log(τi) +

yi∗yi

τiv
+

1

τi
xiHΣ̂−1xi

]
(9)

The corresponding analytical solution is

τi =
yi∗yi

lv
+

xiHΣ̂−1xi

l
, (10)

Bloc 2 : Update γ

γ is updated by fixing γl, wθl and {τi}ni=1, with the following
sub-problem

min
γ

n∑
i=1

[
log (v) +

yi∗yi

τiv

]
s.t. γ ∈ Rp (11)

and by designating Mi = LiHLi, the analytical resolution
takes the following form

γ =
(∑n

i=1
1
τi
(w∗

θl
xi
lL

i − wθlx
i∗
l Li∗)

)
.
(∑n

i=1
1
τi
(Mi∗ +Mi)

)−1

,
(12)

Bloc 3 : Update γl

The problem of updating γl with fixed {τi}ni=1, γ and wθl

reads

min
γl

n∑
i=1

[
log (v) +

yi∗yi

τiv

]
s.t. γl ∈ R (13)

The minimizer is obtained as

γl =
1

n

n∑
i=1

1

τi
(xi

l − wθlγL
iH)∗(xi

l − wθlγL
iH) + k, (14)

Bloc 4 : Update wθl

Updating wθl with fixed {τi}ni=1, γ and γl requires to solve
the sub-problem

min
wθl

n∑
i=1

yi∗yi

τiv
s.t. |wθl | = 1 (15)

The phase difference of the new image has the following form

wθl =
(( n∑

i=1

1

τ∗
i

xi
lL

iγT ).( n∑
i=1

1

τ∗
i

γMiγT )−1
)
. (16)

A projection step is required to respect the constraint in the
sub-problem (15).
Computational cost: PL approach is expensive, mainly due
to the number of images involved, the latter increases the size
of the coherence matrix and extends computations time due to
extensive mathematical matrix operations. Offline approaches
handle inversion and estimating l × l matrices, while our
approach focuses on estimating scalars and one vector. The
complexity of the S-MLE-PL approach is O(p3), while the
complexity of the MLE-PL approach is O(niterl

3).

V. METHOD EVALUATION

A. Synthetic data

A time series of l = p + 1 = 20 images is simulated. The
covariance matrix is generated according to (2), where Ψ̃ is
simulated as a Toeplitz matrix i.e., [Ψ̃]ij = ρ|i−j| with a
coefficient correlation ρ = 0.7. In the matrix Ψ̃, the coherence
between the new image and the previous ones, γ, corresponds
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to the last row and the scalar at (l, l) position corresponds to
the variance of the new image γl. We simulate linearly l SAR
phases between 0 and 2π, i.e., ∆i,i−1 = θi − θi−1 = 2/l rad.
The n i.i.d samples are then simulated as x̃i ∼ CN (0, τiΣ̃),
where each τi is sampled according to a Gamma distribution
τ ∼ Γ(ν, 1

ν ) with ν = 0.1. The scale parameter v ∈ R+

governs the tail of the distribution. When the value of ν
is small (e.g., ν = 0.1), the simulated data become highly
heterogeneous, which is desirable as it aligns with the charac-
teristics of urban areas in the real world. However, if the data
are Gaussian (v → ∞), similar to natural environments, the
method produces results identical to those of a Gaussian model
based approach, since in covariance matrix estimation, non-
Gaussian estimators perform similarly to Gaussian estimators
under a Gaussian distribution [32, 33].We compare our results
with those obtained from other state-of-the-art approaches:
classic PL [24] and MLE-PL [3]. We consider the Mean
Squared Error (MSE) which is computed using 1000 Monte
Carlo trials.

1) Comparison with offline approaches

50 100 150 200 250 300 350 400
n

0.5

1.0

1.5

2.0

M
SE

S-MLE-PL
MLE-PL
classic PL

(a) Comparison with offline ap-
proaches
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n
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(b) Sequential integration of
several new images

Fig. 2: MSE of phase difference estimation between the 1st and
20th (last) dates for l = 20 with respect to increasing sample size (n)
using 1000 Monte Carlo trials.

Fig. 2a represents the MSE of phase estimates for a sample
size n = 64 when n increases. As foreseen, the larger the
sample size, the better the performances are in terms of MSE
for all approaches. Offline approaches require operations on
large matrices, such as matrix inversion which is sensitive to
the samples size. The sequential approach shows better results
particularly on small sample size. For low sample support (n <
100), S-MLE-PL shows better performance than classic PL
and MLE-PL. In this paper, we compare the sequential and
offline approaches, highlighting the potential for parameter ν
variation.

2) Sequential integration of several new images
We compare 3 setups: (a) offline processing (MLE-PL):
processing the entire set together, (b) partial sequential pro-
cessing (S-MLE-PL): the last phase is estimated with the
proposed approach and (c) full sequential processing (S-MLE-
PL twice): the last 2 images are added sequentially and the
S-MLE-PL is used twice. We show that the full sequential
processing outperforms the offline processing (MLE-PL), and
performs comparably to adding one observation at a time (Fig.
2b).

B. Real data

Mexico city is considered one of the densely populated urban
areas with a population that surpasses 20 million. Conse-

quently, Mexico city faces significant challenges related to
water management frequently encountering situations where
water demand exceeds the available supply. To address this
issue, the city relies on groundwater extraction leading to
occurrences of subsidence and deformations in the land. We
investigate a pile of 20 Sentinel-1 SAR images covering
Mexico city, acquired every 12 days from August 14, 2019, to
April 10, 2020 to evaluate the effectiveness of the proposed
approach. Fig. 3 presents the longest temporal baseline in-

(a) MLE-PL

(b) S-MLE-PL

Fig. 3: Close-up view of the longest temporal baseline interferogram
(14 August 2019 - 10 April 2020) estimated by (a) MLE-PL [3] and
(b) S-MLE-PL in case l = 20 and n = 64.

terferogram estimated by MLE-PL [3], S-MLE-PL, with the
multi-looking window, denoted as n = 8×8, remains the same.
The results are analyzed by comparing MLE-PL with our
sequential approach. Both approaches, MLE-PL and S-MLE-
PL yield the same results, however the sequential approach
demonstrates significantly faster execution time compared to
the offline one when applied to real data. Practically, the
sequential approach took only 0.094 hour, whereas the offline
method required over 0.78 hour using a machine with a 95-
core CPU running at 2.2 GHz and 125 G of RAM with cal-
culations executed in parallel across the CPUs. Additionally,
we compare the results of our approach with those of [12]
and [11]. Based on [11], which used the Root Mean Squared
Error (RMSE) criterion despite the ambiguity of the modulo
2π in phase estimation, we compute the RMSE between
these sequential approaches and the offline result MLE-PL
[3]. We observe that our approach yields a lower value of
RMSES-MLE-PL = 1.62, while RMSES-G-MLE-PL = 1.74 and
the Sequential Estimator [11] has an RMSESeq Est = 1.89.

VI. CONCLUSION

In this paper, a novel sequential PL approach is pro-
posed to estimate the phase difference in InSAR based on a
MLE framework. The estimator stands out for its robustness
within the considered Scaled Gaussian model and improved
performance is observed in both simulations and real-world
data, demonstrating enhanced estimation efficiency in terms
of accuracy and computational cost.
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