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Key Points 

Question: Does the frequency of APOE-ε4 and APOE-ε2 alleles explain the exceptional 
memory of non-Hispanic Black and non-Hispanic White SuperAgers? 

Findings: In this multicohort, multiracial study, SuperAgers had significantly higher proportions 
of APOE-ε2 alleles and lower proportions of APOE-ε4 alleles compared to Alzheimer’s disease 
dementia cases. Non-Hispanic White SuperAgers had significantly lower proportions of APOE-
ε4 alleles and significantly higher proportions of APOE-ε2 alleles compared to all cases and 
controls, including oldest-old (ages 80+) controls. In contrast, non-Hispanic Black SuperAgers 
had significantly lower proportions of APOE-ε4 alleles compared to cases and younger controls, 
and only significantly higher proportions of APOE-ε2 alleles compared to cases.  

Meaning: This is the largest study to date to identify differences in APOE-ε4 allele frequency 
based on SuperAger status, and the first study of SuperAgers to find a relationship between 
APOE-ε2 allele frequency and SuperAger status. As has been found in studies of middle-aged 
(ages 50-64) and old (ages 65-79) adults, genetic resiliency in oldest-old (80+) age likely differs 
by genetic ancestry.  
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Abstract (350 words) 

Importance: “SuperAgers” are oldest-old adults (ages 80+) whose memory performance 
resembles that of adults in their 50s to mid-60s. Factors underlying their exemplary memory are 
underexplored in large, racially diverse cohorts. 

Objective: To determine the frequency of APOE genotypes in non-Hispanic Black and non-
Hispanic White SuperAgers compared to middle-aged (ages 50-64), old (ages 65-79), and 
oldest-old (ages 80+) controls and Alzheimer’s disease (AD) dementia cases.  

Design: This multicohort study selected data from eight longitudinal cohort studies of normal 
aging and AD.  

Setting: Variable recruitment criteria and follow-up intervals, including both population-based 
and clinical-based samples.  

Participants: Inclusion in our analyses required APOE genotype, that participants be age 50+, 
and are identified as either non-Hispanic Black or non-Hispanic White. In total, 18,080 
participants were included in the present study with a total of 78,549 datapoints. 

Main Outcomes and Measures: Harmonized, longitudinal memory, executive function, and 
language scores were obtained from the Alzheimer’s Disease Sequencing Project Phenotype 
Harmonization Consortium (ADSP-PHC). SuperAgers, controls, and AD dementia cases were 
identified by cognitive scores using a residual approach and clinical diagnoses across multiple 
timepoints when available. SuperAgers were compared to AD dementia cases and cognitively 
normal controls using age-defined bins (middle-aged, old, oldest-old).  

Results: Across racialized groups, SuperAgers had significantly higher proportions of APOE-ε2 
alleles and lower proportions of APOE-ε4 alleles compared to cases. Similar differences were 
observed between SuperAgers and middle-aged and old controls. Non-Hispanic White 
SuperAgers had significantly lower proportions of APOE-ε4 alleles and significantly higher 
proportions of APOE-ε2 alleles compared to all cases and controls, including oldest-old controls. 
In contrast, non-Hispanic Black SuperAgers had significantly lower proportions of APOE-ε4 
alleles compared to cases and younger controls, and significantly higher proportions of APOE-
ε2 alleles compared only to cases.  

Conclusions and Relevance: In the largest study to date, we demonstrated strong evidence 
that the frequency of APOE-ε4 and -ε2 alleles differ between non-Hispanic White SuperAgers 
and AD dementia cases and cognitively normal controls. Differences in the role of APOE in 
SuperAging by race underlines distinctions in mechanisms conferring resilience across race 
groups given likely differences in genetic ancestry. 
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Introduction 
 “SuperAgers” is a term used to describe oldest-old (ages 80+) adults with episodic 
memory performance most closely resembling adults in their 50s to mid-60s.1,2 Studies suggest 
that resilience to Alzheimer’s disease (AD) pathological changes and neurodegeneration may 
explain SuperAgers’ high memory scores.3-6 Further research is needed to elucidate factors 
conferring resilience to AD-related brain changes and subsequent cognitive decline in 
SuperAgers. Moreover, research is needed to explore resiliency factors in non-Hispanic Black 
(NHB) SuperAgers, as this group is largely understudied.7 
 APOE-ε4 is the strongest genetic risk factor for late-onset AD.8 The Northwestern 
SuperAging project reported lower APOE-ε4 allele frequency in SuperAgers (N = 10-12) 
compared to non-demented older adults.2,9 In contrast, most studies report no differences in 
APOE-ε4 allele frequency between SuperAgers and oldest-old adults with typical memory 
performance, both groups having lower APOE-ε4 allele frequency compared to AD dementia 
cases.4-6,10-12 Notably, these studies have small SuperAger samples (N = 25-64)4-6,10-12 
oftentimes drawn from the same cohort, thus limiting their generalizability and reliability. Further, 
these studies exclusively include NHW participants.4-6,10-12 To our knowledge, only one study 
has been published characterizing NHB SuperAgers (N = 61) and did not find a significant 
difference in APOE-ε4 allele frequency between SuperAgers and same-aged controls.7 Even 
fewer studies have explored the relationship of APOE-ε2, the protective APOE allele, and 
SuperAger status,11-13  likely due to the low minor allele frequency of APOE-ε2. Studies of 
APOE-ε2 allele frequency and superior memory in the oldest-old have not found a significant 
relationship11-13; however, questions of statistical power, generalizability, and reliability remain. 
 The present study aims to explore APOE-ε4 and -ε2 allele frequency in SuperAgers 
compared to AD dementia cases and controls in a large, harmonized multicohort dataset from 
the Alzheimer’s Disease Sequencing Project Phenotype Harmonization Consortium (ADSP-
PHC). Using a residual approach to evaluate harmonized cognitive domains (e.g., memory, 
executive function, language), we classified NHW and NHB middle-aged, old, and oldest-old 
adults as cases, controls, or SuperAgers, and compared APOE-ε4 and -ε2 allele frequency of 
SuperAgers to cases and controls by age bin. Although prior literature suggests that there is not 
a relationship between optimal memory in oldest-old age and APOE genotype, this is likely due 
to a limitation of sample size. The ADSP-PHC has enabled us to complete, to our knowledge, 
the largest and most racially diverse study to date of APOE allele frequency and SuperAger 
status. We hypothesize that SuperAgers will possess a higher frequency of APOE-ε4 alleles 
and a lower frequency of APOE-ε2 alleles compared to both AD dementia cases and controls.  
Methods 

Study Population. The ADSP-PHC was assembled in 2021 to provide large-scale 
harmonization of ADSP cohorts, spanning markers of cognition, neuroimaging, fluid biomarkers, 
and neuropathology. Cohorts that are part of ADSP-PHC and were included in the present study 
are: Adult Changes in Thought (ACT),14 Alzheimer’s Disease Neuroimaging Initiative (ADNI),15 
Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD),16 National Alzheimer’s 
Coordinating Centers (NACC),17 National Institute on Aging Alzheimer’s Disease Family Based 
Study (NIA-AD FBS),18 Religious Orders Study/Rush Memory and Aging Project/Minority Aging 
Research Study (ROS/MAP/MARS),19,20,21 Knight Alzheimer’s Disease Research Center (Knight 
ADRC),22 and Wisconsin Registry for Alzheimer’s Prevention (WRAP).23  

Written informed consent was obtained from all participants in each cohort, and research 
was carried out with protocols approved by each site’s institutional review board. These 
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secondary analyses were approved by the Vanderbilt University Medical Center institutional 
review board.  

Cognitive Domain Scores. Each cohort used different neuropsychological assessment 
tools to measure cognition which may not be on the same scale. We derived co-calibrated and 
harmonized cognitive domain scores for four domains (i.e., memory, executive function, 
language, and visuospatial) using confirmatory factor analysis.24 Consistent with previous 
definitions of SuperAgers, only memory, executive function, and language domains were used 
in present analyses.1,2 To ensure inclusion of high-quality harmonization, cognitive domain 
scores with a standard error of measurement > 0.6 (estimated during the co-calibration and 
composite generation procedure) were excluded. Visit the data dictionary at 
https://vmacdata.org/adsp-phc to explore the cognitive variables from each cohort that make up 
each cognitive domain.  

For the purposes of this study, regression-based normative scores were created for 
participant classification. Age, years of education, sex, and cohort were regressed on cognitive 
domain score at each available timepoint. Residuals were used to capture cognitive 
performance not explained by demographic variables or cohort differences. Separate models 
were used for NHW and NHB participants.  

Participant Classification. Participants were grouped by race, clinical status, and age 
(Figure 1A). Age bins were decided based on the age-related criteria for SuperAgers (ages 
80+) and the adults whose memory performance is compared to oldest-old adults to determine 
SuperAger status (ages 50-64).25 Therefore, the age bins included middle-aged (ages 50-64), 
old (ages 65-79), and oldest-old (ages 80+) adults. Participant classification was determined 
separately for NHW and NHB adults. Given that longitudinal data were available for most 
participants, and some participants’ ages spanned multiple age bins, participant classification 
was decided using a predetermined schema (Figure 1B).  

Firstly, participants with a clinical diagnosis of AD dementia at least once were 
considered cases. Across all cohorts, a diagnosis of AD dementia followed standard published 
criteria (National Institute of Neurological and Communicative Disorders and Stroke and the 
Alzheimer’s Disease and Related Disorders Association, or NINCDS-ADRDA).26-28 Given that 
the present study focused on dementia cases likely due to AD, participants with comorbid 
neurological disorders (e.g., stroke, traumatic brain injury with significant loss of consciousness) 
or non-AD dementia (e.g., Dementia with Lewy Bodies, Vascular Dementia) diagnosed at any 
timepoint were excluded. Age bin was determined based on age at first AD dementia diagnosis. 

Next, SuperAgers were identified using previously published criteria.1,2 Across all 
cohorts, SuperAgers were defined as oldest-old adults with (1) memory score at or above the 
mean of middle-aged adults (ages 50-64), (2) executive function and language domain scores 
no lower than 1 standard deviation below their same-aged peers (ages 80+) at the same visit as 
their superior memory performance, and (3) whose diagnosis remained “cognitively normal” for 
the duration of study participation.  

Regarding classification as a control, given the importance of oldest-old (ages 80+) 
participants to our central analyses, we sequentially identified oldest-old, middle-aged, and then 
old controls. Criteria for controls included (1) memory, executive function, and language domain 
scores no lower than 1 standard deviation below their same-aged peers at a single visit, and (2) 
whose diagnosis remained “cognitively normal” for the duration of their study participation.  

APOE Genotyping. APOE haplotypes were determined from the single nucleotide 
variants rs7412 and rs429358 for ACT, BIOCARD, NACC, NIA-AD FBS, Knight ADRC, and 
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WRAP and from pyrosequencing of APOE codons 112 and 158 for ADNI and 
ROS/MAP/MARS.29,30 

Statistical Analyses. Statistical analyses were performed using R Statistical Software 
(v4.2.3.).31 Logistic regression models examined differences in APOE-ε4 and -ε2 allele 
frequency of SuperAgers compared to cases and controls at all age bins. APOE allele positivity 
was determined by allele presence (0 = no allele present, 1 = one or more alleles present) and 
did not consider the additive effect of homozygosity. Models covaried for sex and years of 
education due to their known modifying effects on the relationship of APOE and late-life 
cognition.32,33 Sensitivity analyses included analyses removing individuals with APOE-ε2/ε4 
genotype and individuals with data from only a single timepoint. Correction for multiple 
comparisons was applied using Benjamini-Hochberg false discovery rate (FDR) procedure.34 
Results tables include odds ratios (OR), confidence intervals (CI), and FDR-corrected p-values. 
Results 
 Participant Characteristics. In total, 18,080 participants were included in the present 
analyses with a total of 78,549 datapoints (Table 1).  Participants completed an average of 4 ± 
4 visits over 5 ± 5 years. The number of follow-up visits and length of follow-up varied by cohort 
due to differences in study design; for example, while participants from BIOCARD completed an 
average of 9 ± 3 visits over 13 ± 4 years, participants from NIA-AD FBS completed an average 
of 1 ± 1 visits over 2 ± 3 years.  
 Average baseline age varied by cohort (Age[all cohorts] = 72 ± 10); the youngest cohorts on 
average, BIOCARD and WRAP, primarily recruited cognitively normal participants. Generally, 
cohorts were highly educated (Years of Education[all cohorts] = 15 ± 3), mostly female (62.9%), and 
mostly NHW (85.4%). The proportion of each APOE genotype differed by cohort, with higher 
proportions of ε3/ε4 and ε4/ε4 genotypes in cohorts with a higher proportion of AD dementia 
cases.  
 Participant Classification. SuperAgers made up 9% of all participants (N = 1,623). The 
two youngest cohorts, BIOCARD and WRAP, did not contribute any SuperAgers. Cognitively 
unimpaired controls comprised 42% of all participants (N = 7,628), and cases made up 49% of 
all participants (N = 8,829). 
 Table 2 displays participant characteristics of NHW and NHB SuperAgers, controls, and 
cases in age-defined bins. On average, NHW SuperAgers (N = 1,412) were somewhat older, 
had more years of education, and included more males than NHB SuperAgers (N = 211). There 
was not a difference in the proportion of participants in each participant classification 
(SuperAger, control, case) across racialized groups (Χ2

[2] = 3.79, p = 0.15). Comparing NHW 
and NHB participants across age-defined bins, all NHW bins had greater average years of 
education and a higher proportion of males than NHB bins.  
 APOE Allele Frequency. In NHW comparisons (Table 3A), SuperAgers had a 
significantly higher frequency of APOE-ε2 alleles (Figure 2A) and a significantly lower 
frequency of APOE-ε4 alleles compared to all cases and controls (Figure 2B). In contrast, NHB 
SuperAgers (Table 3B) had a significantly higher frequency of APOE-ε2 alleles only compared 
to cases (Figure 2C), and a significantly lower frequency of APOE-ε4 alleles compared to all 
cases and controls except oldest-old controls (Figure 2D).  
 Sensitivity Analyses. Analyses were repeated removing individuals with an APOE-
ε2/ε4 genotype. Given their low frequency, very few participants were removed 
(Supplementary Table 1; NHW SuperAgers: N = 1,393; NHB SuperAgers: N = 200) and 
findings were preserved (Supplementary Table 2).  
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 Analyses were also repeated including only individuals with longitudinal data. Across 
racialized groups, SuperAgers’ sample size was more substantially reduced (Supplementary 
Table 3; NHW SuperAgers: N = 1,053; NHB SuperAgers: N = 160). Findings were relatively 
similar; however, differences in APOE-ε2 and -ε4 allele frequency between NHW SuperAgers 
and oldest-old controls were no longer significant (Supplementary Table 4).  
Discussion 
 Mechanisms conferring resilience to memory decline in oldest-old age are yet unknown. 
This is the largest study to date of APOE-ε4 and -ε2 allele frequency in both NHW and NHB 
SuperAgers. Across 8 national aging cohorts, we identified 1,623 NHW and NHB SuperAgers 
with APOE genotyping using longitudinal harmonized cognitive and clinical data. As expected, 
we found that SuperAgers had a higher proportion of APOE-ε2 alleles and a lower proportion of 
APOE-ε4 alleles compared to individuals with AD dementia. Unlike previous studies of APOE 
genotype in NHW SuperAgers, we found significant differences in APOE genotype compared to 
controls of all ages, including oldest-old controls. Specifically, NHW oldest-old adults with ≥1 ε4 
allele were 0.81 less likely to be a SuperAger, and those with ≥1 ε2 allele were 1.28 more likely 
to be a SuperAger. This finding held when ε2/ε4 carriers were removed from analyses. APOE 
genotype did not significantly differentiate NHB SuperAgers and oldest-old controls. Differences 
in the relationship of APOE allele frequency and SuperAger status across racialized group 
suggests differences in the role of genetics in resilience to memory decline in oldest-old age.  

APOE-ε4 is the strongest genetic risk factor for late-onset AD,8 and has been shown to 
be related to increased entorhinal and hippocampal atrophy35 and amnestic cognitive 
impairment.36,37 Our data are supportive of these findings, such that AD dementia cases had a 
greater proportion of APOE-ε4 alleles compared to controls.38 Unlike most studies of genetic 
resilience in SuperAgers, we found that NHW SuperAgers had a lower proportion of APOE-ε4 
alleles compared to oldest-old adults with typical memory performance. This was found in one 
previous study published by Rogalski and colleagues,2 but was not replicated by subsequent 
studies with larger samples of SuperAgers.4-6,10-12 This finding is relatively unexpected. Across 
racialized groups, the effect of APOE-ε4 is most impressive prior to age 70.39,40 Additionally, 
APOE-ε4 carriership is related to increased mortality.41,42 In line with these studies, we found 
lower APOE-ε4 allele frequency in oldest-old compared to middle-aged and old controls. 
Despite NHW oldest-old controls being older than NHW SuperAgers on average, we found that 
SuperAgers had a significantly lower frequency of APOE-ε4 alleles compared to oldest-old 
controls, indicating that APOE-ε4 allele carriership influences memory even in adults who live 
past age 80.  

The protective APOE-ε2 allele is related to lower likelihood of late-onset AD dementia13, 
43 and better cognitive performance in older adults even in the presence of AD 
neuropathology.44 Unlike APOE-ε4, APOE-ε2 carriership was previously shown to affect 
cognition after age 80; more precisely, although oldest-old APOE-ε2 carriers were as likely as 
APOE-ε4 carriers to meet neuropathologic criteria for AD, they were less likely to be diagnosed 
with dementia.43 Despite this, no previous studies have found a relationship of APOE-ε2 allele 
frequency and SuperAger status.11-13 The present study is the first to find that NHW SuperAgers 
had a significantly higher frequency of APOE-ε2 alleles compared to controls. Our results 
suggest that APOE-ε2 not only reduces the likelihood of dementia in oldest age but increases 
the likelihood one will possess optimal memory in oldest age. Future studies are needed to 
determine whether SuperAgers have similar levels of AD neuropathology compared to AD 
dementia cases as was previously found in oldest-old APOE-ε2 carriers without dementia.43 
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Genetic factors underlying the superior memory performance of NHB SuperAgers, a 
critically under-diagnosed and understudied group, are relatively unknown.7 Previous research 
suggests that, while NHB individuals have higher proportions of APOE-ε4 alleles compared to 
NHW individuals, APOE-ε4 carriership is associated with attenuated risk for late-onset AD, yet 
similar mortality risk, in NHB individuals compared to NHW individuals.40,47-49 The effect is 
related to global population ancestry; more specifically, APOE-ε4 carriership is associated with 
a greater risk of AD in NHB older adults with decreased global African ancestry or increased 
global European ancestry.40 Similar to APOE-ε4, NHB individuals have higher proportions of 
APOE-ε2 alleles compared to NHW individuals.47 Unlike APOE-ε4, researchers did not detect 
differences in the protective effect of APOE-ε2 alleles related to global population ancestry.40 In 
fact, a recent study from the MARS cohort found that NHB older adults (ages 65+) with more 
APOE-ε2 alleles had slower cognitive decline over a 10-year study period.50 Additionally, APOE-
ε2 carriership was related to better survival in a sample of NHB and NHW individuals from 
NACC with and without AD neuropathology.46 In the present study, NHB SuperAgers had 
significantly lower proportions of APOE-ε4 alleles compared to cases and younger controls, and 
significantly higher proportions of APOE-ε2 alleles compared only to cases. The lack of 
difference in APOE allele carriership between NHB SuperAgers and oldest-old controls may be 
explained by survivorship bias; recent research indicates that NHB adults have higher 
probability of survival from ages 70 and 80 to 100 compared to NHW adults.51 NHB SuperAgers 
and other oldest-old adults may share environmental and genetic factors, including APOE-ε2 
allele carriership, that support survival and reduced mortality risk in older age.  

Importantly, the present study included a substantially smaller sample of NHB 
SuperAgers compared to NHW SuperAgers, although the sample was still far larger than has 
been previously reported.7 Still, more research and targeted recruitment of high-performing NHB 
oldest-old adults is necessary to determine the role of APOE genotype in their sustained optimal 
memory performance. 

Strengths and Limitations. The present study has several strengths, including being 
the largest and most racially diverse of its kind to explore the relationship of APOE genotype 
and optimal memory performance in both NHW and NHB SuperAgers. Our study also has 
several limitations. Firstly, the smaller sample size of NHB SuperAgers compared to NHW 
SuperAgers makes it difficult to interpret differences in the statistical significance of the 
relationship of APOE allele frequency and SuperAger status across racialized groups. As 
mentioned previously, targeted recruitment of NHB SuperAgers is required to clarify the 
contribution of genetics to the superior memory performance of NHB adults in old age. 
Additionally, studies have identified other genetic factors that may confer greater AD risk in NHB 
older adults compared to APOE, including ABCA7.52,53 Future studies will need to consider other 
genetic factors that may be more relevant to exceptional aging in NHB older adults. Moreover, 
differences in the effect of genetic factors on AD risk have been associated with genetic 
ancestry.40 Subsequent research leveraging advanced genetic analyses to consider admixture 
may further our understanding of genetic profiles underlying AD risk. 

While most participants in the present study had longitudinal data to support their 
participant classification, many participants did not. Sensitivity analyses with only individuals 
with longitudinal data included only 1,053 NHW SuperAgers and 160 NHB SuperAgers, likely 
affecting our ability to detect significance. Defining SuperAgers using longitudinal data is likely 
more robust, as it is unclear whether participants with a single timepoint of cognitive data and 
clinical diagnoses will remain within their participant classification over time.54 There is an 
ongoing initiative that intends to answer complex questions about brain aging, resilience, and 
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resistance in a well-characterized SuperAging cohort through longitudinal, multimodal data 
collection.55,56 This research will contribute tremendously to our understanding of factors 
conferring resilience in oldest-old age.  
 Conclusions. We have limited knowledge of the genetic factors that contribute to 
optimal memory performance in oldest-old age. This is the largest study to date to identify 
differences in APOE-ε4 allele frequency based on SuperAger status, and the first study of 
SuperAgers to find a relationship between APOE-ε2 allele frequency and SuperAger status. The 
present study reveals important information about potential differences in the genetic factors 
associated with exceptional memory in oldest-old adults, a group at the highest risk for AD 
neuropathologic accumulation and dementia. While significant findings were restricted to NHW 
comparisons, study results importantly direct our attention to other genetic risk factors that may 
be more important to the cognitive resilience of NHB oldest-old adults.  
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Figure 1. Flow Diagram for Participant Classification of SuperAgers, Cases, and Controls. (A) Flo
depicting inclusion and exclusion criteria for identifying SuperAgers, AD dementia cases, controls. (B) 
Flowchart depicting selection order of SuperAgers, cases, and controls. Age range of participants indica
line segment with arrows on each end. Age of participant classification is indicated by position of shorter
labeled line segments. Closed circles at the end of line segments indicate inclusion of age, such that age
is less-than-or-equal-to or greater-than-or-equal-to the age with which the circle aligns, while open circle
indicate exclusion of age, such that age range is less-than or greater-than the age with which the circle a
Sequence of selection is indicated by line height, higher lines indicating earlier selection. Abbreviations: 
PHC, Alzheimer’s Disease Sequencing Project – Phenotype Harmonization Consortium; AD, Alzheimer’
Disease; CN, Cognitively Normal; MEM, Memory; EXF, Executive Functioning; LAN, Language. 
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A. NHW APOE-ε2 Carriers 

 

C. NHW APOE-ε4 Carriers 

 

C. NHB APOE-ε2 Carriers 

 

 

D. NHB APOE-ε4 Carriers 

Figure 2. APOE Allele Frequency in Non-Hispanic White and Non-Hispanic Black SuperAgers 
Compared to Cases and Controls. Bar charts depicting APOE-ε2 and APOE-ε4 allele frequency for 
SuperAgers, cases, and controls across age-defined subgroups. Participant classification is indicated by
axis, while percent frequency is indicated by the Y-axis. (A) APOE-ε2 allele frequency in NHW participan
APOE-ε4 allele frequency in NHW participants. (C) APOE-ε2 allele frequency in NHB participants. (D) A
ε4 allele frequency in NHB participants. Asterisks denote significant differences in allele frequency comp
to SuperAgers determined by logistic regression models covarying for sex and years of education (*  0

 0.01, ***  0.001). Abbreviations: NHW, Non-Hispanic White; NHB, Non-Hispanic Black. 
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Table 1. Participant Characteristics by Cohort.  

Participant Demographics All ACT ADNI BIOCARD Knight 
ADRC NACC NIA-AD 

FBS 
ROS, MAP, 

MARS WRAP 

No. participants 18080 2188 825 51 735 11851 645 1462 323 

No. observations 78549 13016 3568 455 3314 42004 956 13931 1305 

Visits, mean (SD) 4 (4) 6 (3) 4 (3) 9 (3) 5 (4) 4 (3) 1 (1) 10 (6) 4 (2) 

Follow-up time, mean (SD), y 5 (5) 10 (6) 3 (3) 13 (4) 4 (5) 3 (4) 2 (3) 9 (6) 9 (5) 

Baseline Age, mean (SD), y 72 (10) 73 (6) 74 (7) 53 (9) 74 (8) 72 (10) 74 (12) 77 (8) 53 (6) 

NHW Race, No. (%) 15698 (87) 2116 (97) 753 (91) 51 (100) 635 (86) 10149 (86) 605 (94) 1086 (74) 303 (94) 

Education, mean (SD), y 15 (3) 15 (3) 16 (3) 17 (2) 15 (3) 16 (3) 14 (3) 16 (4) 16 (3) 

Female Sex, No. (%) 11213 (62) 1295 (59) 401 (49) 30 (59) 453 (62) 7319 (62) 406 (63) 1091 (75) 218 (67) 

APOE genotype          

  ε2/ε2, % 0.4 0.6 0.4 0 0.3 0.4 0.6 0.5 0.3 

  ε2/ε3, % 8.8 12.5 8.6 13.7 8.7 7.9 5.1 12.1 7.1 

  ε2/ε4, % 2.6 2.3 2.4 0 2.7 2.6 3.3 2.1 3.4 

  ε3/ε3, % 47.0 58.8 44.8 62.7 41.9 44.2 37.7 57.9 52.6 

  ε3/ε4, % 33.5 24.0 33.1 19.6 38.8 35.6 43.1 24.4 32.2 

  ε4/ε4, % 7.8 1.7 10.7 3.9 7.6 9.4 10.2 2.9 4.3 

SuperAgers, No. (%) 1623 (9) 275 (13) 59 (7) 0 (0) 53 (7) 935 (8) 16 (2) 285 (19) 0 (0) 

Controls, No. (%) 7628 (42) 1207 (55) 335 (41) 49 (96) 290 (39) 4605 (39) 309 (48) 510 (35) 323 (100) 

Cases, No. (%) 8829 (49) 706 (32) 431 (52) 2 (4) 392 (53) 6311 (53) 320 (50) 667 (46) 0 (0) 

Abbreviations: NHW, Non-Hispanic White; ACT, Adult Changes in Thought; ADNI, Alzheimer’s Disease Neuroimaging Initiative; BIOCARD, Biomarkers of Cognitive Decline Among Normal Individuals; 
Knight ADRC, Knight Alzheimer’s Disease Research Center at Washington University; NACC, National Alzheimer’s Coordinating Centers; NIA-AD FBS, National Institute on Aging Alzheimer’s Disease 
Family Based Study; ROS, Religious Orders Study; MAP, Memory and Aging Project; MARS, Minority Aging Research Study; WRAP, Wisconsin Registry for Alzheimer’s Prevention. 
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Table 2. Characteristics of SuperAgers, Cases, and Controls by Race and Age Bin. 

A 

 
SuperAgers Middle-Aged 

Controls 
Old 

Controls 
Oldest-old 
Controls 

Middle-Aged 
Cases 

Old 
Cases 

Oldest-old 
Cases 

No. participants 1412 1622 3202 1213 1101 3528 3258 

No. observations 11528 7067 12308 6980 2692 10858 15434 

Visits, mean (SD) 8 (5) 4 (3) 4 (3) 6 (4) 2 (2) 3 (2) 5 (4) 

Follow-up time, mean (SD), y 10 (6) 6 (5) 4 (4) 8 (6) 2 (2) 2 (3) 5 (6) 

Baseline age, mean (SD), y 77 (7) 57 (5) 70 (4) 79 (7) 59 (5) 73 (4) 83 (6) 

Education, mean (SD), y 16 (3) 16 (2) 16 (3) 15 (3) 15 (3) 15 (3) 15 (3) 

Female Sex, No. (%) 953 (67) 1119 (69) 1964 (61) 661 (54) 618 (56) 1905 (54) 1989 (61) 

APOE-ε2 Frequency, No. (%) 246 (17) 216 (13) 467 (15) 179 (15) 50 (5) 184 (5) 321 (10) 

APOE-ε4 Frequency, No. (%) 276 (20) 647 (40) 981 (31) 270 (22) 639 (58) 2495 (71) 1425 (44) 
 

B 

 SuperAgers Middle-Aged 
Controls 

Old 
Controls 

Oldest-old 
Controls 

Middle-Aged 
Cases 

Old 
Cases 

Oldest-old 
Cases 

No. participants 211 296 752 145 85 413 444 

No. observations 1830 1024 3106 827 171 1300 2281 

Visits, mean (SD) 9 (5) 3 (3) 4 (3) 6 (4) 2 (1) 3 (3) 5 (5) 

Follow-up time, mean (SD), y 9 (6) 4 (4) 4 (4) 6 (5) 1 (1) 3 (3) 5 (6) 

Baseline age, mean (SD), y 77 (6) 59 (4) 70 (4) 79 (6) 60 (4) 73 (4) 83 (6) 

Education, mean (SD), y 15 (3) 15 (3) 15 (3) 13 (3) 14 (3) 14 (4) 13 (4) 

Female Sex, No. (%) 177 (84) 222 (75) 564 (75) 115 (79) 58 (68) 283 (69) 331 (75) 

APOE-ε2 Frequency, No. (%) 56 (27) 68 (23) 155 (21) 27 (19) 8 (9) 36 (9) 53 (12) 

APOE-ε4 Frequency, No. (%) 54 (26) 125 (42) 261 (35) 39 (27) 65 (76) 307 (74) 216 (49) 
 

(A) Non-Hispanic White; (B) Non-Hispanic Black 
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Table 3. Logistic Regression Model Results Comparing APOE-ε2 and -ε4 Allele Frequency among SuperAgers, Cases, and Controls. 

A 

 APOE-ε2 APOE-ε4 

 OR (CI) PFDR OR (CI) PFDR 

SuperAgers vs. Middle-Aged Controls 1.38 (1.13, 1.68) 0.0023 0.37 (0.31, 0.43) <0.0001 

SuperAgers vs. Old Controls 1.24 (1.05, 1.47) 0.0148 0.55 (0.47, 0.64) <0.0001 

SuperAgers vs. Oldest-Old Controls 1.28 (1.03, 1.59) 0.0347 0.81 (0.67, 0.99) 0.0441 

SuperAgers vs. Middle-Aged Cases 4.55 (3.30, 6.27) <0.0001 0.18 (0.15, 0.21) <0.0001 

SuperAgers vs. Old Cases 4.02 (3.26, 4.96) <0.0001 0.09 (0.08, 0.11) <0.0001 

SuperAgers vs. Oldest-Old Cases 2.03 (1.68, 2.44) <0.0001 0.32 (0.27, 0.37) <0.0001 
 

B 

 APOE-ε2 APOE-ε4 

 OR (CI) PFDR OR (CI) PFDR 

SuperAgers vs. Middle-Aged Controls 1.19 (0.79, 1.80) 0.4295 0.48 (0.33, 0.71) 0.0005 

SuperAgers vs. Old Controls 1.41 (0.99, 2.01) 0.0787 0.66 (0.47, 0.94) 0.0353 

SuperAgers vs. Oldest-Old Controls 1.63 (0.93, 2.85) 0.1146 1.18 (0.70, 1.98) 0.5638 

SuperAgers vs. Middle-Aged Cases 3.59 (1.60, 8.06) 0.0051 0.12 (0.07, 0.22) <0.0001 

SuperAgers vs. Old Cases 4.56 (2.75, 7.55) <0.0001 0.12 (0.08, 0.18) <0.0001 

SuperAgers vs. Oldest-Old Cases 2.73 (1.75, 4.25) <0.0001 0.39 (0.27, 0.57) <0.0001 
 

(A) Non-Hispanic White; (B) Non-Hispanic Black. Abbreviations: OR, Odds Ratio; CI, Confidence Interval (95%); PFDR, FDR-corrected P-value. 
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