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Abstract State‐of‐the‐art earthquake early warning systems use the early records of seismic waves to
estimate the magnitude and location of the seismic source before the shaking and the tsunami strike. Because of
the inherent properties of early seismic records, those systems systematically underestimate the magnitude of
large events, which results in catastrophic underestimation of the subsequent tsunamis. Prompt elastogravity
signals (PEGS) are low‐amplitude, light‐speed signals emitted by earthquakes, which are highly sensitive to
both their magnitude and focal mechanism. Detected before traditional seismic waves, PEGS have the potential
to produce unsaturated magnitude estimates faster than state‐of‐the‐art systems. Accurate instantaneous
tracking of large earthquake magnitude using PEGS has been proven possible through the use of a
Convolutional Neural Network (CNN). However, the CNN architecture is sub‐optimal as it does not allow to
capture the geometry of the problem. To address this limitation, we design PEGSGraph, a novel deep learning
model relying on a Graph Neural Network (GNN) architecture. PEGSGraph accurately estimates the magnitude
of synthetic earthquakes down to Mw 7.6–7.7 and determines their focal mechanisms (thrust, strike‐slip or
normal faulting) within 70 s of the event's onset, offering crucial information for predicting potential tsunami
wave amplitudes. Our comparative analysis on Alaska and Western Canada data shows that PEGSGraph
outperforms PEGSNet, providing more reliable rapid magnitude estimates and enhancing tsunami warning
reliability.

Plain Language Summary Earthquake early warning systems use the first recorded seismic waves
to rapidly estimate the magnitude of an earthquake and the size of a potential tsunami. They are limited by the
speed of these waves and produce systematic underestimations of the magnitude of large events and subsequent
tsunamis. The recent discovery of gravitational perturbations caused by earthquakes (called PEGS) may lead to
a solution. PEGS travel at the speed of light, much faster than seismic waves, and can provide early and accurate
information on the size of an earthquake. Recent studies showed that PEGS can be used to rapidly characterize
large earthquakes through the use of a Convolutional Neural Network (CNN). However, CNN architectures are
not optimal for the targeted task as they do not capture the geometry of the problem. To address this issue, we
designed a Graph Neural Network (GNN), called PEGSGraph, that handles complex data structures. Tests on
data from Alaska and Western Canada show that PEGSGraph outperforms PEGSNet. PEGSGraph can
accurately estimate the magnitude of an earthquake (of magnitude above 7.6–7.7) 70 s after its initiation. This
fast, reliable information presents a new window of opportunity to forecast the size of tsunamis and improve
early warning systems.

1. Introduction
Earthquakes generate different types of seismic waves. The fastest ones, called P‐waves travel through the Earth
at speeds of approximately 6 km per second. These waves are the first to be detected by seismometers, providing
the initial data for conventional Earthquake Early Warning (EEW) systems. The waves responsible for the
damaging ground shaking felt during an earthquake, called S‐waves, travel slower, at about 3–4 km per second.
EEW systems capitalize on the speed difference between P‐waves (the information carrier) and S‐waves (the
damage carrier). When an earthquake occurs, P‐waves are detected first, providing a few seconds of warning
before the most destructive S‐waves arrive. This short lead time is critical for automated safety measures, such as
stopping trains and shutting down industrial processes, as well as for public alerts (Allen &Melgar, 2019; Minson
et al., 2018). Most EEW algorithms estimate the magnitude and location of the ongoing event, from which an alert
may be issued in places located within a given radius (which depends on the estimated magnitude) from the
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estimated epicenter (Lara et al., 2023). Other EEW algorithms directly estimate the peak ground acceleration, that
is, the intensity of the shaking (Joshi et al., 2024; Y. Liu et al., 2024; Saad et al., 2024).

Offshore earthquakes generate water uplift that, for the largest events, result in devastating tsunamis, which
typically cause most fatalities and damage (Mori et al., 2022; Wirth et al., 2022). For tsunamis, the time available
for warning is longer than for the shaking but still critical. Depending on the location of the earthquake relative to
the coastline, there can be a lead time ranging from tens of minutes to several hours before the tsunami waves
reach the shore. Accurate and rapid magnitude estimates are essential to predict tsunami wave heights and issue
timely warnings to the exposed populations (Nicolsky et al., 2017; Whitmore et al., 2008).

However, traditional EEW systems face challenges in accurately predicting the ultimate magnitude of large
earthquakes. Most regional EEW systems use point source algorithms and initial P‐wave data in the first seconds
after an earthquake to swiftly estimate its magnitude and source characteristics (Allen & Kanamori, 2003; Wu &
Zhao, 2006). The early onset of P‐waves however lacks sufficient information to reliably forecast the full extent of
an earthquake's magnitude (Meier et al., 2017; Renou et al., 2019). The EEW predictions thus tend to saturate for
large events and systematically underestimate the magnitude of those events, which is critical for tsunami
warning. Modern tsunami warning systems use another type of wave known as the W‐phase (Kanamori, 1993;
Kanamori & Rivera, 2008). They provide better estimates of magnitude—in particular for large events—than P‐
wave‐based systems but are significantly slower (magnitude estimates available ∼ 10 min after the earthquake
using regional seismological networks) (Duputel et al., 2011, 2012).

Global Navigation Satellite System (GNSS) has emerged as a potential valuable tool for enhancing earthquake
and tsunami early warning systems (Crowell et al., 2016; Grapenthin et al., 2014; Melgar et al., 2016). GNSS
records the displacement of geodetic stations, which can be significant for large earthquakes. GNSS measure-
ments do not saturate for large events and displacement information is carried out at the P‐wave speed, meaning
that GNSS has the potential to provide unsaturated magnitude estimates (and therefore reliable tsunami warning)
much faster than the W‐phase (Minson et al., 2014). Challenges in integrating GNSS into EEW systems come
from a high sensitivity of the measurements to the details of the seismic rupture (in particular the spatial dis-
tribution of the co‐seismic slip) (Minson et al., 2018) and from the volume of data required to transmit for real‐
time monitoring, which can make such a system fail in the conditions of a catastrophic event such as a large
earthquake.

Prompt elastogravity signals (coined PEGS) are gravitational fluctuations caused by the dynamic redistribution of
the Earth's mass during an earthquake (Harms et al., 2015; Heaton, 2017; Montagner et al., 2016; Vallée
et al., 2017). These signals manifest before traditional seismic waves and carry valuable information on the
earthquake's characteristics, in particular on its magnitude and focal mechanism (Vallée & Juhel, 2019; S. Zhang
et al., 2020). Leveraging the information contained in PEGS could significantly enhance the speed and accuracy
of earthquake monitoring and early warning systems (Juhel et al., 2023; Vallée & Juhel, 2019; S. Zhang
et al., 2020).

Given the low signal‐to‐noise ratios (PEGS amplitudes are a few nm/s2 at most) and the complexity and volume
of data generated by PEGS, harnessing deep learning tools is essential to effectively process and extract
meaningful patterns from these signals. Recently, deep learning techniques, especially CNNs, have made sig-
nificant progress in automatically detecting structures and meaningful features within data (Bergen et al., 2019;
Mousavi & Beroza, 2022, 2023). This has led to the creation of powerful and computationally efficient models for
tasks like time series analysis. In this context, Licciardi et al. (2022) designed a PEGS‐based, deep convolutional
neural network (CNN) called PEGSNet, able to track without time‐delay the magnitude of Mw ≥ 8.3 thrust
earthquakes along the Japanese subduction fault. The algorithm was also applied to the Chilean subduction zone
(Arias et al., 2023). However, due to constraints related to the network geometry and the number of available
stations, PEGSNet's lower sensitivity was limited to Mw ≥ 8.7 in that region. More recently, a modified version of
PEGSNet (Juhel, Licciardi, & Bletery, 2024) has been applied to the Alaska region (Juhel, Bletery, et al., 2024). In
addition to the characterization of the earthquake magnitude and location, this version can be used to estimate its
focal mechanism. Thanks to the extensive coverage of high‐quality stations in the USArray network (Busby &
Aderhold, 2020; Ruppert & West, 2020), the algorithm accurately estimates the magnitude and focal mechanism
of Mw ≥ 7.8 earthquakes within 2 min of their origin time, outperforming state‐of‐the‐art early warning algo-
rithms based on GNSS (Juhel, Bletery, et al., 2024).
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The CNN architecture of PEGSNet imposes fixed‐input formats: data from
seismic stations are arranged in a specific matrix structure. This requires an
arbitrary station sorting to construct the input image (Figure 1a). As a result,
nearby sensors may not be adjacent in the input matrix. Moreover, all the
information relative to the geometry of the problem (relative distances be-
tween the potential sources and all the sensors) is lost in such a CNN archi-
tecture, which likely results in sub‐optimal performances. In addition, this
architecture makes PEGSNet's input inflexible in terms of size and structure,
requiring a fixed format that includes all stations from a given data set. It
implies that a malfunctioning sensor cannot be removed from the data set (the
corresponding line in the input image is then filled with zeros, which may lead
to a decrease in PEGSNet's efficiency), while the addition of any newly
deployed sensors—either permanent or temporary—requires an all‐new
training of the convolutional neural network.

In order to leverage the lost geometrical information and provide flexibility,
Geometric Deep Learning (GDL) can be employed (Bronstein et al., 2017,
2021). GDL extends deep learning techniques to non‐Euclidean domains such
as graphs, allowing for more effective modeling of complex relationships.
Unlike conventional deep learning, which typically handles data in regular
grid‐like structures (e.g., images or sequences), GDL is designed to work with
data where the relationships and interactions between elements are more
complex and irregular like graphs. These graphs consist of nodes (or vertices)
and edges that connect them, which can represent, for example, social net-
works (Fan et al., 2019; Shang et al., 2020), molecular structures (Atz
et al., 2021; Jumper et al., 2021), or network of seismological stations.

Graph Neural Networks (GNNs), a subset of GDL, are neural networks
specifically designed to handle data structured as graphs (Chami et al., 2022).
GNNs process these structures to perform tasks such as node classification,
link prediction, and graph classification. They leverage the connections be-
tween nodes to learn complex patterns that standard neural networks may
overlook. In seismology, GNNs have been used to detect seismic events
(Yano et al., 2021; Zhu et al., 2022), for phase association (McBrearty &
Beroza, 2023) and source characterization (McBrearty & Beroza, 2022; Van
Den Ende & Ampuero, 2020; X. Zhang et al., 2022). Those algorithms are all
trained on conventional seismic waves. No GNN has been applied to
PEGS yet.

In this article, we present the first GNN algorithm, called PEGSGraph (Juhel,
Hourcade, & Bletery, 2024), relying on PEGS for rapid earthquake charac-
terization. By modeling seismic networks as graphs (Figure 1b), PEGSGraph
aims to capture the source‐sensor spatial configurations more effectively.
This approach could potentially enhance the robustness and flexibility of
earthquake monitoring systems by providing more accurate and timely pre-
dictions of earthquake magnitude and focal mechanism. We compare

PEGSGraph's performance with PEGSNet's in the Alaska region (Juhel, Bletery, et al., 2024). This comparison
highlights the superiority of a GNN‐based approach for seismic event monitoring capabilities.

2. Implementation and Training
2.1. PEGSGraph Architecture

PEGSNet's architecture consists of a series of convolutional blocks followed by fully connected layers (Licciardi
et al., 2022). As input data, PEGSNet uses a matrix where each row represents the waveform from a different
station. The output layer consists of nine elements corresponding to the event magnitude, the source location

Figure 1. Location of the broadband seismometers used during training for
the “complete” data set. (a) The sensors (dots) are color‐coded by their
corresponding index inside the input 2D images of the convolutional neural
network (PEGSNet). (b) Example of a network structured as a graph, where
each sensor or node (black dots) is connected to its k = 18 closest neighbors.
The lines connecting the stations (i.e., the edges) are color‐coded by the
normalized distance between the nodes.
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(latitude and longitude) and the six moment tensor parameters (Juhel, Bletery, et al., 2024; Juhel, Licciardi, &
Bletery, 2024). PEGSNet and PEGSGraph detailed architectures are compared in Figure 2.

PEGSGraph's framework consists in the following steps: temporal features are first extracted from each indi-
vidual recorded waveform, using a CNN with eight convolutional layers inspired by PEGSNet's architecture. We
then create a k‐nearest neighbors graph corresponding to a seismic event: each node inside the graph represents a
seismological station and is connected to its k = 18 closest geographic neighbors (for more details on the impact
of graph structure on performance, see Section 4.1.). We fill this initial input graph, at the node level, with the
features obtained in the previous step. The learning targets at the graph level are the nine parameters corre-
sponding to the considered seismic event: the event magnitude, the source location (latitude and longitude) and
the seismic moment tensor (which includes six parameters). We then perform a graph‐level prediction, and train
the network to recover the earthquake parameters (the targets at the graph scale) with a succession of graph
convolutions and fully connected neurons.

The graph convolutions are performed by a Graph Convolutional Network (GCN) (Kipf &Welling, 2016). Graph
convolutions, inside a GCN, are analogous to image convolutions in that the “filter” parameters are typically
shared across all locations within the graph. Furthermore, GCNs utilize message passing methods, wherein nodes
exchange information with their neighbors and transmit “messages” to one another (see Figure 3 for an illustration
of the message passing principle). Each node initially generates a feature vector that represents the message to
convey to its neighboring nodes. These messages are then transmitted to the neighbors, resulting in each node
receiving one message from each adjacent node. An aggregation step allows each node to update its own feature
representation based on information gathered from its immediate neighbors. A GCN layer is formally defined as
follows:

H(l+1) = σ( D̂− 1/2 ÂD̂− 1/2H(l)W(l)) (1)

where H(l) and H(l+ 1) are the input and output node features of the given layer, respectively. The trainable weight
parametersW(l) are used to transform the input features into messages, H(l)W(l). Â is the adjacency matrix A with
inserted self‐connections (i.e., Â = A + I, with I the identity matrix), such that each node receives messages
from itself and its neighboring nodes. D̂, defined asDii = ∑j=0 Âij, represents the weighted number of neighbors
of node i. σ represents an arbitrary activation function, a ReLU‐based activation function is typically employed.

Adding successive GCN layers allows nodes to integrate information from a larger number of neighbors over
several hops in the graph. In each subsequent layer, nodes thus accumulate and refine their understanding of the
graph structure and relationships, obtaining indirect information from nodes further down the graph. We
experimented with various GNN architectures by adjusting key hyper‐parameters, including the number of
GCNConv layers (from three to seven layers) and the number of channels per layer (64 or 128). The performance
outcomes for these configurations are detailed in Section 4.1. We finally chose to implement six layers of
GCNConv with 128 channels.

2.2. Synthetic Data Set of Noisy PEGS

For comparison purposes, we train PEGSGraph on the data set presented in Juhel, Bletery, et al. (2024). This
ensures consistency in evaluating and comparing the performance of the GNN and CNNmodels. This database is
composed of synthetic sources based on the distribution of the historical shallow (<60 km) seismicity in Alaska
reported by Global CMT since 1976 (Ekström et al., 2012) (Figure S1a in Supporting Information S1). Three
distinct geographic regions have been created (see colored polygons in Figure S1b in Supporting Information S1):
these regions correspond to synthetic strike‐slip, thrust and normal fault sources. The synthetic sources are
modeled as pure double‐couple mechanisms. The corresponding density distributions of strike, dip and rake
angles are detailed in Figure S2 in Supporting Information S1.

The entire process of creating the data set is detailed in Figure 4. This figure provides a step‐by‐step overview of
the data pipeline, from the initial data collection and pre‐processing to the final input construction. First, we
calculate PEGS Green's functions (Figure 4.1) between each source and each sensor location, inside a 1D Earth
model (AK135), using the QSSP algorithm (Wang et al., 2017; S. Zhang et al., 2020).
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Figure 2. PEGSNet (CNN, top) and PEGSGraph (GNN, bottom) architectures. The number of channels in each convolutional
layer is shown for clarity. The GNN architecture is divided into several parts: 1) a station‐wise, temporal feature extraction,
2) several rounds of message passings to obtain node embeddings and 3) a readout layer to aggregate node embeddings into a
graph embedding, followed by a final prediction layer.
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The moment‐rate source time‐function (STF) database is computed using the functional form
y(t) = μt exp[− (λt)2/2] described by Meier et al. (2017), where the parameters μ (initial slope) and λ(Mw)
(inverse characteristic time scale) are fitted based on empirical STF data sets. To take into account the varying
STF duration for a given final magnitude, λ(Mw) is perturbed by a multiplicative term ϵ extracted from the normal
distributionN{μ = 0,σ = 0.15}. The final moment magnitudeMw is extracted from three uniform distributions:
U {5.5, 9.5} for thrust,U {5.5, 8.7} for strike‐slip, andU {5.5, 8.4} for normal mechanisms. An example of a STF
for a Mw = 8.0 earthquake is shown in Figure 4.2. The STF is finally corrupted with multiplicative Brownian
noise, to reproduce the variety of STFs observed in nature. The PEGS synthetic waveforms are finally convolved
with the STF (Figure 4.3), and band‐pass filtered between 2.0 mHz (using a high‐pass Butterworth causal filter
with two poles) and 30.0 mHz (using a low‐pass Butterworth causal filter with six poles).

In order to obtain a database of realistic synthetic signals, we add empirical noise recorded by all the broadband
sensors during common time windows (therefore preserving network‐scale correlations of the noise recorded on
the different stations). We apply a basic pre‐processing (which can be applied in real‐time in an operational early
warning system) to all the obtained synthetic data: we remove the linear trend and instrumental response from the
daily vertical recordings (BHZ channels), we band‐pass filter the resulting traces between 2.0 and 30.0 mHz, and
then decimate them to 1 Hz (Figure 4.4). Due to the very low amplitude of PEGS, we exclude the noisiest sensors
from the data set, retaining only those sensors whose median hourly standard deviation does not exceed 1 nm/s2

over a period of 1 year.

Finally, we gather the synthetic PEGS data with previously recorded noise signals. Each signal is then truncated at
the P‐wave arrival time, after which the remainder is replaced by zeros to produce a standardized signal length of
300 s (Figure 4.5). Figure 4.6 illustrates how these data are used as inputs for the two algorithms. For PEGSNet,
the data are concatenated into a 2D image where each row corresponds to the signal from a single station, with a
predefined station order (Figure 1a). For PEGSGraph, on the other hand, the data are processed individually by a
1D CNN at the input stage of the algorithm (Figure 2).

We gather two distinct data sets: a “complete” data set, corresponding to the full deployment of the station
network (all good‐quality broadband sensors operating between 2018 and 2020), and a “legacy” data set, cor-
responding to all good‐quality broadband sensors still operating by the end of the 2021 field season (hence after
the removal of the non‐transferred, Alaska TA stations). Each training data sets comprises 512,000 synthetic
earthquakes. Figure 1b illustrates the connections between the sensors of the “complete” network, structured as a
graph (see Figure S3 in Supporting Information S1 for the corresponding connections in the “legacy”

Figure 3. Illustration of the message passing principle in a Graph Convolutional Network (GCN). Each node initially
generates a feature vector based on its own attributes (left). These feature vectors are then transmitted to neighboring nodes
along the graph edges (right). Each node aggregates the received messages to update its own feature representation,
incorporating information from its immediate neighbors. This process is repeated across multiple layers, allowing nodes to
capture increasingly complex patterns by considering information from a wider neighborhood in the graph.
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Figure 4. Overview of the data set creation process. See Section 2.2 of the main text for detailed explanations.
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configuration). To ensure clarity, the majority of the results presented in this study correspond to training con-
ducted using the “complete” data set.

2.3. Training

We divide the two synthetic data sets into three parts: the training sets, validation sets and test sets, which
constitute 70%, 20%, and 10% of the data, respectively. During training, the Smooth L1 loss (with a cutoff for
β = 0.3) is used to minimize the discrepancy between the ground truth and the predicted values over the course of
200 epochs, with batch sizes of 512. After each epoch, the model's performance is assessed using the validation
set, and the model with the lowest validation loss is selected as the final model. This final model is then evaluated
on the test set. In our approach, we trained the model independently 10 times and selected the best‐performing
model based on these runs. This method allowed us to identify the most optimal training outcome. However,
alternative techniques, such as K‐fold cross‐validation, could also be applied to further enhance the robustness of
the model evaluation by systematically training and validating on different subsets of the data. Since PEGSNet
requires retraining for every change in network configuration, we conducted training sessions of PEGSGraph for
both the “complete” and “legacy” configurations. The corresponding training and validation curves are presented
in Figure S4 in Supporting Information S1.

We also tested training the model on a reduced data set, using only 10% of the full data (results shown in Figure S5
in Supporting Information S1). The results indicate a noticeable drop in performance when training on a data set
of 51,200 samples, with particularly larger errors observed in the location of seismic events. Given the complexity
of our problem, which involves accurately characterizing a large variety of seismic events, it is clear that a
substantial data set is required to fully capture the underlying patterns and relationships necessary for effective
model training.

3. PEGSNet and PEGSGraph Performance Comparison
3.1. Performance Comparison on Synthetic Earthquakes

The magnitude regression performances obtained with PEGSNet and PEGSGraph for the “complete” data set are
shown in Figures 5a–5f. Figures 5g–5i displays the accuracy ratio between PEGSNet and PEGSGraph for easier
comparison. In this study, we consider a magnitude estimate to be accurate if the predicted time‐dependent
moment magnitude Mpredw (t) is within 0.4 units of the true magnitude Mtruew (t) (as defined in Juhel, Bletery,
et al. (2024) for easier comparison). The Mw estimates are separated depending on the predicted type of focal
mechanism: thrust (plunge of tension axis above 45°), strike‐slip (plunge of null axis above 45°) or normal
mechanism (the remaining samples). First of all, we note that for both PEGSNet and PEGSGraph models, Mw
estimates are more accurate for normal and strike‐slip earthquakes than for thrust events, which are known to
generate smaller PEGS for a given magnitude (Vallée & Juhel, 2019). However, PEGSGraph demonstrates a
notable performance improvement for thrust events: the accuracy ratio shows a performance improvement of
around 5%, 150 s after onset (after the origin time of the earthquake), for 8.5≤Mpredw ≤ 8.9, at least a 10%
advantage for PEGSGraph for Mpredw ≤ 8.1 and a 20% advantage for Mpredw ≤ 7.6 (Figure 5g). Gains are also
observed for strike‐slip and normal events, with PEGSGraph outperforming PEGSNet by at least 10% for
magnitudes under 7.7 (Figures 5h and 5i). For PEGSGraph, the accuracy level exceeds 75% when the predicted
magnitude is above Mpredw = 7.6 for thrust events (compared to Mpredw = 8.0 for PEGSNet), Mpredw = 7.5 for
strike‐slip events (compared to 7.8 for PEGSNet) and Mpredw = 7.4 for normal events (compared to 7.5 for
PEGSNet).

In order to evaluate the performance of the moment tensor reconstruction, we use the geometrical similarity α
(Rivera & Kanamori, 2014). This metric quantifies the similarity between two moment tensors, regardless of the
seismic moment: α = 0 indicates opposite tensors, while α = 1 denotes identical tensors. We define a recon-
struction as successful if α≥ 0.8 (as defined in Juhel, Bletery, et al. (2024) for easier comparison), relative to the
input focal mechanism (ground truth). The corresponding accuracy of the mechanism reconstruction for each
event is depicted in Figure S6 in Supporting Information S1. Similar outcomes are observed between PEGSNet
and PEGSGraph models.

We further compare PEGSNet and PEGSGraph performances on magnitude and focal mechanism estimations,
but also in locating seismic events (Figure S7 in Supporting Information S1). For this purpose, we analyze various
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ranges of Mpredw for each focal mechanism using the median absolute error (MedAE), 4 min after onset time.
Regarding magnitude estimation and event location, PEGSGraph systematically outperforms PEGSNet for thrust
and strike‐slip events, while the performances are comparable for normal fault events. For thrust events for
instance, PEGSGraph achieves a MedAE lower than 0.2 magnitude units (PEGSNet's MedAE being systemat-
ically above 0.2), and reduces the MedAE of event location by 15 km compared to PEGSNet. Lastly, for source
mechanism reconstruction, the results are relatively similar between PEGSGraph and PEGSNet.

To further assess PEGSGraph's performance compared to PEGSNet's (Juhel, Bletery, et al., 2024), we specifically
examine the same subset of test samples falling within defined final magnitude ranges: Mtruew = 9.0 ± 0.05,
Mtruew = 7.8 ± 0.05, Mtruew = 7.7 ± 0.05 and Mtruew = 7.6 ± 0.05 (Figure 6). The mode distributions for

Figure 5. Accuracy of magnitude estimates for PEGSNet (a–c) and PEGSGraph (d–f) on the test set, for the “complete”
sensor network. The test set is divided into predicted thrust (a, d), strike‐slip (b, e) and normal (c, f) samples. A magnitude
estimate is considered successful if |Mtruew (t) − Mpredw (t)|< 0.4. Contour lines indicate accuracy of 90% (blue), 75% (red), and
60% (green), respectively. The accuracy ratio between PEGSGraph and PEGSNet is shown in (g–i).
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Figure 6. Magnitude estimates obtained with PEGSGraph for the “complete” network. (a–d) Probability density of magnitude estimates for samples with actual final
magnitudes ofMw = 9.0,Mw = 7.8,Mw = 7.7, andMw = 7.6 ± 0.05, respectively. The red lines represent the mode (solid) and the 5th and 95th percentiles (dashed).
The white line represents the distribution mode obtained with PEGSNet. The black lines indicate the median (solid) and the 5th and 95th percentiles (dashed) of the true
magnitudes, for reference. (e) Probability density of magnitude estimates for all test set events when PEGS are excluded from the synthetic waveforms.
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Mtruew = 9.0 ± 0.05 events are quite similar between both architectures: PEGSGraph's mode jumps toward the
target value 5 s before PEGSNet's mode, and subsequently oscillates closer to the ground truth. For events with
Mtruew = 7.8 ± 0.05, PEGSNet provides an initial estimate starting from t = tEQ + 90 s, whereas the GNN
outputs a robust solution starting from t = tEQ + 70 s.

We observe significant performance improvements for lower magnitude events. For events of
Mtruew = 7.7 ± 0.05, PEGSNet exhibits a bimodal distribution mode, oscillating in betweenMpredw ∼ 6.7 and the
target value (thus indicating a Mw = 7.8 lower sensitivity for PEGSNet). In contrast, PEGSGraph consistently
delivers a stable and reliable magnitude estimate, starting 70 s after onset time. For events with
Mtruew = 7.6 ± 0.05, PEGSNet most often fails to converge toward the target value, with the distribution mode
remaining atMpredw ∼ 6.7. PEGSGraph provides a robust estimation 80 s after onset time and up to 250 s, beyond
which a bimodal distribution of the mode is observed. These results suggest a sensitivity threshold for moment
magnitude estimation in between Mw = 7.6 and Mw = 7.7.

The predictions displayed in Figure 6e reaffirm that the estimates rely exclusively on PEGS‐derived information.
When PEGS are removed from the synthetic waveforms (while retaining P‐wave arrival data), PEGSGraph
consistently outputs aMpredw ∼ 6.5 estimate (considered as the 0 baseline), similarly to PEGSNet (Juhel, Bletery,
et al., 2024). Moreover, the noise samples at the 99% confidence level fall below the sensitivity threshold of
Mw = 7.7, as determined earlier for t≥ tEQ + 120 s.

3.2. Performance Comparison on Recent Real Earthquakes

We fed PEGSGraph with broadband data recorded during the four significant recent earthquakes that occurred
during the period covered by the “complete” and the “legacy” networks: (a) the 29 July 2021 Mw 8.2 Chignik
subduction earthquake (C. Liu et al., 2022; Ye et al., 2022), (b) the 23 January 2018 Mw 7.9 Kodiak strike‐slip
earthquake (Krabbenhoeft et al., 2018; Ruppert et al., 2018), (c) the 22 July 2020 Mw 7.8 Shumagin subduction
earthquake (Crowell & Melgar, 2020; C. Liu et al., 2020), and (d) the 19 October 2020 Mw 7.6 Sand Point
intraslab earthquake (Herman & Furlong, 2021; Santellanes et al., 2022). The location of all the earthquakes is
shown in Figure S1a in Supporting Information S1. In Figure 7, we present a comparison of PEGSNet's and
PEGSGraph's simulated real time performances.

For the 2021 Chignik earthquake (Mw 8.2), both models yield similar results. PEGSNet magnitude estimates
approach the target value around 60 s after onset time (70 s for PEGSGraph), and stabilize by 120 s (150 s for
PEGSGraph). Both algorithms indicate an accurate dip‐slip mechanism very early on. Although magnitude
estimation is slightly faster for PEGSNet, we observe more stable prediction oscillations for PEGSGraph for
t≥ tEQ + 150 s. We observe comparable results for the Mw 7.9 Kodiak earthquake, with both models providing
accurate estimates of the focal mechanism and magnitude starting from 120 s after the onset for PEGSNet and 150
for PEGSGraph. We also note a more stable solution for PEGSGraph from t≥ tEQ + 150 s. In the case of the Mw

7.8 Shumagin earthquake, PEGSGraph demonstrates notably better stability. The solution converges to
Mw = 7.8 from 90 s after the onset (compared to 140 s for PEGSNet, with subsequent larger oscillations of the
Mw estimates). Finally, we observe distinct performance differences for the Mw 7.6 Sand Point earthquake. This
event is below PEGSNet's sensitivity threshold, resulting in inaccurate solutions. In contrast, PEGSGraph shows a
stable solution close to the target magnitude around 150 s after onset time. However, none of algorithms is able to
effectively reconstruct the focal mechanism of the source: the geometric similarity α is indeed 0.59 and 0.63 for
PEGSNet and PEGSGraph, respectively.

Both models were trained on a database of earthquakes with purely double‐couple mechanisms. This impacts the
predictions, as the model is limited by the lack of diversity in focal mechanisms within the training data.
Consequently, PEGSGraph and PEGSNet struggle to accurately characterize real sources that deviate from the
double‐couple assumption. Based on the study by Jost and Herrmann (1989), a percentage of the double‐couple
component of a seismic source can be determined. For the Sand Point earthquake, this percentage reaches 71.05%.
In comparison, the percentages for the Shumagin and Chignik events are 98.35% and 97.98%, respectively. The
non‐double‐couple nature of the Sand Point source, combined with a small seismic moment and very slow STF
onset, impacts the algorithms' ability to accurately reconstruct the focal mechanism. Overcoming this limitation
would require creating a more diverse database including a more exhaustive variety of focal mechanisms. This
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would enhance the model's ability to generalize and accurately predict the characteristics of a broader range of
seismic events (to the cost of a significant increase in training time).

To evaluate the robustness of the model under varying noise conditions, we designed tests across different noise
scenarios. For this purpose, we generate synthetic PEGS using the source parameters estimated by GCMT
(Ekström et al., 2012) for the four events mentioned above. We corrupt these synthetic signals by adding 1,000
randomly selected time‐windows of empirical noise extracted from the test set. By collecting magnitude esti-
mations for each of these newly generated test samples, we derive uncertainty estimates for each earthquake (see
Figure 8). The results exhibit greater stability for PEGSGraph, with estimations clustered closer to the target
values for the Chignik, Kodiak and Shumagin earthquakes. For the Sand Point earthquake, the distribution mode
reached the target value within 120 s (Figure 8h), indicating consistent performance across different noise
scenarios.

Figure 7. Magnitudes estimated by PEGSNet (orange) and PEGSGraph (green) as a function of time after the onset of (a) the
29 July 2021,Mw 8.2 Chignik earthquake, (b) the 23 January 2018,Mw 7.9 Kodiak earthquake, (c) the 22 July 2020,Mw 7.8
Shumagin earthquake, and (d) the 19 October 2020,Mw 7.6 Sand Point earthquake. The moment‐rate source time functions from
the SCARDEC database (Vallée & Douet, 2016) are depicted in blue, with the corresponding accumulated moment magnitudes
shown in black (dashed) for reference. The estimated solutions of the moment tensor are illustrated by the orange and green plots
of the focal mechanisms for PEGSNet and PEGSGraph, respectively. The GCMT solution is provided in black for reference for
each event. The top panel uses the “legacy” channels, whereas the bottom three panels utilize the “complete” network. In each
subplot, the gray vertical lines mark the P‐wave arrival times at the 10th and 100th stations closest to the source.
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There are no additional examples of earthquakes within the magnitude range of interest and recorded during the
period covered by the “complete” and the “legacy” networks. To overcome this limitation, we simulated synthetic
PEGS using the source parameters estimated by GCMT (Ekström et al., 2012) for four other historical seismic
events: (a) the 03 November 2002 Mw 7.8 Central Alaska strike‐slip earthquake, (b) the 30 November 1987 Mw
7.8 Gulf of Alaska strike‐slip earthquake, (c) the 06March 1988Mw 7.7 Gulf of Alaska strike‐slip earthquake and
(d) the 05 January 2013 Mw 7.5 Southeastern Alaska strike‐slip earthquake. The location of all these earthquakes
is shown in Figure S1a in Supporting Information S1. As in previous experiments, these synthetic signals were
corrupted by adding 1,000 randomly selected time‐windows of empirical noise extracted from the test set. The
results, shown in Figure S8 in Supporting Information S1, indicate that PEGSGraph maintains stable performance
even in the presence of significant noise.

4. Controlling Factors' Impact on the Algorithms Performance
In this section, we assess the impact of several parameters on the performance of the two models: the graph
architecture for PEGSGraph, the pre‐event noise level, the source location and the station network density, and,
finally, the effectiveness of the source time‐function. Additionally, we examine the generalization capabilities of
PEGSGraph and PEGSNet to other regions.

4.1. Impact of the Graph Structure and Architectures

To investigate the impact of the graph configuration on model performance, we changed the number of nearest
neighbors, testing values of k = 6, k = 12, k = 18, k = 24, and k = 30.Given that aK‐nearest neighbors (K‐NN)

Figure 8. Magnitude estimates on 1,000 synthetic samples obtained by combining PEGS derived from the four studied
earthquakes (based on their GCMT parameters) with noise time windows from the test set, shown for PEGSNet (left) and
PEGSGraph (right). The red lines indicate the mode (solid) and the 25th to 95th percentiles (dashed), while the white lines
represent the actual simulated real‐time prediction (Figure 7). Cumulative moment magnitudes from the SCARDEC database
(Vallée & Douet, 2016) are provided in black as reference for each event. The locations of all the earthquakes are shown in
Figure S1a in Supporting Information S1.

JGR: Machine Learning and Computation 10.1029/2024JH000360

HOURCADE ET AL. 13 of 22

 29935210, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000360 by C
ochrane France, W

iley O
nline L

ibrary on [17/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



graph was employed, each seismic station is connected to its k closest neighboring stations based on geographic
proximity. This configuration influences how spatial information is propagated through the graph. A smaller value
of k results in a more localized graph structure, focusing primarily on nearby stations, whereas larger values
introduce longer‐range connections, potentially capturing broader spatial dependencies. The performance dif-
ferences across these configurations are detailed in Figure 9, where the effects on magnitude, location and focal
mechanism estimations are illustrated. We observe that using a smaller number of neighbors (k = 6) results in
larger location errors. However, for larger values of k (e.g., k = 12, k = 18, k = 24, and k = 30), the results are
similar, with a slight improvement in accuracy for k = 18. These results suggest that while larger graphs capture
more spatial information, k = 18 achieves an optimal balance between including relevant connections between
stations and avoiding the inclusion of less informative distant neighbors.

In addition to exploring the effects of varying k in the K‐nearest neighbors graph, we investigate the impact of
different architectural configurations on PEGSGraph's performance. This includes experimenting various Graph
Convolutional Network (GCN) architectures, where we adjusted both the number of GCNConv layers and the
number of channels per layer. The results of these comparisons are presented in Figure 10, illustrating the

Figure 9. Median Absolute Error (MedAE) of the magnitude (left), location (center), and geometrical similarity (right)
obtained using K‐nearest neighbors graphs with different values of k. Results are shown for the different event types and
predicted magnitudes, measured 4 min after the earthquake onset. A minimum of 10 samples is required to calculate the
MedAE.
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sensitivity of the model to these structural changes. Overall, we observed minimal differences in performance
between the different architectures; however, the specific architecture of PEGSGraph seems to provide the best
results.

While GCNs provide an intuitive approach to modeling spatial relationships between seismological stations, we
also explore more flexible architectures such as Graph Attention Networks (GATs). GATs incorporate attention
mechanisms directly into the graph structure, allowing the model to dynamically weight the importance of
connections between stations, rather than relying solely on fixed graph relationships. This ability to assign dy-
namic edge weights makes GATs an intermediate approach between GCNs and transformers, offering more
flexibility in how stations communicate within the graph.

Transformers, in contrast, remove the need for a predefined graph structure altogether, learning the importance of
connections between stations automatically. This makes transformers potentially interesting for applications like
earthquake early warning systems (Münchmeyer et al., 2021). By determining how to combine features from
different stations dynamically, transformers could address challenges faced by traditional CNN‐based models.

Figure 10. Median Absolute Error (MedAE) of the magnitude obtained with different GNN architectures. Results are shown
for the different event types and predicted magnitudes, measured 4 min after the earthquake onset. A minimum of 10 samples
is required to calculate the MedAE.
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However, for this study, we prioritized the use of GCNs and GATs due to the explicit spatial knowledge provided
by the seismic station layout, which is central to understanding seismic wave propagation patterns.

Despite testing several architectures using GAT layers instead of GCNConv, we did not observe a significant
improvement in performance (an example of performance with GAT layers is shown in Figure 10). However, the
adaptability of transformers remains a compelling direction for future work, particularly in regions where seismic
networks are evolving rapidly.

4.2. Impact of the Pre‐Event Noise Level

We define the noise level as the standard deviation of each waveform recorded during the 5 min‐long time‐
window preceding a real or synthetic earthquake. We compute the median of these noise levels obtained for
each station, to get an estimate of the noise level across the entire network of sensors. We restrict the analysis to
test samples with STF inefficiency <1 (indicating fast starts) to focus on the impact of the noise level. STF in-
efficiency is defined as the ratio between the time required to release half of the final moment and its functional
form (Meier et al., 2017) (see Figure S9 in Supporting Information S1 for an illustration of the STF inefficiency).
For PEGSNet, events characterized by a noise level exceeding 1 nm/s2 (highlighted by red dots, indicating a
strong background seismic noise, or surface waves generated by regional or teleseismic events) most often exhibit
inaccuracies in magnitude prediction (Figure 11a). This limitation suggests that higher noise levels adversely
affect PEGSNet's ability to provide precise estimates. In contrast, PEGSGraph demonstrates enhanced perfor-
mance under similar noisy conditions. This improvement is noticeable in Figure 11b, where a higher number of
test samples with high noise levels falls within the expected magnitude range. This highlights PEGSGraph's
robustness in dealing with noisy data and its ability to achieve more accurate magnitude estimations.

4.3. Impact of Earthquake Location

To assess the effect of the earthquake's location relative to the station network on prediction accuracy, we consider
six locations (denoted T1 to T6 in Figure 12a) along the 30 km isodepth of the subducting slab, according to the
Slab2.0 model (Hayes et al., 2018). We then calculate the corresponding synthetic PEGS considering the strike
and dip angles consistent with the Slab2.0 model at the six considered locations, a rake angle of 90°, and a
magnitude of 7.8 (which corresponds to PEGSNet's sensitivity limit). For each synthetic PEGS, we add
1,000 time‐windows of empirical noise extracted from the test set. Gathering the magnitude estimations for each
of these newly generated test samples allows us to estimate the uncertainty for each of these synthetic thrust
earthquakes (Figure 12b).

Figure 11. Impact of the pre‐event noise level (in nm/s2) on the performance of the algorithms. This analysis only includes
test samples with STF inefficiency<1 (indicating fast onsets) to focus solely on the impact of the noise level. The black lines
indicate the ground truth (solid) and the ±0.4 Mw unit range (dashed), that is the range of magnitudes wherein aMw estimate is
considered successful. (a) PEGSNet Mw estimates, compared with the ground truth 4 min after onset time, color‐coded by the
pre‐event noise level. (b) Same as (a) for the PEGSGraph predictions.
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For location T1, both models show similar results, with solutions converging to the ground truth 60 s after the
earthquake onset. However, as we move further east (hence farther away from the station network), the accuracy
of PEGSNet's solutions rapidly decreases. The lower accuracy of PEGSNet's solutions for locations T2 and T3
may be attributed to low dip angles (8.6° and 12.0°, respectively) compared to the normal distribution used in the

Figure 12. Magnitude estimates forMw = 7.8 synthetic thrust earthquakes, based on the Slab2.0 model (Hayes et al., 2018).
(a) Location of the six synthetic sources, along the 30 km isodepth of the subducting slab. (b) Magnitude estimates from
synthetic waveforms (synthetic PEGS based on Slab2.0 parameters, augmented with 1,000 noise time‐windows from the test
set). The orange lines indicate the distribution mode (solid) and the 5th and 95th percentiles (dashed) for PEGSNet, while the
green lines represent the mode (solid) and the 5th and 95th percentiles (dashed) for PEGSGraph. The ground truth, moment‐
rate source time function is a triangular‐shaped function with typical duration T = (M0/1016 N.m)

1/ 3 (Houston, 2001), with
M0 the seismic moment. The corresponding accumulated moment magnitude is provided in black as a reference for each event.
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training database (N(μ = 25 ° ,σ = 7°), Figure S2 in Supporting Information S1). In contrast, PEGSGraph
maintains a more stable distribution mode, providing a solution around Mw ∼ 7.5 for events T2 and T3. We
observe an oscillation in PEGSNet distribution modes between the target value and Mw ∼ 6.7 for events T3, T4,
and T5. For events T4 and T5, PEGSGraph offers a robust and stable solution, with the predicted magnitude
converging around the target value at approximately 80 and 110 s, respectively. Finally, for the easternmost
location T6, neither of the two algorithms provides a solution close to the target magnitude. The T6 radiation
pattern (and associated optimal locations for PEGS detection) is indeed directed toward the Bering Sea, well away
from the network of sensors.

We show the corresponding “legacy” performances in Figure S10 in Supporting Information S1. These results,
for both configurations, highlight the critical importance of a well‐distributed and dense station network on the
reliability and accuracy of the magnitude estimations. We note that in regions far from the existing station
network, PEGSGraph performs better than PEGSNet, providing more consistent and stable magnitude estimates
despite the sparse station coverage.

4.4. Impact of the Source Time Function Onset

The source of the Sand Point event not only presents a significantly lower final seismic moment than the other
events, but also a slower onset. Fifteen seconds after the initial onset, the event had only reachedMw = 7.0 (see the
SCARDEC reference curves in Figure 7d). This slow evolution hampers the effectiveness of PEGS generation,
complicating the precise extraction of source parameters. Nevertheless, the solution produced by PEGSGraph
shows a stable solution close to the target magnitude around 150 s after onset time.

Figure 13 further illustrates the impact of the STF efficiency on the predictive capabilities of PEGSNet and
PEGSGraph. Both models encounter difficulties in accurately characterizing the source when the STF exhibits a
very slow onset. In contrast, medium‐to‐fast onsets lead to preciseMw estimates for test samples that are above the
sensitivity threshold. Compared to PEGSNet, PEGSGraph demonstrates improved performance by providing
more samples within the expected magnitude range, as indicated by the red lines. Solutions for sources with a very
slow STF onset (inefficiency around 2) appear to be more accurate (Figure 13d). Moreover, a noticeable reduction
in the sensitivity threshold, from 7.8 to 7.7, is observed with PEGSGraph (Figure 13c), highlighting its enhanced
ability to detect and accurately estimate the magnitude of smaller events.

4.5. PEGSGraph Generalization

One of the key strengths of our GNN‐based approach with PEGSGraph is its flexibility in accommodating
changes to the sensor network. Unlike CNNs, which require complete retraining when new stations are added,
PEGSGraph can incorporate additional sensors—whether permanent or temporary—without the need for
extensive model retraining. This adaptability is particularly advantageous for evolving seismic networks, where
new stations may be deployed to enhance coverage.

Adapting PEGSGraph to other regions requires adjustments due to potential differences in instrumentation (e.g.,
sensors density, spatial distribution and sensitivity) and in recorded signals (e.g., seismic noise levels and tectonic
settings). Some regions may have sparse or dense networks, which affects graph construction, and varying
installation qualities (e.g., underground vaults vs. surface installations) that influence the signal observability.
Additionally, regional tectonic settings (such as subduction zones only vs. areas with mixed tectonic activity)
impact the PEGS patterns the model must recognize. Retraining is thus essential to ensure accuracy, but starting
from scratch is not necessary. Using transfer learning, we can fine‐tune PEGSGraph with pre‐trained weights,
reducing data requirements and expediting adaptation for new regions.

5. Conclusion
We designed PEGSGraph, a graph neural network, to enhance rapid characterization of large earthquakes based
on PEGS. We compared its performance to PEGSNet's—a convolutional neural network previously designed for
the same task—on a dense seismic network deployed in Alaska and Western Canada. PEGSGraph is able to
estimate the magnitude of synthetic earthquakes down to Mw7.6–7.7 (compared to Mw 7.8 for PEGSNet), and to
provide their focal mechanisms (thrust fault, strike‐slip fault, or normal fault)—that is, all the necessary in-
gredients to forecast the amplitude of a potential tsunami wave—within 70 s after the event initiation. Tested on
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real data, PEGSGraph proved capable of providing robust estimates of magnitude and focal mechanism for three
7.8≤Mw ≤ 8.2 earthquakes less than 2 min after the event initiations. For the one Mw 7.6 event, PEGSGraph
converges toward a solution close to the target magnitude 2 min after onset, while PEGSNet does not converge.
Additionally, PEGSGraph's architecture makes it capable to handle non‐stationary seismic networks (resulting
from addition/removal of sensors). Overall, PEGSGraph appears as a viable, flexible solution for tsunami
warning, with performances above state‐of‐the‐art early warning systems.

Data Availability Statement
PEGSGraph (Juhel, Hourcade, & Bletery, 2024) is built and trained using PyTorch (Paszke et al., 2019) and
PyTorch Geometric (Fey & Lenssen, 2019). The Python scripts used to generate the input PEGS database and

Figure 13. Impact of the STF onset on the performance of the algorithms. We exclude test samples with very high noise
(>1 nm/s2) to focus solely on the impact of STF efficiency. The red lines indicate the ground truth (solid) and the ±0.4 Mw
unit range (dashed), that is the range of magnitudes wherein aMw estimate is considered successful. The vertical lines represent
PEGSNet (solid) and PEGSGraph (dashed) sensitivity thresholds. (a) Mw estimates from PEGSNet, compared to the ground
truth 4 min after onset time, for events with STF inefficiency <1 (indicating a fast onset). (b) PEGSNetMw estimates for events
with STF inefficiency >1 (indicating a slow onset). (c) PEGSGraph Mw estimates for events with STF inefficiency <1 (fast
onset). (d) PEGSGraph Mw estimates for events with STF inefficiency >1 (slow onset).
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train the graph neural networks described within this paper are available at the following GitLab repository
(https://gitlab.com/kjuhel/pegsgraph). The broadband seismic data from the following networks was used in this
study (alphabetic order): the Alaska Geophysical Network (AK, Alaska Earthquake Center, Univ. of Alaska
Fairbanks, 1987), the National Tsunami Warning Center Alaska Seismic Network (AT, NOAA National Oceanic
and Atmospheric Administration (USA), 1967), the Alaska Volcano Observatory (AV, Alaska Volcano Obser-
vatory/USGS, 1988), the Canadian National Seismograph Network (CN, Natural Resources Canada, 1975), the
Global Seismograph Network (II, Scripps Institution of Oceanography, 1986), the Global Seismograph Network
(IU, Albuquerque Seismological Laboratory/USGS, 2014), the USArray Transportable Array (TA, IRIS
Transportable Array, 2003). Waveforms were retrieved from IRIS using the Python toolbox ObspyDMT (Hos-
seini & Sigloch, 2017), and processed with the Python toolbox ObsPy (Beyreuther et al., 2010). SCARDEC
source time functions were accessed on http://scardec.projects.sismo.ipgp.fr. Cartopy (https://scitools.org.uk/
cartopy), Matplotlib (Hunter, 2007) and perceptually uniform scientific color maps (Crameri, 2023) were used for
plotting purposes.
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